1
|
Silbernagel G, Chen YQ, Li H, Lemen D, Wen Y, Zhen EY, Rief M, Kleber ME, Delgado GE, Sarzynski MA, Qian YW, Schmidt B, Erbel R, Trampisch US, Moissl AP, Rudolf H, Schunkert H, Stang A, März W, Trampisch HJ, Scharnagl H, Konrad RJ. Associations of Circulating ANGPTL3, C-Terminal Domain-Containing ANGPTL4, and ANGPTL3/8 and ANGPTL4/8 Complexes with LPL Activity, Diabetes, Inflammation, and Cardiovascular Mortality. Circulation 2025; 151:218-234. [PMID: 39392008 DOI: 10.1161/circulationaha.124.069272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND ANGPTL3/4/8 (angiopoietin-like proteins 3, 4, and 8) are important regulators of LPL (lipoprotein lipase). ANGPTL8 forms complexes with ANGPTL3 and ANGPTL4. ANGPTL4/8 complex formation converts ANGPTL4 from a furin substrate to a plasmin substrate, and both cleavages generate similar C-terminal domain-containing (CD)-ANGPTL4 fragments. Whereas several studies have investigated associations of free ANGPTL proteins with cardiovascular risk, there are no data describing associations of the complexes and CD-ANGPTL4 with outcomes or describing the effects of the complexes on LPL bound to GPIHBP1 (glycosylphosphatidylinositol HDL-binding protein 1). METHODS Recombinant protein assays were used to study ANGPTL protein and complex effects on GPIHBP1-LPL activity. ANGPTL3/8, ANGPTL3, ANGPTL4/8, and CD-ANGPTL4 were measured with dedicated immunoassays in 2394 LURIC (Ludwigshafen Risk and Cardiovascular Health) study participants undergoing coronary angiography and 6188 getABI study (German Epidemiological Trial on Ankle Brachial Index) participants undergoing ankle brachial index measurement. There was a follow-up for cardiovascular death with a median (interquartile range) duration of 9.80 (8.75-10.40) years in the LURIC study and 7.06 (7.00-7.14) years in the getABI study. RESULTS ANGPTL3/8 potently inhibited GPIHBP1-LPL activity and showed positive associations with LDL-C (low-density lipoprotein cholesterol) and triglycerides (both P<0.001). However, in neither study did ANGPTL3/8 correlate with cardiovascular death. Free ANGPTL3 was positively associated with cardiovascular death in the getABI study but not the LURIC study. ANGPTL4/8 and especially CD-ANGPTL4 were positively associated with the prevalence of diabetes, CRP (C-reactive protein; all P<0.001), and cardiovascular death in both studies. In the LURIC and getABI studies, respective hazard ratios for cardiovascular mortality comparing the third with the first ANGPTL4/8 tertile were 1.47 (1.15-1.88) and 1.68 (1.25-2.27) when adjusted for sex, age, body mass index, and diabetes. For CD-ANGPTL4, these hazard ratios were 2.44 (1.86-3.20) and 2.76 (2.00-3.82). CONCLUSIONS ANGPTL3/8 potently inhibited GPIHBP1-LPL enzymatic activity, consistent with its positive association with serum lipids. However, ANGPTL3/8, LDL-C, and triglyceride levels were not associated with cardiovascular death in the LURIC and getABI cohorts. In contrast, concentrations of ANGPTL4/8 and particularly CD-ANGPTL4 were positively associated with inflammation, the prevalence of diabetes, and cardiovascular mortality.
Collapse
Affiliation(s)
- Günther Silbernagel
- Division of Angiology, Department of Internal Medicine (G.S.), Medical University of Graz, Austria
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.)
| | - Hongxia Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.)
| | - Deven Lemen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.)
| | - Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.)
| | - Eugene Y Zhen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.)
| | - Martin Rief
- Anaesthesiology and Intensive Care Medicine (M.R.), Medical University of Graz, Austria
| | - Marcus E Kleber
- 5th Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (W.M., M.E.K., G.E.D.)
- Synlab Medizinisches Versorgungszentrum Humangenetik Mannheim, GmbH, Germany (M.E.K.)
| | - Graciela E Delgado
- 5th Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (W.M., M.E.K., G.E.D.)
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia (M.A.S.)
| | - Yue-Wei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.)
| | - Boerge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Germany (A.S., B.S., R.E.)
| | - Raimund Erbel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Germany (A.S., B.S., R.E.)
| | - Ulrike S Trampisch
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr University, Bochum, Germany (U.S.T., H.J.T.)
| | - Angela P Moissl
- Institute of Nutritional Sciences Friedrich Schiller University and Competence Cluster for Nutrition and Cardiovascular Health, Halle-Jena-Leipzig, Jena, Germany (A.P.M.)
| | - Henrik Rudolf
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University, Germany (H.R.)
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University of Munich and Partner Site Munich Heart Alliance, German Center for Cardiovascular Disease, Germany (H.S.)
| | - Andreas Stang
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Germany (A.S., B.S., R.E.)
- School of Public Health, Department of Epidemiology, Boston University, MA (A.S.)
| | - Winfried März
- Clinical Institute of Medical and Chemical Laboratory Diagnostics (W.M., H.S.), Medical University of Graz, Austria
- 5th Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (W.M., M.E.K., G.E.D.)
- Synlab Academy, Synlab Holding Germany, Mannheim (W.M.)
| | - Hans J Trampisch
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr University, Bochum, Germany (U.S.T., H.J.T.)
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics (W.M., H.S.), Medical University of Graz, Austria
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.)
| |
Collapse
|
2
|
Nicholls SJ, Tan S, Butters J, Nelson AJ. Evaluating obicetrapib as an emerging treatment for patients with dyslipidemia: a game changer? Expert Opin Pharmacother 2024; 25:1879-1885. [PMID: 39323412 DOI: 10.1080/14656566.2024.2409324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Cholesteryl ester transfer protein (CETP) plays an important role in lipid metabolism. Early interest in the development of CETP inhibitors proved to be disappointing. Recent interest has focused on the potential for CETP inhibition to reduce cardiovascular risk by lowering levels of low-density lipoprotein cholesterol (LDL-C). AREAS COVERED The data suggesting that low CETP activity may associate with lower levels of cardiovascular risk and early experience with CETP inhibitors focused on raising HDL-C levels. More recent data that suggests that any potential to reduce cardiovascular risk by inhibition of CETP is more likely to result from lowering levels of atherogenic lipid parameters. The development of obicetrapib, a potent CETP inhibitor, with robust lowering of apoB and LDL-C, will be summarized as a potential approach to the prevention of cardiovascular disease. EXPERT OPINION Obicetrapib is a potent CETP inhibitor, with a demonstrated ability to lower levels of apoB and LDL-C as monotherapy and in addition to high intensity statin therapy. The ultimate impact of obicetrapib on cardiovascular events will be evaluated by ongoing clinical trials.
Collapse
Affiliation(s)
| | - Sean Tan
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Julie Butters
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Adam J Nelson
- Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Lai Z, Wang C, Liu X, Sun H, Guo Z, Shao J, Li K, Chen J, Wang J, Lei X, Shu K, Feng Y, Kong D, Sun W, Liu B. Characterization of the proteome of stable and unstable carotid atherosclerotic plaques using data-independent acquisition mass spectrometry. J Transl Med 2024; 22:247. [PMID: 38454421 PMCID: PMC10921703 DOI: 10.1186/s12967-023-04723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/13/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Currently, noninvasive imaging techniques and circulating biomarkers are still insufficient to accurately assess carotid plaque stability, and an in-depth understanding of the molecular mechanisms that contribute to plaque instability is still lacking. METHODS We established a clinical study cohort containing 182 patients with carotid artery stenosis. After screening, 39 stable and 49 unstable plaques were included in the discovery group, and quantitative proteomics analysis based on data independent acquisition was performed for these plaque samples. Additionally, 35 plaques were included in the validation group to validate the proteomics results by immunohistochemistry analysis. RESULTS A total of 397 differentially expressed proteins were identified in stable and unstable plaques. These proteins are primarily involved in ferroptosis and lipid metabolism-related functions and pathways. Plaque validation results showed that ferroptosis- and lipid metabolism-related proteins had different expression trends in stable plaques versus unstable fibrous cap regions and lipid core regions. Ferroptosis- and lipid metabolism-related mechanisms in plaque stability were discussed. CONCLUSIONS Our results may provide a valuable strategy for revealing the mechanisms affecting plaque stability and will facilitate the discovery of specific biomarkers to broaden the therapeutic scope.
Collapse
Affiliation(s)
- Zhichao Lai
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Chaonan Wang
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China
- Department of Hemangiomas & Vascular Malformations, Plastic Surgery Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- Proteomics Research Center, Core Facility of Instruments, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Dongdansantiao 9St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Haidan Sun
- Proteomics Research Center, Core Facility of Instruments, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Dongdansantiao 9St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Zhengguang Guo
- Proteomics Research Center, Core Facility of Instruments, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Dongdansantiao 9St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jiang Shao
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Kang Li
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Junye Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Jiaxian Wang
- Eight-Year Program of Clinical Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Xiangling Lei
- Eight-Year Program of Clinical Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Keqiang Shu
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Yuyao Feng
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Deqiang Kong
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Wei Sun
- Proteomics Research Center, Core Facility of Instruments, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Dongdansantiao 9St, Dongcheng District, Beijing, 100730, People's Republic of China.
| | - Bao Liu
- Department of Vascular Surgery, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
4
|
Nicholls SJ, Nelson AJ. CETP Inhibitors: Should We Continue to Pursue This Pathway? Curr Atheroscler Rep 2022; 24:915-923. [PMID: 36409446 DOI: 10.1007/s11883-022-01070-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE OF REVIEW For more than 20 years there has been considerable interest in the development of pharmacological inhibitors of cholesteryl ester transfer protein (CETP) by virtue of their ability to raise levels of high-density lipoprotein cholesterol. This review endeavors to integrate existing data from prior clinical trials with emerging data to understand whether there is a pathway forward to develop CETP inhibitors to prevent cardiovascular disease. RECENT FINDINGS Large clinical trials have proved disappointing with successive reports of a failure to reduce cardiovascular events. The one clinical development program that did demonstrate a reduction in cardiovascular risk found adipose tissue accumulation and did not proceed for regulatory approval. More recent observations suggest that less CETP activity may prevent cardiovascular events, but due to lipid lowering rather than raising high-density lipoprotein cholesterol. In addition, treatment with CETP inhibitors appears to have a beneficial impact on glycemic control in the setting of diabetes. Advances in the field of CETP inhibition suggest a potentially protective effect on the risk of both cardiovascular disease and diabetes. This has implications for how to best design future clinical development programs and leaves the door open to potentially bring CETP inhibitors to the preventive cardiology clinic.
Collapse
Affiliation(s)
- Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia.
| | - Adam J Nelson
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia
| |
Collapse
|
5
|
Nicholls SJ, Ray KK, Nelson AJ, Kastelein JJP. Can we revive CETP-inhibitors for the prevention of cardiovascular disease? Curr Opin Lipidol 2022; 33:319-325. [PMID: 36345867 DOI: 10.1097/mol.0000000000000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE OF REVIEW To review recent developments in the field of cholesteryl ester transfer protein (CETP) inhibition from clinical trials and genomic analyses which have the potential to impact future clinical programs. RECENT FINDINGS CETP plays an important role in remodelling of lipoproteins. A large body of evidence suggests that the presence of low CETP activity should have favourable effects on lipid profiles and cardiovascular risk. However, a number of clinical development programs of pharmacological CETP inhibitors have been disappointing with reports of toxicity and clinical futility. These findings have led many to consider abandoning CETP inhibition as a potential strategy for cardiovascular prevention. However, recent observations from genomic analyses and post hoc observations of prior clinical trials have given greater insights into the potential relationship between CETP inhibition and cardiovascular risk. This has highlighted the importance of lowering levels of atherogenic lipoproteins. SUMMARY These findings provide a pathway for ongoing clinical development of CETP inhibitors, where the potential to play an important role in the prevention of cardiovascular disease may still be possible. The lessons learned and pathway forward for new CETP inhibitors will be reviewed.
Collapse
Affiliation(s)
| | | | - Adam J Nelson
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - John J P Kastelein
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
März W, Beil FU, Dieplinger H. [Genetic diseases of lipid metabolism - Focus familial hypercholesterolemia]. Dtsch Med Wochenschr 2022; 147:e50-e61. [PMID: 35545064 DOI: 10.1055/a-1516-2541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Congenital disorders of lipid metabolism are characterised by LDL-C concentrations > 190 mg/dl (4.9 mM) and/or triglycerides > 200 mg/dl (2.3 mM) in young individuals after having excluded a secondary hyperlipoproteinemia. Further characteristics of this primary hyperlipoproteinemia are elevated lipid values or premature myocardial infarctions within families or xantelasms, arcus lipoides, xanthomas and abdominal pain. This overview summarises our current knowledge of etiology and pathogenesis of primary hyperlipoproteinemia.
Collapse
|
7
|
Zhu L, An J, Chinnarasu S, Luu T, Pettway YD, Fahey K, Litts B, Kim HYH, Flynn CR, Linton MF, Stafford JM. Expressing the Human Cholesteryl Ester Transfer Protein Minigene Improves Diet-Induced Fatty Liver and Insulin Resistance in Female Mice. Front Physiol 2022; 12:799096. [PMID: 35082691 PMCID: PMC8784660 DOI: 10.3389/fphys.2021.799096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023] Open
Abstract
Mounting evidence has shown that CETP has important physiological roles in adapting to chronic nutrient excess, specifically, to protect against diet-induced insulin resistance. However, the underlying mechanisms for the protective roles of CETP in metabolism are not yet clear. Mice naturally lack CETP expression. We used transgenic mice with a human CETP minigene (huCETP) controlled by its natural flanking region to further understand CETP-related physiology in response to obesity. Female huCETP mice and their wild-type littermates were fed a high-fat diet for 6 months. Blood lipid profile and liver lipid metabolism were studied. Insulin sensitivity was analyzed with euglycemic-hyperinsulinemic clamp studies combined with 3H-glucose tracer techniques. While high-fat diet feeding induced obesity for huCETP mice and their wild-type littermates lacking CETP expression, insulin sensitivity was higher for female huCETP mice than for their wild-type littermates. There was no difference in insulin sensitivity for male huCETP mice vs. littermates. The increased insulin sensitivity in females was largely caused by the better insulin-mediated suppression of hepatic glucose production. In huCETP females, CETP in the circulation decreased HDL-cholesterol content and increased liver cholesterol uptake and liver cholesterol and oxysterol contents, which was associated with the upregulation of LXR target genes in long-chain polyunsaturated fatty acid biosynthesis and PPARα target genes in fatty acid β-oxidation in the liver. The upregulated fatty acid β-oxidation may account for the improved fatty liver and liver insulin action in female huCETP mice. This study provides further evidence that CETP has beneficial physiological roles in the metabolic adaptation to nutrient excess by promoting liver fatty acid oxidation and hepatic insulin sensitivity, particularly for females.
Collapse
Affiliation(s)
- Lin Zhu
- VA Tennessee Valley Healthcare System, Nashville, TN, United States
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Julia An
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Sivaprakasam Chinnarasu
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Thao Luu
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Yasminye D. Pettway
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Kelly Fahey
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Bridget Litts
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Hye-Young H. Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Charles R. Flynn
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - MacRae F. Linton
- Atherosclerosis Research Unit, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - John M. Stafford
- VA Tennessee Valley Healthcare System, Nashville, TN, United States
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
8
|
Bahbah EI, Shehata MSA, Alnahrawi SI, Sayed A, Menshawey A, Fisal A, Morsi M, Gabr ME, Elbasit MSA. Safety and Efficacy of Evacetrapib in Patients with Inadequately-controlled Hypercholesterolemia and High Cardiovascular Risk; A meta-analysis of Randomized Placebo-controlled Trials. Prostaglandins Leukot Essent Fatty Acids 2021; 168:102282. [PMID: 33882411 DOI: 10.1016/j.plefa.2021.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Low-density lipoprotein cholesterol (LDL-C) is causally related to cardiovascular disease. Inhibition of cholesteryl ester transfer protein with Evacetrapib may provide an additional treatment option for patients who do not reach their LDL-C goal with statins or patients who cannot tolerate statins. We aimed to evaluate the safety and efficacy of Evacetrapib in patients with inadequately-controlled hypercholesterolemia and high cardiovascular risk. METHOD A computer literature search for PubMed, Scopus, and Science Direct was carried out from inception to 2019 and was updated from January 2019 till March 2021. We included only RCTs. Data were pooled as a mean difference in a random-effect model using the Mantel-Haenzel (M-H) method. We used Open Meta [Analyst] software (by the center of evidence-based medicine, Oxford University, UK). RESULTS Five studies (n = 12,937 patients) reported in five articles were included in this meta-analysis. The overall pooled estimate showed that LDL-C was significantly lower in the evacetrapib group than the placebo group (MD -34.07 mg/dL, 95% CI [-40.66, -27.49], p<0.0001). The pooled estimate showed that Apo-B was significantly lower in the evacetrapib130 mg group than the placebo group (MD -22.64 mg/dL, 95% CI [-30.70, -14.58], p<0.0001). HDL-C was significantly higher in the evacetrapib group over the placebo group (MD 93.31 mg/dL, 95% CI [56.07, 130.56], p<0.0001). CONCLUSION Current evidence from five RCTs (12,539 participants) suggests that evacetrapib has favorable outcomes in patients with inadequately-controlled Hypercholesterolemia and high cardiovascular risks. Evacetrapib could significantly increase the HDL and Apo-A1 levels and lower the LDL cholesterol and Apo-B levels with an acceptable safety profile.
Collapse
Affiliation(s)
- Eshak I Bahbah
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Damietta, Egypt.
| | - Mohamed S A Shehata
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Safwat Ibrahim Alnahrawi
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Department of Cardiology, National Heart Institute, Egypt
| | - Ahmed Sayed
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr Menshawey
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Fisal
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mahmoud Morsi
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Menofia University, Menofia, Egypt
| | - Mohamed Essam Gabr
- Montefiore medical center, Albert Einstien college of medicine (Wakefield Division), Bronx, NY
| | - Mohamed Salah Abd Elbasit
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Department of Cardiology, National Heart Institute, Egypt
| |
Collapse
|
9
|
Palmisano BT, Anozie U, Yu S, Neuman JC, Zhu L, Edington EM, Luu T, Stafford JM. Cholesteryl Ester Transfer Protein Impairs Triglyceride Clearance via Androgen Receptor in Male Mice. Lipids 2021; 56:17-29. [PMID: 32783209 PMCID: PMC7818496 DOI: 10.1002/lipd.12271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 05/26/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022]
Abstract
Elevated postprandial triacylglycerols (TAG) are an important risk factor for cardiovascular disease. Men have higher plasma TAG and impaired TAG clearance compared to women, which may contribute to sex differences in risk of cardiovascular disease. Understanding mechanisms of sex differences in TAG metabolism may yield novel therapeutic targets to prevent cardiovascular disease. Cholesteryl ester transfer protein (CETP) is a lipid shuttling protein known for its effects on high-density lipoprotein (HDL) cholesterol levels. Although mice lack CETP, we previously demonstrated that transgenic CETP expression in female mice alters TAG metabolism. The impact of CETP on TAG metabolism in males, however, is not well understood. Here, we demonstrate that CETP expression increases plasma TAG in males, especially in very-low density lipoprotein (VLDL), by impairing postprandial plasma TAG clearance compared to wild-type (WT) males. Gonadal hormones were required for CETP to impair TAG clearance, suggesting a role for sex hormones for this effect. Testosterone replacement in the setting of gonadectomy was sufficient to restore the effect of CETP on TAG. Lastly, liver androgen receptor (AR) was required for CETP to increase plasma TAG. Thus, expression of CETP in males raises plasma TAG by impairing TAG clearance via testosterone signaling to AR. Further understanding of how CETP and androgen signaling impair TAG clearance may lead to novel approaches to reduce TAG and mitigate risk of cardiovascular disease.
Collapse
Affiliation(s)
- Brian T. Palmisano
- Tennessee Valley Health System, Veterans AffairsNashvilleTNUSA
- Department of Molecular Physiology & BiophysicsVanderbilt University School of MedicineNashvilleTNUSA
- Division of Cardiovascular MedicineStanford University Medical CenterStanfordCAUSA
| | - Uche Anozie
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - Sophia Yu
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - Joshua C. Neuman
- Department of Molecular Physiology & BiophysicsVanderbilt University School of MedicineNashvilleTNUSA
| | - Lin Zhu
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - Emery M. Edington
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - Thao Luu
- Tennessee Valley Health System, Veterans AffairsNashvilleTNUSA
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - John M. Stafford
- Tennessee Valley Health System, Veterans AffairsNashvilleTNUSA
- Department of Molecular Physiology & BiophysicsVanderbilt University School of MedicineNashvilleTNUSA
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| |
Collapse
|
10
|
Amer NN, Shaaban GM. Association of Serum Cholesterol Ester Transfer Protein Levels with Taq IB Polymorphism in Acute Coronary Syndrome. Lab Med 2020; 51:199-210. [PMID: 31504738 DOI: 10.1093/labmed/lmz043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Information on the relationship between circulating cholesteryl ester transfer protein (CETP) levels and coronary heart disease (CHD) incidence (and also, therefore, acute coronary syndrome [ACS]) is conflicting. Many studies have been published concerning this relationship, most of which have incompatible results. In our study, we aimed to determine serum CETP levels in subject individuals with ACS and healthy control individuals, and the association of those levels with Taq IB polymorphism. The current study was conducted with 62 hospitalized patients who had been diagnosed with ACS and 26 controls. All subjects were selected from a previous study of which we are among the coauthors. Serum CETP levels were determined by quantitative enzyme-linked immunosorbent assay (ELISA). The mean serum CETP levels in all patients were significantly higher than those in controls. CETP TaqIB polymorphism affected serum CETP levels, with higher serum CETP for the GA genotype in both groups than in other genotypes. Although the AA genotype showed higher CETP levels than the GG genotype in patients with ACS, the GG showed higher CETP than the AA in healthy controls. Our results support an association between high serum CETP and ACS incidence. Our study helped address some of the controversies regarding the relationship of serum CETP mass to atherosclerosis, in addition to the association of ACS occurrence with circulating CETP levels.
Collapse
Affiliation(s)
- Noha N Amer
- Biochemistry Department, Faculty of Pharmacy (Girls), Al Azhar University, Cairo, Egypt
| | | |
Collapse
|
11
|
Radagdam S, Asoudeh-Fard A, Karimi MA, Faridvand Y, Gholinejad Z, Gerayesh Nejad S. Calcitriol modulates cholesteryl ester transfer protein (CETP) levels and lipid profile in hypercholesterolemic male rabbits: A pilot study. INT J VITAM NUTR RES 2019; 91:212-216. [PMID: 31842709 DOI: 10.1024/0300-9831/a000613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vitamin D3 efficacy against cardiovascular disease prevention has been reported in many experimental studies. We aimed to investigate the effect of the calcitriol or active form of Vitamin D3 (1, 25(OH) 2D3) on serum cholesteryl ester transfer protein (CETP) levels in a rabbit model of atherosclerosis. New Zealand white male rabbits were fed with 1% cholesterol diet and randomly assigned into two groups (n = 6). The case group was administrated with 50000 calcitriol (IU/kg/per wk) and the control group which administrated with calcitriol solvent (sesame oil) for 2 months. Then, after two months the lipid profile, CETP and 25OHD3 levels were measured. The serum concentration of CETP was increased after treatment with calcitriol in case group as compared to the control group (41.75 ± 3.19 vs. 34.5 ± 2.3, ng/ml, P < 0.05). We also observed higher levels of the 25OHD3 in the calcitriol group at the 1st month (16.3 ± 1.64 vs. 12.8 ± 1.33 ng/ml) and the 2nd month (19.5 ± 2.14 vs. 12.5 ± 1.25 ng/ml) as compared with the control group. the significant increase in the level of HDL-C was observed in the case group than the control group (P < 0.01). In addition, serum levels of LDL- Cholesterol (LDL-C), Triglyceride (TG) were reduced after assessment at 1st and 2nd month after administration of calcitriol. Our research indicated the significant anti-atherogenic effects of calcitriol in the rabbit model of atherosclerosis. However, increased in CETP levels by calcitriol may know as an additional way, which interfere with the anti-atherogenic effects of calcitriol.
Collapse
Affiliation(s)
- Saeed Radagdam
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Asoudeh-Fard
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Paris 13 University, Sorbonne Paris, France.,Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Ali Karimi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yousef Faridvand
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zafar Gholinejad
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Siavash Gerayesh Nejad
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Abstract
The reduction of plasma apolipoprotein B (apoB) containing lipoproteins has long been pursued as the main modifiable risk factor for the development of cardiovascular disease (CVD). This has led to an intense search for strategies aiming at reducing plasma apoB-lipoproteins, culminating in reduction of overall CV risk. Despite 3 decades of progress, CVD remains the leading cause of morbidity and mortality worldwide and, as such, new therapeutic targets are still warranted. Clinical and preclinical research has moved forward from the original concept, under which some lipids must be accumulated and other removed to achieve the ideal condition in disease prevention, into the concept that mechanisms that orchestrate lipid movement between lipoproteins, cells and organelles is equally involved in CVD. As such, this review scrutinizes potentially atherogenic changes in lipid trafficking and assesses the molecular mechanisms behind it. New developments in risk assessment and new targets for the mitigation of residual CVD risk are also addressed.
Collapse
Affiliation(s)
- Andrei C Sposito
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil.
| | | | - Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
13
|
Kodidela S, Wang Y, Patters BJ, Gong Y, Sinha N, Ranjit S, Gerth K, Haque S, Cory T, McArthur C, Kumar A, Wan JY, Kumar S. Proteomic Profiling of Exosomes Derived from Plasma of HIV-Infected Alcohol Drinkers and Cigarette Smokers. J Neuroimmune Pharmacol 2019; 15:501-519. [PMID: 31065972 DOI: 10.1007/s11481-019-09853-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Abuse of alcohol and tobacco could exacerbate HIV pathogenesis by transferring materials through exosomes (small nanovesicles). Exosomes present a stable and accessible source of information concerning the health and/or disease status of patients, which can provide diagnostic and prognostic biomarkers for myriad conditions. Therefore, we aimed to study the specific exosomal proteins that are altered in both HIV-infected subjects and alcohol/tobacco users. Exosomes were isolated from plasma of the following subjects: a) HIV-negative subjects (healthy), b) HIV-positive subjects (HIV), c) HIV-negative alcohol drinkers (drinkers), d) HIV-negative tobacco smokers (smokers), e) HIV-positive drinkers (HIV + drinkers), and f) HIV-positive smokers (HIV + smokers). Quantitative proteomic profiling was then performed from these exosomes. Sixteen proteins were significantly altered in the HIV group, ten in drinkers, four in HIV + drinkers, and fifteen in smokers compared to healthy subjects. Only one protein, fibulin-1 (FBLN1), was significantly altered in HIV + smokers. Interestingly, hemopexin was not significantly altered in drinkers or HIV patients but was significantly altered in HIV + drinkers. Further, our study is the first to show properdin expression in plasma exosomes, which was decreased in HIV + smokers and HIV + drinkers compared to HIV patients. The present findings suggest that hemopexin and properdin show potential as markers for physiological effects that may arise in HIV-infected individuals who abuse alcohol and tobacco. Graphical abstract This study presents a proteomic analysis of plasma-derived exosomes from HIV-infected alcohol drinkers and smokers. Among the proteins altered due to drug-abuse, hemopexin and properdin were of highest significance. These proteins can be potential biomarkers for co-morbid conditions associated with drug abuse in HIV-patients.
Collapse
Affiliation(s)
- Sunitha Kodidela
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Yujie Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Road, Shanghai, 201999, China
| | - Benjamin J Patters
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Yuqing Gong
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Namita Sinha
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Sabina Ranjit
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Kelli Gerth
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Sanjana Haque
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Theodore Cory
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Carole McArthur
- Department of Oral and Craniofacial Science, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Jim Y Wan
- Division of Biostatistics, Department of Preventive Medicine, University of Tennessee Health Science Center College of Medicine, Memphis, TN, USA
| | - Santosh Kumar
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA.
| |
Collapse
|
14
|
Okada T, Ohama T, Takafuji K, Kanno K, Matsuda H, Sairyo M, Zhu Y, Saga A, Kobayashi T, Masuda D, Koseki M, Nishida M, Sakata Y, Yamashita S. Shotgun proteomic analysis reveals proteome alterations in HDL of patients with cholesteryl ester transfer protein deficiency. J Clin Lipidol 2019; 13:317-325. [PMID: 30745272 DOI: 10.1016/j.jacl.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND We previously reported that the patients with cholesteryl ester transfer protein (CETP) deficiency (CETP-D) show marked changes in the size and lipid compositions of high-density lipoprotein (HDL) and that they are not protected from atherosclerotic cardiovascular diseases, despite increased serum HDL-cholesterol (HDL-C) levels. HDL particles carry a variety of proteins, some of which are known to have antiatherogenic functions. OBJECTIVE This study aimed to investigate the protein composition of HDL particles in patients with CETP-D. METHODS Eight patients with complete deficiency of CETP and 8 normolipidemic healthy subjects were enrolled. We performed shotgun proteomic analysis to investigate the proteome of ultracentrifugally isolated HDL. RESULTS We identified 79 HDL-associated proteins involved in lipid metabolism, protease inhibition, complement regulation, and acute-phase response, including 5 potential newly identified HDL-associated proteins such as angiopoietin-like3 (ANGPTL3). Spectral counts of apolipoprotein (apo) E were increased in patients with CETP-D compared with controls (60.3 ± 6.9 vs 43.7 ± 2.5, P < .001), which is concordant with our previous report. Complement regulatory proteins such as C3, C4a, C4b, and C9 were also significantly enriched in HDL from patients with CETP-D. Furthermore, apoC-III and ANGPTL3, both of which are now known to associate with increased atherosclerotic cardiovascular diseases, were enriched in patients with CETP-D compared with normolipidemic subjects (35.9 ± 5.3 vs 27.1 ± 3.7, 2.3 ± 1.1 vs 0.4 ± 1.1, respectively; P < .01). CONCLUSION We have characterized HDL-associated proteins in patients with CETP-D. We identified a significant increase in the amount of apoE, apoC-III, ANGPTL3, and complement regulatory proteins. These proteomic changes might be partly responsible for the enhanced atherogenicity of patients with CETP-D.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tohru Ohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kazuaki Takafuji
- Department of Bio-System Pharmacology, Osaka University Graduate School Graduate, School of Medicine, Osaka, Japan
| | - Kotaro Kanno
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hibiki Matsuda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masami Sairyo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yinghong Zhu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayami Saga
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuya Kobayashi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisaku Masuda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Health Care Division, Health and Counseling Center, Osaka University, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shizuya Yamashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Community Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Cardiology, Rinku General Medical Center, Osaka, Japan.
| |
Collapse
|
15
|
Zhu L, Luu T, Emfinger CH, Parks BA, Shi J, Trefts E, Zeng F, Kuklenyik Z, Harris RC, Wasserman DH, Fazio S, Stafford JM. CETP Inhibition Improves HDL Function but Leads to Fatty Liver and Insulin Resistance in CETP-Expressing Transgenic Mice on a High-Fat Diet. Diabetes 2018; 67:2494-2506. [PMID: 30213825 PMCID: PMC6245220 DOI: 10.2337/db18-0474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Abstract
In clinical trials, inhibition of cholesteryl ester transfer protein (CETP) raises HDL cholesterol levels but does not robustly improve cardiovascular outcomes. Approximately two-thirds of trial participants are obese. Lower plasma CETP activity is associated with increased cardiovascular risk in human studies, and protective aspects of CETP have been observed in mice fed a high-fat diet (HFD) with regard to metabolic outcomes. To define whether CETP inhibition has different effects depending on the presence of obesity, we performed short-term anacetrapib treatment in chow- and HFD-fed CETP transgenic mice. Anacetrapib raised HDL cholesterol and improved aspects of HDL functionality, including reverse cholesterol transport, and HDL's antioxidative capacity in HFD-fed mice was better than in chow-fed mice. Anacetrapib worsened the anti-inflammatory capacity of HDL in HFD-fed mice. The HDL proteome was markedly different with anacetrapib treatment in HFD- versus chow-fed mice. Despite benefits on HDL, anacetrapib led to liver triglyceride accumulation and insulin resistance in HFD-fed mice. Overall, our results support a physiologic importance of CETP in protecting from fatty liver and demonstrate context selectivity of CETP inhibition that might be important in obese subjects.
Collapse
Affiliation(s)
- Lin Zhu
- Veterans Administration Tennessee Valley Healthcare System, Vanderbilt University School of Medicine, Nashville, TN
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN
| | - Thao Luu
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN
| | - Christopher H Emfinger
- Veterans Administration Tennessee Valley Healthcare System, Vanderbilt University School of Medicine, Nashville, TN
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN
| | - Bryan A Parks
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA
| | - Jeanne Shi
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN
- Trinity College of Art and Science, Duke University, Durham, NC
| | - Elijah Trefts
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Fenghua Zeng
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
| | - Zsuzsanna Kuklenyik
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Sergio Fazio
- The Center for Preventive Cardiology at the Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - John M Stafford
- Veterans Administration Tennessee Valley Healthcare System, Vanderbilt University School of Medicine, Nashville, TN
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
16
|
Cholesteryl ester transfer protein: An enigmatic pharmacology – Antagonists and agonists. Atherosclerosis 2018; 278:286-298. [DOI: 10.1016/j.atherosclerosis.2018.09.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/04/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
|
17
|
Gutiérrez-Vidal R, Delgado-Coello B, Méndez-Acevedo KM, Calixto-Tlacomulco S, Damián-Zamacona S, Mas-Oliva J. Therapeutic Intranasal Vaccine HB-ATV-8 Prevents Atherogenesis and Non-alcoholic Fatty Liver Disease in a Pig Model of Atherosclerosis. Arch Med Res 2018; 49:456-470. [DOI: 10.1016/j.arcmed.2019.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/14/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
|
18
|
Cholesterol Efflux Capacity: Choke Point of Reverse Cholesterol Traffic? J Am Coll Cardiol 2018; 67:2488-91. [PMID: 27230044 DOI: 10.1016/j.jacc.2016.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 11/22/2022]
|
19
|
März W, Grammer TB, Delgado G, Kleber ME. Angeborene Störungen im Lipoproteinstoffwechsel. Herz 2017; 42:449-458. [DOI: 10.1007/s00059-017-4578-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Abdel Maksoud SM, El-Garf WT, Ali OS, Shaaban GM, Amer NN. Association of Cholesterol Ester Transfer Protein Taq IB Polymorphism With Acute Coronary Syndrome in Egyptian National Patients. Lab Med 2017; 48:154-165. [PMID: 28387842 DOI: 10.1093/labmed/lmw071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background The association between cholesterol ester transfer protein (CETP) Taq IB polymorphism and coronary artery disease (CAD) has been studied in different populations. Acute coronary syndrome (ACS) is a group of clinical symptoms within acute myocardial ischemia, including unstable angina (UA) and myocardial infarction (MI). Because there are no data reported in the literature concerning the cholesteryl ester transfer protein (CETP) Taq IB polymorphism in Egyptians, our study aimed to investigate the frequency of different CETP Taq IB genotypes in Egyptian patients with ACS and in healthy control individuals. Methods The current study was conducted with 70 hospitalized patients who had been diagnosed with ACS and 30 controls. We used real-time polymerase chain reaction (RT-PCR) to determine CETP Taq IB in individuals with different genotypes. Results The frequency of the GA genotype was significantly lower in UA patients, compared with the control group ( P <.05). Conclusions The frequency of the CETP Taq IB genotypes and alleles in all groups was similar to that in other ethnic groups. Individuals with the Taq IB GA genotype may have a lower risk of UA.
Collapse
Affiliation(s)
| | - Wael T El-Garf
- Department of Molecular Genetics, National Research Center
| | - Ola S Ali
- Biochemistry Department, Faculty of Pharmacy (Girls), Al Azhar University
| | | | - Noha N Amer
- Biochemistry Department, Faculty of Pharmacy (Girls), Al Azhar University
| |
Collapse
|
21
|
März W, Kleber ME, Scharnagl H, Speer T, Zewinger S, Ritsch A, Parhofer KG, von Eckardstein A, Landmesser U, Laufs U. HDL cholesterol: reappraisal of its clinical relevance. Clin Res Cardiol 2017; 106:663-675. [PMID: 28342064 PMCID: PMC5565659 DOI: 10.1007/s00392-017-1106-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/14/2017] [Indexed: 12/31/2022]
Abstract
Background While several lines of evidence prove that elevated concentrations of low-density lipoproteins (LDL) causally contribute to the development of atherosclerosis and its clinical consequences, high-density lipoproteins are still widely believed to exert atheroprotective effects. Hence, HDL cholesterol (HDL-C) is in general still considered as “good cholesterol”. Recent research, however, suggests that this might not always be the case and that a fundamental reassessment of the clinical significance of HDL-C is warranted. Method This review article is based on a selective literature review. Results In individuals without a history of cardiovascular events, low concentrations of HDL-C are inversely associated with the risk of future cardiovascular events. This relationship may, however, not apply to patients with metabolic disorders or manifest cardiovascular disease. The classical function of HDL is to mobilise cholesterol from extrahepatic tissues for delivery to the liver for excretion. These roles in cholesterol metabolism as well as many other biological functions of HDL particles are dependent on the number as well as protein and lipid composition of HDL particles. They are poorly reflected by the HDL-C concentration. HDL can even exert negative vascular effects, if its composition is pathologically altered. High serum HDL-C is therefore no longer regarded protective. In line with this, recent pharmacological approaches to raise HDL-C concentration have not been able to show reductions of cardiovascular outcomes. Conclusion In contrast to LDL cholesterol (LDL-C), HDL-C correlates with cardiovascular risk only in healthy individuals. The calculation of the ratio of LDL-C to HDL-C is not useful for all patients. Low HDL-C should prompt examination of additional metabolic and inflammatory pathologies. An increase in HDL-C through lifestyle change (smoking cessation, physical exercise) has positive effects and is recommended. However, HDL-C is currently not a valid target for drug therapy.
Collapse
Affiliation(s)
- Winfried März
- Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetelogie), Medizinische Fakultät Mannheim der Universität Heidelberg, Heidelberg, Germany.,Klinisches Institut für Medizinische und Chemische Labordiagnostik, Medizinische Universität Graz, Graz, Austria.,Synlab Akademie, synlab Holding Deutschland GmbH, Mannheim und Augsburg, Augsburg, Germany
| | - Marcus E Kleber
- Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetelogie), Medizinische Fakultät Mannheim der Universität Heidelberg, Heidelberg, Germany.,Institut für Ernährungswissenschaften, Friedrich Schiller Universität Jena, Jena, Germany
| | - Hubert Scharnagl
- Klinisches Institut für Medizinische und Chemische Labordiagnostik, Medizinische Universität Graz, Graz, Austria
| | - Timotheus Speer
- Klinik für Innere Medizin IV, Nieren- und Hochdruckkrankheiten, Universitätsklinikum des Saarlandes, 66421, Homburg, Saarland, Germany
| | - Stephen Zewinger
- Klinik für Innere Medizin IV, Nieren- und Hochdruckkrankheiten, Universitätsklinikum des Saarlandes, 66421, Homburg, Saarland, Germany
| | - Andreas Ritsch
- Klinik für Innere Medizin, Medizinische Universität Innsbruck, Innsbruck, Austria
| | - Klaus G Parhofer
- Medizinische Klinik II, Klinikum der Universität München, 81377, Munich, Germany
| | | | | | - Ulrich Laufs
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, IMED, Universitätsklinikum des Saarlandes, 66421, Homburg, Saarland, Germany.
| |
Collapse
|
22
|
|
23
|
Abstract
PURPOSE OF REVIEW Inhibition of cholesteryl ester transfer protein (CETP) has received considerable interest by virtue of its favorable effects on atherogenic and protective lipid parameters. The impact of CETP inhibitors in large clinical outcome trials will be reviewed. RECENT FINDINGS Population and genetic studies demonstrate that low CETP activity associates with lower rates of cardiovascular events. Inhibiting CETP activity in animal models has a favorable impact on experimental atherosclerosis. Although the first CETP inhibitor to advance to an outcome trial proved to have adverse clinical effects and the next agent, a more modest inhibitor, was clinically futile, there continues to be immense interest in the potential to develop nontoxic, potent CETP inhibitors to reduce cardiovascular risk. SUMMARY The current status of CETP inhibitors in the context of large outcomes trials will be reviewed.
Collapse
Affiliation(s)
- Belinda A Di Bartolo
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
24
|
März W, Kleber ME, Scharnagl H, Speer T, Zewinger S, Ritsch A, Parhofer KG, von Eckardstein A, Landmesser U, Laufs U. [Clinical importance of HDL cholesterol]. Herz 2016; 42:58-66. [PMID: 27844137 DOI: 10.1007/s00059-016-4499-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/28/2022]
Abstract
BACKROUND Each year 16-17 million determinations of high-density lipoprotein cholesterol (HDL-C) are conducted and interpreted in Germany. Recently acquired data have led to a fundamental reassessment of the clinical significance of HDL-C. METHOD This review article is based on a selective literature search. RESULTS Low HDL‑C levels usually indicate an increased cardiovascular risk, particularly in primary prevention but the epidemiological relationship between HDL‑C and the risk is complex. The HDL plays a role in the back transport and excretion of cholesterol; however, the biological functions of HDL are dependent on the protein and lipid composition, which is not reflected by the HDL‑C concentration. If the composition of HDL is pathologically altered it can also exert negative vascular effects. CONCLUSION Compared with low-density lipoprotein cholesterol (LDL-C), HDL‑C is of secondary importance for cardiovascular risk stratification and the calculation of the LDL-C:HDL‑C ratio is not useful for all patients. Low HDL‑C levels should prompt a search for additional metabolic and inflammatory pathologies. An increase in HDL‑C through lifestyle changes (e.g. smoking cessation and physical exercise) has positive effects and is recommended; however, HDL‑C is currently not a valid target for drug therapy.
Collapse
Affiliation(s)
- W März
- Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Heidelberg, Deutschland.,Klinisches Institut für Medizinische und Chemische Labordiagnostik, Medizinische Universität Graz, Graz, Österreich.,Synlab Akademie, synlab Holding Deutschland GmbH, Mannheim und Augsburg, Deutschland
| | - M E Kleber
- Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Heidelberg, Deutschland.,Institut für Ernährungswissenschaften, Friedrich-Schiller-Universität Jena, Jena, Deutschland
| | - H Scharnagl
- Klinisches Institut für Medizinische und Chemische Labordiagnostik, Medizinische Universität Graz, Graz, Österreich
| | - T Speer
- Klinik für Innere Medizin IV, Nieren- und Hochdruckkrankheiten, Universitätsklinikum des Saarlandes, 66421, Homburg/Saar, Deutschland
| | - S Zewinger
- Klinik für Innere Medizin IV, Nieren- und Hochdruckkrankheiten, Universitätsklinikum des Saarlandes, 66421, Homburg/Saar, Deutschland
| | - A Ritsch
- Klinik für Innere Medizin, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - K G Parhofer
- Medizinische Klinik II, Klinikum der Universität München, 81377, München, Deutschland
| | - A von Eckardstein
- Institut für Klinische Chemie, Universitätsspital, 8091, Zürich, Schweiz
| | - U Landmesser
- Klinik für Kardiologie, Charité, Berlin, Deutschland
| | - U Laufs
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin (IMED), Universitätsklinikum des Saarlandes, 66421, Homburg/Saar, Deutschland.
| |
Collapse
|
25
|
Yamashita S, Matsuzawa Y. Re-evaluation of cholesteryl ester transfer protein function in atherosclerosis based upon genetics and pharmacological manipulation. Curr Opin Lipidol 2016; 27:459-72. [PMID: 27454452 DOI: 10.1097/mol.0000000000000332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW To re-evaluate the functions of plasma cholesteryl ester transfer protein (CETP) in atherosclerosis based upon recent findings from human genetics and pharmacological CETP manipulation. RECENT FINDINGS CETP is involved in the transfer of cholesteryl ester from HDL to apolipoprotein B-containing lipoproteins, a key step of reverse cholesterol transport (RCT). CETP inhibitors have been developed to raise serum HDL-cholesterol (HDL-C) levels and reduce cardiovascular events. However, outcome studies of three CETP inhibitors (torcetrapib, dalcetrapib and evacetrapib) were prematurely terminated because of increased mortality or futility despite marked increases in HDL-cholesterol and decreases in LDL-cholesterol except for dalcetrapib. Patients with CETP deficiency show remarkable changes in HDL and LDL and are sometimes accompanied by atherosclerotic cardiovascular diseases. Recent prospective epidemiological studies demonstrated atheroprotective roles of CETP. CETP inhibition induces formation of small dense LDL and possibly dysfunctional HDL and downregulates hepatic scavenger receptor class B type I (SR-BI). Therefore, CETP inhibitors may interrupt LDL receptor and SR-BI-mediated cholesterol delivery back to the liver. SUMMARY For future drug development, the opposite strategy, namely enhancers of RCT via CETP and SR-BI activation as well as the inducers of apolipoprotein A-I or HDL production might be a better approach rather than delaying HDL metabolism by inhibiting a main stream of RCT in vivo.
Collapse
Affiliation(s)
- Shizuya Yamashita
- aDepartment of Community Medicine bDepartment of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita cRinku General Medical Center, Izumisano dSumitomo Hospital, Kita-ku, Osaka, Japan
| | | |
Collapse
|
26
|
Annema W, von Eckardstein A. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy. Transl Res 2016; 173:30-57. [PMID: 26972566 DOI: 10.1016/j.trsl.2016.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Low plasma levels of high-density lipoprotein (HDL) cholesterol are associated with increased risks of coronary heart disease. HDL mediates cholesterol efflux from macrophages for reverse transport to the liver and elicits many anti-inflammatory and anti-oxidative activities which are potentially anti-atherogenic. Nevertheless, HDL has not been successfully targeted by drugs for prevention or treatment of cardiovascular diseases. One potential reason is the targeting of HDL cholesterol which does not capture the structural and functional complexity of HDL particles. Hundreds of lipid species and dozens of proteins as well as several microRNAs have been identified in HDL. This physiological heterogeneity is further increased in pathologic conditions due to additional quantitative and qualitative molecular changes of HDL components which have been associated with both loss of physiological function and gain of pathologic dysfunction. This structural and functional complexity of HDL has prevented clear assignments of molecules to the functions of normal HDL and dysfunctions of pathologic HDL. Systematic analyses of structure-function relationships of HDL-associated molecules and their modifications are needed to test the different components and functions of HDL for their relative contribution in the pathogenesis of atherosclerosis. The derived biomarkers and targets may eventually help to exploit HDL for treatment and diagnostics of cardiovascular diseases.
Collapse
Affiliation(s)
- Wijtske Annema
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
27
|
Yamashita S, Masuda D, Ohama T, Arai H, Bujo H, Kagimura T, Kita T, Matsuzaki M, Saito Y, Fukushima M, Matsuzawa Y. Rationale and Design of the PROSPECTIVE Trial: Probucol Trial for Secondary Prevention of Atherosclerotic Events in Patients with Prior Coronary Heart Disease. J Atheroscler Thromb 2016; 23:746-56. [PMID: 26803913 PMCID: PMC7399286 DOI: 10.5551/jat.32813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/05/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Reduction of serum LDL-cholesterol by statins was shown to improve clinical outcomes in patients with coronary heart disease (CHD). Although intensive statin therapy significantly reduced cardiovascular risks, atherosclerotic cardiovascular events have not been completely prevented. Therefore, effective pharmacologic therapy is necessary to improve "residual risks" in combination with statins. Probucol has a potent antioxidative effect, inhibits the oxidation of LDL, and reduces xanthomas. Probucol Trial for Secondary Prevention of Atherosclerotic Events in Patients with Prior Coronary Heart Disease (PROSPECTIVE) is a multicenter, randomized, prospective study designed to test the hypothesis that the addition of probucol to other lipid-lowering drugs will prevent cerebro- and cardiovascular events in patients with prior coronary events and high LDL cholesterol levels. STUDY DESIGN The study will recruit approximately 860 patients with a prior CHD and dyslipidemia with LDL-C level ≥140 mg/dl without any medication and those treated with any lipid-lowering drugs with LDL-C level ≥100 mg/dl. Lipid-lowering agents are continuously administered during the study period in control group, and probucol (500 mg/day, 250 mg twice daily) is added to lipid-lowering therapy in the test group. The efficacy and safety of probucol with regard to the prevention of cerebro- and cardiovascular events and the intima-media thickness of carotid arteries as a surrogate marker will be evaluated. SUMMARY PROSPECTIVE will determine whether the addition of probucol to other lipid-lowering drugs improves cerebro- and cardiovascular outcomes in patients with prior coronary heart disease. Furthermore, the safety of a long-term treatment with probucol will be clarified.
Collapse
Affiliation(s)
- Shizuya Yamashita
- Department of Community Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Rinku General Medical Center, Izumisano, Osaka, Japan
| | - Daisaku Masuda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tohru Ohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hidenori Arai
- The National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hideaki Bujo
- Department of Clinical Laboratory and Experimental Research Medicine, Toho University, Sakura Medical Center, Sakura, Chiba, Japan
| | - Tatsuo Kagimura
- Foundation for Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Toru Kita
- Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | | | - Yasushi Saito
- Chiba University Graduate School of Medicine, Chiba, Japan
| | | | | |
Collapse
|
28
|
Quintão ECR. The controversy over the use of cholesteryl ester transfer protein inhibitors: is there some light at the end of the tunnel? Eur J Clin Invest 2016; 46:581-9. [PMID: 26992444 DOI: 10.1111/eci.12626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/16/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND According to epidemiological studies, there is no clear relationship between the plasma cholesteryl ester transfer protein (CETP) concentration and the development of atherosclerosis in human populations. Although some studies suggest that increased CETP activity relates to undesirable profiles of plasma lipoproteins, promoting an anti-atherogenic plasma lipoprotein profile by drugs that inhibit CETP has not succeeded in preventing atherosclerosis in humans. MATERIALS AND METHODS This review describes 28 investigations in human populations dealing with plasma CETP, 11 in mice that express human CETP and seven in animals (six in rabbits and one in mice) in which plasma CETP activity was inhibited by drugs. RESULTS Present review shows that models in mice expressing human CETP are not illuminating because they report increase as well reduction of atherosclerosis. However, investigations in rabbits and mice that develop severe hypercholesterolaemia clearly indicate that impairment of the plasma CETP activity elicits protection against the development of atherosclerosis; in all of these experiments are attained substantial reductions of the atherogenic lipoproteins, namely, plasma apoB containing lipoproteins. CONCLUSION These models are strong indicators that the benefit in preventing atherosclerosis should be earned in cases of hyperlipidemia by CETP inhibitors.
Collapse
Affiliation(s)
- Eder C R Quintão
- Internal Medicine, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
29
|
Di Bartolo B, Takata K, Duong M, Nicholls SJ. CETP Inhibition in CVD Prevention: an Actual Appraisal. Curr Cardiol Rep 2016; 18:43. [DOI: 10.1007/s11886-016-0724-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
McGowan A, Widdowson WM, O'Regan A, Young IS, Boran G, McEneny J, Gibney J. Postprandial Studies Uncover Differing Effects on HDL Particles of Overt and Subclinical Hypothyroidism. Thyroid 2016; 26:356-64. [PMID: 26800752 DOI: 10.1089/thy.2015.0443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Overt hypothyroidism (OH) is associated with abnormal lipid metabolism and endothelial dysfunction under fasting conditions. The balance of evidence suggests similar but less marked abnormalities in subclinical hypothyroidism (SCH). There are few data regarding the metabolic and vascular effects of OH or SCH under postprandial conditions. METHODS This was a cross-sectional study, carried out in a teaching hospital. Subjects with OH (n = 21), SCH (n = 28), and controls (n = 44) matched for age, sex, and body mass index (BMI) were studied under fasting and postprandial conditions. Postprandial lipid metabolism with particular emphasis on intestinally derived lipoproteins, HDL cholesterol (HDL), and endothelial function were compared in subjects with OH and SCH who were matched for age, sex, and BMI. Apolipoprotein B48 (Apo B48), a measure of intestinally derived lipoprotein, was measured by enzyme-linked immunosorbent assay. HDL was subfractionated into HDL2 and HDL3 by rapid ultracentrifugation. Functional aspects of HDL were determined by monitoring the activities of cholesteryl-ester-transfer-protein (CETP) and lecithin-cholesterol-acyl-transferase (LCAT). Systemic and HDL-associated inflammation was assessed by measuring serum-amyloid-A (SAA) levels. Endothelial function was assessed by flow-mediated dilatation (FMD) of the brachial artery in response to hyperemia of the forearm. RESULTS There were no significant between-group differences in LDL cholesterol or triglyceride concentration. Peak Apo B48 levels were greater in OH (p < 0.001) and SCH (p < 0.05) compared with control subjects. HDL area under the curve (AUC) was lower postprandially in SCH (p < 0.001) but not OH compared with control subjects. HDL2- and HDL3-associated CETP AUC was lower only in OH (p < 0.005) compared with controls. FMD was reduced in OH (p < 0.05) compared with SCH and controls postprandially. CONCLUSION Postprandial lipoprotein and vascular abnormalities differ between OH and SCH. Although both are characterized by increased intestinally derived lipoprotein particles, HDL is reduced only in SCH. Maintained HDL in OH probably reflects reduced CETP activity, which was not observed in SCH. Postprandial endothelial dysfunction is abnormal only in OH, and this effect does not appear to reflect increased inflammation.
Collapse
Affiliation(s)
- Anne McGowan
- 1 Department of Endocrinology, Tallaght Hospital , Dublin, Ireland
| | | | - Anna O'Regan
- 2 Centre for Public Health, Queen's University Belfast , Belfast, United Kingdom
| | - Ian S Young
- 2 Centre for Public Health, Queen's University Belfast , Belfast, United Kingdom
| | - Gerard Boran
- 3 Department of Chemical Pathology, Tallaght Hospital , Dublin, Ireland
| | - Jane McEneny
- 2 Centre for Public Health, Queen's University Belfast , Belfast, United Kingdom
| | - James Gibney
- 1 Department of Endocrinology, Tallaght Hospital , Dublin, Ireland
| |
Collapse
|
31
|
Nicholls SJ, Lincoff AM, Barter PJ, Brewer HB, Fox KAA, Gibson CM, Grainger C, Menon V, Montalescot G, Rader D, Tall AR, McErlean E, Riesmeyer J, Vangerow B, Ruotolo G, Weerakkody GJ, Nissen SE. Assessment of the clinical effects of cholesteryl ester transfer protein inhibition with evacetrapib in patients at high-risk for vascular outcomes: Rationale and design of the ACCELERATE trial. Am Heart J 2015; 170:1061-9. [PMID: 26678626 DOI: 10.1016/j.ahj.2015.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Potent pharmacologic inhibition of cholesteryl ester transferase protein by the investigational agent evacetrapib increases high-density lipoprotein cholesterol by 54% to 129%, reduces low-density lipoprotein cholesterol by 14% to 36%, and enhances cellular cholesterol efflux capacity. The ACCELERATE trial examines whether the addition of evacetrapib to standard medical therapy reduces the risk of cardiovascular (CV) morbidity and mortality in patients with high-risk vascular disease. STUDY DESIGN ACCELERATE is a phase 3, multicenter, randomized, double-blind, placebo-controlled trial. Patients qualified for enrollment if they have experienced an acute coronary syndrome within the prior 30 to 365 days, cerebrovascular accident, or transient ischemic attack; if they have peripheral vascular disease; or they have diabetes with coronary artery disease. A total of 12,092 patients were randomized to evacetrapib 130 mg or placebo daily in addition to standard medical therapy. The primary efficacy end point is time to first event of CV death, myocardial infarction, stroke, hospitalization for unstable angina, or coronary revascularization. Treatment will continue until 1,670 patients reached the primary end point; at least 700 patients reach the key secondary efficacy end point of CV death, myocardial infarction, and stroke, and the last patient randomized has been followed up for at least 1.5 years. CONCLUSIONS ACCELERATE will establish whether the cholesteryl ester transfer protein inhibition by evacetrapib improves CV outcomes in patients with high-risk vascular disease.
Collapse
Affiliation(s)
- Stephen J Nicholls
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - A Michael Lincoff
- Cleveland Clinic Coordinating Center for Clinical Research and Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH
| | | | | | | | | | | | - Venugopal Menon
- Cleveland Clinic Coordinating Center for Clinical Research and Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH
| | | | | | | | - Ellen McErlean
- Cleveland Clinic Coordinating Center for Clinical Research and Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH
| | | | | | | | | | - Steven E Nissen
- Cleveland Clinic Coordinating Center for Clinical Research and Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
32
|
Hovingh GK, Ray KK, Boekholdt SM. Is Cholesteryl Ester Transfer Protein Inhibition an Effective Strategy to Reduce Cardiovascular Risk? CETP as a Target to Lower CVD Risk: Suspension of Disbelief? Circulation 2015; 132:433-40. [PMID: 26240264 DOI: 10.1161/circulationaha.115.014026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- G Kees Hovingh
- From Department of Vascular Medicine (G.K.H.) and Department of Cardiology (S.M.B.), Academic Medical Center, Amsterdam, The Netherlands; and Department of Primary Care and Public Health, School of Public Health, Imperial College, London, United Kingdom (K.K.R.).
| | - Kausik K Ray
- From Department of Vascular Medicine (G.K.H.) and Department of Cardiology (S.M.B.), Academic Medical Center, Amsterdam, The Netherlands; and Department of Primary Care and Public Health, School of Public Health, Imperial College, London, United Kingdom (K.K.R.)
| | - S Matthijs Boekholdt
- From Department of Vascular Medicine (G.K.H.) and Department of Cardiology (S.M.B.), Academic Medical Center, Amsterdam, The Netherlands; and Department of Primary Care and Public Health, School of Public Health, Imperial College, London, United Kingdom (K.K.R.)
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Probucol is a potent antioxidative drug that has been used for prevention and treatment of atherosclerotic cardiovascular diseases and xanthoma. Probucol has been used as a lipid-lowering drug for a long time especially in Japan, although Western countries quitted its use because of the reduction in serum HDL-cholesterol (HDL-C). This review highlights both basic and clinical studies that provide new insights into the pleiotropic effects of probucol. RECENT FINDINGS Recently, the mechanisms for the pharmacologic actions of probucol have been elucidated at the molecular level with a special focus on HDL metabolism and its functions. Probucol enhances plasma cholesteryl ester transfer protein activity and hepatic scavenger receptor class B type I, causing a decrease in HDL-C. It also accelerates the antioxidative function of HDL via increase in paraoxonase 1 activity. Recent retrospective analyses of probucol-treated patients with heterozygous familial hypercholesterolemia and those after coronary revascularization demonstrated a strong beneficial effect of probucol on secondary prevention of cardiovascular events and mortality. SUMMARY Probucol has pleiotropic and beneficial therapeutic effects on cardiovascular system. Although statins are effective for lowering LDL-cholesterol (LDL-C) and reducing coronary heart disease risk, probucol should be considered as an option in case statins are not effective.
Collapse
Affiliation(s)
- Shizuya Yamashita
- aDepartment of Community Medicine bDepartment of Cardiovascular Medicine, Osaka University Graduate School of Medicine cSumitomo Hospital, Osaka, Japan
| | | | | |
Collapse
|
34
|
Gautier T, Masson D, Lagrost L. The potential of cholesteryl ester transfer protein as a therapeutic target. Expert Opin Ther Targets 2015. [PMID: 26212254 DOI: 10.1517/14728222.2015.1073713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Over recent decades, attempts to ascertain the pro-atherogenic nature of plasma cholesteryl ester transfer protein (CETP) and to establish the relevance of its pharmacological blockade as a promising high density lipoproteins-raising and anti-atherogenic therapy have been disappointing. AREAS COVERED The current review focuses on CETP as a multifaceted protein, on genetic variations at the CETP gene and on their possible consequences for cardiovascular risk in human populations. Specific attention is given to physiological modulation of endogenous CETP activity by the apoC1 inhibitor. Finally, the rationale behind the need for selection of patients to treat is discussed in the light of recent studies. EXPERT OPINION At this stage one can only speculate on the clinical outcome of pharmacological CETP inhibitors in high-risk populations, but recent advances give cause to adjust the expectations from now on. The CETP effect is probably largely influenced by the overall metabolic state, and whether CETP blockade may be relevant or not in promoting cholesterol disposal is still questioned. The possible need for a careful stratification of patients to treat with CETP inhibitors is outlined. Finally, manipulation of CETP activity should be considered with caution in the context of sepsis and infectious diseases.
Collapse
Affiliation(s)
- Thomas Gautier
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France
| | - David Masson
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France.,d 4 University Hospital of Dijon , F-21000 Dijon, France
| | - Laurent Lagrost
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France.,d 4 University Hospital of Dijon , F-21000 Dijon, France.,e 5 UMR866, UFR Sciences de Santé, 7 boulevard Jeanne d'Arc , F-21000 Dijon, France
| |
Collapse
|
35
|
Huggins C, Charolidi N, Cockerill GW. Cholesteryl Ester Transfer Protein Inhibitors - Future Soon to be REVEALed. Eur Cardiol 2015; 10:64-67. [PMID: 30310426 DOI: 10.15420/ecr.2015.10.01.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Reduction of the remaining residual cardiovascular risk is a clinical unmet need currently being addressed through a combination of further reduction of plasma concentrations of low-density lipoproteins (LDLs) and increasing plasma concentrations of high-density lipoproteins (HDLs). This brief review sets out the so-called HDL hypothesis and summarises the clinical results of the family of drugs, which function to raise plasma HDL concentration through inhibition of cholesteryl ester transfer proteins (CEPT).
Collapse
|
36
|
Abstract
The pathogenesis and progression of atherosclerosis are integrally connected to the concentration and function of lipoproteins in various classes. This review examines existing and emerging approaches to modify low-density lipoprotein and lipoprotein (a), triglyceride-rich lipoproteins, and high-density lipoproteins, emphasizing approaches that have progressed to clinical evaluation. Targeting of nuclear receptors and phospholipases is also discussed.
Collapse
Affiliation(s)
- Rose Q Do
- VA Medical Center, University of Colorado School of Medicine, Denver, CO, USA
| | - Stephen J Nicholls
- South Australian Health and Medical Research Institute and University of Adelaide, Adelaide, SA, Australia
| | - Gregory G Schwartz
- VA Medical Center, University of Colorado School of Medicine, Denver, CO, USA
| |
Collapse
|
37
|
|
38
|
Dullaart RPF, de Vries R, Kwakernaak AJ, Perton F, Dallinga-Thie GM. Increased large VLDL particles confer elevated cholesteryl ester transfer in diabetes. Eur J Clin Invest 2015; 45:36-44. [PMID: 25402623 DOI: 10.1111/eci.12377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/10/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Plasma cholesteryl ester transfer (CET), reflecting transfer of cholesteryl esters from high density lipoproteins (HDL) towards apolipoprotein B-containing lipoproteins, may promote atherosclerosis development, and is elevated in Type 2 diabetes mellitus (T2DM). We determined the extent to which the relationship of plasma CET with very low density lipoprotein (VLDL) and low density lipoprotein (LDL) subfractions is modified in T2DM. MATERIALS AND METHODS Plasma CET, cholesteryl ester transfer protein (CETP) mass, as well as VLDL and LDL subfractions (nuclear magnetic resonance spectroscopy) were determined in 62 patients with T2DM and 53 nondiabetic subjects. RESULTS Plasma CET and CETP mass were increased in T2DM, coinciding higher triglycerides and large VLDL particles (all P < 0·02). Plasma CET was positively related to the VLDL and the LDL particle concentration in age-, sex- and diabetes status-adjusted analysis (both P < 0·001). Multivariable linear regression analysis demonstrated an independent positive interaction between the presence of T2DM and the VLDL concentration on plasma CET (β = 0·238, P = 0·033). The relationship of plasma CET with the VLDL concentration was also positively modified by plasma glucose (β = 0·211, P = 0·004) and glycated haemoglobin (β = 0·190, P = 0·012). Of the individual VLDL subfractions, a positive interaction of diabetes status with large VLDL on plasma CET was observed (β = 0·280, P = 0·003). Neither the relationship of the LDL particle concentration nor of CETP mass with plasma CET was modified by the presence of T2DM (P > 0·15). CONCLUSION Abnormalities in the concentration and composition of large VLDL particles are likely to contribute to elevated plasma CET in T2DM.
Collapse
Affiliation(s)
- Robin P F Dullaart
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | | |
Collapse
|
39
|
Santos-Gallego CG, Badimon JJ, Rosenson RS. Beginning to understand high-density lipoproteins. Endocrinol Metab Clin North Am 2014; 43:913-47. [PMID: 25432389 DOI: 10.1016/j.ecl.2014.08.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article reconciles the classic view of high-density lipoproteins (HDL) associated with low risk for cardiovascular disease (CVD) with recent data (genetics studies and randomized clinical trials) casting doubt over the widely accepted beneficial role of HDL regarding CVD risk. Although HDL cholesterol has been used as a surrogate measure to investigate HDL function, the cholesterol content in HDL particles is not an indicator of the atheroprotective properties of HDL. Thus, more precise measures of HDL metabolism are needed to reflect and account for the beneficial effects of HDL particles. Current and emerging therapies targeting HDL are discussed.
Collapse
Affiliation(s)
- Carlos G Santos-Gallego
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1030, New York, NY 10029, USA
| | - Juan J Badimon
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1030, New York, NY 10029, USA
| | - Robert S Rosenson
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1030, New York, NY 10029, USA.
| |
Collapse
|
40
|
|
41
|
Abstract
Inhibition of cholesteryl ester transfer protein (CETP) lowers plasma low-density lipoprotein cholesterol concentration and raises high-density lipoprotein (HDL) cholesterol, suggesting it might prevent cardiovascular disease (CVD). From the outset, however, the concept has been controversial owing to uncertainty about its effects on HDL function and reverse cholesterol transport (RCT). Although there has long been good evidence that CETP inhibition reduces atherosclerosis in rabbits, the first information on CETP as a CVD risk factor in a prospectively followed cohort was not published until after the first Phase 3 trial of a CETP inhibitor had begun. The worrying finding that CVD incidence was related inversely to plasma CETP has since been reproduced in each of five further prospective cohort studies. Similar results were obtained in subjects on or off statin therapy, for first and second CVD events, and for mortality as well as CVD morbidity. Additionally, two recent studies have found alleles of the CETP gene that lower hepatic CETP secretion to be associated with an increased risk of myocardial infarction. Meanwhile, CETP gene transfer in mice was found to increase RCT from peripheral macrophages in vivo, and human plasma with high CETP activity was shown to have a greater capacity to remove cholesterol from cultured cells than plasma with low activity. This mounting evidence for a protective function of CETP has been given remarkably little attention, and indeed was not mentioned in several recent reviews. It appears to show that CETP inhibition does not test the HDL hypothesis as originally hoped, and raises a pressing ethical issue regarding two Phase 3 trials of inhibitors, involving more than forty thousand subjects, which are currently in progress. As the weight of evidence now clearly supports an adverse effect of CETP inhibition on CVD, an urgent review is needed to determine if these trials should be discontinued.
Collapse
|
42
|
Kingwell BA, Chapman MJ, Kontush A, Miller NE. HDL-targeted therapies: progress, failures and future. Nat Rev Drug Discov 2014; 13:445-64. [DOI: 10.1038/nrd4279] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
El Khoury P, Plengpanich W, Frisdal E, Le Goff W, Khovidhunkit W, Guerin M. Improved plasma cholesterol efflux capacity from human macrophages in patients with hyperalphalipoproteinemia. Atherosclerosis 2014; 234:193-9. [PMID: 24674903 DOI: 10.1016/j.atherosclerosis.2014.02.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/20/2014] [Accepted: 02/27/2014] [Indexed: 11/25/2022]
|
44
|
Kleber ME, Grammer TB, Kassner U, Silbernagel G, März W. Dusty punch cards and an eternal enigma: high-density lipoproteins and atherosclerosis. Drugs 2014; 74:513-20. [PMID: 24691706 DOI: 10.1007/s40265-014-0189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Epidemiological, clinical, and experimental evidence has accumulated during the last decades suggesting that high-density lipoproteins (HDLs) may protect from atherosclerosis and its clinical consequences. However, more than 55 years after the first description of the link between HDL and heart attacks, many facets of the biochemistry, function, and clinical significance of HDL remain enigmatic. This applies particularly to the completely unexpected results that became available from some recent clinical trials of nicotinic acid and of inhibitors of cholesteryl ester transfer protein (CETP). The concept that raising HDL cholesterol by pharmacological means would decrease the risk of vascular disease has therefore been challenged.
Collapse
Affiliation(s)
- Marcus E Kleber
- Medical Clinic V (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
45
|
Scharnagl H, Heuschneider C, Sailer S, Kleber ME, März W, Ritsch A. Decreased cholesterol efflux capacity in patients with low cholesteryl ester transfer protein plasma levels. Eur J Clin Invest 2014; 44:395-401. [PMID: 24467215 DOI: 10.1111/eci.12248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/24/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cholesteryl ester transfer protein (CETP) has been considered as a possible target for treatment of cardiovascular disease. However, first clinical studies employing CETP inhibitors have failed to demonstrate clinical benefit. Additionally, we have previously shown that low endogenous plasma levels of CETP are associated with increased mortality in coronary artery disease (CAD) patients. We hypothesized that low CETP plasma levels are associated with decreased high-density lipoprotein (HDL) function. MATERIALS AND METHODS Serum HDL efflux capacity was measured in 154 patients of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study displaying extremely low (< 0·68 μg/mL, n = 77) or high (> 2·13 μg/mL, n = 77) CETP concentrations in their plasma, respectively. The LURIC study is a prospective observational study of patients referred to coronary angiography at baseline with a median follow-up time of 7·75 years. Primary and secondary endpoints were cardiovascular and all-cause mortality, respectively. RESULTS High CETP patients showed a significant increase in the capacity of their plasma to mediate cholesterol efflux from cholesterol laden macrophages when compared to the efflux capacity observed in low CETP patients (+ 5·4%, P = 0·015). As shown by multiregression analysis, the impact of CETP on cholesterol efflux capacity was independent from classical risk and lifestyle factors, as well as from lipid parameters including HDL cholesterol, LDL cholesterol and triglycerides. CONCLUSIONS Our findings indicate that low plasma concentrations of CETP might indeed lead to impaired HDL function within the reverse cholesterol transport pointing towards an atheroprotective role of CETP at least in patients with high risk of CAD.
Collapse
Affiliation(s)
- Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Larach DB, Cuchel M, Rader DJ. Monogenic causes of elevated HDL cholesterol and implications for development of new therapeutics. CLINICAL LIPIDOLOGY 2013; 8:635-648. [PMID: 25374625 PMCID: PMC4217288 DOI: 10.2217/clp.13.73] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Identification of the CETP, LIPG (encoding endothelial lipase) and APOC3 genes, and ana lysis of rare genetic variants in them, have allowed researchers to increase understanding of HDL metabolism significantly. However, development of cardiovascular risk-reducing therapeutics targeting the proteins encoded by these genes has been less straightforward. The failure of two CETP inhibitors is complex but illustrates a possible over-reliance on HDL cholesterol as a marker of therapeutic efficacy. The case of endothelial lipase exemplifies the importance of utilizing population-wide genetic studies of rare variants in potential therapeutic targets to gain information on cardiovascular disease end points. Similar population-wide studies of cardiovascular end points make apoC-III a potentially attractive target for lipid-related drug discovery. These three cases illustrate the positives and negatives of single-gene studies relating to HDL-related cardiovascular drug discovery; such studies should focus not only on HDL cholesterol and other components of the lipid profile, but also on the effect genetic variants have on cardiovascular end points.
Collapse
Affiliation(s)
- Daniel B Larach
- Division of Translational Medicine & Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Marina Cuchel
- Division of Translational Medicine & Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Daniel J Rader
- Division of Translational Medicine & Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, PA, USA
- 11–125 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, PA 19104–5158, USA
| |
Collapse
|
48
|
Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature 2013; 504:432-6. [PMID: 24213632 DOI: 10.1038/nature12722] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 09/27/2013] [Indexed: 12/13/2022]
Abstract
Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC), and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as β1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.
Collapse
|
49
|
Li C, Zhang W, Zhou F, Chen C, Zhou L, Li Y, Liu L, Pei F, Luo H, Hu Z, Cai J, Zeng C. Cholesteryl ester transfer protein inhibitors in the treatment of dyslipidemia: a systematic review and meta-analysis. PLoS One 2013; 8:e77049. [PMID: 24204732 PMCID: PMC3810261 DOI: 10.1371/journal.pone.0077049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/29/2013] [Indexed: 01/14/2023] Open
Abstract
Cholesteryl ester transfer protein (CETP) inhibitors are gaining substantial research interest for raising high density lipoprotein cholesterol levels. The aim of the research was to estimate the efficacy and safety of cholesteryl ester transfer protein inhibitors as novel lipid modifying drugs. Systematic searches of English literature for randomized controlled trials (RCT) were collected from MEDLINE, EBASE, CENTRAL and references listed in eligible studies. Two independent authors assessed the search results and only included the double-blind RCTs by using cholesteryl ester transfer protein inhibitors as exclusively or co-administrated with statin therapy irrespective of gender in enrolled adult subjects. Two independent authors extracted the data by using predefined data fields. Of 503 studies identified, 14 studies met the inclusion criteria, and 12 studies were included into the final meta-analysis. Our meta-analysis revealed that CETP inhibitors increased the HDL-c levels (n = 2826, p<0.00001, mean difference (MD) = 20.47, 95% CI [19.80 to 21.15]) and total cholesterol (n = 3423, p = 0.0002, MD = 3.57, 95%CI [1.69 to 5.44] to some extent combined with a reduction in triglyceride (n = 3739, p<0.00001, MD = -10.47, 95% CI [-11.91 to -9.03]) and LDL-c (n = 3159, p<0.00001, MD = -17.12, 95% CI [-18.87 to -15.36]) irrespective of mono-therapy or co-administration with statins. Subgroup analysis suggested that the lipid modifying effects varied according to the four currently available CETP inhibitors. CETP inhibitor therapy did not increase the adverse events when compared with control. However, we observed a slight increase in blood pressure (SBP, n = 2384, p<0.00001, MD = 2.73, 95% CI [2.14 to 3.31], DBP, n = 2384, p<0.00001, MD = 1.16, 95% CI [0.73 to 1.60]) after CETP inhibitor treatment, which were mainly ascribed to the torcetrapib treatment subgroup. CETP inhibitors therapy is associated with significant increase in HDL-c and decrease in triglyceride and LDL-c with satisfactory safety and tolerability in patients with dyslipidemia. However, the side-effect on blood pressure deserves more consideration in future studies.
Collapse
Affiliation(s)
- Chuanwei Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
- Chongqing Institute of Cardiology, Chongqing, PR China
| | - Wen Zhang
- Department of Respiratory, Xinqiao Hospital, The Third Military Medical University, Chongqing, PR China
| | - Faying Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
- Chongqing Institute of Cardiology, Chongqing, PR China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
- Chongqing Institute of Cardiology, Chongqing, PR China
| | - Liang Zhou
- Department of Health Statistics, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Yafei Li
- Department of Social Medicine and Health Service Management, College of Preventive Medicine, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Third Military Medical University, Chongqing, PR China
| | - Ling Liu
- Department of Health Statistics, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Fang Pei
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
- Chongqing Institute of Cardiology, Chongqing, PR China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
- Chongqing Institute of Cardiology, Chongqing, PR China
| | - Zhangxue Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
- Chongqing Institute of Cardiology, Chongqing, PR China
| | - Jing Cai
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
- Chongqing Institute of Cardiology, Chongqing, PR China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
- Chongqing Institute of Cardiology, Chongqing, PR China
- * E-mail:
| |
Collapse
|
50
|
Association between serum interleukin-6 concentration and mortality in patients with coronary artery disease. Mediators Inflamm 2013; 2013:726178. [PMID: 23818744 PMCID: PMC3683500 DOI: 10.1155/2013/726178] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/13/2013] [Indexed: 01/07/2023] Open
Abstract
Objectives. To evaluate whether serum interleukin-6 (IL-6) is associated with increased risk of mortality in coronary artery disease (CAD) patients. Methods. We performed a prospective cohort study of 718 CAD patients from the Guangzhou Cardiovascular Disease Cohort (GCDC) study. Multivariable-adjusted Cox proportional hazards regression analyses were used to examine the association between serum IL-6 with all-cause and cardiovascular mortality. Results. During the 1663 person-years of followup, the cumulative all-cause mortality and cardiovascular mortality were 6.5% (n = 47) and 3.3% (n = 24), respectively. The mean length of followup was 2.32 ± 0.81 years. In the multivariable analyses, a one-SD increment in log-transformed serum IL-6 was positively associated with an increased risk of all-cause and cardiovascular mortality, with hazard ratios (HR) of 2.93 (95% CI, 2.11–4.08) and 2.04 (95% CI, 1.34–3.68) within the patients combined and 2.98 (95% CI, 2.12–4.18) and 3.10 (95% CI, 1.98–4.85) within males, respectively. Patients in the highest serum IL-6 tertile versus the lowest tertile were at higher risk of all-cause and cardiovascular mortality, with HR of 17.12 (95% CI 3.11–71.76) and 8.68 (95% CI, 1.88–37.51), respectively. Conclusions. In hospitalized patients with CAD, serum IL-6 is significantly associated with all-cause and cardiovascular mortality.
Collapse
|