1
|
Ferreira de Araujo N, Nobrega NRC, Reis Costa DEFD, Simplicio JA, Assis Rabelo Ribeiro ND, Tirapelli CR, Bonaventura D. Sodium nitrite induces tolerance in the mouse aorta: involvement of the renin-angiotensin system, nitric oxide synthase, and reactive oxygen species. Eur J Pharmacol 2024:177056. [PMID: 39427861 DOI: 10.1016/j.ejphar.2024.177056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Nitrites have emerged as promising therapeutic agents for cardiovascular diseases, alongside nitrates. While chronic use of organic nitrates is well recognized to lead to vascular tolerance, the tolerance associated with nitrite therapy remains incompletely understood. The aim of the present study was to investigate vascular tolerance to sodium nitrite and the underlying molecular mechanisms. Endothelium-denuded aortic rings isolated from male Balb/C mice were incubated with either the EC50 (10-4 mol/L) or EC100 (10-2 mol/L) concentration of sodium nitrite for 15 min to induce tolerance. The EC100 concentration of sodium nitrite induced vascular tolerance. Pre-incubation with captopril and losartan effectively reversed sodium nitrite-induced tolerance. Similarly, pre-incubation with L-NAME and L-arginine prevented sodium nitrite-induced tolerance. Increased levels of reactive oxidative species (ROS) and reduced bioavailability of nitric oxide (NO) were observed in tolerant aortas. Increased superoxide dismutase (SOD) activity and decreased catalase activity were also verified in tolerant aortas. Both captopril and L-NAME prevented the increased levels of ROS observed in tolerant aortas. Furthermore, pre-incubation with catalase effectively prevented sodium nitrite-induced tolerance. Our findings suggest that sodium nitrite induces vascular tolerance through a signaling pathway involving the renin-angiotensin system, nitric oxide synthase, and ROS. This study contributes to the understanding of the interactions between nitrites and vascular tolerance and highlights potential targets to overcome or prevent this phenomenon.
Collapse
Affiliation(s)
- Natalia Ferreira de Araujo
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Natalia Ribeiro Cabacinha Nobrega
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Daniela Esteves Ferreira Dos Reis Costa
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Janaina Aparecida Simplicio
- Laboratory of Pharmacology, Department of Psychiatric Nursing and Human Sciences, Nursing School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Naiara de Assis Rabelo Ribeiro
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Carlos Renato Tirapelli
- Laboratory of Pharmacology, Department of Psychiatric Nursing and Human Sciences, Nursing School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Daniella Bonaventura
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil.
| |
Collapse
|
2
|
Ahmadpour A, Fashi M, Hemmatinafar M. Consuming Beetroot Juice Improves Slalom Performance and Reduces Muscle Soreness in Alpine Skiers under Hypoxic Conditions. Curr Dev Nutr 2024; 8:104408. [PMID: 39224139 PMCID: PMC11367456 DOI: 10.1016/j.cdnut.2024.104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 09/04/2024] Open
Abstract
Background Beetroot juice (BRJ) supplementation has been shown to increase sports performance under hypoxic conditions and to improve athletes' recovery. Objectives In the present study, we aimed to investigate the effect of acute BRJ supplementation on slalom (SL) run performance and muscle soreness (MS) in Alpine skiers at moderate to high altitudes. Methods Ten male Alpine skiers received 220 mL of BRJ (8.9 mmol/L nitrate) or placebo (PLA) in 2 sessions with a 7-d wash out interval in a randomized, crossover, PLA-controlled, double-blind study. The 90-s box jump (BJ90), agility hexagonal obstacle jump (Hex Jump), and wall-sit tests were measured before on-hill SL runs in both sessions. After the functional tests, SL run performance was measured by time to complete 2 runs on the SL course; immediately after each SL run, the rating of perceived exertion (RPE) was recorded. In addition, perceived MS was recorded using the visual analog scale at 12, 24, and 48 h after the SL runs. Results The data were meticulously analyzed using 2-way repeated measures analysis of variance and paired t tests with significance set at P < 0.05. The findings were significant, indicating that compared with PLA, BRJ notably improved wall-sit and BJ90 performances (P < 0.05), while a substantial reduction was observed in RPE, Hex Jump, and MS (P < 0.05). A 1.74% shorter time to complete SL runs was observed in the BRJ group compared with the PLA group; however, there were no significant differences between the PLA and BRJ groups (P > 0.05). Conclusions These results underscore the potential of BRJ supplementation to enhance sports performance and reduce MS in Alpine skiers under hypoxic conditions.
Collapse
Affiliation(s)
- Alireza Ahmadpour
- Department of Biological Sciences in Sports, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Fashi
- Department of Biological Sciences in Sports, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hemmatinafar
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2024; 25:3007. [PMID: 38474253 DOI: 10.3390/ijms25053007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Mario Zaccarelli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20133 Milan, Italy
| | - Ian James Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1050 Elsene, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| |
Collapse
|
4
|
Maia LB. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective. Molecules 2023; 28:5819. [PMID: 37570788 PMCID: PMC10420851 DOI: 10.3390/molecules28155819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse the "reverse" reaction, the capability to abstract an oxygen atom from the substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and scepticism that the "molybdenum community" noticed the reports on the mammalian XO capability to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have wide recognition of the molybdoenzymes' ability to form NO from nitrite. Herein, integrated in a collection of "personal views" edited by Professor Ralf Mendel, is an overview of my personal journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed. The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism is also discussed.
Collapse
Affiliation(s)
- Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| |
Collapse
|
5
|
Vaz-Salvador P, Adão R, Vasconcelos I, Leite-Moreira AF, Brás-Silva C. Heart Failure with Preserved Ejection Fraction: a Pharmacotherapeutic Update. Cardiovasc Drugs Ther 2023; 37:815-832. [PMID: 35098432 PMCID: PMC8801287 DOI: 10.1007/s10557-021-07306-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
While guidelines for management of heart failure with reduced ejection fraction (HFrEF) are consensual and have led to improved survival, treatment options for heart failure with preserved ejection fraction (HFpEF) remain limited and aim primarily for symptom relief and improvement of quality of life. Due to the shortage of therapeutic options, several drugs have been investigated in multiple clinical trials. The majority of these trials have reported disappointing results and have suggested that HFpEF might not be as simply described by ejection fraction as previously though. In fact, HFpEF is a complex clinical syndrome with various comorbidities and overlapping distinct phenotypes that could benefit from personalized therapeutic approaches. This review summarizes the results from the most recent phase III clinical trials for HFpEF and the most promising drugs arising from phase II trials as well as the various challenges that are currently holding back the development of new pharmacotherapeutic options for these patients.
Collapse
Affiliation(s)
- Pedro Vaz-Salvador
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research and Development Center - UnIC, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rui Adão
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research and Development Center - UnIC, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Inês Vasconcelos
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research and Development Center - UnIC, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Adelino F. Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research and Development Center - UnIC, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carmen Brás-Silva
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research and Development Center - UnIC, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Rua Do Campo Alegre, 823 4150-180 Porto, Portugal
| |
Collapse
|
6
|
Bourdillon N, Aebi MR, Kayser B, Bron D, Millet GP. Both Hypoxia and Hypobaria Impair Baroreflex Sensitivity but through Different Mechanisms. Int J Sports Med 2023; 44:177-183. [PMID: 36455595 PMCID: PMC9977572 DOI: 10.1055/a-1960-3407] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/04/2022] [Indexed: 12/05/2022]
Abstract
Baroreflex sensitivity (BRS) is a measure of cardiovagal baroreflex and is lower in normobaric and hypobaric hypoxia compared to normobaric normoxia. The aim of this study was to assess the effects of hypobaria on BRS in normoxia and hypoxia. Continuous blood pressure and ventilation were recorded in eighteen seated participants in normobaric normoxia (NNx), hypobaric normoxia (HNx), normobaric hypoxia (NHx) and hypobaric hypoxia (HHx). Barometric pressure was matched between NNx vs. NHx (723±4 mmHg) and HNx vs. HHx (406±4 vs. 403±5 mmHg). Inspired oxygen pressure (PiO2) was matched between NNx vs. HNx (141.2±0.8 vs. 141.5±1.5 mmHg) and NHx vs. HHx (75.7±0.4 vs. 74.3±1.0 mmHg). BRS was assessed using the sequence method. BRS significantly decreased in HNx, NHx and HHx compared to NNx. Heart rate, mean systolic and diastolic blood pressures did not differ between conditions. There was the specific effect of hypobaria on BRS in normoxia (BRS was lower in HNx than in NNx). The hypoxic and hypobaric effects do not add to each other resulting in comparable BRS decreases in HNx, NHx and HHx. BRS decrease under low barometric pressure requires future studies independently controlling O2 and CO2 to identify central and peripheral chemoreceptors' roles.
Collapse
Affiliation(s)
- Nicolas Bourdillon
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
| | - Mathias Rolland Aebi
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
- Wissenschaft & Technologie, armasuisse, Thun,
Switzerland
| | - Bengt Kayser
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
| | - Denis Bron
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
| | | |
Collapse
|
7
|
Hikin LJ, Ho J, Morley SR, Ahluwalia A, Smith PR. Sodium nitrite poisoning: A series of 20 fatalities in which post-mortem blood nitrite and nitrate concentrations are reported. Forensic Sci Int 2023; 345:111610. [PMID: 36848754 DOI: 10.1016/j.forsciint.2023.111610] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Sodium nitrite has several industrial applications however its accidental or intentional ingestion has been associated with severe toxicity and death. We present a series of 20 cases over 2 years in which evidence of sodium nitrite ingestion was found at the scene and supported by biochemical analysis of post-mortem blood nitrite and nitrate levels. Routine toxicological screening was performed on post-mortem blood samples received at University Hospitals of Leicester (UHL) NHS Trust, including ethanol analysis by headspace gas chromatography-flame ionisation detection (HS GC-FID), drug screening by high resolution accurate mass-mass spectrometry (HRAM-MS) and confirmatory drug quantitation by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cases in which the history indicated the possibility of nitrite salts present at the scene, purchase of a suicide kit or a dusky-ash appearance of skin on post-mortem were referred to a specialist laboratory for nitrite and nitrate analysis. Analysis was based upon the gas-phase chemiluminescent reaction between nitric oxide (NO) and ozone; NO levels were determined using an NOA 280A, Sievers NO analyser. Twenty post-mortem cases in which sodium nitrite ingestion was the most probable cause of death were reported between January 2020 and February 2022; mean age was 31 years (range 14-49) with 9/20 (45%) female. 16/20 (80%) of cases had a history of depression and / or mental health issues. In half of the cases, anti-depressant / anti-psychotic drugs were prescribed; these drugs were detected in 8/20 (40%) cases. Ethanol was detected in 4/20 (20%) cases and anti-emetic drugs in 7/20 (35%) cases; anti-emetic drugs may be used to aid retention of sodium nitrite. Illicit drugs (amphetamine, cannabis and cocaine) were present in 3/20 cases (15%). Nitrite was found to be elevated in all but one case (95%), and nitrate was elevated in 17/20 (85%) cases. This paper highlights a surge in numbers of deaths across England and Wales due to sodium nitrite toxicity. Although, nitrite poisoning remains a rare cause of death, it is worthwhile considering its use in individuals with suicidal ideation given its unregulated availability online. The detection and quantitation of nitrite and nitrate requires specialised, highly reliable methodology currently only available in research laboratories. Implication of sodium nitrite ingestion also relies heavily upon circumstantial evidence combined with quantification. The provision of a quantitative nitrite / nitrate analytical service greatly assists in determining the cause of death in these cases.
Collapse
Affiliation(s)
- L J Hikin
- Forensic Toxicology Service, University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester LE1 5WW, UK.
| | - J Ho
- Centre for Cardiovascular Medicines & Devices, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - S R Morley
- Forensic Toxicology Service, University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester LE1 5WW, UK
| | - A Ahluwalia
- Centre for Cardiovascular Medicines & Devices, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - P R Smith
- Forensic Toxicology Service, University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester LE1 5WW, UK
| |
Collapse
|
8
|
Keller TCS, Lechauve C, Keller AS, Broseghini-Filho GB, Butcher JT, Askew Page HR, Islam A, Tan ZY, DeLalio LJ, Brooks S, Sharma P, Hong K, Xu W, Padilha AS, Ruddiman CA, Best AK, Macal E, Kim-Shapiro DB, Christ G, Yan Z, Cortese-Krott MM, Ricart K, Patel R, Bender TP, Sonkusare SK, Weiss MJ, Ackerman H, Columbus L, Isakson BE. Endothelial alpha globin is a nitrite reductase. Nat Commun 2022; 13:6405. [PMID: 36302779 PMCID: PMC9613979 DOI: 10.1038/s41467-022-34154-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 10/04/2022] [Indexed: 01/29/2023] Open
Abstract
Resistance artery vasodilation in response to hypoxia is essential for matching tissue oxygen and demand. In hypoxia, erythrocytic hemoglobin tetramers produce nitric oxide through nitrite reduction. We hypothesized that the alpha subunit of hemoglobin expressed in endothelium also facilitates nitrite reduction proximal to smooth muscle. Here, we create two mouse strains to test this: an endothelial-specific alpha globin knockout (EC Hba1Δ/Δ) and another with an alpha globin allele mutated to prevent alpha globin's inhibitory interaction with endothelial nitric oxide synthase (Hba1WT/Δ36-39). The EC Hba1Δ/Δ mice had significantly decreased exercise capacity and intracellular nitrite consumption in hypoxic conditions, an effect absent in Hba1WT/Δ36-39 mice. Hypoxia-induced vasodilation is significantly decreased in arteries from EC Hba1Δ/Δ, but not Hba1WT/Δ36-39 mice. Hypoxia also does not lower blood pressure in EC Hba1Δ/Δ mice. We conclude the presence of alpha globin in resistance artery endothelium acts as a nitrite reductase providing local nitric oxide in response to hypoxia.
Collapse
Affiliation(s)
- T C Stevenson Keller
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alexander S Keller
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Gilson Brás Broseghini-Filho
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| | - Joshua T Butcher
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Henry R Askew Page
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Aditi Islam
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Zhe Yin Tan
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Leon J DeLalio
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Steven Brooks
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Poonam Sharma
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kwangseok Hong
- Department of Physical Education, College of Education, Chung-Ang University, Seoul, South Korea
| | - Wenhao Xu
- Transgenic Mouse Facility, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Claire A Ruddiman
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Angela K Best
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Edgar Macal
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Daniel B Kim-Shapiro
- Department of Physics, Translational Science Center, Wake Forest University, Winston-Salem, NC, USA
| | - George Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Zhen Yan
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Karina Ricart
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rakesh Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy P Bender
- Department of Microbiology, Immunology and Cancer, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Swapnil K Sonkusare
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hans Ackerman
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Linda Columbus
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Brant E Isakson
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Circulating nitrate-nitrite reduces oxygen uptake for improving resistance exercise performance after rest time in well-trained CrossFit athletes. Sci Rep 2022; 12:9671. [PMID: 35690665 PMCID: PMC9188609 DOI: 10.1038/s41598-022-13786-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/27/2022] [Indexed: 12/21/2022] Open
Abstract
This study aimed to determine the effects of circulating nitrate plus nitrite (NOx) concentrations on resistance exercise performance, VO2 and biomarkers of muscle damage. Eleven well-trained male CrossFit athletes (29.2 ± 3.7 years, 78.9 ± 5.4 kg, 175.1 ± 6.3 cm) carried out a resistance exercise test after drinking 140 mL of beetroot juice (BJ) or placebo. The test consisted of repeating the same resistance exercise routine twice: wall ball shots plus full back squat with 3-min rest (1st routine) or without rest (2nd routine) between the two exercises. Higher NOx plasma levels were verified after BJ than placebo in the pretest and post-test (p < 0.001). A higher number of repetitions was observed after BJ intake compared to placebo in the full back squat exercise during the first routine (p = 0.004). A significantly reduced VO2 was detected after BJ intake compared to placebo during rest and full back squat execution in the first routine (p < 0.05). Plasma myoglobin concentrations were significantly increased with BJ compared to placebo (p = 0.036). These results showed that plasma NOx levels reduced VO2 after BJ intake during rest time. These reduced VO2 was a key factor for improving full back squat performance during the first routine.
Collapse
|
10
|
Piacenza L, Zeida A, Trujillo M, Radi R. The superoxide radical switch in the biology of nitric oxide and peroxynitrite. Physiol Rev 2022; 102:1881-1906. [PMID: 35605280 DOI: 10.1152/physrev.00005.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lucìa Piacenza
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Weerts J, Mourmans SGJ, Barandiarán Aizpurua A, Schroen BLM, Knackstedt C, Eringa E, Houben AJHM, van Empel VPM. The Role of Systemic Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction. Biomolecules 2022; 12:biom12020278. [PMID: 35204779 PMCID: PMC8961612 DOI: 10.3390/biom12020278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a condition with increasing incidence, leading to a health care problem of epidemic proportions for which no curative treatments exist. Consequently, an urge exists to better understand the pathophysiology of HFpEF. Accumulating evidence suggests a key pathophysiological role for coronary microvascular dysfunction (MVD), with an underlying mechanism of low-grade pro-inflammatory state caused by systemic comorbidities. The systemic entity of comorbidities and inflammation in HFpEF imply that patients develop HFpEF due to systemic mechanisms causing coronary MVD, or systemic MVD. The absence or presence of peripheral MVD in HFpEF would reflect HFpEF being predominantly a cardiac or a systemic disease. Here, we will review the current state of the art of cardiac and systemic microvascular dysfunction in HFpEF (Graphical Abstract), resulting in future perspectives on new diagnostic modalities and therapeutic strategies.
Collapse
Affiliation(s)
- Jerremy Weerts
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
- Correspondence: ; Tel.: +31-43-387-7097
| | - Sanne G. J. Mourmans
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Arantxa Barandiarán Aizpurua
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Blanche L. M. Schroen
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Christian Knackstedt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Etto Eringa
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6211 LK Maastricht, The Netherlands;
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Alfons J. H. M. Houben
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands;
| | - Vanessa P. M. van Empel
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| |
Collapse
|
12
|
The procoagulant effects of extracellular vesicles derived from hypoxic endothelial cells can be selectively inhibited by inorganic nitrite. Nitric Oxide 2022; 122-123:6-18. [DOI: 10.1016/j.niox.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
|
13
|
Zhu D, Hou J, Qian M, Jin D, Hao T, Pan Y, Wang H, Wu S, Liu S, Wang F, Wu L, Zhong Y, Yang Z, Che Y, Shen J, Kong D, Yin M, Zhao Q. Nitrate-functionalized patch confers cardioprotection and improves heart repair after myocardial infarction via local nitric oxide delivery. Nat Commun 2021; 12:4501. [PMID: 34301958 PMCID: PMC8302626 DOI: 10.1038/s41467-021-24804-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a short-lived signaling molecule that plays a pivotal role in cardiovascular system. Organic nitrates represent a class of NO-donating drugs for treating coronary artery diseases, acting through the vasodilation of systemic vasculature that often leads to adverse effects. Herein, we design a nitrate-functionalized patch, wherein the nitrate pharmacological functional groups are covalently bound to biodegradable polymers, thus transforming small-molecule drugs into therapeutic biomaterials. When implanted onto the myocardium, the patch releases NO locally through a stepwise biotransformation, and NO generation is remarkably enhanced in infarcted myocardium because of the ischemic microenvironment, which gives rise to mitochondrial-targeted cardioprotection as well as enhanced cardiac repair. The therapeutic efficacy is further confirmed in a clinically relevant porcine model of myocardial infarction. All these results support the translational potential of this functional patch for treating ischemic heart disease by therapeutic mechanisms different from conventional organic nitrate drugs.
Collapse
Affiliation(s)
- Dashuai Zhu
- State key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Meng Qian
- State key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tian Hao
- State key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - He Wang
- State key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Shuting Wu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Lanping Wu
- Department of Cardiac Ultrasound, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yumin Zhong
- Diagnostic Imaging Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhilu Yang
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yongzhe Che
- School of Medicine, Nankai University, Tianjin, China
| | - Jie Shen
- College of Pharmacy, Nankai University, Tianjin, China
| | - Deling Kong
- State key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Qiang Zhao
- State key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China.
| |
Collapse
|
14
|
Repeated administration of inorganic nitrate on blood pressure and arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2021; 38:2122-2140. [PMID: 32723980 DOI: 10.1097/hjh.0000000000002524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We aim to synthesize effects of repeated administration (≥3 days) of inorganic nitrate on blood pressure and arterial stiffness measures. METHODS We conducted a systematic review and meta-analysis of randomized controlled trials with at least 3 days treatment of inorganic nitrate on blood pressure and arterial stiffness in individuals with or without elevated cardiovascular disease risk. MEDLINE, EMBASE and the Cochrane Library were searched through 2 July 2019. Two independent reviewers extracted relevant study data. Data were pooled using the generic inverse variance method with random-effects model, and expressed as mean differences with 95% confidence intervals. Certainty in the evidence was assessed using GRADE. RESULTS Forty-seven trials were included (n = 1101). Administration of inorganic nitrate significantly lowered SBP [mean difference: -2.91 mmHg, 95% confidence interval (95% CI): -3.92 to -1.89, I = 76%], DBP (mean difference: -1.45 mmHg, 95% CI: -2.22 to -0.68, I = 78%], central SBP (mean difference: -1.56 mmHg, 95% CI: -2.62 to -0.50, I = 30%) and central DBP (mean difference: -1.99 mmHg, 95% CI: -2.37 to -1.60, I = 0%). There was no effect on 24-h blood pressure, augmentation index or pulse wave velocity. Certainty in the evidence was graded moderate for central blood pressure, pulse wave velocity and low for peripheral blood pressure, 24-h blood pressure and augmentation index. CONCLUSION Repeated administration (≥3 days) of inorganic nitrate lower peripheral and central blood pressure. Results appear to be driven by beneficial effects in healthy and hypertensive individuals. More studies are required to increase certainty in the evidence.
Collapse
|
15
|
Nitrite and tempol combination promotes synergic effects and alleviates right ventricular wall stress during acute pulmonary thromboembolism. Nitric Oxide 2021; 115:23-29. [PMID: 34133975 DOI: 10.1016/j.niox.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/29/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The mechanical obstruction and pulmonary vasoconstriction are major determinants of the sudden right ventricular (RV) afterload increases observed during acute pulmonary thromboembolism (APT). Vasodilators and antioxidants agents have been shown to mitigate pulmonary hypertension. We examined whether sodium nitrite and the antioxidant tempol combination could be advantageous in an APT sheep model. METHODS APT was induced in anesthetized sheep by autologous blood clots (250 mg/kg) into the right atrium. Thirty minutes after APT induction, the animals received a continuous infusion of tempol (1.0 mg/kg/min), increasing sodium nitrite infusion (5, 15, and 50 μmol/kg), or a simultaneous combination of both drugs. Saline was used as a control treatment. Hemodynamic measurements were carried out every 15 min. Also, whole blood nitrite and serum 8-isoprostanes levels were measured. RESULTS APT induced sustained pulmonary hypertension, increased dp/dtmax, and rate pressure product (RPP). Nitrite or tempol treatments attenuated these increases (P < 0.05). When both drugs were combined, we found a robust reduction in the RV RPP compared with the treatments alone (P < 0.05). The sole nitrite infusion increased blood nitrite concentrations by 35 ± 6 μM (P < 0.05), whereas the nitrite and tempol combination produced higher blood nitrite concentrations by approximately 54 ± 7 μM. Tempol or nitrite infusions, both alone or combined, blunted the increases in 8-isoprostane concentrations observed after APT. CONCLUSIONS Nitrite and tempol combination protects against APT-induced RV wall stress. The association of both drugs may offer an advantage to treat RV failure during severe APT.
Collapse
|
16
|
O'Gallagher K, Cabaco AR, Ryan M, Roomi A, Gu H, Dancy L, Melikian N, Chowienczyk PJ, Webb AJ, Shah AM. Direct cardiac versus systemic effects of inorganic nitrite on human left ventricular function. Am J Physiol Heart Circ Physiol 2021; 321:H175-H184. [PMID: 34018850 PMCID: PMC8505166 DOI: 10.1152/ajpheart.00081.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inorganic nitrite is a source of nitric oxide (NO) and is considered as a potential therapy in settings where endogenous NO bioactivity is reduced and left ventricular (LV) function impaired. However, the effects of nitrite on human cardiac contractile function, and the extent to which these are direct or indirect, are unclear. We studied 40 patients undergoing diagnostic cardiac catheterization who had normal LV systolic function and were not found to have obstructive coronary disease. They received either an intracoronary sodium nitrite infusion (8.7–26 µmol/min, n = 20) or an intravenous sodium nitrite infusion (50 µg/kg/min, n = 20). LV pressure-volume relations were recorded. The primary end point was LV end-diastolic pressure (LVEDP). Secondary end points included indices of LV systolic and diastolic function. Intracoronary nitrite infusion induced a significant reduction in LVEDP, LV end-diastolic pressure-volume relationship (EDPVR), and the time to LV end-systole (LVEST) but had no significant effect on LV systolic function or systemic hemodynamics. Intravenous nitrite infusion induced greater effects, with significant decreases in LVEDP, EDPVR, LVEST, LV dP/dtmin, tau, and mean arterial pressure. Inorganic nitrite has modest direct effects on human LV diastolic function, independent of LV loading conditions and without affecting LV systolic properties. However, the systemic administration of nitrite has larger effects on LV diastolic function, which are related to reduction in both preload and afterload. These contractile effects of inorganic nitrite may indicate a favorable profile for conditions characterized by LV diastolic dysfunction. NEW & NOTEWORTHY This is the first study to assess the direct and indirect effects of inorganic nitrite on invasive measures of left ventricular function in humans in vivo. Inorganic nitrite has a modest direct myocardial effect, improving diastolic function. Systemic administration of nitrite has larger effects related to alterations in cardiac preload and afterload. The changes induced by nitrite appear favorable for potential use in conditions characterized by LV diastolic dysfunction.
Collapse
Affiliation(s)
- Kevin O'Gallagher
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom.,Department of Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Ana R Cabaco
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Matthew Ryan
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Ali Roomi
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Haotian Gu
- Department of Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Luke Dancy
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Narbeh Melikian
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Philip J Chowienczyk
- Department of Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Andrew J Webb
- Department of Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Ajay M Shah
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| |
Collapse
|
17
|
Carnevale C, Syme DA, Gamperl AK. Effects of hypoxic acclimation, muscle strain, and contraction frequency on nitric oxide-mediated myocardial performance in steelhead trout ( Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 2021; 320:R588-R610. [PMID: 33501888 DOI: 10.1152/ajpregu.00014.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whether hypoxic acclimation influences nitric oxide (NO)-mediated control of fish cardiac function is not known. Thus, we measured the function/performance of myocardial strips from normoxic- and hypoxic-acclimated (40% air saturation; ∼8 kPa O2) trout at several frequencies (20-80 contractions·min-1) and two muscle strain amplitudes (8% and 14%) when exposed to increasing concentrations of the NO donor sodium nitroprusside (SNP) (10-9 to 10-4 M). Further, we examined the influence of 1) nitric oxide synthase (NOS) produced NO [by blocking NOS with 10-4 M NG-monomethyl-l-arginine (l-NMMA)] and 2) soluble guanylyl cyclase mediated, NOS-independent, NO effects (i.e., after blockade with 10-4 M ODQ), on myocardial contractility. Hypoxic acclimation increased twitch duration by 8%-10% and decreased mass-specific net power by ∼35%. However, hypoxic acclimation only had minor impacts on the effects of SNP and the two blockers on myocardial function. The most surprising finding of the current study was the degree to which contraction frequency and strain amplitude influenced NO-mediated effects on myocardial power. For example, at 8% strain, 10-4 SNP resulted in a decrease in net power of ∼30% at 20 min-1 but an increase of ∼20% at 80 min-1, and this effect was magnified at 14% strain. This research suggests that hypoxic acclimation has only minor effects on NO-mediated myocardial contractility in salmonids, is the first to report the high frequency- and strain-dependent nature of NO effects on myocardial contractility in fishes, and supports previous work showing that NO effects on the heart (myocardium) are finely tuned spatiotemporally.
Collapse
Affiliation(s)
- Christian Carnevale
- Department of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
18
|
The Herbal Formula CWBSD Improves Sleep Quality Dependent on Oral Microbial Type and Tongue Diagnostic Features in Insomnia. J Pers Med 2021; 11:jpm11050325. [PMID: 33919176 PMCID: PMC8143156 DOI: 10.3390/jpm11050325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cheonwangbosim-dan (CWBSD) is a traditional Korean herb formula that has been widely prescribed for insomnia patients with a heart-yin deficiency (HYD) pattern. Several studies have reported that heart function and insomnia are interrelated, and few have explored associations between insomnia, oral microbiota, and tongue diagnosis. This study aimed to evaluate the effects of CWBSD on primary insomnia, tongue diagnosis, and oral microbiota. At baseline, 56 patients with primary insomnia were assigned to two groups, a HYD group and a non-HYD (NHYD) group and they took CWBSD for 6 weeks. During the study, Pittsburgh Sleep Quality Indices (PSQIs) and Insomnia Severity Indices (ISIs) decreased significantly in both groups. However, the PSQI reduction observed in the HYD group was greater than in the NHYD group and sleep times increased only in the HYD group. As sleep quality improved, the amount of tongue coating increased at the posterior tongue, where heart function appears. At baseline, the HYD and NHYD group had a specific oral microbiota (Veillonella at genus level), but no significant change was observed after taking CWBSD. Additionally, subjects were divided into two oral microbiota types ("orotypes"). The genera Prevotella, Veillonella, or Neisseria were abundant in each orotype. The reduction in PSQI in orotype 1 during the 6-week treatment period was greater than in orotype 2. In conclusion, this study shows that CWBSD could be used to treat primary insomnia in patients with a HYD pattern as determined using tongue diagnosis and oral microbiota distributional patterns.
Collapse
|
19
|
Thorn CE, Adio AO, Fox RH, Gardner AM, Winlove CP, Shore AC. Intermittent compression induces transitory hypoxic stimuli, upstream vasodilation and enhanced perfusion of skin capillaries, independent of age and diabetes. J Appl Physiol (1985) 2021; 130:1072-1084. [PMID: 33571053 DOI: 10.1152/japplphysiol.00657.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The benefit of enhanced shear stress to the vascular endothelium has been well-documented in conduit arteries but is less understood in skin microcirculation. The aim of this study was to provide physiological evidence of the vascular changes in skin microcirculation induced by intermittent pneumatic compression (IPC) of 1 s cuff inflation (130 mmHg) every 20 s to the palm of the hand for 30 min. The oxygenation and hemodynamics of dorsal mid-phalangeal finger skin microcirculation were assessed by laser Doppler fluximetry and reflectance spectroscopy before, during, and after IPC in 15 young (18-39 years old) and 39 older (40-80 years old) controls and 32 older subjects with type 2 diabetes mellitus. Each individual cuff inflation induced: 1) brief surge in flux immediately after cuff deflation followed by 2) transitory reduction in blood oxygen for ∼4 s, and 3) a second increase in perfusion and oxygenation of the microcirculation peaking ∼11 s after cuff deflation in all subject groups. With no significant change in blood volume observed by reflectance spectroscopy, despite the increased shear stress at the observed site, this second peak in flux and blood oxygen suggests a delayed vasoactive response upstream inducing increased arterial influx in the microcirculation that was higher in older controls and subjects with diabetes compared to young controls (P < 0.001, P < 0.001, respectively) and achieving maximum capillary recruitment in all subject groups. Transitory hypoxic stimuli with conducted vasodilation may be a mechanism through which IPC enhances capillary perfusion in skin microcirculation independent of age and type 2 diabetes mellitus.NEW & NOTEWORTHY This study demonstrates that hand intermittent pneumatic compression evokes transitory hypoxic stimuli in distal finger skin microcirculation inducing vasodilation of arterial inflow vessels, enhanced perfusion, and maximum capillary recruitment in young and older subjects and older subjects with type 2 diabetes mellitus. Enhanced shear stress in the microcirculation did not appear to induce local skin vasodilation.
Collapse
Affiliation(s)
- Clare E Thorn
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, College of Medicine and Health and NIHR Exeter Clinical Research Facility, and School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Aminat O Adio
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, College of Medicine and Health and NIHR Exeter Clinical Research Facility, and School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Roger H Fox
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, College of Medicine and Health and NIHR Exeter Clinical Research Facility, and School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - A Michael Gardner
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, College of Medicine and Health and NIHR Exeter Clinical Research Facility, and School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - C Peter Winlove
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, College of Medicine and Health and NIHR Exeter Clinical Research Facility, and School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Angela C Shore
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, College of Medicine and Health and NIHR Exeter Clinical Research Facility, and School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
20
|
Serra-Payá N, Garnacho-Castaño MV, Sánchez-Nuño S, Albesa-Albiol L, Girabent-Farrés M, Moizé Arcone L, Fernández AP, García-Fresneda A, Castizo-Olier J, Viñals X, Molina-Raya L, Gomis Bataller M. The Relationship between Resistance Exercise Performance and Ventilatory Efficiency after Beetroot Juice Intake in Well-Trained Athletes. Nutrients 2021; 13:1094. [PMID: 33801665 PMCID: PMC8065812 DOI: 10.3390/nu13041094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
The assessment of ventilatory efficiency is critical to understanding the matching of ventilation (VE) and perfusion in the lungs during exercise. This study aimed to establish a causal physiological relationship between ventilatory efficiency and resistance exercise performance after beetroot juice (BJ) intake. Eleven well-trained males performed a resistance exercise test after drinking 140 mL of BJ (~12.8 mmol NO3-) or a placebo (PL). Ventilatory efficiency was assessed by the VE•VCO2-1 slope, the oxygen uptake efficiency slope and the partial pressure of end-tidal carbon dioxide (PetCO2). The two experimental conditions were controlled using a randomized, double-blind crossover design. The resistance exercise test involved repeating the same routine twice, which consisted of wall ball shots plus a full squat (FS) with a 3 min rest or without a rest between the two exercises. A higher weight lifted was detected in the FS exercise after BJ intake compared with the PL during the first routine (p = 0.004). BJ improved the VE•VCO2-1 slope and the PetCO2 during the FS exercise in the first routine and at rest (p < 0.05). BJ intake improved the VE•VCO2-1 slope and the PetCO2 coinciding with the resistance exercise performance. The ergogenic effect of BJ could be induced under aerobic conditions at rest.
Collapse
Affiliation(s)
- Noemí Serra-Payá
- School of Health Sciences, TecnoCampus Pompeu Fabra University, Ernest Lluch, 32 (Porta Laietana), 08302 Mataró-Barcelona, Spain; (N.S.-P.); (S.S.-N.); (L.A.-A.); (M.G.-F.); (L.M.A.); (A.P.F.); (A.G.-F.); (J.C.-O.); (X.V.); (M.G.B.)
| | - Manuel Vicente Garnacho-Castaño
- School of Health Sciences, TecnoCampus Pompeu Fabra University, Ernest Lluch, 32 (Porta Laietana), 08302 Mataró-Barcelona, Spain; (N.S.-P.); (S.S.-N.); (L.A.-A.); (M.G.-F.); (L.M.A.); (A.P.F.); (A.G.-F.); (J.C.-O.); (X.V.); (M.G.B.)
| | - Sergio Sánchez-Nuño
- School of Health Sciences, TecnoCampus Pompeu Fabra University, Ernest Lluch, 32 (Porta Laietana), 08302 Mataró-Barcelona, Spain; (N.S.-P.); (S.S.-N.); (L.A.-A.); (M.G.-F.); (L.M.A.); (A.P.F.); (A.G.-F.); (J.C.-O.); (X.V.); (M.G.B.)
| | - Lluís Albesa-Albiol
- School of Health Sciences, TecnoCampus Pompeu Fabra University, Ernest Lluch, 32 (Porta Laietana), 08302 Mataró-Barcelona, Spain; (N.S.-P.); (S.S.-N.); (L.A.-A.); (M.G.-F.); (L.M.A.); (A.P.F.); (A.G.-F.); (J.C.-O.); (X.V.); (M.G.B.)
| | - Montserrat Girabent-Farrés
- School of Health Sciences, TecnoCampus Pompeu Fabra University, Ernest Lluch, 32 (Porta Laietana), 08302 Mataró-Barcelona, Spain; (N.S.-P.); (S.S.-N.); (L.A.-A.); (M.G.-F.); (L.M.A.); (A.P.F.); (A.G.-F.); (J.C.-O.); (X.V.); (M.G.B.)
| | - Luciana Moizé Arcone
- School of Health Sciences, TecnoCampus Pompeu Fabra University, Ernest Lluch, 32 (Porta Laietana), 08302 Mataró-Barcelona, Spain; (N.S.-P.); (S.S.-N.); (L.A.-A.); (M.G.-F.); (L.M.A.); (A.P.F.); (A.G.-F.); (J.C.-O.); (X.V.); (M.G.B.)
| | - Alba Pardo Fernández
- School of Health Sciences, TecnoCampus Pompeu Fabra University, Ernest Lluch, 32 (Porta Laietana), 08302 Mataró-Barcelona, Spain; (N.S.-P.); (S.S.-N.); (L.A.-A.); (M.G.-F.); (L.M.A.); (A.P.F.); (A.G.-F.); (J.C.-O.); (X.V.); (M.G.B.)
| | - Adrián García-Fresneda
- School of Health Sciences, TecnoCampus Pompeu Fabra University, Ernest Lluch, 32 (Porta Laietana), 08302 Mataró-Barcelona, Spain; (N.S.-P.); (S.S.-N.); (L.A.-A.); (M.G.-F.); (L.M.A.); (A.P.F.); (A.G.-F.); (J.C.-O.); (X.V.); (M.G.B.)
| | - Jorge Castizo-Olier
- School of Health Sciences, TecnoCampus Pompeu Fabra University, Ernest Lluch, 32 (Porta Laietana), 08302 Mataró-Barcelona, Spain; (N.S.-P.); (S.S.-N.); (L.A.-A.); (M.G.-F.); (L.M.A.); (A.P.F.); (A.G.-F.); (J.C.-O.); (X.V.); (M.G.B.)
| | - Xavier Viñals
- School of Health Sciences, TecnoCampus Pompeu Fabra University, Ernest Lluch, 32 (Porta Laietana), 08302 Mataró-Barcelona, Spain; (N.S.-P.); (S.S.-N.); (L.A.-A.); (M.G.-F.); (L.M.A.); (A.P.F.); (A.G.-F.); (J.C.-O.); (X.V.); (M.G.B.)
| | - Lorena Molina-Raya
- Campus Docent Sant Joan de Déu, Fundación Privada, 08304 Barcelona, Spain;
| | - Manuel Gomis Bataller
- School of Health Sciences, TecnoCampus Pompeu Fabra University, Ernest Lluch, 32 (Porta Laietana), 08302 Mataró-Barcelona, Spain; (N.S.-P.); (S.S.-N.); (L.A.-A.); (M.G.-F.); (L.M.A.); (A.P.F.); (A.G.-F.); (J.C.-O.); (X.V.); (M.G.B.)
| |
Collapse
|
21
|
Furian M, Latshang TD, Aeschbacher SS, Sheraliev U, Marazhapov NH, Mirrakhimov E, Ulrich S, Sooronbaev TM, Bloch KE. Markers of cardiovascular risk and their reversibility with acute oxygen therapy in Kyrgyz highlanders with high altitude pulmonary hypertension. Pulmonology 2021; 27:394-402. [PMID: 33674243 DOI: 10.1016/j.pulmoe.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND High altitude pulmonary hypertension (HAPH), a chronic altitude related illness, is associated with hypoxemia, dyspnea and reduced exercise performance. We evaluated ECG and pulse wave-derived markers of cardiovascular risk in highlanders with HAPH (HAPH+) in comparison to healthy highlanders (HH) and lowlanders (LL) and the effects of hyperoxia. METHODS We studied 34 HAPH+ and 54 HH at Aksay (3250m), and 34 LL at Bishkek (760m), Kyrgyzstan. Mean pulmonary artery pressure by echocardiography was mean±SD 34±3, 22±5, 16±4mmHg, respectively (p<0.05 all comparisons). During quiet rest, breathing room air or oxygen in randomized order, we measured heart-rate adjusted QT interval (QTc), an ECG-derived marker of increased cardiovascular mortality, and arterial stiffness index (SI), a marker of cardiovascular disease derived from pulse oximetry plethysmograms. RESULTS Pulse oximetry in HAPH+, HH and LL was, mean±SD, 88±4, 92±2 and 95±2%, respectively (p<0.05 vs HAPH+, both comparisons). QTc in HAPH+, HH and LL was 422±24, 405±27, 400±28ms (p<0.05 HAPH+ vs. others); corresponding SI was 10.5±1.9, 8.4±2.6, 8.5±2.0m/s, heart rate was 75±8, 68±8, 70±10 bpm (p<0.05, corresponding comparisons HAPH+ vs. others). In regression analysis, HAPH+ was an independent predictor of increased QTc and SI when controlled for several confounders. Oxygen breathing increased SI in HH but not in HAPH+, and reduced QTc in all groups. CONCLUSIONS Our data suggest that HAPH+ but not HH may be at increased risk of cardiovascular mortality and morbidity compared to LL. The lack of a further increase of the elevated SI during hyperoxia in HAPH+ may indicate dysfunctional control of vascular tone and/or remodelling.
Collapse
Affiliation(s)
- M Furian
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - T D Latshang
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - S S Aeschbacher
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - U Sheraliev
- National Center for Cardiology and Internal Medicine, Department of Respiratory Medicine, 3 Togolok Moldo Str., Bishkek 720040, Kyrgyzstan
| | - N H Marazhapov
- National Center for Cardiology and Internal Medicine, Department of Respiratory Medicine, 3 Togolok Moldo Str., Bishkek 720040, Kyrgyzstan
| | - E Mirrakhimov
- National Center for Cardiology and Internal Medicine, Department of Respiratory Medicine, 3 Togolok Moldo Str., Bishkek 720040, Kyrgyzstan
| | - S Ulrich
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - T M Sooronbaev
- National Center for Cardiology and Internal Medicine, Department of Respiratory Medicine, 3 Togolok Moldo Str., Bishkek 720040, Kyrgyzstan
| | - K E Bloch
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland.
| |
Collapse
|
22
|
Griffiths K, Lee JJ, Frenneaux MP, Feelisch M, Madhani M. Nitrite and myocardial ischaemia reperfusion injury. Where are we now? Pharmacol Ther 2021; 223:107819. [PMID: 33600852 DOI: 10.1016/j.pharmthera.2021.107819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease remains the leading cause of death worldwide despite major advances in technology and treatment, with coronary heart disease (CHD) being a key contributor. Following an acute myocardial infarction (AMI), it is imperative that blood flow is rapidly restored to the ischaemic myocardium. However, this restoration is associated with an increased risk of additional complications and further cardiomyocyte death, termed myocardial ischaemia reperfusion injury (IRI). Endogenously produced nitric oxide (NO) plays an important role in protecting the myocardium from IRI. It is well established that NO mediates many of its downstream functions through the 'canonical' NO-sGC-cGMP pathway, which is vital for cardiovascular homeostasis; however, this pathway can become impaired in the face of inadequate delivery of necessary substrates, in particular L-arginine, oxygen and reducing equivalents. Recently, it has been shown that during conditions of ischaemia an alternative pathway for NO generation exists, which has become known as the 'nitrate-nitrite-NO pathway'. This pathway has been reported to improve endothelial dysfunction, protect against myocardial IRI and attenuate infarct size in various experimental models. Furthermore, emerging evidence suggests that nitrite itself provides multi-faceted protection, in an NO-independent fashion, against a myriad of pathophysiologies attributed to IRI. In this review, we explore the existing pre-clinical and clinical evidence for the role of nitrate and nitrite in cardioprotection and discuss the lessons learnt from the clinical trials for nitrite as a perconditioning agent. We also discuss the potential future for nitrite as a pre-conditioning intervention in man.
Collapse
Affiliation(s)
- Kayleigh Griffiths
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jordan J Lee
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael P Frenneaux
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
23
|
Jiang S, Dandu C, Geng X. Clinical application of nitric oxide in ischemia and reperfusion injury: A literature review. Brain Circ 2021; 6:248-253. [PMID: 33506147 PMCID: PMC7821808 DOI: 10.4103/bc.bc_69_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/03/2022] Open
Abstract
Ischemia–reperfusion injury (IRI) is a series of multifactorial cellular events that lead to increased cellular dysfunction after the restoration of oxygen delivery to hypoxic tissue, which can result in acute heart failure and cerebral dysfunction. This injury is severe and would lead to significant morbidity and mortality and poses an important therapeutic challenge for physicians. Nitric oxide (NO) minimizes the deleterious effects of IRI on cells. NO donors, such as organic nitrates and sodium nitroprusside, are used systematically to treat heart failure, angina, and pulmonary hypertension. Inhaled NO gas was approved by the FDA in 1999 to treat hypoxic newborns, and its beneficial ameliorations reach outside the realm of lung disease. This review will summarize the clinical application of NO in IRI.
Collapse
Affiliation(s)
- Shangqian Jiang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chaitu Dandu
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
24
|
Fan JL, O’Donnell T, Lanford J, Croft K, Watson E, Smyth D, Koch H, Wong LK, Tzeng YC. Dietary nitrate reduces blood pressure and cerebral artery velocity fluctuations and improves cerebral autoregulation in transient ischemic attack patients. J Appl Physiol (1985) 2020; 129:547-557. [DOI: 10.1152/japplphysiol.00160.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We found dietary nitrate supplementation reduced blood pressure and brain blood flow fluctuations and improved the relationship between blood pressure and brain blood flow in transient ischemic attack patients. Meanwhile, dietary nitrate had no effects on the brain blood vessels’ response to CO2. We attribute the improved brain blood flow stability to the improved myogenic control of blood pressure with dietary nitrate. Our findings indicate that dietary nitrate could be an effective strategy for stabilizing blood pressure and brain blood flow following transient ischemic attack.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Terrence O’Donnell
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Jeremy Lanford
- Department of Neurology, Wellington Regional Hospital, Wellington, New Zealand
| | - Kevin Croft
- School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Eloise Watson
- Department of Neurology, Wellington Regional Hospital, Wellington, New Zealand
| | - Duncan Smyth
- Department of Neurology, Wellington Regional Hospital, Wellington, New Zealand
| | - Henrietta Koch
- School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Lai-Kin Wong
- Department of Neurology, Wellington Regional Hospital, Wellington, New Zealand
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| |
Collapse
|
25
|
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| |
Collapse
|
26
|
Feelisch M, Akaike T, Griffiths K, Ida T, Prysyazhna O, Goodwin JJ, Gollop ND, Fernandez BO, Minnion M, Cortese-Krott MM, Borgognone A, Hayes RM, Eaton P, Frenneaux MP, Madhani M. Long-lasting blood pressure lowering effects of nitrite are NO-independent and mediated by hydrogen peroxide, persulfides, and oxidation of protein kinase G1α redox signalling. Cardiovasc Res 2020; 116:51-62. [PMID: 31372656 PMCID: PMC6918062 DOI: 10.1093/cvr/cvz202] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022] Open
Abstract
AIMS Under hypoxic conditions, nitrite (NO2-) can be reduced to nitric oxide (NO) eliciting vasorelaxation. However, nitrite also exerts vasorelaxant effects of potential therapeutic relevance under normal physiological conditions via undetermined mechanisms. We, therefore, sought to investigate the mechanism(s) by which nitrite regulates the vascular system in normoxia and, specifically, whether the biological effects are a result of NO generation (as in hypoxia) or mediated via alternative mechanisms involving classical downstream targets of NO [e.g. effects on protein kinase G1α (PKG1α)]. METHODS AND RESULTS Ex vivo myography revealed that, unlike in thoracic aorta (conduit vessels), the vasorelaxant effects of nitrite in mesenteric resistance vessels from wild-type (WT) mice were NO-independent. Oxidants such as H2O2 promote disulfide formation of PKG1α, resulting in NO- cyclic guanosine monophosphate (cGMP) independent kinase activation. To explore whether the microvascular effects of nitrite were associated with PKG1α oxidation, we used a Cys42Ser PKG1α knock-in (C42S PKG1α KI; 'redox-dead') mouse that cannot transduce oxidant signals. Resistance vessels from these C42S PKG1α KI mice were markedly less responsive to nitrite-induced vasodilation. Intraperitoneal (i.p.) bolus application of nitrite in conscious WT mice induced a rapid yet transient increase in plasma nitrite and cGMP concentrations followed by prolonged hypotensive effects, as assessed using in vivo telemetry. In the C42S PKG1α KI mice, the blood pressure lowering effects of nitrite were lower compared to WT. Increased H2O2 concentrations were detected in WT resistance vessel tissue challenged with nitrite. Consistent with this, increased cysteine and glutathione persulfide levels were detected in these vessels by mass spectrometry, matching the temporal profile of nitrite's effects on H2O2 and blood pressure. CONCLUSION Under physiological conditions, nitrite induces a delayed and long-lasting blood pressure lowering effect, which is NO-independent and occurs via a new redox mechanism involving H2O2, persulfides, and PKG1α oxidation/activation. Targeting this novel pathway may provide new prospects for anti-hypertensive therapy.
Collapse
Affiliation(s)
- Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kayleigh Griffiths
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Oleksandra Prysyazhna
- King's College of London, School of Cardiovascular Medicine & Sciences, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | - Joanna J Goodwin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nicholas D Gollop
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.,Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Bernadette O Fernandez
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Magdalena Minnion
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Miriam M Cortese-Krott
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Alessandra Borgognone
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rosie M Hayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Philip Eaton
- King's College of London, School of Cardiovascular Medicine & Sciences, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | - Michael P Frenneaux
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
27
|
Intermittent Hypoxic Exposure Reduces Endothelial Dysfunction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6479630. [PMID: 32923484 PMCID: PMC7453230 DOI: 10.1155/2020/6479630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Intermittent exposure to hypoxia (IHE) increases the production of reactive oxygen and nitrogen species as well as erythropoietin (EPO), which stimulates the adaptation to intense physical activity. However, several studies suggest a protective effect of moderate hypoxia in cardiovascular disease (CVD) events. The effects of intense physical activity with IHE on oxi-inflammatory mediators and their interaction with conventional CVD risk factors were investigated. Blood samples were collected from elite athletes (control n = 6, IHE n = 6) during a 6-day IHE cycle using hypoxicator GO2 altitude. IHE was held once a day, at least 2 hours after training. In serum, hydrogen peroxide (H2O2), nitric oxide (NO), 3-nitrotyrosine (3-Nitro), proinflammatory cytokines (IL-1β and TNFα), high sensitivity C-reactive protein (hsCRP), and heat shock protein 27 (HSP27) were determined by the commercial immunoenzyme (ELISA kits) or colorimetric methods. Serum erythropoietin (EPO) level was measured by ELISA kit every day of hypoxia. IHE was found to significantly increase H2O2, NO, and HSP27 but to decrease 3NT concentrations. The changes in 3NT and HSP27 following hypoxia proved to enhance NO bioavailability and endothelial function. In the present study, the oxi-inflammatory mediators IL-1β and hsCRP increased in IHE group but they did not exceed the reference values. The serum EPO level increased on the 3rd day of IHE, then decreased on 5th day of IHE, and correlated with NO/H2O2 ratio (r s = 0.640, P < 0.05). There were no changes in haematological markers contrary to lipoproteins such as low-density lipoprotein (LDL) and non-high-density lipoprotein (non-HDL) which showed a decreasing trend in response to hypoxic exposure. The study demonstrated that IHE combined with sports activity reduced a risk of endothelial dysfunction and atherogenesis in athletes even though the oxi-inflammatory processes were enhanced. Therefore, 6-day IHE seems to be a potential therapeutic and nonpharmacological method to reduce CVD risk, especially in elite athletes participating in strenuous training.
Collapse
|
28
|
Pulmonary Hypertension and Heart Failure With Preserved Ejection Fraction: Treating Resistance, Impedance, and Compliance. J Card Fail 2020; 26:662-663. [DOI: 10.1016/j.cardfail.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/21/2022]
|
29
|
Ferguson SK, Redinius KM, Harral JW, Pak DI, Swindle DC, Hirai DM, Blackwell JR, Jones AM, Stenmark KR, Buehler PW, Irwin DC. The effect of dietary nitrate supplementation on the speed-duration relationship in mice with sickle cell disease. J Appl Physiol (1985) 2020; 129:474-482. [PMID: 32702277 DOI: 10.1152/japplphysiol.00122.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sickle cell disease (SCD) causes exercise intolerance likely due to impaired skeletal muscle function and low nitric oxide (NO) bioavailability. Dietary nitrate improves hemodynamic and metabolic control during exercise in humans and animals. The purpose of this investigation was to assess the impact of nitrate supplementation on exercise capacity as measured by the running speed to exercise duration relationship [critical speed (CS)]in mice with SCD. We tested the hypothesis that nitrate supplementation via beetroot juice (BR) would attenuate the exercise intolerance observed in mice with SCD. Ten wild-type (WT) and 18 Berkley sickle-cell mice (BERK) received water (WT: n = 10, BERK: n = 10) or nitrate-rich BR (BERK+BR: n = 8, nitrate dose 1 mmol/kg/day) for 5 days. Following the supplementation period, all mice performed 3-5 constant-speed treadmill tests that resulted in exhaustion within 1.5 to 20 min. Time to exhaustion vs. treadmill speed was fit to a hyperbolic model to determine CS. CS was significantly lower in BERK vs. WT and BERK+BR with no significant difference between WT and BERK+BR (WT: 36.6 ± 1.6, BERK: 23.8 ± 1.5, BERK+BR: 31.1 ± 2.1 m/min, P < 0.05). Exercise tolerance, measured via CS, was significantly lower in BERK mice relative to WT. However, BERK mice receiving 5 days of nitrate supplementation exhibited no difference in exercise tolerance when compared with WT. These results support the potential utility of a dietary nitrate intervention to improve functionality in SCD patients.NEW & NOTEWORTHY Sickle cell disease compromises muscle O2 delivery resulting in exercise intolerance. Dietary nitrate supplementation increases skeletal muscle blood flow during exercise and may improve exercise capacity in a mouse model of sickle cell disease. We investigated the effects of dietary nitrate supplementation on exercise tolerance in a mouse model of sickle cell disease using the treadmill speed-duration relationship (critical speed). Mice with sickle cell disease provided with a dietary nitrate supplement had a critical speed not significantly different from healthy wild-type mice.
Collapse
Affiliation(s)
- Scott K Ferguson
- Department of Kinesiology and Exercise Science, College of Natural and Health Sciences, University of Hawaii at Hilo, Hilo, Hawaii.,Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Katherine M Redinius
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Julie W Harral
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - David I Pak
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Delaney C Swindle
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Daniel M Hirai
- Department of Health and Kinesiology, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana
| | - Jamie R Blackwell
- Department of Sport and Health Sciences, University of Exeter St. Luke's Campus, Exeter, United Kingdom
| | - Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter St. Luke's Campus, Exeter, United Kingdom
| | - Kurt R Stenmark
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Paul W Buehler
- Department of Pathology and The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland
| | - David C Irwin
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
30
|
Haselden WD, Kedarasetti RT, Drew PJ. Spatial and temporal patterns of nitric oxide diffusion and degradation drive emergent cerebrovascular dynamics. PLoS Comput Biol 2020; 16:e1008069. [PMID: 32716940 PMCID: PMC7410342 DOI: 10.1371/journal.pcbi.1008069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/06/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a gaseous signaling molecule that plays an important role in neurovascular coupling. NO produced by neurons diffuses into the smooth muscle surrounding cerebral arterioles, driving vasodilation. However, the rate of NO degradation in hemoglobin is orders of magnitude higher than in brain tissue, though how this might impact NO signaling dynamics is not completely understood. We used simulations to investigate how the spatial and temporal patterns of NO generation and degradation impacted dilation of a penetrating arteriole in cortex. We found that the spatial location of NO production and the size of the vessel both played an important role in determining its responsiveness to NO. The much higher rate of NO degradation and scavenging of NO in the blood relative to the tissue drove emergent vascular dynamics. Large vasodilation events could be followed by post-stimulus constrictions driven by the increased degradation of NO by the blood, and vasomotion-like 0.1-0.3 Hz oscillations could also be generated. We found that these dynamics could be enhanced by elevation of free hemoglobin in the plasma, which occurs in diseases such as malaria and sickle cell anemia, or following blood transfusions. Finally, we show that changes in blood flow during hypoxia or hyperoxia could be explained by altered NO degradation in the parenchyma. Our simulations suggest that many common vascular dynamics may be emergent phenomena generated by NO degradation by the blood or parenchyma.
Collapse
Affiliation(s)
- William Davis Haselden
- Neuroscience Graduate Program, MD/PhD Medical Scientist Training Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ravi Teja Kedarasetti
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Patrick J. Drew
- Neuroscience Graduate Program, MD/PhD Medical Scientist Training Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Departments of Biomedical Engineering and Neurosurgery, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
31
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
32
|
Ntessalen M, Procter NEK, Schwarz K, Loudon BL, Minnion M, Fernandez BO, Vassiliou VS, Vauzour D, Madhani M, Constantin‐Teodosiu D, Horowitz JD, Feelisch M, Dawson D, Crichton PG, Frenneaux MP. Inorganic nitrate and nitrite supplementation fails to improve skeletal muscle mitochondrial efficiency in mice and humans. Am J Clin Nutr 2020; 111:79-89. [PMID: 31599928 PMCID: PMC6944528 DOI: 10.1093/ajcn/nqz245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/03/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Inorganic nitrate, abundant in leafy green vegetables and beetroot, is thought to have protective health benefits. Adherence to a Mediterranean diet reduces the incidence and severity of coronary artery disease, whereas supplementation with nitrate can improve submaximal exercise performance. Once ingested, oral commensal bacteria may reduce nitrate to nitrite, which may subsequently be reduced to nitric oxide during conditions of hypoxia and in the presence of "nitrite reductases" such as heme- and molybdenum-containing enzymes. OBJECTIVE We aimed to explore the putative effects of inorganic nitrate and nitrite on mitochondrial function in skeletal muscle. METHODS Mice were subjected to a nitrate/nitrite-depleted diet for 2 wk, then supplemented with sodium nitrate, sodium nitrite, or sodium chloride (1 g/L) in drinking water ad libitum for 7 d before killing. Skeletal muscle mitochondrial function and expression of uncoupling protein (UCP) 3, ADP/ATP carrier protein (AAC) 1 and AAC2, and pyruvate dehydrogenase (PDH) were assessed by respirometry and Western blotting. Studies were also undertaken in human skeletal muscle biopsies from a cohort of coronary artery bypass graft patients treated with either sodium nitrite (30-min infusion of 10 μmol/min) or vehicle [0.9% (wt:vol) saline] 24 h before surgery. RESULTS Neither sodium nitrate nor sodium nitrite supplementation altered mitochondrial coupling efficiency in murine skeletal muscle, and expression of UCP3, AAC1, or AAC2, and PDH phosphorylation status did not differ between the nitrite and saline groups. Similar results were observed in human samples. CONCLUSIONS Sodium nitrite failed to improve mitochondrial metabolic efficiency, rendering this mechanism implausible for the purported exercise benefits of dietary nitrate supplementation. This trial was registered at clinicaltrials.gov as NCT04001283.
Collapse
Affiliation(s)
- Maria Ntessalen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Nathan E K Procter
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Konstantin Schwarz
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Brodie L Loudon
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Magdalena Minnion
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Bernadette O Fernandez
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | | | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dumitru Constantin‐Teodosiu
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, Nottingham University Medical School, Nottingham, United Kingdom
| | - John D Horowitz
- Department of Cardiology, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, South Australia, Australia
| | - Martin Feelisch
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Dana Dawson
- Department of Cardiology, School of Medicine & Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Paul G Crichton
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Michael P Frenneaux
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom,Norwich Medical School, University of East Anglia, Norwich, United Kingdom,Address correspondence to MPF (E-mail: )
| |
Collapse
|
33
|
Wang L, Sparacino-Watkins CE, Wang J, Wajih N, Varano P, Xu Q, Cecco E, Tejero J, Soleimani M, Kim-Shapiro DB, Gladwin MT. Carbonic anhydrase II does not regulate nitrite-dependent nitric oxide formation and vasodilation. Br J Pharmacol 2019; 177:898-911. [PMID: 31658361 DOI: 10.1111/bph.14887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Although it has been reported that bovine carbonic anhydrase CAII is capable of generating NO from nitrite, the function and mechanism of CAII in nitrite-dependent NO formation and vascular responses remain controversial. We tested the hypothesis that CAII catalyses NO formation from nitrite and contributes to nitrite-dependent inhibition of platelet activation and vasodilation. EXPERIMENT APPROACH The role of CAII in enzymatic NO generation was investigated by measuring NO formation from the reaction of isolated human and bovine CAII with nitrite using NO photolysis-chemiluminescence. A CAII-deficient mouse model was used to determine the role of CAII in red blood cell mediated nitrite reduction and vasodilation. KEY RESULTS We found that the commercially available purified bovine CAII exhibited limited and non-enzymatic NO-generating reactivity in the presence of nitrite with or without addition of the CA inhibitor dorzolamide; the NO formation was eliminated with purification of the enzyme. There was no significant detectable NO production from the reaction of nitrite with recombinant human CAII. Using a CAII-deficient mouse model, there were no measurable changes in nitrite-dependent vasodilation in isolated aorta rings and in vivo in CAII-/- , CAII+/- , and wild-type mice. Moreover, deletion of the CAII gene in mice did not block nitrite reduction by red blood cells and the nitrite-NO-dependent inhibition of platelet activation. CONCLUSION AND IMPLICATIONS These studies suggest that human, bovine and mouse CAII are not responsible for nitrite-dependent NO formation in red blood cells, aorta, or the systemic circulation.
Collapse
Affiliation(s)
- Ling Wang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Courtney E Sparacino-Watkins
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jun Wang
- Hubei University of Technology, Wuhan, P. R. China
| | - Nadeem Wajih
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina
| | - Paul Varano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qinzi Xu
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eric Cecco
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Daniel B Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina.,Translational Science Center, Wake Forest University, Winston-Salem, North Carolina
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Fan JL, O'Donnell T, Gray CL, Croft K, Noakes AK, Koch H, Tzeng YC. Dietary nitrate supplementation enhances cerebrovascular CO 2 reactivity in a sex-specific manner. J Appl Physiol (1985) 2019; 127:760-769. [PMID: 31318615 DOI: 10.1152/japplphysiol.01116.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Insufficient nitric oxide (NO) bioavailability plays an important role in endothelial dysfunction, and increased NO has the potential to enhance cerebral blood flow (CBF). Dietary supplementation with sodium nitrate, a precursor of NO, could improve cerebrovascular function, but this has not been investigated. In 17 individuals, we examined the effects of a 7-day supplementation of dietary nitrate (0.1 mmol·kg-1·day -1) on cerebrovascular function using a randomized, single-blinded placebo-controlled crossover design. We hypothesized that 7-day dietary nitrate supplementation increases CBF response to CO2 (cerebrovascular CO2 reactivity) and cerebral autoregulation (CA). We assessed middle cerebral artery blood velocity (MCAv) and blood pressure (BP) at rest and during CO2 breathing. Transfer function analysis was performed on resting beat-to-beat MCAv and BP to determine CA, from which phase, gain, and coherence of the BP-MCAv data were derived. Dietary nitrate elevated plasma nitrate concentration by ~420% (P < 0.001) and lowered gain (d = 1.2, P = 0.025) and phase of the BP-MCAv signal compared with placebo treatment (d = 0.7, P = 0.043), while coherence was unaffected (P = 0.122). Dietary nitrate increased the MCAv-CO2 slope in a sex-specific manner (interaction: P = 0.016). Dietary nitrate increased the MCAv-CO2 slope in men (d = 1.0, P = 0.014 vs. placebo), but had no effect in women (P = 0.919). Our data demonstrate that dietary nitrate greatly increased cerebrovascular CO2 reactivity in healthy individuals, while its effect on CA remains unclear. The selective increase in the MCAv-CO2 slope observed in men indicates a clear sexual dimorphic role of NO in cerebrovascular function.NEW & NOTEWORTHY We found dietary nitrate supplementation improved the brain blood vessels' response to CO2, cerebrovascular CO2 reactivity, without affecting blood pressure in a group of healthy individuals. Meanwhile, the effect of dietary nitrate on the relationship between blood pressure and brain blood flow, cerebral autoregulation, was inconclusive. The improvement in cerebrovascular CO2 reactivity was only observed in the male participants, alluding to a sex difference in the effect of dietary nitrate on brain blood flow control. Our findings indicate that dietary nitrate could be an effective strategy to enhance cerebrovascular CO2 reactivity.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Terrence O'Donnell
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Clint Lee Gray
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand.,Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Kevin Croft
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Annabel Kate Noakes
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Henrietta Koch
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| |
Collapse
|
35
|
Rajendran S, Shen X, Glawe J, Kolluru GK, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling. Compr Physiol 2019; 9:1213-1247. [PMID: 31187898 DOI: 10.1002/cphy.c180026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemic vascular remodeling occurs in response to stenosis or arterial occlusion leading to a change in blood flow and tissue perfusion. Altered blood flow elicits a cascade of molecular and cellular physiological responses leading to vascular remodeling of the macro- and micro-circulation. Although cellular mechanisms of vascular remodeling such as arteriogenesis and angiogenesis have been studied, therapeutic approaches in these areas have had limited success due to the complexity and heterogeneous constellation of molecular signaling events regulating these processes. Understanding central molecular players of vascular remodeling should lead to a deeper understanding of this response and aid in the development of novel therapeutic strategies. Hydrogen sulfide (H2 S) and nitric oxide (NO) are gaseous signaling molecules that are critically involved in regulating fundamental biochemical and molecular responses necessary for vascular growth and remodeling. This review examines how NO and H2 S regulate pathophysiological mechanisms of angiogenesis and arteriogenesis, along with important chemical and experimental considerations revealed thus far. The importance of NO and H2 S bioavailability, their synthesis enzymes and cofactors, and genetic variations associated with cardiovascular risk factors suggest that they serve as pivotal regulators of vascular remodeling responses. © 2019 American Physiological Society. Compr Physiol 9:1213-1247, 2019.
Collapse
Affiliation(s)
| | - Xinggui Shen
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - John Glawe
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Gopi K Kolluru
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Christopher G Kevil
- Departments of Pathology, LSU Health Sciences Center, Shreveport.,Departments of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport.,Departments of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport
| |
Collapse
|
36
|
Walker MA, Bailey TG, McIlvenna L, Allen JD, Green DJ, Askew CD. Acute Dietary Nitrate Supplementation Improves Flow Mediated Dilatation of the Superficial Femoral Artery in Healthy Older Males. Nutrients 2019; 11:E954. [PMID: 31035478 PMCID: PMC6566150 DOI: 10.3390/nu11050954] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Aging is often associated with reduced leg blood flow, increased arterial stiffness, and endothelial dysfunction, all of which are related to declining nitric oxide (NO) bioavailability. Flow mediated dilatation (FMD) and passive leg movement (PLM) hyperaemia are two techniques used to measure NO-dependent vascular function. We hypothesised that acute dietary nitrate (NO3-) supplementation would improve NO bioavailability, leg FMD, and PLM hyperaemia. Fifteen healthy older men (69 ± 4 years) attended two experiment sessions and consumed either 140 mL of concentrated beetroot juice (800 mg NO3-) or placebo (NO3--depleted beetroot juice) in a randomised, double blind, cross-over design study. Plasma nitrite (NO2-) and NO3-, blood pressure (BP), augmentation index (AIx75), pulse wave velocity (PWV), FMD of the superficial femoral artery, and PLM hyperaemia were measured immediately before and 2.5 h after consuming NO3- and placebo. Placebo had no effect but NO3- led to an 8.6-fold increase in plasma NO2-, which was accompanied by an increase in FMD (NO3-: +1.18 ± 0.94% vs. placebo: 0.23 ± 1.13%, p = 0.002), and a reduction in AIx75 (NO3-: -8.7 ± 11.6% vs. placebo: -4.6 ± 5.5%, p = 0.027). PLM hyperaemia, BP, and PWV were unchanged during both trials. This study showed that a dose of dietary NO3- improved NO bioavailability and enhanced endothelial function as measured by femoral artery FMD. These findings provide insight into the specific central and peripheral vascular responses to dietary NO3- supplementation in older adults.
Collapse
Affiliation(s)
- Meegan A Walker
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.
| | - Tom G Bailey
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.
- School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Luke McIlvenna
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, VIC 3031, Australia.
| | - Jason D Allen
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, VIC 3031, Australia.
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA.
| | - Daniel J Green
- School of Sport Sciences, Exercise and Health, University of Western Australia, West Perth, WA 6872, Australia.
| | - Christopher D Askew
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, QLD 4575, Australia.
| |
Collapse
|
37
|
Hughan KS, Wendell SG, Delmastro-Greenwood M, Helbling N, Corey C, Bellavia L, Potti G, Grimes G, Goodpaster B, Kim-Shapiro DB, Shiva S, Freeman BA, Gladwin MT. Conjugated Linoleic Acid Modulates Clinical Responses to Oral Nitrite and Nitrate. Hypertension 2019; 70:634-644. [PMID: 28739973 DOI: 10.1161/hypertensionaha.117.09016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dietary NO3- (nitrate) and NO2- (nitrite) support ˙NO (nitric oxide) generation and downstream vascular signaling responses. These nitrogen oxides also generate secondary nitrosating and nitrating species that react with low molecular weight thiols, heme centers, proteins, and unsaturated fatty acids. To explore the kinetics of NO3-and NO2-metabolism and the impact of dietary lipid on nitrogen oxide metabolism and cardiovascular responses, the stable isotopes Na15NO3 and Na15NO2 were orally administered in the presence or absence of conjugated linoleic acid (cLA). The reduction of 15NO2- to 15NO was indicated by electron paramagnetic resonance spectroscopy detection of hyperfine splitting patterns reflecting 15NO-deoxyhemoglobin complexes. This formation of 15NO also translated to decreased systolic and mean arterial blood pressures and inhibition of platelet function. Upon concurrent administration of cLA, there was a significant increase in plasma cLA nitration products 9- and 12-15NO2-cLA. Coadministration of cLA with 15NO2- also impacted the pharmacokinetics and physiological effects of 15NO2-, with cLA administration suppressing plasma NO3-and NO2-levels, decreasing 15NO-deoxyhemoglobin formation, NO2-inhibition of platelet activation, and the vasodilatory actions of NO2-, while enhancing the formation of 9- and 12-15NO2-cLA. These results indicate that the biochemical reactions and physiological responses to oral 15NO3-and 15NO2-are significantly impacted by dietary constituents, such as unsaturated lipids. This can explain the variable responses to NO3-and NO2-supplementation in clinical trials and reveals dietary strategies for promoting the generation of pleiotropic nitrogen oxide-derived lipid signaling mediators. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT01681836.
Collapse
Affiliation(s)
- Kara S Hughan
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Stacy Gelhaus Wendell
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Meghan Delmastro-Greenwood
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Nicole Helbling
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Catherine Corey
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Landon Bellavia
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Gopal Potti
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - George Grimes
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Bret Goodpaster
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Daniel B Kim-Shapiro
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Sruti Shiva
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Bruce A Freeman
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| | - Mark T Gladwin
- From the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes (K.S.H.), Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (K.S.H., S.G.W., M.D.-G., N.H., C.C., S.S., B.A.F., M.T.G.), Department of Pharmacology and Chemical Biology (S.G.W., M.D.-G., S.S., B.A.F.), Department of Medicine, Division of Endocrinology (N.H., B.G.), and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, PA (M.T.G.); Department of Physics, Wake Forest University, Winston Salem, NC (L.B., D.B.K.-S.); and Pharmaceutical Development Section, Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, MD (G.P., G.G.)
| |
Collapse
|
38
|
Richards JC, Racine ML, Hearon CM, Kunkel M, Luckasen GJ, Larson DG, Allen JD, Dinenno FA. Acute ingestion of dietary nitrate increases muscle blood flow via local vasodilation during handgrip exercise in young adults. Physiol Rep 2019; 6. [PMID: 29380952 PMCID: PMC5789727 DOI: 10.14814/phy2.13572] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/04/2022] Open
Abstract
Dietary nitrate (NO3−) is converted to nitrite (NO2−) and can be further reduced to the vasodilator nitric oxide (NO) amid a low O2 environment. Accordingly, dietary NO3− increases hind limb blood flow in rats during treadmill exercise; however, the evidence of such an effect in humans is unclear. We tested the hypothesis that acute dietary NO3− (via beetroot [BR] juice) increases forearm blood flow (FBF) via local vasodilation during handgrip exercise in young adults (n = 11; 25 ± 2 years). FBF (Doppler ultrasound) and blood pressure (Finapres) were measured at rest and during graded handgrip exercise at 5%, 15%, and 25% maximal voluntary contraction (MVC) lasting 4 min each. At the highest workload (25% MVC), systemic hypoxia (80% SaO2) was induced and exercise continued for three additional minutes. Subjects ingested concentrated BR (12.6 mmol nitrate (n = 5) or 16.8 mmol nitrate (n = 6) and repeated the exercise bout either 2 (12.6 mmol) or 3 h (16.8 mmol) postconsumption. Compared to control, BR significantly increased FBF at 15% MVC (184 ± 15 vs. 164 ± 15 mL/min), 25% MVC (323 ± 27 vs. 286 ± 28 mL/min), and 25% + hypoxia (373 ± 39 vs. 343 ± 32 mL/min) and this was due to increases in vascular conductance (i.e., vasodilation). The effect of BR on hemodynamics was not different between the two doses of BR ingested. Forearm VO2 was also elevated during exercise at 15% and 25% MVC. We conclude that acute increases in circulating NO3− and NO2− via BR increases muscle blood flow during moderate‐ to high‐intensity handgrip exercise via local vasodilation. These findings may have important implications for aging and diseased populations that demonstrate impaired muscle perfusion and exercise intolerance.
Collapse
Affiliation(s)
- Jennifer C Richards
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| | - Matthew L Racine
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| | - Christopher M Hearon
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| | - Megan Kunkel
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| | - Gary J Luckasen
- Medical Center of the Rockies Foundation, Poudre Valley Health System, Loveland, Colorado, USA
| | - Dennis G Larson
- Medical Center of the Rockies Foundation, Poudre Valley Health System, Loveland, Colorado, USA
| | - Jason D Allen
- Department of Kinesiology, Curry School of Education, University of Virginia, Charlottesville, Virginia, USA.,Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
39
|
DeMartino AW, Kim‐Shapiro DB, Patel RP, Gladwin MT. Nitrite and nitrate chemical biology and signalling. Br J Pharmacol 2019; 176:228-245. [PMID: 30152056 PMCID: PMC6295445 DOI: 10.1111/bph.14484] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Inorganic nitrate (NO3 - ), nitrite (NO2 - ) and NO are nitrogenous species with a diverse and interconnected chemical biology. The formation of NO from nitrate and nitrite via a reductive 'nitrate-nitrite-NO' pathway and resulting in vasodilation is now an established complementary route to traditional NOS-derived vasodilation. Nitrate, found in our diet and abundant in mammalian tissues and circulation, is activated via reduction to nitrite predominantly by our commensal oral microbiome. The subsequent in vivo reduction of nitrite, a stable vascular reserve of NO, is facilitated by a number of haem-containing and molybdenum-cofactor proteins. NO generation from nitrite is enhanced during physiological and pathological hypoxia and in disease states involving ischaemia-reperfusion injury. As such, modulation of these NO vascular repositories via exogenously supplied nitrite and nitrate has been evaluated as a therapeutic approach in a number of diseases. Ultimately, the chemical biology of nitrate and nitrite is governed by local concentrations, reaction equilibrium constants, and the generation of transient intermediates, with kinetic rate constants modulated at differing physiological pH values and oxygen tensions. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
| | - Daniel B. Kim‐Shapiro
- Department of PhysicsWake Forest UniversityWinston‐SalemNCUSA
- Translational Science CenterWake Forest UniversityWinston‐SalemNCUSA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
40
|
Faconti L, Mills CE, Govoni V, Gu H, Morant S, Jiang B, Cruickshank JK, Webb AJ. Cardiac effects of 6 months' dietary nitrate and spironolactone in patients with hypertension and with/at risk of type 2 diabetes, in the factorial design, double-blind, randomized controlled VaSera trial. Br J Clin Pharmacol 2018; 85:169-180. [PMID: 30294825 DOI: 10.1111/bcp.13783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/13/2018] [Accepted: 09/09/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS The aims of the present study were to explore whether a long-term intervention with dietary nitrate [(NO3 - ), a potential tolerance-free source of beneficial vasoactive nitric oxide] and spironolactone (to oppose aldosterone's potential deleterious cardiovascular effects) improve cardiac structure/function, independently of blood pressure (BP), in patients with/at risk of type 2 diabetes (a population at risk of heart failure). METHODS A subsample of participants in our double-blind, randomized, factorial-design intervention (VaSera) trial of active beetroot juice as a nitrate source (≤11.2 mmol) or placebo (nitrate depleted) beetroot juice, and either ≤50 mg spironolactone or ≤16 mg doxazosin (control), had transthoracic cardiac ultrasounds at baseline (n = 105), and at 3 months and 6 months (n = 87) after the start of the intervention. Analysis was by modified intent-to-treat. RESULTS Nitrate-containing juice (n = 40) decreased left ventricular (LV) end-diastolic volume {-6.3 [95% confidence interval (CI) -11.1, -1.6] ml} and end-systolic volume [-3.2 (95% CI -5.9, -0.5) ml], and increased end-diastolic mass/volume ratio [+0.04 (95% CI 0.00, 0.07)], relative to placebo juice (n = 47). Spironolactone (n = 44) reduced relative wall thickness compared with doxazosin (n = 43) [-0.01 (95% CI -0.02, -0.00)]. Although spironolactone reduced LV mass index relative to baseline [-1.48 (95% CI -2.08, -0.88) g m-2.7 ], there was no difference vs. doxazosin [-0.85 (95% CI -1.76, 0.05) g m-2.7 ]. Spironolactone also decreased the E/A ratio [-0.12 (95% CI -0.19, -0.04)] and increased S' (a tissue-Doppler systolic function index) by 0.52 (95% CI 0.05, 1.0) cm s-1 . BP did not differ between the juices, or between the drugs. CONCLUSIONS Six months' dietary nitrate decreased LV volumes ~5%, representing new, sustained, BP-independent benefits on cardiac structure, extending mechanisms characterized in preclinical models of heart failure. Spironolactone's effects on cardiac remodelling and systolic-diastolic function, although confirmatory, were independent of BP.
Collapse
Affiliation(s)
- Luca Faconti
- Department of Clinical Pharmacology, School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, London, UK.,Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Charlotte Elizabeth Mills
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Virginia Govoni
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Haotian Gu
- Department of Clinical Pharmacology, School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Steven Morant
- Medicines Monitoring Unit (MEMO), University of Dundee, Dundee, UK
| | - Benju Jiang
- Department of Clinical Pharmacology, School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - J Kennedy Cruickshank
- Department of Nutritional Sciences, School of Life Course Sciences, King's College London, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andrew James Webb
- Department of Clinical Pharmacology, School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, London, UK.,Biomedical Research Centre, Clinical Research Facility, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
41
|
Maia LB, Moura JJG. Putting xanthine oxidoreductase and aldehyde oxidase on the NO metabolism map: Nitrite reduction by molybdoenzymes. Redox Biol 2018; 19:274-289. [PMID: 30196191 PMCID: PMC6129670 DOI: 10.1016/j.redox.2018.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide radical (NO) is a signaling molecule involved in several physiological and pathological processes and a new nitrate-nitrite-NO pathway has emerged as a physiological alternative to the "classic" pathway of NO formation from L-arginine. Since the late 1990s, it has become clear that nitrite can be reduced back to NO under hypoxic/anoxic conditions and exert a significant cytoprotective action in vivo under challenging conditions. To reduce nitrite to NO, mammalian cells can use different metalloproteins that are present in cells to perform other functions, including several heme proteins and molybdoenzymes, comprising what we denominated as the "non-dedicated nitrite reductases". Herein, we will review the current knowledge on two of those "non-dedicated nitrite reductases", the molybdoenzymes xanthine oxidoreductase and aldehyde oxidase, discussing the in vitro and in vivo studies to provide the current picture of the role of these enzymes on the NO metabolism in humans.
Collapse
Affiliation(s)
- Luisa B Maia
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
42
|
Kapil V, Rathod KS, Khambata RS, Bahra M, Velmurugan S, Purba A, S Watson D, Barnes MR, Wade WG, Ahluwalia A. Sex differences in the nitrate-nitrite-NO • pathway: Role of oral nitrate-reducing bacteria. Free Radic Biol Med 2018; 126:113-121. [PMID: 30031863 DOI: 10.1016/j.freeradbiomed.2018.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 01/22/2023]
Abstract
Oral reduction of nitrate to nitrite is dependent on the oral microbiome and is the first step of an alternative mammalian pathway to produce nitric oxide in humans. Preliminary evidence suggests important sex differences in this pathway. We prospectively investigated sex-differences following inorganic nitrate supplementation on nitrate/nitrite levels and vascular function, and separately examined sex differences in oral nitrate reduction, and oral microbiota by 16S rRNA profiling. At baseline, females exhibit higher nitrite levels in all biological matrices despite similar nitrate levels to males. Following inorganic nitrate supplementation, plasma nitrite was increased to a significantly greater extent in females than in males and pulse wave velocity was only reduced in females. Females exhibited higher oral bacterial nitrate-reducing activity at baseline and after nitrate supplementation. Despite these differences, there were no differences in the composition of either the total salivary microbiota or those oral taxa with nitrate reductase genes. Our results demonstrate that females have augmented oral nitrate reduction that contributes to higher nitrite levels at baseline and also after inorganic nitrate supplementation, however this was not associated with differences in microbial composition (clinicaltrials.gov: NCT01583803).
Collapse
Affiliation(s)
- Vikas Kapil
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Krishnaraj S Rathod
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Manpreet Bahra
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Shanti Velmurugan
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amandeep Purba
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - David S Watson
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - William G Wade
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
43
|
Allan PD, Tzeng YC, Gowing EK, Clarkson AN, Fan JL. Dietary nitrate supplementation reduces low frequency blood pressure fluctuations in rats following distal middle cerebral artery occlusion. J Appl Physiol (1985) 2018; 125:862-869. [DOI: 10.1152/japplphysiol.01081.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It is known that high blood pressure variability (BPV) in acute ischemic stroke is associated with adverse outcomes, yet there are no therapeutic treatments to reduce BPV. Studies have found increasing nitric oxide (NO) bioavailability improves neurological function following stroke, but whether dietary nitrate supplementation could reduce BPV remains unknown. We investigated the effects of dietary nitrate supplementation on heart rate (HR), blood pressure (BP), and beat-to-beat BPV using wireless telemetry in a rat model of distal middle cerebral artery occlusion. Blood pressure variability was characterized by spectral power analysis in the low frequency (LF; 0.2–0.6 Hz) range prestroke and during the 7 days poststroke in a control group ( n = 8) and a treatment group ( n = 8, 183 mg/l sodium nitrate in drinking water). Dietary nitrate supplementation moderately reduced systolic BPV in the LF range by ~11% compared with the control group ( P = 0.03), while resting BP and HR were not different between the two groups ( P = 0.28 and 0.33, respectively). Despite systolic BPV being reduced with dietary nitrate, we found no difference in infarct volumes between the treatment and the control groups (1.59 vs. 1.62 mm3, P = 0.86). These findings indicate that dietary nitrate supplementation is effective in reducing systolic BPV following stroke without affecting absolute BP. In light of mounting evidence linking increased BPV with poor stroke patient outcome, our data support the role of dietary nitrate as an adjunct treatment following ischemic stroke. NEW & NOTEWORTHY Using a rat model of stroke, we found that dietary nitrate supplementation reduced low frequency blood pressure fluctuations following stroke without affecting absolute blood pressure values. Since blood pressure fluctuations are associated with poor clinical outcome in stroke patients, our findings indicate that dietary nitrate could be an effective strategy for reducing blood pressure fluctuations, which could help reduce stroke severity and improve patient recovery.
Collapse
Affiliation(s)
- Philip D. Allan
- Department of Surgery and Anaesthesia, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| | - Yu-Chieh Tzeng
- Department of Surgery and Anaesthesia, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| | - Emma K. Gowing
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
- Faculty of Pharmacy, The University of Sydney, New South Wales, Australia
| | - Jui-Lin Fan
- Department of Surgery and Anaesthesia, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
44
|
Tropea T, Wareing M, Greenwood SL, Feelisch M, Sibley CP, Cottrell EC. Nitrite mediated vasorelaxation in human chorionic plate vessels is enhanced by hypoxia and dependent on the NO-sGC-cGMP pathway. Nitric Oxide 2018; 80:82-88. [PMID: 30179715 PMCID: PMC6199414 DOI: 10.1016/j.niox.2018.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 08/30/2018] [Indexed: 11/25/2022]
Abstract
Adequate perfusion of the placental vasculature is essential to meet the metabolic demands of fetal growth and development. Lacking neural control, local tissue metabolites, circulating and physical factors contribute significantly to blood flow regulation. Nitric oxide (NO) is a key regulator of fetoplacental vascular tone. Nitrite, previously considered an inert end-product of NO oxidation, has been shown to provide an important source of NO. Reduction of nitrite to NO may be particularly relevant in tissue when the oxygen-dependent NO synthase (NOS) activity is compromised, e.g. in hypoxia. The contribution of this pathway in the placenta is currently unknown. We hypothesised that nitrite vasodilates human placental blood vessels, with enhanced efficacy under hypoxia. Placentas were collected from uncomplicated pregnancies and the vasorelaxant effect of nitrite (10-6-5x10-3 M) was assessed using wire myography on isolated pre-constricted chorionic plate arteries (CPAs) and veins (CPVs) under normoxic (pO2 ∼5%) and hypoxic (pO2 ∼1%) conditions. The dependency on the NO-sGC-cGMP pathway and known nitrite reductase (NiR) activities was also investigated. Nitrite caused concentration-dependent vasorelaxation in both arteries and veins, and this effect was enhanced by hypoxia, significantly in CPVs (P < 0.01) and with a trend in CPAs (P = 0.054). Pre-incubation with NO scavengers (cPTIO and oxyhemoglobin) attenuated (P < 0.01 and P < 0.0001, respectively), and the sGC inhibitor ODQ completely abolished nitrite-mediated vasorelaxation, confirming the involvement of NO and sGC. Inhibition of potential NiR enzymes xanthine oxidoreductase, mitochondrial aldehyde dehydrogenase and mitochondrial bc1 complex did not attenuate vasorelaxation. This data suggests that nitrite may provide an important reservoir of NO bioactivity within the placenta to enhance blood flow when fetoplacental oxygenation is impaired, as occurring in pregnancy diseases such as pre-eclampsia and fetal growth restriction.
Collapse
Affiliation(s)
- Teresa Tropea
- Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Maternal & Fetal Health Research Centre, University of Manchester, United Kingdom.
| | - Mark Wareing
- Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Maternal & Fetal Health Research Centre, University of Manchester, United Kingdom
| | - Susan L Greenwood
- Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Maternal & Fetal Health Research Centre, University of Manchester, United Kingdom
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, United Kingdom
| | - Colin P Sibley
- Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Maternal & Fetal Health Research Centre, University of Manchester, United Kingdom
| | - Elizabeth C Cottrell
- Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Maternal & Fetal Health Research Centre, University of Manchester, United Kingdom
| |
Collapse
|
45
|
Carlström M, Lundberg JO, Weitzberg E. Mechanisms underlying blood pressure reduction by dietary inorganic nitrate. Acta Physiol (Oxf) 2018; 224:e13080. [PMID: 29694703 DOI: 10.1111/apha.13080] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) importantly contributes to cardiovascular homeostasis by regulating blood flow and maintaining endothelial integrity. Conversely, reduced NO bioavailability is a central feature during natural ageing and in many cardiovascular disorders, including hypertension. The inorganic anions nitrate and nitrite are endogenously formed after oxidation of NO synthase (NOS)-derived NO and are also present in our daily diet. Knowledge accumulated over the past two decades has demonstrated that these anions can be recycled back to NO and other bioactive nitrogen oxides via serial reductions that involve oral commensal bacteria and various enzymatic systems. Intake of inorganic nitrate, which is predominantly found in green leafy vegetables and beets, has a variety of favourable cardiovascular effects. As hypertension is a major risk factor of morbidity and mortality worldwide, much attention has been paid to the blood pressure reducing effect of inorganic nitrate. Here, we describe how dietary nitrate, via stimulation of the nitrate-nitrite-NO pathway, affects various organ systems and discuss underlying mechanisms that may contribute to the observed blood pressure-lowering effect.
Collapse
Affiliation(s)
- M. Carlström
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - J. O. Lundberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - E. Weitzberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
46
|
Kent GL, Dawson B, McNaughton LR, Cox GR, Burke LM, Peeling P. The effect of beetroot juice supplementation on repeat-sprint performance in hypoxia. J Sports Sci 2018; 37:339-346. [DOI: 10.1080/02640414.2018.1504369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Georgina L. Kent
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Australia
| | - Brian Dawson
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Australia
| | - Lars R. McNaughton
- Sport and Exercise Science, Edge Hill University, Ormskirk, UK
- Department of Sport and Movement Studies, Faculty of Health Science, University of Johannesburg, Auckland Park, South Africa
| | - Gregory R. Cox
- Sports Nutrition, Australian Institute of Sport, Canberra, Australia
| | - Louise M. Burke
- Sports Nutrition, Australian Institute of Sport, Canberra, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Australia
- High Performance Service Centre, Western Australian Institute of Sport, Claremont, Australia
| |
Collapse
|
47
|
Mallet RT, Manukhina EB, Ruelas SS, Caffrey JL, Downey HF. Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential. Am J Physiol Heart Circ Physiol 2018; 315:H216-H232. [PMID: 29652543 DOI: 10.1152/ajpheart.00060.2018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The calibrated application of limited-duration, cyclic, moderately intense hypoxia-reoxygenation increases cardiac resistance to ischemia-reperfusion stress. These intermittent hypoxic conditioning (IHC) programs consistently produce striking reductions in myocardial infarction and ventricular tachyarrhythmias after coronary artery occlusion and reperfusion and, in many cases, improve contractile function and coronary blood flow. These IHC protocols are fundamentally different from those used to simulate sleep apnea, a recognized cardiovascular risk factor. In clinical studies, IHC improved exercise capacity and decreased arrhythmias in patients with coronary artery or pulmonary disease and produced robust, persistent, antihypertensive effects in patients with essential hypertension. The protection afforded by IHC develops gradually and depends on β-adrenergic, δ-opioidergic, and reactive oxygen-nitrogen signaling pathways that use protein kinases and adaptive transcription factors. In summary, adaptation to intermittent hypoxia offers a practical, largely unrecognized means of protecting myocardium from impending ischemia. The myocardial and perhaps broader systemic protection provided by IHC clearly merits further evaluation as a discrete intervention and as a potential complement to conventional pharmaceutical and surgical interventions.
Collapse
Affiliation(s)
- Robert T Mallet
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Eugenia B Manukhina
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences , Moscow , Russian Federation.,School of Medical Biology South Ural State University , Chelyabinsk , Russian Federation
| | - Steven Shea Ruelas
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - James L Caffrey
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - H Fred Downey
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,School of Medical Biology South Ural State University , Chelyabinsk , Russian Federation
| |
Collapse
|
48
|
Hassanpour SH, Dehghani MA, Karami SZ. Study of respiratory chain dysfunction in heart disease. J Cardiovasc Thorac Res 2018; 10:1-13. [PMID: 29707171 PMCID: PMC5913686 DOI: 10.15171/jcvtr.2018.01] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/25/2017] [Indexed: 02/06/2023] Open
Abstract
The relentlessly beating heart has the greatest oxygen consumption of any organ in the body at rest reflecting its huge metabolic turnover and energetic demands. The vast majority of its energy is produced and cycled in form of ATP which stems mainly from oxidative phosphorylation occurring at the respiratory chain in the mitochondria. A part from energy production, the respiratory chain is also the main source of reactive oxygen species and plays a pivotal role in the regulation of oxidative stress. Dysfunction of the respiratory chain is therefore found in most common heart conditions. The pathophysiology of mitochondrial respiratory chain dysfunction in hereditary cardiac mitochondrial disease, the aging heart, in LV hypertrophy and heart failure, and in ischaemia-reperfusion injury is reviewed. We introduce the practicing clinician to the complex physiology of the respiratory chain, highlight its impact on common cardiac disorders and review translational pharmacological and non-pharmacological treatment strategies.
Collapse
Affiliation(s)
| | - Mohammad Amin Dehghani
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
49
|
Kruse NT, Ueda K, Hughes WE, Casey DP. Eight weeks of nitrate supplementation improves blood flow and reduces the exaggerated pressor response during forearm exercise in peripheral artery disease. Am J Physiol Heart Circ Physiol 2018. [PMID: 29522355 DOI: 10.1152/ajpheart.00015.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peripheral artery disease (PAD) is characterized by a reduced blood flow (BF) and an elevated blood pressure (pressor) response during lower extremity exercise. Although PAD is evident in the upper extremities, no studies have determined BF and pressor responses during upper extremity exercise in PAD. Emerging evidence suggests that inorganic nitrate supplementation may serve as an alternative dietary strategy to boost nitric oxide bioavailability, improving exercising BF and pressor responses during exercise. The present study investigated 1) BF and pressor responses to forearm exercise in patients with PAD ( n = 21) relative to healthy age-matched control subjects ( n = 16) and 2) whether 8 wk of NaNO3 supplementation influenced BF and pressor responses to forearm exercise in patients with PAD. Patients with moderate to severe PAD were randomly assigned to a NaNO3 (1 g/day, n = 13)-treated group or a placebo (microcrystalline cellulose, n = 8)-treated group. Brachial artery forearm BF (FBF; via Doppler) and blood pressure (via finger plethysmography) were measured during mild-intensity (~3.5-kg) and moderate-intensity (~7-kg) handgrip exercise. The absolute change (from baseline) in FBF was reduced (except in the 3.5-kg condition) and BP responses were increased in patients with PAD compared with healthy control subjects in 3.5- and 7-kg conditions (all P < 0.05). Plasma nitrate and nitrite were elevated, exercising (7-kg) ΔFBF was improved (from 141 ± 17 to 172 ± 20 ml/min), and mean arterial pressure response was reduced (from 13 ± 1 to 9 ± 1 mmHg, P < 0.05) in patients with PAD that received NaNO3 supplementation for 8 wk relative to those that received placebo. These results suggest that the BF limitation and exaggerated pressor response to moderate-intensity forearm exercise in patients with PAD are improved with 8 wk of NaNO3 supplementation. NEW & NOTEWORTHY Peripheral artery disease (PAD) results in an exaggerated pressor response and reduced blood flow during lower limb exercise; however, the effect of PAD in the upper limbs has remained unknown. These results suggest that 8 wk of inorganic nitrate supplementation improves the blood flow limitation and exaggerated pressor response to moderate-intensity forearm exercise in PAD.
Collapse
Affiliation(s)
- Nicholas T Kruse
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - William E Hughes
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|
50
|
Münzel T, Daiber A. Inorganic nitrite and nitrate in cardiovascular therapy: A better alternative to organic nitrates as nitric oxide donors? Vascul Pharmacol 2018; 102:1-10. [DOI: 10.1016/j.vph.2017.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 01/08/2023]
|