1
|
Abel N, Schupp T, Schmitt A, Reinhardt M, Lau F, Weidner K, Ayoub M, Mashayekhi K, Akin I, Behnes M. Left ventricular diastolic dysfunction in patients with heart failure with mildly reduced ejection fraction. Int J Cardiol 2024; 414:132386. [PMID: 39079587 DOI: 10.1016/j.ijcard.2024.132386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVE This study investigates the prevalence and prognostic impact of diastolic dysfunction (DD) in patients hospitalized with heart failure (HF) with mildly reduced ejection fraction (HFmrEF) in sinus rhythm. BACKGROUND Data regarding the prognostic impact of DD in patients with HFmrEF is limited. METHODS From 2016 to 2022, all patients hospitalized with HFmrEF (i.e., left ventricular ejection fraction 41-49% and signs and/or symptoms of HF) were retrospectively included at one institution. Patients with DD were compared to patients without (i.e., non-DD), further risk stratification was performed according to the severity of DD. The primary endpoint was all-cause mortality at 30 months (interquartile range (IQR) 15-61 months), key secondary endpoint was rehospitalization for worsening HF. RESULTS From a total of 1154 patients (median age 68 years, 68% males) hospitalized with HFmrEF, concomitant DD was present in 72% (grade I: 56%, grade II: 14%, grade III: 2%). Patients with DD were older (71 years vs. 65 years; p = 0.001) and presented with higher rates of cardiovascular comorbidities. The presence of DD was not associated with the risk of long-term all-cause mortality (adjusted HR = 0.815; 95% CI 0.612-1.085; p = 0.161) or HF-related rehospitalization (adjusted HR = 0.736; 95% CI 0.442-1.225; p = 0.238). Furthermore, the outcome did not differ in patients with more advanced stages of DD. CONCLUSION DD is commonly prevalent in patients with HFmrEF, but not associated with long-term prognosis.
Collapse
Affiliation(s)
- Noah Abel
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Tobias Schupp
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Alexander Schmitt
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Marielen Reinhardt
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Felix Lau
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Kathrin Weidner
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Mohamed Ayoub
- Division of Cardiology and Angiology, Heart Center University of Bochum, Bad Oeynhausen 32545, Germany
| | - Kambis Mashayekhi
- Department of Internal Medicine and Cardiology, MediClin Heart Centre Lahr, Lahr 77933, Germany
| | - Ibrahim Akin
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Michael Behnes
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| |
Collapse
|
2
|
Wang X, Zhao X, Wang X, Cao L, Lu B, Wang Z, Zhang W, Ti Y, Zhong M. Effect of levosimendan on ventricular remodelling in patients with left ventricular systolic dysfunction: a meta-analysis. ESC Heart Fail 2024; 11:1352-1376. [PMID: 38419326 PMCID: PMC11098670 DOI: 10.1002/ehf2.14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Heart failure is the final stage of several cardiovascular diseases, and the key to effectively treating heart failure is to reverse or delay ventricular remodelling. Levosimendan is a novel inotropic and vasodilator agent used in heart failure, whereas the impact of levosimendan on ventricular remodelling is still unclear. This study aims to investigate the impact of levosimendan on ventricular remodelling in patients with left ventricular systolic dysfunction. Electronic databases were searched to identify eligible studies. A total of 66 randomized controlled trials involving 7968 patients were included. Meta-analysis results showed that levosimendan increased left ventricular ejection fraction [mean difference (MD) = 3.62, 95% confidence interval (CI) (2.88, 4.35), P < 0.00001] and stroke volume [MD = 6.59, 95% CI (3.22, 9.96), P = 0.0001] and significantly reduced left ventricular end-systolic volume [standard mean difference (SMD) = -0.52, 95% CI (-0.67, -0.37), P < 0.00001], left ventricular end-diastolic volume index [SMD = -1.24, 95% CI (-1.61, -0.86), P < 0.00001], and left ventricular end-systolic volume index [SMD = -1.06, 95% CI (-1.43, -0.70), P < 0.00001]. In terms of biomarkers, levosimendan significantly reduced the level of brain natriuretic peptide [SMD = -1.08, 95% CI (-1.60, -0.56), P < 0.0001], N-terminal pro-brain natriuretic peptide [SMD = -0.99, 95% CI (-1.41, -0.56), P < 0.00001], and interleukin-6 [SMD = -0.61, 95% CI (-0.86, -0.35), P < 0.00001]. Meanwhile, levosimendan may increase the incidence of hypotension [risk ratio (RR) = 1.24, 95% CI (1.12, 1.39), P < 0.0001], hypokalaemia [RR = 1.57, 95% CI (1.08, 2.28), P = 0.02], headache [RR = 1.89, 95% CI (1.50, 2.39), P < 0.00001], atrial fibrillation [RR = 1.31, 95% CI (1.12, 1.52), P = 0.0005], and premature ventricular complexes [RR = 1.86, 95% CI (1.27, 2.72), P = 0.001]. In addition, levosimendan reduced all-cause mortality [RR = 0.83, 95% CI (0.74, 0.94), P = 0.002]. In conclusion, our study found that levosimendan might reverse ventricular remodelling when applied in patients with left ventricular systolic dysfunction, especially in patients undergoing cardiac surgery, decompensated heart failure, and septic shock.
Collapse
Affiliation(s)
- Xia Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of CardiologyQilu Hospital of Shandong UniversityChina
| | - Xiu‐Zhi Zhao
- Department of CardiologyPeople's Hospital of Lixia District of JinanJinanShandongChina
| | - Xi‐Wen Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of CardiologyQilu Hospital of Shandong UniversityChina
| | - Lu‐Ying Cao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of CardiologyQilu Hospital of Shandong UniversityChina
| | - Bin Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of CardiologyQilu Hospital of Shandong UniversityChina
| | - Zhi‐Hao Wang
- Department of Geriatric MedicineShandong Key Laboratory of Cardiovascular Proteomics, Qilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Wei Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of CardiologyQilu Hospital of Shandong UniversityChina
| | - Yun Ti
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of CardiologyQilu Hospital of Shandong UniversityChina
| | - Ming Zhong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of CardiologyQilu Hospital of Shandong UniversityChina
| |
Collapse
|
3
|
Collibee SE, Romero A, Muci AR, Hwee DT, Chuang C, Hartman JJ, Motani AS, Ashcraft L, DeRosier A, Grillo M, Lu Q, Malik FI, Morgan BP. Cardiac Troponin Activator CK-963 Increases Cardiac Contractility in Rats. J Med Chem 2024; 67:7859-7869. [PMID: 38451215 PMCID: PMC11129196 DOI: 10.1021/acs.jmedchem.3c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Novel cardiac troponin activators were identified using a high throughput cardiac myofibril ATPase assay and confirmed using a series of biochemical and biophysical assays. HTS hit 2 increased rat cardiomyocyte fractional shortening without increasing intracellular calcium concentrations, and the biological target of 1 and 2 was determined to be the cardiac thin filament. Subsequent optimization to increase solubility and remove PDE-3 inhibition led to the discovery of CK-963 and enabled pharmacological evaluation of cardiac troponin activation without the competing effects of PDE-3 inhibition. Rat echocardiography studies using CK-963 demonstrated concentration-dependent increases in cardiac fractional shortening up to 95%. Isothermal calorimetry studies confirmed a direct interaction between CK-963 and a cardiac troponin chimera with a dissociation constant of 11.5 ± 3.2 μM. These results provide evidence that direct activation of cardiac troponin without the confounding effects of PDE-3 inhibition may provide benefit for patients with cardiovascular conditions where contractility is reduced.
Collapse
Affiliation(s)
- Scott E. Collibee
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Antonio Romero
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Alexander R. Muci
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Darren T. Hwee
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Chihyuan Chuang
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - James J. Hartman
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Alykhan S. Motani
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Luke Ashcraft
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Andre DeRosier
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Mark Grillo
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Qing Lu
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Fady I. Malik
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Bradley P. Morgan
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| |
Collapse
|
4
|
Solaro RJ, Goldspink PH, Wolska BM. Emerging Concepts of Mechanisms Controlling Cardiac Tension: Focus on Familial Dilated Cardiomyopathy (DCM) and Sarcomere-Directed Therapies. Biomedicines 2024; 12:999. [PMID: 38790961 PMCID: PMC11117855 DOI: 10.3390/biomedicines12050999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Novel therapies for the treatment of familial dilated cardiomyopathy (DCM) are lacking. Shaping research directions to clinical needs is critical. Triggers for the progression of the disorder commonly occur due to specific gene variants that affect the production of sarcomeric/cytoskeletal proteins. Generally, these variants cause a decrease in tension by the myofilaments, resulting in signaling abnormalities within the micro-environment, which over time result in structural and functional maladaptations, leading to heart failure (HF). Current concepts support the hypothesis that the mutant sarcomere proteins induce a causal depression in the tension-time integral (TTI) of linear preparations of cardiac muscle. However, molecular mechanisms underlying tension generation particularly concerning mutant proteins and their impact on sarcomere molecular signaling are currently controversial. Thus, there is a need for clarification as to how mutant proteins affect sarcomere molecular signaling in the etiology and progression of DCM. A main topic in this controversy is the control of the number of tension-generating myosin heads reacting with the thin filament. One line of investigation proposes that this number is determined by changes in the ratio of myosin heads in a sequestered super-relaxed state (SRX) or in a disordered relaxed state (DRX) poised for force generation upon the Ca2+ activation of the thin filament. Contrasting evidence from nanometer-micrometer-scale X-ray diffraction in intact trabeculae indicates that the SRX/DRX states may have a lesser role. Instead, the proposal is that myosin heads are in a basal OFF state in relaxation then transfer to an ON state through a mechano-sensing mechanism induced during early thin filament activation and increasing thick filament strain. Recent evidence about the modulation of these mechanisms by protein phosphorylation has also introduced a need for reconsidering the control of tension. We discuss these mechanisms that lead to different ideas related to how tension is disturbed by levels of mutant sarcomere proteins linked to the expression of gene variants in the complex landscape of DCM. Resolving the various mechanisms and incorporating them into a unified concept is crucial for gaining a comprehensive understanding of DCM. This deeper understanding is not only important for diagnosis and treatment strategies with small molecules, but also for understanding the reciprocal signaling processes that occur between cardiac myocytes and their micro-environment. By unraveling these complexities, we can pave the way for improved therapeutic interventions for managing DCM.
Collapse
Affiliation(s)
- R. John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.H.G.); (B.M.W.)
| | - Paul H. Goldspink
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.H.G.); (B.M.W.)
| | - Beata M. Wolska
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.H.G.); (B.M.W.)
- Department of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Zhou S, Liu Y, Huang X, Wu C, Pórszász R. Omecamtiv Mecarbil in the treatment of heart failure: the past, the present, and the future. Front Cardiovasc Med 2024; 11:1337154. [PMID: 38566963 PMCID: PMC10985333 DOI: 10.3389/fcvm.2024.1337154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Heart failure, a prevailing global health issue, imposes a substantial burden on both healthcare systems and patients worldwide. With an escalating prevalence of heart failure, prolonged survival rates, and an aging demographic, an increasing number of individuals are progressing to more advanced phases of this incapacitating ailment. Against this backdrop, the quest for pharmacological agents capable of addressing the diverse subtypes of heart failure becomes a paramount pursuit. From this viewpoint, the present article focuses on Omecamtiv Mecarbil (OM), an emerging chemical compound said to exert inotropic effects without altering calcium homeostasis. For the first time, as a review, the present article uniquely started from the very basic pathophysiology of heart failure, its classification, and the strategies underpinning drug design, to on-going debates of OM's underlying mechanism of action and the latest large-scale clinical trials. Furthermore, we not only saw the advantages of OM, but also exhaustively summarized the concerns in sense of its effects. These of no doubt make the present article the most systemic and informative one among the existing literature. Overall, by offering new mechanistic insights and therapeutic possibilities, OM has carved a significant niche in the treatment of heart failure, making it a compelling subject of study.
Collapse
Affiliation(s)
- Shujing Zhou
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ying Liu
- Department of Cardiology, Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xufeng Huang
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Chuhan Wu
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róbert Pórszász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Dattani A, Singh A, McCann GP, Gulsin GS. Myocardial Calcium Handling in Type 2 Diabetes: A Novel Therapeutic Target. J Cardiovasc Dev Dis 2023; 11:12. [PMID: 38248882 PMCID: PMC10817027 DOI: 10.3390/jcdd11010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Type 2 diabetes (T2D) is a multisystem disease with rapidly increasing global prevalence. Heart failure has emerged as a major complication of T2D. Dysregulated myocardial calcium handling is evident in the failing heart and this may be a key driver of cardiomyopathy in T2D, but until recently this has only been demonstrated in animal models. In this review, we describe the physiological concepts behind calcium handling within the cardiomyocyte and the application of novel imaging techniques for the quantification of myocardial calcium uptake. We take an in-depth look at the evidence for the impairment of calcium handling in T2D using pre-clinical models as well as in vivo studies, following which we discuss potential novel therapeutic approaches targeting dysregulated myocardial calcium handling in T2D.
Collapse
Affiliation(s)
- Abhishek Dattani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester LE3 9QP, UK; (A.S.); (G.P.M.); (G.S.G.)
| | | | | | | |
Collapse
|
7
|
Roubenne L, Laisné M, Benoist D, Campagnac M, Prunet B, Pasdois P, Cardouat G, Ducret T, Quignard JF, Vacher P, Baudrimont I, Marthan R, Berger P, Le Grand B, Freund-Michel V, Guibert C. OP2113, a new drug for chronic hypoxia-induced pulmonary hypertension treatment in rat. Br J Pharmacol 2023; 180:2802-2821. [PMID: 37351910 DOI: 10.1111/bph.16174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary hypertension (PH) is a cardiovascular disease characterised by an increase in pulmonary arterial (PA) resistance leading to right ventricular (RV) failure. Reactive oxygen species (ROS) play a major role in PH. OP2113 is a drug with beneficial effects on cardiac injuries that targets mitochondrial ROS. The aim of the study was to address the in vivo therapeutic effect of OP2113 in PH. EXPERIMENTAL APPROACH PH was induced by 3 weeks of chronic hypoxia (CH-PH) in rats treated with OP2113 or its vehicle via subcutaneous osmotic mini-pumps. Haemodynamic parameters and both PA and heart remodelling were assessed. Reactivity was quantified in PA rings and in RV or left ventricular (LV) cardiomyocytes. Oxidative stress was detected by electron paramagnetic resonance and western blotting. Mitochondrial mass and respiration were measured by western blotting and oxygraphy, respectively. KEY RESULTS In CH-PH rats, OP2113 reduced the mean PA pressure, PA remodelling, PA hyperreactivity in response to 5-HT, the contraction slowdown in RV and LV and increased the mitochondrial mass in RV. Interestingly, OP2113 had no effect on haemodynamic parameters, both PA and RV wall thickness and PA reactivity, in control rats. Whereas oxidative stress was evidenced by an increase in protein carbonylation in CH-PH, this was not affected by OP2113. CONCLUSION AND IMPLICATIONS Our study provides evidence for a selective protective effect of OP2113 in vivo on alterations in both PA and RV from CH-PH rats without side effects in control rats.
Collapse
Affiliation(s)
- Lukas Roubenne
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- OP2 Drugs SAS, Pessac, France
| | - Margaux Laisné
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
| | - David Benoist
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, F-33000, Bordeaux, France
| | | | | | - Philippe Pasdois
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, F-33000, Bordeaux, France
| | | | - Thomas Ducret
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
| | | | - Pierre Vacher
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
| | | | - Roger Marthan
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- CHU de Bordeaux, Service d'Explorations Fonctionnelles Respiratoires, INSERM, U 1045, Bordeaux, France
| | - Patrick Berger
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
- CHU de Bordeaux, Service d'Explorations Fonctionnelles Respiratoires, INSERM, U 1045, Bordeaux, France
| | | | | | | |
Collapse
|
8
|
Arfaras-Melainis A, Ventoulis I, Polyzogopoulou E, Boultadakis A, Parissis J. The current and future status of inotropes in heart failure management. Expert Rev Cardiovasc Ther 2023; 21:573-585. [PMID: 37458248 DOI: 10.1080/14779072.2023.2237869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Heart failure (HF) is a complex syndrome with a wide range of presentations and acuity, ranging from outpatient care to inpatient management due to acute decompensated HF, cardiogenic shock or advanced HF. Frequently, the etiology of a patient's decompensation is diminished cardiac output and peripheral hypoperfusion. Consequently, there is a need for use of inotropes, agents that increase cardiac contractility, optimize hemodynamics and ensure adequate perfusion. AREAS COVERED Inotropes are divided into 3 major classes: beta agonists, phosphodiesterase III inhibitors and calcium sensitizers. Additionally, as data from prospective studies accumulates, novel agents are emerging, including omecamtiv mecarbil and istaroxime. The aim of this review is to summarize current data on the optimal use of inotropes and to provide an expert opinion regarding their current and future use in the management of HF. EXPERT OPINION The use of inotropes has long been linked to worsening mortality, tachyarrhythmias, increased myocardial oxygen consumption and ischemia. Therefore, individualized and evidence-based treatment plans for patients who require inotropic support are necessary. Also, better quality data on the use of existing inotropes is imperative, while the development of newer and safer agents will lead to more effective management of patients with HF in the future.
Collapse
Affiliation(s)
- Angelos Arfaras-Melainis
- Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ioannis Ventoulis
- Department of Occupational Therapy, University of Western Macedonia, Ptolemaida, Greece
| | - Effie Polyzogopoulou
- Emergency Department, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Boultadakis
- Emergency Department, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - John Parissis
- Emergency Department, Heart Failure Unit, Attikon University Hospital, Athens, Greece
| |
Collapse
|
9
|
Hantz ER, Tikunova SB, Belevych N, Davis JP, Reiser PJ, Lindert S. Targeting Troponin C with Small Molecules Containing Diphenyl Moieties: Calcium Sensitivity Effects on Striated Muscles and Structure-Activity Relationship. J Chem Inf Model 2023; 63:3462-3473. [PMID: 37204863 PMCID: PMC10496875 DOI: 10.1021/acs.jcim.3c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite large investments from academia and industry, heart failure, which results from a disruption of the contractile apparatus, remains a leading cause of death. Cardiac muscle contraction is a calcium-dependent mechanism, which is regulated by the troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium-binding subunit (cNTnC). There is an increasing need for the development of small molecules that increase calcium sensitivity without altering the systolic calcium concentration, thereby strengthening the cardiac function. Here, we examined the effect of our previously identified calcium-sensitizing small molecule, ChemBridge compound 7930079, in the context of several homologous muscle systems. The effect of this molecule on force generation in isolated cardiac trabeculae and slow skeletal muscle fibers was measured. Furthermore, we explored the use of Gaussian accelerated molecular dynamics in sampling highly predictive receptor conformations based on NMR-derived starting structures. Additionally, we took a rational computational approach for lead optimization based on lipophilic diphenyl moieties. This integrated structural-biochemical-physiological approach led to the identification of three novel low-affinity binders, which had similar binding affinities to the known positive inotrope trifluoperazine. The most potent identified calcium sensitizer was compound 16 with an apparent affinity of 117 ± 17 μM.
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Svetlana B. Tikunova
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Jonathan P. Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Peter J. Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
10
|
Hantz ER, Tikunova SB, Belevych N, Davis JP, Reiser PJ, Lindert S. Targeting Troponin C with Small Molecules Containing Diphenyl Moieties: Calcium Sensitivity Effects on Striated Muscle and Structure Activity Relationship. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527323. [PMID: 36798160 PMCID: PMC9934531 DOI: 10.1101/2023.02.06.527323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Despite large investments from academia and industry, heart failure, which results from a disruption of the contractile apparatus, remains a leading cause of death. Cardiac muscle contraction is a calcium-dependent mechanism, which is regulated by the troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium binding subunit (cNTnC). There is an increasing need for the development of small molecules that increase calcium sensitivity without altering systolic calcium concentration, thereby strengthening cardiac function. Here, we examined the effect of our previously identified calcium sensitizing small molecule, ChemBridge compound 7930079, in the context of several homologous muscle systems. The effect of this molecule on force generation in isolated cardiac trabeculae and slow skeletal muscle fibers was measured. Furthermore, we explored the use of Gaussian accelerated molecular dynamics in sampling highly predictive receptor conformations based on NMR derived starting structures. Additionally, we took a rational computational approach for lead optimization based on lipophilic diphenyl moieties. This led to the identification of three novel low affinity binders, which had similar binding affinities to known positive inotrope trifluoperazine. The most potent identified calcium sensitizer was compound 16 with an apparent affinity of 117 ± 17 μM .
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Svetlana B. Tikunova
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Jonathan P. Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Peter J. Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210,Correspondence to: Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 W. 18th Avenue, Columbus, OH 43210, 614-292-8284 (office), 614-292-1685 (fax),
| |
Collapse
|
11
|
Jani V, Qian W, Yuan S, Irving T, Ma W. EMD-57033 Augments the Contractility in Porcine Myocardium by Promoting the Activation of Myosin in Thick Filaments. Int J Mol Sci 2022; 23:14517. [PMID: 36498844 PMCID: PMC9737153 DOI: 10.3390/ijms232314517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Sufficient cardiac contractility is necessary to ensure the sufficient cardiac output to provide an adequate end-organ perfusion. Inadequate cardiac output and the diminished perfusion of vital organs from depressed myocardium contractility is a hallmark end-stage of heart failure. There are no available therapeutics that directly target contractile proteins to improve the myocardium contractility and reduce mortality. The purpose of this study is to present a proof of concept to aid in the development of muscle activators (myotropes) for augmenting the contractility in clinical heart failure. Here we use a combination of cardiomyocyte mechanics, the biochemical quantification of the ATP turnover, and small angle X-ray diffraction on a permeabilized porcine myocardium to study the mechanisms of EMD-57033 (EMD) for activating myosin. We show that EMD increases the contractility in a porcine myocardium at submaximal and systolic calcium concentrations. Biochemical assays show that EMD decreases the proportion of myosin heads in the energy sparing super-relaxed (SRX) state under relaxing conditions, which are less likely to interact with actin during contraction. Structural assays show that EMD moves the myosin heads in relaxed muscles from a structurally ordered state close to the thick filament backbone, to a disordered state closer to the actin filament, while simultaneously inducing structural changes in the troponin complex on the actin filament. The dual effects of EMD on activating myosin heads and the troponin complex provides a proof of concept for the use of small molecule muscle activators for augmenting the contractility in heart failure.
Collapse
Affiliation(s)
- Vivek Jani
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, The Johns Hopkins University, Baltimore, MD 20205, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wenjing Qian
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Shengyao Yuan
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Thomas Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
12
|
Longobardi S, Sher A, Niederer SA. Quantitative mapping of force-pCa curves to whole heart contraction and relaxation. J Physiol 2022; 600:3497-3516. [PMID: 35737959 PMCID: PMC9540007 DOI: 10.1113/jp283352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract The force–pCa (F–pCa) curve is used to characterize steady‐state contractile properties of cardiac muscle cells in different physiological, pathological and pharmacological conditions. This provides a reduced preparation in which to isolate sarcomere mechanisms. However, it is unclear how changes in the F–pCa curve impact emergent whole‐heart mechanics quantitatively. We study the link between sarcomere and whole‐heart function using a multiscale mathematical model of rat biventricular mechanics that describes sarcomere, tissue, anatomy, preload and afterload properties quantitatively. We first map individual cell‐level changes in sarcomere‐regulating parameters to organ‐level changes in the left ventricular function described by pressure–volume loop characteristics (e.g. end‐diastolic and end‐systolic volumes, ejection fraction and isovolumetric relaxation time). We next map changes in the sarcomere‐regulating parameters to changes in the F–pCa curve. We demonstrate that a change in the F–pCa curve can be caused by multiple different changes in sarcomere properties. We demonstrate that changes in sarcomere properties cause non‐linear and, importantly, non‐monotonic changes in left ventricular function. As a result, a change in sarcomere properties yielding changes in the F–pCa curve that improve contractility does not guarantee an improvement in whole‐heart function. Likewise, a desired change in whole‐heart function (i.e. ejection fraction or relaxation time) is not caused by a unique shift in the F–pCa curve. Changes in the F–pCa curve alone cannot be used to predict the impact of a compound on whole‐heart function.
![]() Key points The force–pCa (F–pCa) curve is used to assess myofilament calcium sensitivity after pharmacological modulation and to infer pharmacological effects on whole‐heart function. We demonstrate that there is a non‐unique mapping from changes in F–pCa curves to changes in left ventricular (LV) function. The effect of changes in F–pCa on LV function depend on the state of the heart and could be different for different pathological conditions. Screening of compounds to impact whole‐heart function by F–pCa should be combined with active tension and calcium transient measurements to predict better how changes in muscle function will impact whole‐heart physiology.
Collapse
Affiliation(s)
- Stefano Longobardi
- Cardiac Electromechanics Research Group, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Anna Sher
- Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Steven A Niederer
- Cardiac Electromechanics Research Group, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
13
|
Solaro RJ. Widely cited publications of Michael Bárány in 1964 and 1967 as tipping points in understanding myosin molecular motors. Arch Biochem Biophys 2022; 727:109319. [PMID: 35709967 DOI: 10.1016/j.abb.2022.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
In 1964 Michael Bárány and colleagues published a paper ((M. Bárány, E. Gaetjens, K. Bárány, Karp E. Arch Biochem Biophys 106(1964)280-93. http://10.1016/0003-9861(64)90,189-4)) that has been one of the most cited papers in Archives of Biochemistry and Biophysics. This was followed in 1967 by another most cited paper (M. Bárány. J Gen Physiol 50(1967)197-218. https://doi.org/10.1085/jgp.50.6.197). I have commemorated these achievements as tipping points in the understanding of myosin motors in muscle function. Tipping points are generally defined as a temporal point in which a series of progressive advances (in this case the understanding of the relations between myosin ATP hydrolysis and muscle function) inspire more expansive, wide-ranging, significant changes. I first concisely summarize the background against which the papers came to publication as well as the unimaginable personal challenges faced by Michael and Kate Bárány. A final section summarizes the impact of these publications as key steps in the progression of contemporary understanding of diverse control of myosin ATPase activity with focus on the thick filaments in cardiac homeostasis, disorders, and as targets for therapeutic applications in translational investigations.
Collapse
Affiliation(s)
- R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL, USA.
| |
Collapse
|
14
|
Stachowski-Doll MJ, Papadaki M, Martin TG, Ma W, Gong HM, Shao S, Shen S, Muntu NA, Kumar M, Perez E, Martin JL, Moravec CS, Sadayappan S, Campbell SG, Irving T, Kirk JA. GSK-3β Localizes to the Cardiac Z-Disc to Maintain Length Dependent Activation. Circ Res 2022; 130:871-886. [PMID: 35168370 PMCID: PMC8930626 DOI: 10.1161/circresaha.121.319491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Altered kinase localization is gaining appreciation as a mechanism of cardiovascular disease. Previous work suggests GSK-3β (glycogen synthase kinase 3β) localizes to and regulates contractile function of the myofilament. We aimed to discover GSK-3β's in vivo role in regulating myofilament function, the mechanisms involved, and the translational relevance. METHODS Inducible cardiomyocyte-specific GSK-3β knockout mice and left ventricular myocardium from nonfailing and failing human hearts were studied. RESULTS Skinned cardiomyocytes from knockout mice failed to exhibit calcium sensitization with stretch indicating a loss of length-dependent activation (LDA), the mechanism underlying the Frank-Starling Law. Titin acts as a length sensor for LDA, and knockout mice had decreased titin stiffness compared with control mice, explaining the lack of LDA. Knockout mice exhibited no changes in titin isoforms, titin phosphorylation, or other thin filament phosphorylation sites known to affect passive tension or LDA. Mass spectrometry identified several z-disc proteins as myofilament phospho-substrates of GSK-3β. Agreeing with the localization of its targets, GSK-3β that is phosphorylated at Y216 binds to the z-disc. We showed pY216 was necessary and sufficient for z-disc binding using adenoviruses for wild-type, Y216F, and Y216E GSK-3β in neonatal rat ventricular cardiomyocytes. One of GSK-3β's z-disc targets, abLIM-1 (actin-binding LIM protein 1), binds to the z-disc domains of titin that are important for maintaining passive tension. Genetic knockdown of abLIM-1 via siRNA in human engineered heart tissues resulted in enhancement of LDA, indicating abLIM-1 may act as a negative regulator that is modulated by GSK-3β. Last, GSK-3β myofilament localization was reduced in left ventricular myocardium from failing human hearts, which correlated with depressed LDA. CONCLUSIONS We identified a novel mechanism by which GSK-3β localizes to the myofilament to modulate LDA. Importantly, z-disc GSK-3β levels were reduced in patients with heart failure, indicating z-disc localized GSK-3β is a possible therapeutic target to restore the Frank-Starling mechanism in patients with heart failure.
Collapse
Affiliation(s)
- Marisa J Stachowski-Doll
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Maria Papadaki
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Weikang Ma
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Henry M Gong
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Stephanie Shao
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
| | - Shi Shen
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
| | - Nitha Aima Muntu
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Mohit Kumar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung, and Vascular Institute, University of Cincinnati, OH (M.K., S. Sadayappan)
| | - Edith Perez
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Jody L Martin
- Department of Pharmacology, Cardiovascular Research Institute, UC Davis School of Medicine, CA (J.L.M.)
| | - Christine S Moravec
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, OH (C.S.M.)
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung, and Vascular Institute, University of Cincinnati, OH (M.K., S. Sadayappan)
| | - Stuart G Campbell
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT (S.G.C.)
| | - Thomas Irving
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| |
Collapse
|
15
|
Preliminary Bioequivalence of an Oral Pimobendan Solution Formulation with Reference Solution Formulation in Beagle Dogs. Vet Sci 2022; 9:vetsci9030141. [PMID: 35324869 PMCID: PMC8955067 DOI: 10.3390/vetsci9030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Oral capsule and tablet formulations of pimobendan are widely used but may present difficulties for accurately dosing small patients. This study aimed to compare the pharmacokinetic (PK) characteristics, bioequivalence, and cardiovascular effects of a custom-made oral pimobendan solution (PS) formulation compared to a reference solution (RS) formulation in conscious, healthy dogs. A randomized crossover design was performed on dogs that received RS and PS formulations at a dose of 0.3 mg/kg. Blood samples were collected at 0, 0.083, 0.167, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 8, and 24 h after oral administration for PK analysis; bioequivalence was also calculated. Echocardiography was also performed to assess the cardiovascular effects. The results revealed that the plasma concentrations of pimobendan and o-desmethyl-pimobendan (active metabolite) in the case of both formulations were comparable. The relative ratios of geometric mean concentrations for all significant parameters of PK were within a range of 80–125%, indicating bioequivalence. In addition, both formulations increased cardiac contraction significantly when compared with the baseline, and no differences in cardiac contractility were detected between the formulations. The PS formulation can be used as alternative to the RS formulation for the management of congestive heart disease because of the bioequivalence between the two formulations.
Collapse
|
16
|
Chen CY, Yang NI, Lee CC, Hung MJ, Cherng WJ, Hsu HJ, Sun CY, Wu IW. Dynamic Echocardiographic Assessments Reveal Septal E/e' Ratio as Independent Predictor of Intradialytic Hypotension in Maintenance for Hemodialysis Patients with Preserved Ejection Fraction. Diagnostics (Basel) 2021; 11:2266. [PMID: 34943503 PMCID: PMC8700173 DOI: 10.3390/diagnostics11122266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Intradialytic hypotension (IDH) is a frequent and grave complication of hemodialysis (HD). However, the dynamic hemodynamic changes and cardiac performances during each dialytic session have been rarely explored in patients having IDH. METHODS Seventy-six HD patients (IDH = 40, controls = 36) were enrolled. Echocardiography examinations were performed in all patients at the pre-HD, during-HD and post-HD phases of a single HD session. A two-way analysis of variance was applied to compare differences of echocardiographic parameters between IDH and controls over time. The risk association was estimated by using a logistic regression analysis. RESULTS The IDH patients had a higher ejection fraction during HD followed by a greater reduction at the post-HD phase than the controls. Significant decreases in septal ratios of transmitral flow velocity to annular velocity (E/e') over times were detected between IDH patients and controls after adjusting for gender, age and ultrafiltration (p = 0.016). A lower septal E/e' ratio was independently associated with IDH (OR = 0.040; 95% CI = 0.003-0.606; p = 0.02). In contrast, significant systolic and diastolic dysfunctions over time were found in diabetic IDH compared to non-diabetic counterparts. CONCLUSION The septal E/e' ratio was a significant predictor for IDH.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; (C.-Y.C.); (C.-C.L.); (H.-J.H.); (C.-Y.S.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-J.H.); (W.-J.C.)
| | - Ning-I Yang
- Department of Cardiology, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Chin-Chan Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; (C.-Y.C.); (C.-C.L.); (H.-J.H.); (C.-Y.S.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-J.H.); (W.-J.C.)
| | - Ming-Jui Hung
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-J.H.); (W.-J.C.)
- Department of Cardiology, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Wen-Jin Cherng
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-J.H.); (W.-J.C.)
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Heng-Jung Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; (C.-Y.C.); (C.-C.L.); (H.-J.H.); (C.-Y.S.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-J.H.); (W.-J.C.)
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; (C.-Y.C.); (C.-C.L.); (H.-J.H.); (C.-Y.S.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-J.H.); (W.-J.C.)
| | - I-Wen Wu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; (C.-Y.C.); (C.-C.L.); (H.-J.H.); (C.-Y.S.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-J.H.); (W.-J.C.)
| |
Collapse
|
17
|
Feng Y, Yan B, Cheng H, Wu J, Chen Q, Duan Y, Zhang P, Zheng D, Lin G, Zhuo Y. Knockdown circ_0040414 inhibits inflammation, apoptosis and promotes the proliferation of cardiomyocytes via miR-186-5p/PTEN/AKT axis in chronic heart failure. Cell Biol Int 2021; 45:2304-2315. [PMID: 34369049 DOI: 10.1002/cbin.11678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that circ_0040414 is highly expressed in the blood of patients with heart failure (HF), which suggests that circ_0040414 is associated with heart failure (HF). However, the functional involvement of circ_0040414 in HF and its potential mechanism remains unclear. Consistent with previous studies, our study showed that the expression of circ_0040414 in the peripheral blood of patients with chronic heart failure (CHF) was significantly higher than that of healthy control, which indicated that circ_0040414 could be used as a diagnostic biomarker in patients with CHF. In cardiomyocytes, circ_0040414 increased the level of proapoptotic proteins Bax, cleaved-caspase 3 and reduced the expression of antiapoptotic protein Bcl-2. It also promoted inflammatory factors IL-6, TNF-α, and IL-β, but inhibited cell proliferation. In terms of mechanism, circ_0040414 upregulated the expression of phosphatase and tensin homolog (PTEN) through sponging miR-186-5p to inhibit AKT signaling activity. Our study uncovered a novel role and the mechanism of circ_0040414 in controlling CHF, enriched the molecular regulatory network in CHF, and may provide a possible strategy for the treatment of CHF.
Collapse
Affiliation(s)
- Yanling Feng
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Biao Yan
- Department of Cardiovascular, Ningbo Yinzhou No.2 Hospital, Ningbo, Zhejiang, China
| | - Hongji Cheng
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Jinlei Wu
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Qinxiu Chen
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Yuexing Duan
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Peng Zhang
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Dong Zheng
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Guixiong Lin
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Yufeng Zhuo
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Ong LT. Evidence based review of management of cardiorenal syndrome type 1. World J Methodol 2021; 11:187-198. [PMID: 34322368 PMCID: PMC8299910 DOI: 10.5662/wjm.v11.i4.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/09/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiorenal syndrome (CRS) type 1 is the development of acute kidney injury in patients with acute decompensated heart failure. CRS often results in prolonged hospitalization, a higher rate of rehospitalization, high morbidity, and high mortality. The pathophysiology of CRS is complex and involves hemodynamic changes, neurohormonal activation, hypothalamic-pituitary stress reaction, inflammation, and infection. However, there is limited evidence or guideline in managing CRS type 1, and the established therapeutic strategies mainly target the symptomatic relief of heart failure. This review will discuss the strategies in the management of CRS type 1. Six clinical studies have been included in this review that include different treatment strategies such as nesiritide, dopamine, levosimendan, tolvaptan, dobutamine, and ultrafiltration. Treatment strategies for CRS type 1 are derived based on the current literature. Early recognition and treatment of CRS can improve the outcomes of the patients significantly.
Collapse
Affiliation(s)
- Leong Tung Ong
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Dashwood A, Cheesman E, Wong YW, Haqqani H, Beard N, Hay K, Spratt M, Chan W, Molenaar P. Effects of omecamtiv mecarbil on failing human ventricular trabeculae and interaction with (-)-noradrenaline. Pharmacol Res Perspect 2021; 9:e00760. [PMID: 33929079 PMCID: PMC8085933 DOI: 10.1002/prp2.760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/10/2023] Open
Abstract
Omecamtiv mecarbil (OM) is a novel medicine for systolic heart failure, targeting myosin to enhance cardiomyocyte performance. To assist translation to clinical practice we investigated OMs effect on explanted human failing hearts, specifically; contractile dynamics, interaction with the β1–adrenoceptor (AR) agonist (−)‐noradrenaline and spontaneous contractions. Left and right ventricular trabeculae from 13 explanted failing hearts, and trabeculae from 58 right atrial appendages of non‐failing hearts, were incubated with or without a single concentration of OM for 120 min. Time to peak force (TPF) and 50% relaxation (t50%) were recorded. In other experiments, trabeculae were observed for spontaneous contractions and cumulative concentration‐effect curves were established to (−)‐noradrenaline at β1‐ARs in the absence or presence of OM. OM prolonged TPF and t50% in ventricular trabeculae (600 nM, 2 µM, p < .001). OM had no significant inotropic effect but reduced time dependent deterioration in contractile strength compared to control (p < .001). OM did not affect the generation of spontaneous contractions. The potency of (−)‐noradrenaline (pEC50 6.05 ± 0.10), for inotropic effect, was unchanged in the presence of OM 600 nM or 2 µM. Co‐incubation with (−)‐noradrenaline reduced TPF and t50%, reversing the negative diastolic effects of OM. OM, at both 600 nM and 2 µM, preserved contractile force in left ventricular trabeculae, but imparted negative diastolic effects in trabeculae from human failing heart. (−)‐Noradrenaline reversed the negative diastolic effects, co‐administration may limit the titration of inotropes by reducing the threshold for ischemic side effects.
Collapse
Affiliation(s)
- Alexander Dashwood
- Heart Lung Institute, The Prince Charles Hospital, Chermside, QLD, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth Cheesman
- Cardio-Vascular Molecular & Therapeutics Translational Research Group, University of Queensland, Brisbane, QLD, Australia
| | - Yee Weng Wong
- Heart Lung Institute, The Prince Charles Hospital, Chermside, QLD, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, University of Queensland, Brisbane, QLD, Australia
| | - Haris Haqqani
- Heart Lung Institute, The Prince Charles Hospital, Chermside, QLD, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, University of Queensland, Brisbane, QLD, Australia
| | - Nicole Beard
- Queensland University of Technology, Brisbane, Australia.,Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Karen Hay
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Melanie Spratt
- Heart Lung Institute, The Prince Charles Hospital, Chermside, QLD, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, University of Queensland, Brisbane, QLD, Australia.,Queensland University of Technology, Brisbane, Australia
| | - Wandy Chan
- Heart Lung Institute, The Prince Charles Hospital, Chermside, QLD, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, University of Queensland, Brisbane, QLD, Australia
| | - Peter Molenaar
- Heart Lung Institute, The Prince Charles Hospital, Chermside, QLD, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, University of Queensland, Brisbane, QLD, Australia.,Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
20
|
Solís C, Solaro RJ. Novel insights into sarcomere regulatory systems control of cardiac thin filament activation. J Gen Physiol 2021; 153:211903. [PMID: 33740037 PMCID: PMC7988513 DOI: 10.1085/jgp.202012777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Our review focuses on sarcomere regulatory mechanisms with a discussion of cardiac-specific modifications to the three-state model of thin filament activation from a blocked to closed to open state. We discuss modulation of these thin filament transitions by Ca2+, by crossbridge interactions, and by thick filament–associated proteins, cardiac myosin–binding protein C (cMyBP-C), cardiac regulatory light chain (cRLC), and titin. Emerging evidence supports the idea that the cooperative activation of the thin filaments despite a single Ca2+ triggering regulatory site on troponin C (cTnC) cannot be considered in isolation of other functional domains of the sarcomere. We discuss long- and short-range interactions among these domains with the regulatory units of thin filaments, including proteins at the barbed end at the Z-disc and the pointed end near the M-band. Important to these discussions is the ever-increasing understanding of the role of cMyBP-C, cRLC, and titin filaments. Detailed knowledge of these control processes is critical to the understanding of mechanisms sustaining physiological cardiac state with varying hemodynamic load, to better defining genetic and acquired cardiac disorders, and to developing targets for therapies at the level of the sarcomeres.
Collapse
Affiliation(s)
- Christopher Solís
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| | - R John Solaro
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| |
Collapse
|
21
|
Patel PH, Nguyen M, Rodriguez R, Surani S, Udeani G. Omecamtiv Mecarbil: A Novel Mechanistic and Therapeutic Approach to Chronic Heart Failure Management. Cureus 2021; 13:e12419. [PMID: 33542867 PMCID: PMC7847774 DOI: 10.7759/cureus.12419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is a major public health problem in the United States as well as worldwide. Chronic heart failure is a syndrome of reduced cardiac output resulting from impaired ventricular function, impaired filling, or a combination of both. Associated symptoms include dyspnea, fatigue, and decreased exercise tolerance. HF has a marked effect on morbidity and mortality, given limited therapeutic choices. The first line of therapeutic agents indicated in heart failure are beta-blockers. Other drugs and therapeutic modalities employed in HF treatment include angiotensin-receptor blockers (ARBs), sacubitril (neprilysin inhibitor) combination with the ARB, valsartan, small doses of aldosterone receptor antagonists (ARAs) in the setting of angiotensin-converting enzyme (ACE) inhibitors, and beta-blockers. Additionally, the sodium-glucose transporter-2 inhibitor, dapagliflozin in the setting of ACE inhibitors, ARBs, or sacubitril-valsartan plus beta-blocker have been employed. Other therapeutic modalities have included loop diuretics, digoxin, the hydralazine-isosorbide dinitrate combination, ivabradine, the inotropes, dobutamine, milrinone, and dopamine. Decreased cardiac contractility is central to the systolic HF. Therapeutic agents employed to increase cardiac contractility in HF are limited because of their mechanistic-related adverse effect profiles. Omecamtiv mecarbil (OM) is a first of its class cardiac myosin activator that increases the cardiac contractility by specifically binding to the catalytic S1 domain of cardiac myosin, to be employed in heart failure treatment. This agent has demonstrated benefit in reducing heart rate, peripheral vascular resistance, mean left arterial pressure, and left ventricular end-diastolic pressure in the animal models. Additionally, OM is known to improve systolic wall thickening, stroke volume (SV), and cardiac output (CO). OM increases systolic ejection time (SET), cardiac myocyte fractional shortening without significant increase of LV dP/dtmax, myocardial oxygen consumption, and myocyte intracellular calcium. The benefits of OM have been demonstrated through key trials, as (i) The Acute Treatment with Omecamtiv mecarbil to Increase Contractility in Acute Heart Failure (ATOMIC-AHF), and (ii) The Chronic Oral Study of Myosin Activation to Increase Contractility in Heart Failure (COSMIC-HF). The Global Approach to Lowering Adverse Cardiac Outcomes Through Improving Contractility in Heart Failure (GALACTIC-HF) trial is ongoing and can help provide further clinical data. OM provides a novel mechanism and therapeutic approach to managing patients with HF. Preclinical and clinical data suggest that OM capability can improve cardiac function, decrease ventricular wall stress, reverse ventricular remodeling, and promote sympathetic withdrawal.
Collapse
Affiliation(s)
- Pooja H Patel
- College of Pharmacy, Texas A&M University, Kingsville, USA
| | | | - Rubi Rodriguez
- College of Pharmacy, Texas A&M University, Kingsville, USA
| | - Salim Surani
- Internal Medicine, Corpus Christi Medical Center, Corpus Christi, USA.,Internal Medicine, University of North Texas, Dallas, USA
| | - George Udeani
- College of Pharmacy, Texas A&M University, Kingsville, USA
| |
Collapse
|
22
|
Gao B, Sutherland W, Vargas HM, Qu Y. Effects of omecamtiv mecarbil on calcium-transients and contractility in a translational canine myocyte model. Pharmacol Res Perspect 2020; 8:e00656. [PMID: 32969560 PMCID: PMC7512116 DOI: 10.1002/prp2.656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/25/2022] Open
Abstract
Omecamtiv mecarbil (OM) is a selective cardiac myosin activator (myotrope), currently in Phase 3 clinical investigation as a novel treatment for heart failure with reduced ejection fraction. OM increases cardiac contractility by enhancing interaction between myosin and actin in a calcium-independent fashion. This study aims to characterize the mechanism of action by evaluating its simultaneous effect on myocyte contractility and calcium-transients (CTs) in healthy canine ventricular myocytes. Left ventricular myocytes were isolated from canines and loaded with Fura-2 AM. With an IonOptix system, contractility parameters including amplitude and duration of sarcomere shortening, contraction and relaxation velocity, and resting sarcomere length were measured. CT parameters including amplitude at systole and diastole, velocity at systole and diastole, and duration at 50% from peak were simultaneously measured. OM was tested at 0.03, 0.1, 0.3, 1, and 3 µmol\L concentrations to simulate therapeutic human plasma exposure levels. OM and isoproterenol (ISO) demonstrated differential effects on CTs and myocyte contractility. OM increased contractility mainly by prolonging duration of contraction while ISO increased contractility mainly by augmenting the amplitude of contraction. ISO increased the amplitude and velocity of CT, shortened duration of CT concurrent with increasing myocyte contraction, while OM did not change the amplitude, velocity, and duration of CT up to 1 µmol\L. Decreases in relaxation velocity and increases in duration were present only at 3 µmol\L. In this translational myocyte model study, therapeutically relevant concentrations of OM increased contractility but did not alter intracellular CTs, a mechanism of action distinct from traditional calcitropes.
Collapse
Affiliation(s)
- BaoXi Gao
- Translational Safety & Bioanalytical SciencesAmgen Inc.Thousand OaksCAUSA
| | - Weston Sutherland
- Translational Safety & Bioanalytical SciencesAmgen Inc.Thousand OaksCAUSA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical SciencesAmgen Inc.Thousand OaksCAUSA
| | - Yusheng Qu
- Translational Safety & Bioanalytical SciencesAmgen Inc.Thousand OaksCAUSA
| |
Collapse
|
23
|
Bisserier M, Pradhan N, Hadri L. Current and emerging therapeutic approaches to pulmonary hypertension. Rev Cardiovasc Med 2020; 21:163-179. [PMID: 32706206 PMCID: PMC7389678 DOI: 10.31083/j.rcm.2020.02.597] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal lung disease of multifactorial etiology. Most of the available drugs and FDA-approved therapies for treating pulmonary hypertension attempt to overcome the imbalance between vasoactive and vasodilator mediators, and restore the endothelial cell function. Traditional medications for treating PAH include the prostacyclin analogs and receptor agonists, phosphodiesterase 5 inhibitors, endothelin-receptor antagonists, and cGMP activators. While the current FDA-approved drugs showed improvements in quality of life and hemodynamic parameters, they have shown only very limited beneficial effects on survival and disease progression. None of them offers a cure against PAH, and the median survival rate remains less than three years from diagnosis. Extensive research efforts have led to the emergence of innovative therapeutic approaches in the area of PAH. In this review, we provide an overview of the current FDA-approved therapies in PAH and discuss the associated clinical trials and reported-side effects. As recent studies have led to the emergence of innovative therapeutic approaches in the area of PAH, we also focus on the latest promising therapies in preclinical studies such as stem cell-based therapies, gene transfer, and epigenetic therapies.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Natasha Pradhan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
24
|
Video-based assessment of drug-induced effects on contractile motion properties using human induced pluripotent stem cell-derived cardiomyocytes. J Pharmacol Toxicol Methods 2020; 105:106893. [DOI: 10.1016/j.vascn.2020.106893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/28/2020] [Accepted: 06/21/2020] [Indexed: 02/08/2023]
|
25
|
|
26
|
Kim ES, Youn JC, Baek SH. Update on the Pharmacotherapy of Heart Failure with Reduced Ejection Fraction. ACTA ACUST UNITED AC 2020. [DOI: 10.36011/cpp.2020.2.e17] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Eui-Soon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jong-Chan Youn
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Hong Baek
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
27
|
Meng T, Ren X, Chen X, Yu J, Agrimi J, Paolocci N, Gao WD. Anesthetic Agents Isoflurane and Propofol Decrease Maximal Ca 2+-Activated Force and Thus Contractility in the Failing Myocardium. J Pharmacol Exp Ther 2019; 371:615-623. [PMID: 31515443 DOI: 10.1124/jpet.119.259556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/11/2019] [Indexed: 01/16/2023] Open
Abstract
In the normal heart, frequently used anesthetics such as isoflurane and propofol can reduce inotropy. However, the impact of these agents on the failing myocardium is unclear. Here, we examined whether and how isoflurane and propofol influence cardiac contractility in intact cardiac muscles from rats treated with monocrotaline to induce heart failure. We measured force and intracellular Ca2+ ([Ca2 +]i) in trabeculae from the right ventricles of the rats in the absence or presence of propofol or isoflurane. At low to moderate concentrations, both propofol and isoflurane dose-dependently depressed cardiac force generation in failing trabeculae without altering [Ca2+]i At high doses, propofol (but not isoflurane) also decreased amplitude of [Ca2+]i transients. During steady-state activation, both propofol and isoflurane impaired maximal Ca2+-activated force (Fmax) while increasing the amount of [Ca2+]i required for 50% of maximal activation (Ca50). These events occurred without apparent change in the Hill coefficient, suggesting no impairment of cooperativity. Exposing these same muscles to the anesthetics after fiber skinning resulted in a similar decrement in Fmax and rise in Ca50 but no change in the myofibrillar ATPase-Ca2+ relationship. Thus, our study demonstrates that challenging the failing myocardium with commonly used anesthetic agents such as propofol and isoflurane leads to reduced force development as a result of lowered myofilament responsiveness to Ca2+ SIGNIFICANCE STATEMENT: Commonly used anesthetics such as isoflurane and propofol can impair myocardial contractility in subjects with heart failure by lowering myofilament responsiveness to Ca2+. High doses of propofol can also reduce the overall amplitude of the intracellular Ca2+ transient. These findings may have important implications for the safety and quality of intra- and perioperative care of patients with heart failure and other cardiac disorders.
Collapse
Affiliation(s)
- Tao Meng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shangdong, China (T.M., J.Y.); Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China (X.R.); Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China (X.C.); Division of Cardiology (J.A., N.P.) and Department of Anesthesiology and Critical Care Medicine (W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Xianfeng Ren
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shangdong, China (T.M., J.Y.); Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China (X.R.); Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China (X.C.); Division of Cardiology (J.A., N.P.) and Department of Anesthesiology and Critical Care Medicine (W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Xinzhong Chen
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shangdong, China (T.M., J.Y.); Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China (X.R.); Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China (X.C.); Division of Cardiology (J.A., N.P.) and Department of Anesthesiology and Critical Care Medicine (W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shangdong, China (T.M., J.Y.); Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China (X.R.); Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China (X.C.); Division of Cardiology (J.A., N.P.) and Department of Anesthesiology and Critical Care Medicine (W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Jacopo Agrimi
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shangdong, China (T.M., J.Y.); Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China (X.R.); Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China (X.C.); Division of Cardiology (J.A., N.P.) and Department of Anesthesiology and Critical Care Medicine (W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Nazareno Paolocci
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shangdong, China (T.M., J.Y.); Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China (X.R.); Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China (X.C.); Division of Cardiology (J.A., N.P.) and Department of Anesthesiology and Critical Care Medicine (W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Wei Dong Gao
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shangdong, China (T.M., J.Y.); Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China (X.R.); Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China (X.C.); Division of Cardiology (J.A., N.P.) and Department of Anesthesiology and Critical Care Medicine (W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| |
Collapse
|
28
|
Peñuelas O, Keough E, López-Rodríguez L, Carriedo D, Gonçalves G, Barreiro E, Lorente JÁ. Ventilator-induced diaphragm dysfunction: translational mechanisms lead to therapeutical alternatives in the critically ill. Intensive Care Med Exp 2019; 7:48. [PMID: 31346802 PMCID: PMC6658639 DOI: 10.1186/s40635-019-0259-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Mechanical ventilation [MV] is a life-saving technique delivered to critically ill patients incapable of adequately ventilating and/or oxygenating due to respiratory or other disease processes. This necessarily invasive support however could potentially result in important iatrogenic complications. Even brief periods of MV may result in diaphragm weakness [i.e., ventilator-induced diaphragm dysfunction [VIDD]], which may be associated with difficulty weaning from the ventilator as well as mortality. This suggests that VIDD could potentially have a major impact on clinical practice through worse clinical outcomes and healthcare resource use. Recent translational investigations have identified that VIDD is mainly characterized by alterations resulting in a major decline of diaphragmatic contractile force together with atrophy of diaphragm muscle fibers. However, the signaling mechanisms responsible for VIDD have not been fully established. In this paper, we summarize the current understanding of the pathophysiological pathways underlying VIDD and highlight the diagnostic approach, as well as novel and experimental therapeutic options.
Collapse
Affiliation(s)
- Oscar Peñuelas
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain.
- Centro de Investigación en Red de Enfermedades Respiratorias [CIBERES], Instituto de Salud Carlos III [ISCIII], Madrid, Spain.
| | - Elena Keough
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Lucía López-Rodríguez
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Demetrio Carriedo
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Gesly Gonçalves
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Esther Barreiro
- Centro de Investigación en Red de Enfermedades Respiratorias [CIBERES], Instituto de Salud Carlos III [ISCIII], Madrid, Spain
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department [CEXS], Barcelona, Spain
- Universitat Pompeu Fabra [UPF], Barcelona Biomedical Research Park [PRBB], Barcelona, Spain
| | - José Ángel Lorente
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias [CIBERES], Instituto de Salud Carlos III [ISCIII], Madrid, Spain
- Universidad Europea, Madrid, Spain
| |
Collapse
|
29
|
Caille S, Allgeier AM, Bernard C, Correll TL, Cosbie A, Crockett RD, Cui S, Faul MM, Hansen KB, Huggins S, Langille N, Mennen SM, Morgan BP, Morrison H, Muci A, Nagapudi K, Quasdorf K, Ranganathan K, Roosen P, Shi X, Thiel OR, Wang F, Tvetan JT, Woo JCS, Wu S, Walker SD. Development of a Factory Process for Omecamtiv Mecarbil, a Novel Cardiac Myosin Activator. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Seb Caille
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Alan M. Allgeier
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Charles Bernard
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Tiffany L. Correll
- Attribute Sciences, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Andrew Cosbie
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Richard D. Crockett
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Sheng Cui
- Drug Substance Technologies, Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Margaret M. Faul
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Karl B. Hansen
- Drug Substance Technologies, Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Seth Huggins
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Neil Langille
- Drug Substance Technologies, Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Steven M. Mennen
- Drug Substance Technologies, Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bradley P. Morgan
- Research & Nonclinical Development, Cytokinetics, 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Henry Morrison
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Alexander Muci
- Research & Nonclinical Development, Cytokinetics, 280 East Grand Avenue, South San Francisco, California 94080, United States
| | - Karthik Nagapudi
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Kyle Quasdorf
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Krishnakumar Ranganathan
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Philipp Roosen
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Xianqing Shi
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Oliver R. Thiel
- Drug Substance Technologies, Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Fang Wang
- Attribute Sciences, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Justin T. Tvetan
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jacqueline C. S. Woo
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Steven Wu
- Attribute Sciences, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Shawn D. Walker
- Drug Substance Technologies, Process Development, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
30
|
Klein BA, Robertson IM, Reiz B, Kampourakis T, Li L, Sykes BD. Thioimidate Bond Formation between Cardiac Troponin C and Nitrile-containing Compounds. ACS Med Chem Lett 2019; 10:1007-1012. [PMID: 32426091 PMCID: PMC7227049 DOI: 10.1021/acsmedchemlett.9b00168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022] Open
Abstract
We have investigated the mechanism and reactivity of covalent bond formation between cysteine-84 of the regulatory domain of cardiac troponin C and compounds containing a nitrile moiety similar to the calcium sensitizer levosimendan. The results of modifications to the levosimendan framework ranged from a large increase in covalent bond formation to complete inactivity. We present the biological activity of one of the most potent compounds. Limitations, including compound solubility and degradation at acidic pH, have prevented thorough investigation of the potential of these compounds. Our studies reveal the efficacious nature of the malononitrile moiety in targeting cNTnC and its potential in future cardiotonic drug design.
Collapse
Affiliation(s)
- Brittney A. Klein
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ian M. Robertson
- Ministry of Health, Government of Alberta, Edmonton, Alberta T5J 1S6, Canada
| | - Béla Reiz
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London, SE1 1UL, U.K
| | - Liang Li
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Brian D. Sykes
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
31
|
Tikunova SB, Cuesta A, Price M, Li MX, Belevych N, Biesiadecki BJ, Reiser PJ, Hwang PM, Davis JP. 3-Chlorodiphenylamine activates cardiac troponin by a mechanism distinct from bepridil or TFP. J Gen Physiol 2018; 151:9-17. [PMID: 30442775 PMCID: PMC6314390 DOI: 10.1085/jgp.201812131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/02/2018] [Indexed: 01/14/2023] Open
Abstract
Cardiac troponin activators could be beneficial in systolic heart failure. Tikunova et al. demonstrate that, unlike previously known calcium sensitizers, the small molecule 3-chlorodiphenylamine does not activate isolated cardiac troponin C but instead activates the intact troponin complex. Despite extensive efforts spanning multiple decades, the development of highly effective Ca2+ sensitizers for the heart remains an elusive goal. Existing Ca2+ sensitizers have other targets in addition to cardiac troponin (cTn), which can lead to adverse side effects, such as hypotension or arrhythmias. Thus, there is a need to design Ca2+-sensitizing drugs with higher affinity and selectivity for cTn. Previously, we determined that many compounds based on diphenylamine (DPA) were able to bind to a cTnC–cTnI chimera with moderate affinity (Kd ∼10–120 µM). Of these compounds, 3-chlorodiphenylamine (3-Cl-DPA) bound most tightly (Kd of 10 µM). Here, we investigate 3-Cl-DPA further and find that it increases the Ca2+ sensitivity of force development in skinned cardiac muscle. Using NMR, we show that, like the known Ca2+ sensitizers, trifluoperazine (TFP) and bepridil, 3-Cl-DPA is able to bind to the isolated N-terminal domain (N-domain) of cTnC (Kd of 6 µM). However, while the bulky molecules of TFP and bepridil stabilize the open state of the N-domain of cTnC, the small and flexible 3-Cl-DPA molecule is able to bind without stabilizing this open state. Thus, unlike TFP, which drastically slows the rate of Ca2+ dissociation from the N-domain of isolated cTnC in a dose-dependent manner, 3-Cl-DPA has no effect on the rate of Ca2+ dissociation. On the other hand, the affinity of 3-Cl-DPA for a cTnC–TnI chimera is at least an order of magnitude higher than that of TFP or bepridil, likely because 3-Cl-DPA is less disruptive of cTnI binding to cTnC. Therefore, 3-Cl-DPA has a bigger effect on the rate of Ca2+ dissociation from the entire cTn complex than TFP and bepridil. Our data suggest that 3-Cl-DPA activates the cTn complex via a unique mechanism and could be a suitable scaffold for the development of novel treatments for systolic heart failure.
Collapse
Affiliation(s)
- Svetlana B Tikunova
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| | - Andres Cuesta
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| | - Morgan Price
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| | - Monica X Li
- Departments of Medicine and Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | | | - Peter J Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | - Peter M Hwang
- Departments of Medicine and Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| |
Collapse
|
32
|
Cai F, Hwang PM, Sykes BD. Structural Changes Induced by the Binding of the Calcium Desensitizer W7 to Cardiac Troponin. Biochemistry 2018; 57:6461-6469. [DOI: 10.1021/acs.biochem.8b00882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Fangze Cai
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Peter M. Hwang
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
33
|
Fang M, Cao H, Wang Z. Levosimendan in patients with cardiogenic shock complicating myocardial infarction: A meta-analysis. Med Intensiva 2018; 42:409-415. [DOI: 10.1016/j.medin.2017.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/20/2017] [Accepted: 08/30/2017] [Indexed: 01/11/2023]
|
34
|
Greenberg MJ, Daily NJ, Wang A, Conway MK, Wakatsuki T. Genetic and Tissue Engineering Approaches to Modeling the Mechanics of Human Heart Failure for Drug Discovery. Front Cardiovasc Med 2018; 5:120. [PMID: 30283789 PMCID: PMC6156537 DOI: 10.3389/fcvm.2018.00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Heart failure is the leading cause of death in the western world and as such, there is a great need for new therapies. Heart failure has a variable presentation in patients and a complex etiology; however, it is fundamentally a condition that affects the mechanics of cardiac contraction, preventing the heart from generating sufficient cardiac output under normal operating pressures. One of the major issues hindering the development of new therapies has been difficulties in developing appropriate in vitro model systems of human heart failure that recapitulate the essential changes in cardiac mechanics seen in the disease. Recent advances in stem cell technologies, genetic engineering, and tissue engineering have the potential to revolutionize our ability to model and study heart failure in vitro. Here, we review how these technologies are being applied to develop personalized models of heart failure and discover novel therapeutics.
Collapse
Affiliation(s)
- Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Ann Wang
- InvivoSciences Inc., Madison, WI, United States
| | | | | |
Collapse
|
35
|
Yamashita S, Suzuki T, Iguchi K, Sakamoto T, Tomita K, Yokoo H, Sakai M, Misawa H, Hattori K, Nagata T, Watanabe Y, Matsuda N, Yoshimura N, Hattori Y. Cardioprotective and functional effects of levosimendan and milrinone in mice with cecal ligation and puncture-induced sepsis. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1021-1032. [PMID: 29922941 DOI: 10.1007/s00210-018-1527-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022]
Abstract
Levosimendan and milrinone may be used in place of dobutamine to increase cardiac output in septic patients with a low cardiac output due to impaired cardiac function. The effects of the two inotropic agents on cardiac inflammation and left ventricular (LV) performance were examined in mice with cecal ligation and puncture (CLP)-induced sepsis. CLP mice displayed significant cardiac inflammation, as indicated by highly increased pro-inflammatory cytokines and neutrophil infiltration in myocardial tissues. When continuously given, levosimendan prevented but milrinone exaggerated cardiac inflammation, but they significantly reduced the elevations in plasma cardiac troponin-I and heart-type fatty acid-binding protein, clinical markers of cardiac injury. Echocardiographic assessment of cardiac function showed that the effect of levosimendan, given by an intravenous bolus injection, on LV performance was impaired in CLP mice, whereas milrinone produced inotropic responses equally in sham-operated and CLP mice. A lesser effect of levosimendan on LV performance after CLP was also found in spontaneously beating Langendorff-perfused hearts. In ventricular myocytes isolated from control and CLP mice, levosimendan, but not milrinone, caused a large increase in the L-type calcium current. This study represents that levosimendan and milrinone have cardioprotective properties but provide different advantages and drawbacks to cardiac inflammation/dysfunction in sepsis.
Collapse
Affiliation(s)
- Shigeyuki Yamashita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.,Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Keisuke Iguchi
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan.,Department of Internal Medicine III (Cardiology), Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Takuya Sakamoto
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kengo Tomita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiroki Yokoo
- Department of Health and Nutritional Sciences, Faculty of Health Promotional Sciences, Tokoha University, Hamamatsu, 431-2102, Japan
| | - Mari Sakai
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Hiroki Misawa
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Toshi Nagata
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Yasuhide Watanabe
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Naoki Yoshimura
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
36
|
Alves ML, Warren CM, Simon JN, Gaffin RD, Montminy EM, Wieczorek DF, Solaro RJ, Wolska BM. Early sensitization of myofilaments to Ca2+ prevents genetically linked dilated cardiomyopathy in mice. Cardiovasc Res 2018; 113:915-925. [PMID: 28379313 DOI: 10.1093/cvr/cvx068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Background Dilated cardiomoypathies (DCM) are a heterogeneous group of inherited and acquired diseases characterized by decreased contractility and enlargement of cardiac chambers and a major cause of morbidity and mortality. Mice with Glu54Lys mutation in α-tropomyosin (Tm54) demonstrate typical DCM phenotype with reduced myofilament Ca2+ sensitivity. We tested the hypothesis that early sensitization of the myofilaments to Ca2+ in DCM can prevent the DCM phenotype. Methods and results To sensitize Tm54 myofilaments, we used a genetic approach and crossbred Tm54 mice with mice expressing slow skeletal troponin I (ssTnI) that sensitizes myofilaments to Ca2+. Four groups of mice were used: non-transgenic (NTG), Tm54, ssTnI and Tm54/ssTnI (DTG). Systolic function was significantly reduced in the Tm54 mice compared to NTG, but restored in DTG mice. Tm54 mice also showed increased diastolic LV dimensions and HW/BW ratios, when compared to NTG, which were improved in the DTG group. β-myosin heavy chain expression was increased in the Tm54 animals compared to NTG and was partially restored in DTG group. Analysis by 2D-DIGE indicated a significant decrease in two phosphorylated spots of cardiac troponin I (cTnI) in the DTG animals compared to NTG and Tm54. Analysis by 2D-DIGE also indicated no significant changes in troponin T, regulatory light chain, myosin binding protein C and tropomyosin phosphorylation. Conclusion Our data indicate that decreased myofilament Ca2+ sensitivity is an essential element in the pathophysiology of thin filament linked DCM. Sensitization of myofilaments to Ca2+ in the early stage of DCM may be a useful therapeutic strategy in thin filament linked DCM.
Collapse
Affiliation(s)
- Marco L Alves
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA.,Center for Research in Echocardiography and Cardiology, Heart Institute, University of Sao Paulo, Avenida Dr. Eneas de Carvalho Aguiar 44, 05403-900, Sao Paulo, Brazil
| | - Chad M Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Jillian N Simon
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Robert D Gaffin
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Eric M Montminy
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - David F Wieczorek
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Beata M Wolska
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA.,Department of Medicine, Division of Cardiology, University of Illinois, 840 S Wood St. (M/C 715), Chicago, IL 60612, USA
| |
Collapse
|
37
|
Klein BA, Reiz B, Robertson IM, Irving M, Li L, Sun YB, Sykes BD. Reversible Covalent Reaction of Levosimendan with Cardiac Troponin C in Vitro and in Situ. Biochemistry 2018; 57:2256-2265. [DOI: 10.1021/acs.biochem.8b00109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Brittney A. Klein
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Béla Reiz
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta T6H 2H7, Canada
| | - Ian M. Robertson
- Pharmaceutical and Health Benefits Branch, Ministry of Health, Government of Alberta, Edmonton, Alberta T5J 3Z5, Canada
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King’s College London, London SE1 1UL, U.K
| | - Liang Li
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta T6H 2H7, Canada
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King’s College London, London SE1 1UL, U.K
| | - Brian D. Sykes
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
38
|
Soliman OI, Akin S, Muslem R, Boersma E, Manintveld OC, Krabatsch T, Gummert JF, de By TM, Bogers AJ, Zijlstra F, Mohacsi P, Caliskan K. Derivation and Validation of a Novel Right-Sided Heart Failure Model After Implantation of Continuous Flow Left Ventricular Assist Devices. Circulation 2018; 137:891-906. [DOI: 10.1161/circulationaha.117.030543] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022]
Abstract
Background:
The aim of the study was to derive and validate a novel risk score for early right-sided heart failure (RHF) after left ventricular assist device implantation.
Methods:
The EUROMACS (European Registry for Patients with Mechanical Circulatory Support) was used to identify adult patients undergoing continuous-flow left ventricular assist device implantation with mainstream devices. Eligible patients (n=2988) were randomly divided into derivation (n=2000) and validation (n=988) cohorts. The primary outcome was early (<30 days) severe postoperative RHF, defined as receiving short- or long-term right-sided circulatory support, continuous inotropic support for ≥14 days, or nitric oxide ventilation for ≥48 hours. The secondary outcome was all-cause mortality and length of stay in the intensive care unit. Covariates found to be associated with RHF (exploratory univariate
P
<0.10) were entered into a multivariable logistic regression model. A risk score was then generated using the relative magnitude of the exponential regression model coefficients of independent predictors at the last step after checking for collinearity, likelihood ratio test, c index, and clinical weight at each step.
Results:
A 9.5-point risk score incorporating 5 variables (Interagency Registry for Mechanically Assisted Circulatory Support class, use of multiple inotropes, severe right ventricular dysfunction on echocardiography, ratio of right atrial/pulmonary capillary wedge pressure, hemoglobin) was created. The mean scores in the derivation and validation cohorts were 2.7±1.9 and 2.6±2.0, respectively (
P
=0.32). RHF in the derivation cohort occurred in 433 patients (21.7%) after left ventricular assist device implantation and was associated with a lower 1-year (53% versus 71%;
P
<0.001) and 2-year (45% versus 58%;
P
<0.001) survival compared with patients without RHF. RHF risk ranged from 11% (low risk score 0–2) to 43.1% (high risk score >4;
P
<0.0001). Median intensive care unit stay was 7 days (interquartile range, 4–15 days) versus 24 days (interquartile range, 14–38 days) in patients without versus with RHF, respectively (
P
<0.001). The c index of the composite score was 0.70 in the derivation and 0.67 in the validation cohort. The EUROMACS-RHF risk score outperformed (
P
<0.0001) previously published scores and known individual echocardiographic and hemodynamic markers of RHF.
Conclusions:
This novel EUROMACS-RHF risk score outperformed currently known risk scores and clinical predictors of early postoperative RHF. This novel score may be useful for tailored risk-based clinical assessment and management of patients with advanced HF evaluated for ventricular assist device therapy.
Collapse
Affiliation(s)
- Osama I.I. Soliman
- Department of Cardiology, Thoraxcenter (O.I.I.S., S.A., R.M., E.B., O.C.M., F.Z., K.C.)
| | - Sakir Akin
- Department of Cardiology, Thoraxcenter (O.I.I.S., S.A., R.M., E.B., O.C.M., F.Z., K.C.)
- Intensive Care (S.A.)
| | - Rahatullah Muslem
- Department of Cardiology, Thoraxcenter (O.I.I.S., S.A., R.M., E.B., O.C.M., F.Z., K.C.)
- Cardiothoracic Surgery (R.M., A.J.J.C.B.)
| | - Eric Boersma
- Department of Cardiology, Thoraxcenter (O.I.I.S., S.A., R.M., E.B., O.C.M., F.Z., K.C.)
| | - Olivier C. Manintveld
- Department of Cardiology, Thoraxcenter (O.I.I.S., S.A., R.M., E.B., O.C.M., F.Z., K.C.)
| | - Thomas Krabatsch
- Erasmus Medical Center, University Medical Centre Rotterdam, the Netherlands. Department of Cardiac Surgery, German Heart Centre Berlin, Germany (T.K.)
| | - Jan F. Gummert
- Department for Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Bad Oeynhausen, Germany (J.F.G.)
| | | | | | - Felix Zijlstra
- Department of Cardiology, Thoraxcenter (O.I.I.S., S.A., R.M., E.B., O.C.M., F.Z., K.C.)
| | - Paul Mohacsi
- Department of Cardiology, University Hospital Bern, University of Bern, Switzerland (P.M.)
| | - Kadir Caliskan
- Department of Cardiology, Thoraxcenter (O.I.I.S., S.A., R.M., E.B., O.C.M., F.Z., K.C.)
| |
Collapse
|
39
|
Hattori Y, Hattori K, Suzuki T, Matsuda N. Recent advances in the pathophysiology and molecular basis of sepsis-associated organ dysfunction: Novel therapeutic implications and challenges. Pharmacol Ther 2017; 177:56-66. [DOI: 10.1016/j.pharmthera.2017.02.040] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Dooley DJ, Lam PH, Ahmed A, Aronow WS. The Role of Positive Inotropic Drugs in the Treatment of Older Adults with Heart Failure and Reduced Ejection Fraction. Heart Fail Clin 2017; 13:527-534. [PMID: 28602370 DOI: 10.1016/j.hfc.2017.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Positive inotropic drugs have long been studied for their potential benefits in patients with heart failure and reduced ejection fraction (HFrEF). Although there has been an extensive amount of research about the clinical effects of these drugs in general, few studies examined their effect in older patients. Therefore, there is little or no evidence to guide the use of positive inotropes in older patients with HFrEF. However, recommendations from national heart failure guidelines may be generalized to older HFrEF patients on an individual basis, taking into consideration the basic geriatric principles of pharmacotherapy: start low and go slow.
Collapse
Affiliation(s)
- Daniel J Dooley
- Center for Health and Aging, Veterans Affairs Medical Center, 50 Irving Street NW, Washington, DC 20422, USA; MedStar Heart and Vascular Institute, Georgetown University/MedStar Washington Hospital Center, 110 Irving Street NW, Washington, DC 20010, USA
| | - Phillip H Lam
- Center for Health and Aging, Veterans Affairs Medical Center, 50 Irving Street NW, Washington, DC 20422, USA; MedStar Heart and Vascular Institute, Georgetown University/MedStar Washington Hospital Center, 110 Irving Street NW, Washington, DC 20010, USA
| | - Ali Ahmed
- Center for Health and Aging, Veterans Affairs Medical Center, 50 Irving Street NW, Washington, DC 20422, USA; Department of Medicine, George Washington University, 2150 Pennsylvania Avenue, NW Suite 8-416, Washington, DC 20037, USA; Department of Medicine, University of Alabama at Birmingham, 933 19th Street South, CH19 201, Birmingham, AL 35294, USA
| | - Wilbert S Aronow
- Cardiology Division, Westchester Medical Center, New York Medical College, Macy Pavilion, Room 141, Valhalla, NY 10595, USA.
| |
Collapse
|
41
|
De Jong KA, Lopaschuk GD. Complex Energy Metabolic Changes in Heart Failure With Preserved Ejection Fraction and Heart Failure With Reduced Ejection Fraction. Can J Cardiol 2017; 33:860-871. [PMID: 28579160 DOI: 10.1016/j.cjca.2017.03.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex, and are dependent not only on the severity and type of heart failure present, but also on the coexistence of common comorbidities such as obesity and type 2 diabetes. In this article we review the cardiac energy metabolic changes that occur in heart failure. An emphasis is made on distinguishing the differences in cardiac energy metabolism between heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) and in clarifying the common misconceptions surrounding the fate of fatty acids and glucose in the failing heart. The major key points from this article are: (1) mitochondrial oxidative capacity is reduced in HFpEF and HFrEF; (2) fatty acid oxidation is increased in HFpEF and reduced in HFrEF (however, oxidative metabolism of fatty acids in HFrEF still exceeds that of glucose); (3) glucose oxidation is decreased in HFpEF and HFrEF; (4) there is an uncoupling between glucose uptake and oxidation in HFpEF and HFrEF, resulting in an increased rate of glycolysis; (5) ketone body oxidation is increased in HFrEF, which might further reduce fatty acid and glucose oxidation; and finally, (6) branched chain amino acid oxidation is impaired in HFrEF. The understanding of these changes in cardiac energy metabolism in heart failure are essential to allow the development of metabolic modulators in the treatment of heart failure.
Collapse
Affiliation(s)
- Kirstie A De Jong
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
42
|
Swenson AM, Tang W, Blair CA, Fetrow CM, Unrath WC, Previs MJ, Campbell KS, Yengo CM. Omecamtiv Mecarbil Enhances the Duty Ratio of Human β-Cardiac Myosin Resulting in Increased Calcium Sensitivity and Slowed Force Development in Cardiac Muscle. J Biol Chem 2017; 292:3768-3778. [PMID: 28082673 DOI: 10.1074/jbc.m116.748780] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 01/05/2017] [Indexed: 01/10/2023] Open
Abstract
The small molecule drug omecamtiv mecarbil (OM) specifically targets cardiac muscle myosin and is known to enhance cardiac muscle performance, yet its impact on human cardiac myosin motor function is unclear. We expressed and purified human β-cardiac myosin subfragment 1 (M2β-S1) containing a C-terminal Avi tag. We demonstrate that the maximum actin-activated ATPase activity of M2β-S1 is slowed more than 4-fold in the presence of OM, whereas the actin concentration required for half-maximal ATPase was reduced dramatically (30-fold). We find OM does not change the overall actin affinity. Transient kinetic experiments suggest that there are two kinetic pathways in the presence of OM. The dominant pathway results in a slow transition between actomyosin·ADP states and increases the time myosin is strongly bound to actin. However, OM also traps a population of myosin heads in a weak actin affinity state with slow product release. We demonstrate that OM can reduce the actin sliding velocity more than 100-fold in the in vitro motility assay. The ionic strength dependence of in vitro motility suggests the inhibition may be at least partially due to drag forces from weakly attached myosin heads. OM causes an increase in duty ratio examined in the motility assay. Experiments with permeabilized human myocardium demonstrate that OM increases calcium sensitivity and slows force development (ktr) in a concentration-dependent manner, whereas the maximally activated force is unchanged. We propose that OM increases the myosin duty ratio, which results in enhanced calcium sensitivity but slower force development in human myocardium.
Collapse
Affiliation(s)
- Anja M Swenson
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Wanjian Tang
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Cheavar A Blair
- the Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky 40536-0298, and
| | - Christopher M Fetrow
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - William C Unrath
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Michael J Previs
- the Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, Vermont 05405
| | - Kenneth S Campbell
- the Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky 40536-0298, and
| | - Christopher M Yengo
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
43
|
Husebye T, Eritsland J, Bjørnerheim R, Andersen GØ. Systolic mitral annulus velocity is a sensitive index for changes in left ventricular systolic function during inotropic therapy in patients with acute heart failure. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2017; 7:321-329. [PMID: 28045338 DOI: 10.1177/2048872616687114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Echocardiography is recommended for assessment of left ventricular systolic function in patients with acute heart failure but few randomised trials have validated techniques like tissue Doppler (TDI) and speckle tracking (STE) in patients with acute heart failure following ST-elevation myocardial infarction. METHODS This was a substudy from the LEAF (LEvosimendan in Acute heart Failure following myocardial infarction) trial (NCT00324766 ), which randomised 61 patients developing acute heart failure, including cardiogenic shock, within 48 hours after ST-elevation myocardial infarction, double-blind to a 25-hour infusion of levosimendan or placebo. TDI-derived systolic mitral annulus velocity (S'), STE-derived global longitudinal strain (Sl) and strain rate (SRl) were measured at baseline, day 1, day 5 and after 42 days. RESULTS Datasets rejected for analyses were 2% (TDI) and 17% (STE). S' increased by 23% in the levosimendan group versus 8% in the placebo group from baseline to day 1 ( p= 0.011) and by 30% vs. 3% from baseline to day 5 ( p <0.0005). Significant, but less pronounced, improvements in global Sl ( p = 0.025 and p = 0.032) and in global SRl ( p = 0.046 and p = 0.001) in favour of levosimendan were also present. CONCLUSION S' by TDI and STE-derived Sl and SRl were sensitive indices for changes in left ventricular systolic function related to treatment with levosimendan. However, S' by TDI was more feasible and sensitive and might be preferred for assessment of changes in left ventricular systolic function in critically ill patients with acute heart failure receiving inotropic therapy.
Collapse
Affiliation(s)
- Trygve Husebye
- 1 Department of Cardiology, Oslo University Hospital Ullevål, Norway.,2 Centre for Heart Failure Research, University of Oslo, Norway.,3 Faculty of Medicine, University of Oslo, Norway
| | - Jan Eritsland
- 1 Department of Cardiology, Oslo University Hospital Ullevål, Norway.,2 Centre for Heart Failure Research, University of Oslo, Norway
| | - Reidar Bjørnerheim
- 1 Department of Cardiology, Oslo University Hospital Ullevål, Norway.,2 Centre for Heart Failure Research, University of Oslo, Norway
| | - Geir Ø Andersen
- 1 Department of Cardiology, Oslo University Hospital Ullevål, Norway.,2 Centre for Heart Failure Research, University of Oslo, Norway.,4 Centre for Clinical Heart Research, Oslo University Hospital Ullevål, Norway
| |
Collapse
|
44
|
DEBOLD EDWARDP, FITTS ROBERTH, SUNDBERG CHRISTOPHERW, NOSEK THOMASM. Muscle Fatigue from the Perspective of a Single Crossbridge. Med Sci Sports Exerc 2016; 48:2270-2280. [DOI: 10.1249/mss.0000000000001047] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Robertson IM, Pineda-Sanabria SE, Yan Z, Kampourakis T, Sun YB, Sykes BD, Irving M. Reversible Covalent Binding to Cardiac Troponin C by the Ca2+-Sensitizer Levosimendan. Biochemistry 2016; 55:6032-6045. [DOI: 10.1021/acs.biochem.6b00758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ian M. Robertson
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
- Department
of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Sandra E. Pineda-Sanabria
- Department
of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ziqian Yan
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
| | - Thomas Kampourakis
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
| | - Yin-Biao Sun
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
| | - Brian D. Sykes
- Department
of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Malcolm Irving
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
| |
Collapse
|
46
|
Omecamtiv Mecarbil, a Cardiac Myosin Activator, Increases Ca2+ Sensitivity in Myofilaments With a Dilated Cardiomyopathy Mutant Tropomyosin E54K. J Cardiovasc Pharmacol 2016; 66:347-53. [PMID: 26065842 DOI: 10.1097/fjc.0000000000000286] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Apart from transplant, there are no satisfactory therapies for the severe depression in contractility in familial dilated cardiomyopathy (DCM). Current heart failure treatments that act by increasing contractility involve signaling cascades that alter calcium homeostasis and induce arrhythmias. Omecamtiv mecarbil is a promising new inotropic agent developed for heart failure that may circumvent such limitations. Omecamtiv is a direct cardiac myosin activator that promotes and prolongs the strong myosin-actin binding conformation to increase the duration of systolic elastance. We tested the effect of omecamtiv on Ca(2+) sensitivity of myofilaments of a DCM mouse model containing a tropomyosin E54K mutation. We compared tension and ATPase activity of detergent-extracted myofilaments with and without treatment with 316 nM omecamtiv at varying pCa values. When transgenic myofilaments were treated with omecamtiv, the pCa50 for activation of tension increased from 5.70 ± 0.02 to 5.82 ± 0.02 and ATPase activity increased from 5.73 ± 0.06 to 6.07 ± 0.04. This significant leftward shift restored Ca(2+) sensitivity to levels no longer significantly different from controls. Proteomic studies lacked changes in sarcomeric protein phosphorylation. Our data demonstrate that omecamtiv can potentially augment cardiac contractility in DCM by increasing Ca(2+) sensitivity. The use of direct myosin activators addresses functional defects without incurring the adverse side effects of Ca(2+)-dependent treatments.
Collapse
|
47
|
Schellekens WJM, van Hees HWH, Doorduin J, Roesthuis LH, Scheffer GJ, van der Hoeven JG, Heunks LMA. Strategies to optimize respiratory muscle function in ICU patients. Crit Care 2016; 20:103. [PMID: 27091359 PMCID: PMC4835880 DOI: 10.1186/s13054-016-1280-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Respiratory muscle dysfunction may develop rapidly in critically ill ventilated patients and is associated with increased morbidity, length of intensive care unit stay, costs, and mortality. This review briefly discusses the pathophysiology of respiratory muscle dysfunction in intensive care unit patients and then focuses on strategies that prevent the development of muscle weakness or, if weakness has developed, how respiratory muscle function may be improved. We propose a simple strategy for how these can be implemented in clinical care.
Collapse
Affiliation(s)
- Willem-Jan M Schellekens
- Department of Anesthesiology, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Hieronymus W H van Hees
- Department of Pulmonary Diseases, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Jonne Doorduin
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Lisanne H Roesthuis
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Gert Jan Scheffer
- Department of Anesthesiology, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Leo M A Heunks
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands.
| |
Collapse
|
48
|
Yu H, Chakravorty S, Song W, Ferenczi MA. Phosphorylation of the regulatory light chain of myosin in striated muscle: methodological perspectives. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:779-805. [PMID: 27084718 PMCID: PMC5101276 DOI: 10.1007/s00249-016-1128-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 12/18/2022]
Abstract
Phosphorylation of the regulatory light chain (RLC) of myosin modulates cellular functions such as muscle contraction, mitosis, and cytokinesis. Phosphorylation defects are implicated in a number of diseases. Here we focus on striated muscle where changes in RLC phosphorylation relate to diseases such as hypertrophic cardiomyopathy and muscular dystrophy, or age-related changes. RLC phosphorylation in smooth muscle and non-muscle cells are covered briefly where relevant. There is much scientific interest in controlling the phosphorylation levels of RLC in vivo and in vitro in order to understand its physiological function in striated muscles. A summary of available and emerging in vivo and in vitro methods is presented. The physiological role of RLC phosphorylation and novel pathways are discussed to highlight the differences between muscle types and to gain insights into disease processes.
Collapse
Affiliation(s)
- Haiyang Yu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Samya Chakravorty
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Weihua Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Michael A Ferenczi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
49
|
|
50
|
Shettigar V, Zhang B, Little SC, Salhi HE, Hansen BJ, Li N, Zhang J, Roof SR, Ho HT, Brunello L, Lerch JK, Weisleder N, Fedorov VV, Accornero F, Rafael-Fortney JA, Gyorke S, Janssen PML, Biesiadecki BJ, Ziolo MT, Davis JP. Rationally engineered Troponin C modulates in vivo cardiac function and performance in health and disease. Nat Commun 2016; 7:10794. [PMID: 26908229 PMCID: PMC4770086 DOI: 10.1038/ncomms10794] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/21/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca(2+) signal. Promisingly, our smartly formulated Ca(2+)-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease.
Collapse
Affiliation(s)
- Vikram Shettigar
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Bo Zhang
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Sean C Little
- Bristol-Myers Squibb, Department of Discovery Biology, Wallingford, Connecticut 06492, USA
| | - Hussam E Salhi
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Brian J Hansen
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Ning Li
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Jianchao Zhang
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | | | - Hsiang-Ting Ho
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Lucia Brunello
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Jessica K Lerch
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Noah Weisleder
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Vadim V Fedorov
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Federica Accornero
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Jill A Rafael-Fortney
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Sandor Gyorke
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Paul M L Janssen
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Brandon J Biesiadecki
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Mark T Ziolo
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| | - Jonathan P Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Columbus, Ohio 43210, USA
| |
Collapse
|