1
|
DePalma SJ, Jilberto J, Stis AE, Huang DD, Lo J, Davidson CD, Chowdhury A, Kent RN, Jewett ME, Kobeissi H, Chen CS, Lejeune E, Helms AS, Nordsletten DA, Baker BM. Matrix Architecture and Mechanics Regulate Myofibril Organization, Costamere Assembly, and Contractility in Engineered Myocardial Microtissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309740. [PMID: 39558513 DOI: 10.1002/advs.202309740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/09/2024] [Indexed: 11/20/2024]
Abstract
The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, they established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM-mimetic synthetic, fiber matrices, and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), enabling real-time contractility readouts, in-depth structural assessment, and tissue-specific computational modeling. They found that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC-CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell-ECM interactions in myofibril assembly, myofibril maturation, and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC-CM tissue models with controllable architecture and mechanics can elucidate mechanisms of tissue maturation and disease.
Collapse
Affiliation(s)
- Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Austin E Stis
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Darcy D Huang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason Lo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Aamilah Chowdhury
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maggie E Jewett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hiba Kobeissi
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Adam S Helms
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David A Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, London, SE1 7EH, UK
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Wu S, Ding D, Wang D. Regulated Cell Death Pathways in Pathological Cardiac Hypertrophy. Rev Cardiovasc Med 2024; 25:366. [PMID: 39484135 PMCID: PMC11522757 DOI: 10.31083/j.rcm2510366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 11/03/2024] Open
Abstract
Cardiac hypertrophy is characterized by an increased volume of individual cardiomyocytes rather than an increase in their number. Myocardial hypertrophy due to pathological stimuli encountered by the heart, which reduces pressure on the ventricular walls to maintain cardiac function, is known as pathological hypertrophy. This eventually progresses to heart failure. Certain varieties of regulated cell death (RCD) pathways, including apoptosis, pyroptosis, ferroptosis, necroptosis, and autophagy, are crucial in the development of pathological cardiac hypertrophy. This review summarizes the molecular mechanisms and signaling pathways underlying these RCD pathways, focusing on their mechanism of action findings for pathological cardiac hypertrophy. It intends to provide new ideas for developing therapeutic approaches targeted at the cellular level to prevent or reverse pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Shengnan Wu
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| | - Ding Ding
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| | - Deguo Wang
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| |
Collapse
|
3
|
Tang L, Qiu H, Xu B, Su Y, Nyarige V, Li P, Chen H, Killham B, Liao J, Adam H, Yang A, Yu A, Jang M, Rubart M, Xie J, Zhu W. Microparticle Mediated Delivery of Apelin Improves Heart Function in Post Myocardial Infarction Mice. Circ Res 2024; 135:777-798. [PMID: 39145385 PMCID: PMC11392624 DOI: 10.1161/circresaha.124.324608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Apelin is an endogenous prepropeptide that regulates cardiac homeostasis and various physiological processes. Intravenous injection has been shown to improve cardiac contractility in patients with heart failure. However, its short half-life prevents studying its impact on left ventricular remodeling in the long term. Here, we aim to study whether microparticle-mediated slow release of apelin improves heart function and left ventricular remodeling in mice with myocardial infarction (MI). METHODS A cardiac patch was fabricated by embedding apelin-containing microparticles in a fibrin gel scaffold. MI was induced via permanent ligation of the left anterior descending coronary artery in adult C57BL/6J mice followed by epicardial patch placement immediately after (acute MI) or 28 days (chronic MI) post-MI. Four groups were included in this study, namely sham, MI, MI plus empty microparticle-embedded patch treatment, and MI plus apelin-containing microparticle-embedded patch treatment. Cardiac function was assessed by transthoracic echocardiography. Cardiomyocyte morphology, apoptosis, and cardiac fibrosis were evaluated by histology. Cardioprotective pathways were determined by RNA sequencing, quantitative polymerase chain reaction, and Western blot. RESULTS The level of endogenous apelin was largely reduced in the first 7 days after MI induction and it was normalized by day 28. Apelin-13 encapsulated in poly(lactic-co-glycolic acid) microparticles displayed a sustained release pattern for up to 28 days. Treatment with apelin-containing microparticle-embedded patch inhibited cardiac hypertrophy and reduced scar size in both acute and chronic MI models, which is associated with improved cardiac function. Data from cellular and molecular analyses showed that apelin inhibits the activation and proliferation of cardiac fibroblasts by preventing transforming growth factor-β-mediated activation of Smad2/3 (supporessor of mothers against decapentaplegic 2/3) and downstream profibrotic gene expression. CONCLUSIONS Poly(lactic-co-glycolic acid) microparticles prolonged the apelin release time in the mouse hearts. Epicardial delivery of the apelin-containing microparticle-embedded patch protects mice from both acute and chronic MI-induced cardiac dysfunction, inhibits cardiac fibrosis, and improves left ventricular remodeling.
Collapse
Affiliation(s)
- Ling Tang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Huiliang Qiu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Bing Xu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Yajuan Su
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha (Y.S., J.X.)
| | - Verah Nyarige
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Pengsheng Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Houjia Chen
- Department of Bioengineering, University of Texas at Arlington (H.C., B.K., J.L.)
| | - Brady Killham
- Department of Bioengineering, University of Texas at Arlington (H.C., B.K., J.L.)
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington (H.C., B.K., J.L.)
| | - Henderson Adam
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Aaron Yang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Alexander Yu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Michelle Jang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Michael Rubart
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (M.R.)
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha (Y.S., J.X.)
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| |
Collapse
|
4
|
Ruud M, Frisk M, Melleby AO, Norseng PA, Mohamed BA, Li J, Aronsen JM, Setterberg IE, Jakubiczka J, van Hout I, Coffey S, Shen X, Nygård S, Lunde IG, Tønnessen T, Jones PP, Sjaastad I, Gullestad L, Toischer K, Dahl CP, Christensen G, Louch WE. Regulation of cardiomyocyte t-tubule structure by preload and afterload: Roles in cardiac compensation and decompensation. J Physiol 2024; 602:4487-4510. [PMID: 38686538 DOI: 10.1113/jp284566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Mechanical load is a potent regulator of cardiac structure and function. Although high workload during heart failure is associated with disruption of cardiomyocyte t-tubules and Ca2+ homeostasis, it remains unclear whether changes in preload and afterload may promote adaptive t-tubule remodelling. We examined this issue by first investigating isolated effects of stepwise increases in load in cultured rat papillary muscles. Both preload and afterload increases produced a biphasic response, with the highest t-tubule densities observed at moderate loads, whereas excessively low and high loads resulted in low t-tubule levels. To determine the baseline position of the heart on this bell-shaped curve, mice were subjected to mildly elevated preload or afterload (1 week of aortic shunt or banding). Both interventions resulted in compensated cardiac function linked to increased t-tubule density, consistent with ascension up the rising limb of the curve. Similar t-tubule proliferation was observed in human patients with moderately increased preload or afterload (mitral valve regurgitation, aortic stenosis). T-tubule growth was associated with larger Ca2+ transients, linked to upregulation of L-type Ca2+ channels, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients advanced the heart down the declining limb of the t-tubule-load relationship. This bell-shaped relationship was lost in the absence of electrical stimulation, indicating a key role of systolic stress in controlling t-tubule plasticity. In conclusion, modest augmentation of workload promotes compensatory increases in t-tubule density and Ca2+ cycling, whereas this adaptation is reversed in overloaded hearts during heart failure progression. KEY POINTS: Excised papillary muscle experiments demonstrated a bell-shaped relationship between cardiomyocyte t-tubule density and workload (preload or afterload), which was only present when muscles were electrically stimulated. The in vivo heart at baseline is positioned on the rising phase of this curve because moderate increases in preload (mice with brief aortic shunt surgery, patients with mitral valve regurgitation) resulted in t-tubule growth. Moderate increases in afterload (mice and patients with mild aortic banding/stenosis) similarly increased t-tubule density. T-tubule proliferation was associated with larger Ca2+ transients, with upregulation of the L-type Ca2+ channel, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients placed the heart on the declining phase of the t-tubule-load relationship, promoting heart failure progression. The dependence of t-tubule structure on preload and afterload thus enables both compensatory and maladaptive remodelling, in rodents and humans.
Collapse
Affiliation(s)
- Marianne Ruud
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Arne Olav Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Per Andreas Norseng
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, Georg-August-University, Göttingen, Germany
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ingunn E Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Joanna Jakubiczka
- Department of Cardiology and Pneumology, Georg-August-University, Göttingen, Germany
| | - Isabelle van Hout
- Department of Physiology, School of Biomedical Sciences and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine and HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ståle Nygård
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Theis Tønnessen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Peter P Jones
- Department of Physiology, School of Biomedical Sciences and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Karl Toischer
- Department of Cardiology and Pneumology, Georg-August-University, Göttingen, Germany
| | - Cristen P Dahl
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Paulke NJ, Fleischhacker C, Wegener JB, Riedemann GC, Cretu C, Mushtaq M, Zaremba N, Möbius W, Zühlke Y, Wedemeyer J, Liebmann L, Gorshkova AA, Kownatzki-Danger D, Wagner E, Kohl T, Wichmann C, Jahn O, Urlaub H, Toischer K, Hasenfuß G, Moser T, Preobraschenski J, Lenz C, Rog-Zielinska EA, Lehnart SE, Brandenburg S. Dysferlin Enables Tubular Membrane Proliferation in Cardiac Hypertrophy. Circ Res 2024; 135:554-574. [PMID: 39011635 DOI: 10.1161/circresaha.124.324588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy. METHODS Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes. Data-independent acquisition mass spectrometry revealed the cardiac dysferlin interactome and proteomic changes of the heart in dysferlin-knockout mice. After transverse aortic constriction, we compared the hypertrophic response of wild-type versus dysferlin-knockout hearts and studied TAT network remodeling mechanisms inside cardiomyocytes by live-cell membrane imaging. RESULTS We localized dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca2+-induced Ca2+ release. Interactome analyses demonstrated a novel protein interaction of dysferlin with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca2+ channels and ryanodine receptor Ca2+ release channels in junctional complexes. Although the dysferlin-knockout caused a mild progressive phenotype of dilated cardiomyopathy, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin-knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging showed a profound reorganization of the TAT network in wild-type left-ventricular myocytes after transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components. CONCLUSIONS Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.
Collapse
Affiliation(s)
- Nora Josefine Paulke
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Carolin Fleischhacker
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Justus B Wegener
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Gabriel C Riedemann
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Constantin Cretu
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience and InnerEarLab (C.C., J.P.), University Medical Center Göttingen, Germany
| | - Mufassra Mushtaq
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Nina Zaremba
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Electron Microscopy, City Campus (W.M.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Yannik Zühlke
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Jasper Wedemeyer
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Lorenz Liebmann
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Anastasiia A Gorshkova
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Daniel Kownatzki-Danger
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Now with Institute of Transfusion Medicine, University Hospital Schleswig-Holstein; Kiel, Germany (D.K.-D)
| | - Eva Wagner
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Tobias Kohl
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab and Center for Biostructural Imaging of Neurodegeneration (C.W.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Olaf Jahn
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy (O.J.), University Medical Center Göttingen, Germany
- Neuroproteomics Group, Department of Molecular Neurobiology (O.J.)
| | - Henning Urlaub
- Department of Clinical Chemistry (H.U., C.L.), University Medical Center Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany (H.U., C.L.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Karl Toischer
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany (K.T., G.H., S.E.L.)
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany (K.T., G.H., S.E.L.)
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab (T.M.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Julia Preobraschenski
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience and InnerEarLab (C.C., J.P.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Christof Lenz
- Department of Clinical Chemistry (H.U., C.L.), University Medical Center Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany (H.U., C.L.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Germany (E.A.R.-Z.)
| | - Stephan E Lehnart
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany (K.T., G.H., S.E.L.)
| | - Sören Brandenburg
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| |
Collapse
|
6
|
Moreyra C, Moreyra E, Rozich JD. Heart Failure With Preserved Ejection Fraction: Will Cardiac Magnetic Imaging Impact on Diagnosis, Treatment, and Outcomes?: Explaining the Need for Advanced Imaging to Clinical Stakeholders. Cardiol Rev 2024; 32:371-377. [PMID: 36576375 DOI: 10.1097/crd.0000000000000494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Clinicians frequently equate symptoms of volume overload to heart failure (HF) but such generalization may preclude diagnostic or etiologic precision essential to optimizing outcomes. HF itself must be specified as the disparate types of cardiac pathology have been traditionally surmised by examination of left ventricular (LV) ejection fraction (EF) as either HF with preserved LVEF (HFpEF-LVEF >50%) or reduced LVEF of (HFrEF-LVEF <40%). More recent data support a third, potentially transitional HF subtype, but therapy, assessment, and prognosis have been historically dictated within the corresponding LV metrics determined by echocardiography. The present effort asks whether this historically dominant role of echocardiography is now shifting slightly, becoming instead a shared if not complimentary test. Will there be a gradual increasing profile for cardiac magnetic resonance as the attempt to further refine our understanding, diagnostic accuracy, and outcomes for HFpEF is attempted?
Collapse
Affiliation(s)
- Camila Moreyra
- From the Cardiology Department, Sanatorium Allende, Córdoba, Argentina
| | - Eduardo Moreyra
- From the Cardiology Department, Sanatorium Allende, Córdoba, Argentina
| | | |
Collapse
|
7
|
Sedmera D, Kvasilova A, Eckhardt A, Kacer P, Penicka M, Kocka M, Schindler D, Kaban R, Kockova R. Fibrosis and expression of extracellular matrix proteins in human interventricular septum in aortic valve stenosis and regurgitation. Histochem Cell Biol 2024; 161:367-379. [PMID: 38347221 PMCID: PMC11045568 DOI: 10.1007/s00418-024-02268-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 04/28/2024]
Abstract
Valvular heart disease leads to ventricular pressure and/or volume overload. Pressure overload leads to fibrosis, which might regress with its resolution, but the limits and details of this reverse remodeling are not known. To gain more insight into the extent and nature of cardiac fibrosis in valve disease, we analyzed needle biopsies taken from the interventricular septum of patients undergoing surgery for valve replacement focusing on the expression and distribution of major extracellular matrix protein involved in this process. Proteomic analysis performed using mass spectrometry revealed an excellent correlation between the expression of collagen type I and III, but there was little correlation with the immunohistochemical staining performed on sister sections, which included antibodies against collagen I, III, fibronectin, sarcomeric actin, and histochemistry for wheat germ agglutinin. Surprisingly, the immunofluorescence intensity did not correlate significantly with the gold standard for fibrosis quantification, which was performed using Picrosirius Red (PSR) staining, unless multiplexed on the same tissue section. There was also little correlation between the immunohistochemical markers and pressure gradient severity. It appears that at least in humans, the immunohistochemical pattern of fibrosis is not clearly correlated with standard Picrosirius Red staining on sister sections or quantitative proteomic data, possibly due to tissue heterogeneity at microscale, comorbidities, or other patient-specific factors. For precise correlation of different types of staining, multiplexing on the same section is the best approach.
Collapse
Affiliation(s)
- David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, 128 00, Prague, Czech Republic.
- Institute of Physiology, The Czech Academy of Sciences, Videnska 1024, 142 00, Prague, Czech Republic.
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Adam Eckhardt
- Institute of Physiology, The Czech Academy of Sciences, Videnska 1024, 142 00, Prague, Czech Republic
| | - Petr Kacer
- Department of Cardiac Surgery, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Martin Penicka
- Cardiovascular Center Aalst, OLV Clinic, 9300, Aalst, Belgium
| | - Matej Kocka
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Dana Schindler
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Ron Kaban
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Radka Kockova
- Na Homolce Hospital, Roentgenova 37/2, 150 30, Prague, Czech Republic
| |
Collapse
|
8
|
Schuftan D, Kooh YKG, Guo J, Sun Y, Aryan L, Stottlemire B, Berkland C, Genin GM, Huebsch N. Dynamic control of contractile resistance to iPSC-derived micro-heart muscle arrays. J Biomed Mater Res A 2024; 112:534-548. [PMID: 37952251 PMCID: PMC10922390 DOI: 10.1002/jbm.a.37642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
Many types of cardiovascular disease are linked to the mechanical forces placed on the heart. However, our understanding of how mechanical forces exactly affect the cellular biology of the heart remains incomplete. In vitro models based on cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CM) enable researchers to develop medium to high-throughput systems to study cardiac mechanobiology at the cellular level. Previous models have been developed to enable the study of mechanical forces, such as cardiac afterload. However, most of these models require exogenous extracellular matrix (ECM) to form cardiac tissues. Recently, a system was developed to simulate changes in afterload by grafting ECM-free micro-heart muscle arrays to elastomeric substrates of discrete stiffnesses. In the present study, we extended this system by combining the elastomer-grafted tissue arrays with a magnetorheological elastomeric substrate. This system allows iPSC-CM based micro-heart muscle arrays to experience dynamic changes in contractile resistance to mimic dynamically altered afterload. Acute changes in substrate stiffness led to acute changes in the calcium dynamics and contractile forces, illustrating the system's ability to dynamically elicit changes in tissue mechanics by dynamically changing contractile resistance.
Collapse
Affiliation(s)
- David Schuftan
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yasaman Kargar Gaz Kooh
- Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jingxuan Guo
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yuwen Sun
- Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lavanya Aryan
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bryce Stottlemire
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
| | - Cory Berkland
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Guy M. Genin
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- NSF Center for Engineering Mechanobiology, St. Louis, Missouri, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- NSF Center for Engineering Mechanobiology, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Simmons DW, Malayath G, Schuftan DR, Guo J, Oguntuyo K, Ramahdita G, Sun Y, Jordan SD, Munsell MK, Kandalaft B, Pear M, Rentschler SL, Huebsch N. Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes. APL Bioeng 2024; 8:016118. [PMID: 38476404 PMCID: PMC10932571 DOI: 10.1063/5.0160677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics in vivo heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing "in vivo like" physiology from immature cardiomyocytes. We hypothesized that the degree of cardiomyocyte alignment and prestress within engineered tissues is regulated by tissue geometry and, subsequently, drives electrophysiological development. Thus, we studied the effects of tissue geometry on electrophysiology of micro-heart muscle arrays (μHM) engineered from human induced pluripotent stem cells (iPSCs). Elongated tissue geometries elicited cardiomyocyte shape and electrophysiology changes led to adaptations that yielded increased calcium intake during each contraction cycle. Strikingly, pharmacologic studies revealed that a threshold of prestress and/or cellular alignment is required for sodium channel function, whereas L-type calcium and rapidly rectifying potassium channels were largely insensitive to these changes. Concurrently, tissue elongation upregulated sodium channel (NaV1.5) and gap junction (Connexin 43, Cx43) protein expression. Based on these observations, we leveraged elongated μHM to study the impact of loss-of-function mutation in Plakophilin 2 (PKP2), a desmosome protein implicated in arrhythmogenic disease. Within μHM, PKP2 knockout cardiomyocytes had cellular morphology similar to what was observed in isogenic controls. However, PKP2-/- tissues exhibited lower conduction velocity and no functional sodium current. PKP2 knockout μHM exhibited geometrically linked upregulation of sodium channel but not Cx43, suggesting that post-translational mechanisms, including a lack of ion channel-gap junction communication, may underlie the lower conduction velocity observed in tissues harboring this genetic defect. Altogether, these observations demonstrate that simple, scalable micro-tissue systems can provide the physiologic stresses necessary to induce electrical remodeling of iPS-CM to enable studies on the electrophysiologic consequences of disease-associated genomic variants.
Collapse
Affiliation(s)
- Daniel W. Simmons
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Ganesh Malayath
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - David R. Schuftan
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Jingxuan Guo
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Kasoorelope Oguntuyo
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Ghiska Ramahdita
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Yuwen Sun
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Samuel D. Jordan
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Mary K. Munsell
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Brennan Kandalaft
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Missy Pear
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Stacey L. Rentschler
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| |
Collapse
|
10
|
Pitoulis FG, Smith JJ, Pamias‐Lopez B, de Tombe PP, Hayman D, Terracciano CM. MyoLoop: Design, development and validation of a standalone bioreactor for pathophysiological electromechanical in vitro cardiac studies. Exp Physiol 2024; 109:405-415. [PMID: 37847495 PMCID: PMC10988681 DOI: 10.1113/ep091247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Mechanical load is one of the main determinants of cardiac structure and function. Mechanical load is studied in vitro using cardiac preparations together with loading protocols (e.g., auxotonic, isometric). However, such studies are often limited by reductionist models and poorly simulated mechanical load profiles. This hinders the physiological relevance of findings. Living myocardial slices have been used to study load in vitro. Living myocardial slices (LMS) are 300-μm-thick intact organotypic preparations obtained from explanted animal or human hearts. They have preserved cellular populations and the functional, structural, metabolic and molecular profile of the tissue from which they are prepared. Using a three-element Windkessel (3EWK) model we previously showed that LMSs can be cultured while performing cardiac work loops with different preload and afterload. Under such conditions, LMSs remodel as a function of the mechanical load applied to them (physiological load, pressure or volume overload). These studies were conducted in commercially available length actuators that had to be extensively modified for culture experiments. In this paper, we demonstrate the design, development and validation of a novel device, MyoLoop. MyoLoop is a bioreactor that can pace, thermoregulate, acquire and process data, and chronically load LMSs and other cardiac tissues in vitro. In MyoLoop, load is parametrised using a 3EWK model, which can be used to recreate physiological and pathological work loops and the remodelling response to these. We believe MyoLoop is the next frontier in basic cardiovascular research enabling reductionist but physiologically relevant in vitro mechanical studies.
Collapse
Affiliation(s)
| | - Jacob J. Smith
- National Heart & Lung InstituteImperial College LondonLondonUK
| | | | - Pieter P. de Tombe
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Laboratoire “Physiologie Et Médecine Expérimentale du Coeur Et Des Muscles,” PhymedexpINSERM, CNRSMontpellier University, CHU Arnaud de Villeneuve
MontpellierFrance
| | - Danika Hayman
- National Heart & Lung InstituteImperial College LondonLondonUK
| | | |
Collapse
|
11
|
Tykvartova T, Miklovic M, Kotrc M, Skaroupkova P, Kazdova L, Trnovska J, Skop V, Kolar M, Novotny J, Melenovsky V. The impact of phosphodiesterase-5 inhibition or angiotensin-converting enzyme inhibition on right and left ventricular remodeling in heart failure due to chronic volume overload. Pharmacol Res Perspect 2024; 12:e1172. [PMID: 38284173 PMCID: PMC10823410 DOI: 10.1002/prp2.1172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024] Open
Abstract
While phosphodiesterase-5 inhibition (PED5i) may prevent hypertrophy and failure in pressure-overloaded heart in an experimental model, the impact of PDE5i on volume-overload (VO)-induced hypertrophy is unknown. It is also unclear whether the hypertrophied right ventricle (RV) and left ventricle (LV) differ in their responsiveness to long-term PDE5i and if this therapy affects renal function. The goal of this study was to elucidate the effect of PDE5i treatment in VO due to aorto-caval fistula (ACF) and to compare PDE5i treatment with standard heart failure (HF) therapy with angiotensin-converting enzyme inhibitor (ACEi). ACF/sham procedure was performed on male HanSD rats aged 8 weeks. ACF animals were randomized for PDE5i sildenafil, ACEi trandolapril, or placebo treatments. After 20 weeks, RV and LV function (echocardiography, pressure-volume analysis), myocardial gene expression, and renal function were studied. Separate rat cohorts served for survival analysis. ACF led to biventricular eccentric hypertrophy (LV: +68%, RV: +145%), increased stroke work (LV: 3.6-fold, RV: 6.7-fold), and reduced load-independent systolic function (PRSW, LV: -54%, RV: -51%). Both ACF ventricles exhibited upregulation of the genes of myocardial stress and glucose metabolism. ACEi but not PDE5i attenuated pulmonary congestion, LV remodeling, albuminuria, and improved survival (median survival in ACF/ACEi was 41 weeks vs. 35 weeks in ACF/placebo, p = .02). PDE5i increased cyclic guanosine monophosphate levels in the lungs, but not in the RV, LV, or kidney. PDE5i did not improve survival rate and cardiac and renal function in ACF rats, in contrast to ACEi. VO-induced HF is not responsive to PDE5i therapy.
Collapse
Affiliation(s)
- Tereza Tykvartova
- Institute for Clinical and Experimental Medicine—IKEMPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Matus Miklovic
- Institute for Clinical and Experimental Medicine—IKEMPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Martin Kotrc
- Institute for Clinical and Experimental Medicine—IKEMPragueCzech Republic
| | - Petra Skaroupkova
- Institute for Clinical and Experimental Medicine—IKEMPragueCzech Republic
| | - Ludmila Kazdova
- Institute for Clinical and Experimental Medicine—IKEMPragueCzech Republic
| | - Jaroslava Trnovska
- Institute for Clinical and Experimental Medicine—IKEMPragueCzech Republic
| | - Vojtech Skop
- Institute for Clinical and Experimental Medicine—IKEMPragueCzech Republic
- Department of Biochemistry and MicrobiologyUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Michal Kolar
- Laboratory of Genomics and BioinformaticsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jiri Novotny
- Laboratory of Genomics and BioinformaticsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Vojtech Melenovsky
- Institute for Clinical and Experimental Medicine—IKEMPragueCzech Republic
| |
Collapse
|
12
|
Lebek S, Caravia XM, Straub LG, Alzhanov D, Tan W, Li H, McAnally JR, Chen K, Xu L, Scherer PE, Liu N, Bassel-Duby R, Olson EN. CRISPR-Cas9 base editing of pathogenic CaMKIIδ improves cardiac function in a humanized mouse model. J Clin Invest 2024; 134:e175164. [PMID: 37856214 PMCID: PMC10760954 DOI: 10.1172/jci175164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
Cardiovascular diseases are the most common cause of worldwide morbidity and mortality, highlighting the necessity for advanced therapeutic strategies. Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ) is a prominent inducer of various cardiac disorders, which is mediated by 2 oxidation-sensitive methionine residues within the regulatory domain. We have previously shown that ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing enables the heart to recover function from otherwise severe damage following ischemia/reperfusion (IR) injury. Here, we extended this therapeutic concept toward potential clinical translation. We generated a humanized CAMK2D knockin mouse model in which the genomic sequence encoding the entire regulatory domain was replaced with the human sequence. This enabled comparison and optimization of two different editing strategies for the human genome in mice. To edit CAMK2D in vivo, we packaged the optimized editing components into an engineered myotropic adeno-associated virus (MyoAAV 2A), which enabled efficient delivery at a very low AAV dose into the humanized mice at the time of IR injury. CAMK2D-edited mice recovered cardiac function, showed improved exercise performance, and were protected from myocardial fibrosis, which was otherwise observed in injured control mice after IR. Our findings identify a potentially effective strategy for cardioprotection in response to oxidative damage.
Collapse
Affiliation(s)
- Simon Lebek
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Xurde M. Caravia
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Damir Alzhanov
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wei Tan
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hui Li
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John R. McAnally
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ning Liu
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Eric N. Olson
- Department of Molecular Biology and
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
Wester M, Arzt M, Sinha F, Maier LS, Lebek S. Insights into the Interaction of Heart Failure with Preserved Ejection Fraction and Sleep-Disordered Breathing. Biomedicines 2023; 11:3038. [PMID: 38002038 PMCID: PMC10669157 DOI: 10.3390/biomedicines11113038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is emerging as a widespread disease with global socioeconomic impact. Patients with HFpEF show a dramatically increased morbidity and mortality, and, unfortunately, specific treatment options are limited. This is due to the various etiologies that promote HFpEF development. Indeed, cluster analyses with common HFpEF comorbidities revealed the existence of several HFpEF phenotypes. One especially frequent, yet underappreciated, comorbidity is sleep-disordered breathing (SDB), which is closely intertwined with the development and progression of the "obese HFpEF phenotype". The following review article aims to provide an overview of the common HFpEF etiologies and phenotypes, especially in the context of SDB. As general HFpEF therapies are often not successful, patient- and phenotype-individualized therapeutic strategies are warranted. Therefore, for the "obese HFpEF phenotype", a better understanding of the mechanistic parallels between both HFpEF and SDB is required, which may help to identify potential phenotype-individualized therapeutic strategies. Novel technologies like single-cell transcriptomics or CRISPR-Cas9 gene editing further broaden the groundwork for deeper insights into pathomechanisms and precision medicine.
Collapse
Affiliation(s)
- Michael Wester
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
| | - Frederick Sinha
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
| | - Lars Siegfried Maier
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Lebek S, Caravia XM, Chemello F, Tan W, McAnally JR, Chen K, Xu L, Liu N, Bassel-Duby R, Olson EN. Elimination of CaMKIIδ Autophosphorylation by CRISPR-Cas9 Base Editing Improves Survival and Cardiac Function in Heart Failure in Mice. Circulation 2023; 148:1490-1504. [PMID: 37712250 PMCID: PMC10842988 DOI: 10.1161/circulationaha.123.065117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Cardiovascular diseases are the main cause of worldwide morbidity and mortality, highlighting the need for new therapeutic strategies. Autophosphorylation and subsequent overactivation of the cardiac stress-responsive enzyme CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) serves as a central driver of multiple cardiac disorders. METHODS To develop a comprehensive therapy for heart failure, we used CRISPR-Cas9 adenine base editing to ablate the autophosphorylation site of CaMKIIδ. We generated mice harboring a phospho-resistant CaMKIIδ mutation in the germline and subjected these mice to severe transverse aortic constriction, a model for heart failure. Cardiac function, transcriptional changes, apoptosis, and fibrosis were assessed by echocardiography, RNA sequencing, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and standard histology, respectively. Specificity toward CaMKIIδ gene editing was assessed using deep amplicon sequencing. Cellular Ca2+ homeostasis was analyzed using epifluorescence microscopy in Fura-2-loaded cardiomyocytes. RESULTS Within 2 weeks after severe transverse aortic constriction surgery, 65% of all wild-type mice died, and the surviving mice showed dramatically impaired cardiac function. In contrast to wild-type mice, CaMKIIδ phospho-resistant gene-edited mice showed a mortality rate of only 11% and exhibited substantially improved cardiac function after severe transverse aortic constriction. Moreover, CaMKIIδ phospho-resistant mice were protected from heart failure-related aberrant changes in cardiac gene expression, myocardial apoptosis, and subsequent fibrosis, which were observed in wild-type mice after severe transverse aortic constriction. On the basis of identical mouse and human genome sequences encoding the autophosphorylation site of CaMKIIδ, we deployed the same editing strategy to modify this pathogenic site in human induced pluripotent stem cells. It is notable that we detected a >2000-fold increased specificity for editing of CaMKIIδ compared with other CaMKII isoforms, which is an important safety feature. While wild-type cardiomyocytes showed impaired Ca2+ transients and an increased frequency of arrhythmias after chronic β-adrenergic stress, CaMKIIδ-edited cardiomyocytes were protected from these adverse responses. CONCLUSIONS Ablation of CaMKIIδ autophosphorylation by adenine base editing may offer a potential broad-based therapeutic concept for human cardiac disease.
Collapse
Affiliation(s)
- Simon Lebek
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
- Department of Internal Medicine II, University Hospital Regensburg; Regensburg, Germany
| | - Xurde M. Caravia
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Francesco Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Wei Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - John R. McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| |
Collapse
|
15
|
Balderas-Villalobos J, Medina-Contreras JML, Lynch C, Kabadi R, Hayles J, Ramirez RJ, Tan AY, Kaszala K, Samsó M, Huizar JF, Eltit JM. Mechanisms of adaptive hypertrophic cardiac remodeling in a large animal model of premature ventricular contraction-induced cardiomyopathy. IUBMB Life 2023; 75:926-940. [PMID: 37427864 PMCID: PMC10592397 DOI: 10.1002/iub.2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Frequent premature ventricular contractions (PVCs) promoted eccentric cardiac hypertrophy and reduced ejection fraction (EF) in a large animal model of PVC-induced cardiomyopathy (PVC-CM), but the molecular mechanisms and markers of this hypertrophic remodeling remain unexplored. Healthy mongrel canines were implanted with pacemakers to deliver bigeminal PVCs (50% burden with 200-220 ms coupling interval). After 12 weeks, left ventricular (LV) free wall samples were studied from PVC-CM and Sham groups. In addition to reduced LV ejection fraction (LVEF), the PVC-CM group showed larger cardiac myocytes without evident ultrastructural alterations compared to the Sham group. Biochemical markers of pathological hypertrophy, such as store-operated Ca2+ entry, calcineurin/NFAT pathway, β-myosin heavy chain, and skeletal type α-actin were unaltered in the PVC-CM group. In contrast, pro-hypertrophic and antiapoptotic pathways including ERK1/2 and AKT/mTOR were activated and/or overexpressed in the PVC-CM group, which appeared counterbalanced by an overexpression of protein phosphatase 1 and a borderline elevation of the anti-hypertrophic factor atrial natriuretic peptide. Moreover, the potent angiogenic and pro-hypertrophic factor VEGF-A and its receptor VEGFR2 were significantly elevated in the PVC-CM group. In conclusion, a molecular program is in place to keep this structural remodeling associated with frequent PVCs as an adaptive pathological hypertrophy.
Collapse
Affiliation(s)
| | - JML Medina-Contreras
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Christopher Lynch
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Rajiv Kabadi
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Janée Hayles
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rafael J. Ramirez
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Alex Y. Tan
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States of America
| | - Karoly Kaszala
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States of America
| | - Montserrat Samsó
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| | - Jose F. Huizar
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States of America
| | - Jose M. Eltit
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University
| |
Collapse
|
16
|
DePalma SJ, Jillberto J, Stis AE, Huang DD, Lo J, Davidson CD, Chowdhury A, Jewett ME, Kobeissi H, Chen CS, Lejeune E, Helms AS, Nordsletten DA, Baker BM. Matrix architecture and mechanics regulate myofibril organization, costamere assembly, and contractility of engineered myocardial microtissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563346. [PMID: 37961415 PMCID: PMC10634701 DOI: 10.1101/2023.10.20.563346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, we established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM-mimetic synthetic, fiber matrices and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), enabling real-time contractility readouts, in-depth structural assessment, and tissue-specific computational modeling. We find that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC-CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell-ECM interactions in myofibril assembly and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC-CM tissue models with controllable architecture and mechanics can inform the design of translatable regenerative cardiac therapies.
Collapse
|
17
|
Moady G, Ertracht O, Shuster-Biton E, Daud E, Atar S. The Role of Extracellular Signal-Regulated Kinase Pathways in Different Models of Cardiac Hypertrophy in Rats. Biomedicines 2023; 11:2337. [PMID: 37760779 PMCID: PMC10525208 DOI: 10.3390/biomedicines11092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiac hypertrophy develops following different triggers of pressure or volume overload. In several previous studies, different hypertrophy types were demonstrated following alterations in extracellular signal-regulated kinase (ERK) pathway activation. In the current study, we studied two types of cardiac hypertrophy models in rats: eccentric and concentric hypertrophy. For the eccentric hypertrophy model, iron deficiency anemia caused by a low-iron diet was implemented, while surgical aortic constriction was used to induce aortic stenosis (AS) and concentric cardiac hypertrophy. The hearts were evaluated using echocardiography, histological sections, and scanning electron microscopy. The expression of ERK1/2 was analyzed using Western blot. During the study period, anemic rats developed eccentric hypertrophy characterized by an enlarged left ventricle (LV) cavity cross-sectional area (CSA) (59.9 ± 5.1 mm2 vs. 47 ± 8.1 mm2, p = 0.002), thinner septum (2.1 ± 0.3 mm vs. 2.5 ± 0.2 mm, p < 0.05), and reduced left ventricular ejection fraction (LVEF) (52.6% + 4.7 vs. 60.3% + 2.8, p < 0.05). Rats with AS developed concentric hypertrophy with a thicker septum (2.8 ± 0.6 vs. 2.4 ± 0.1 p < 0.05), increased LV muscle cross-sectional area (79.5 ± 9.33 mm2 vs. 57.9 ± 5.0 mm2, p < 0.001), and increased LVEF (70.3% + 2.8 vs. 60.0% + 2.1, p < 0.05). ERK1/2 expression decreased in the anemic rats and increased in the rats with AS. Nevertheless, the p-ERK and the p-MEK did not change significantly in all the examined models. We concluded that ERK1/2 expression was altered by the type of hypertrophy and the change in LVEF.
Collapse
Affiliation(s)
- Gassan Moady
- The Cardiology Department, Galilee Medical Center, Nahariya 2210001, Israel; (E.D.); (S.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| | - Offir Ertracht
- The Cardiovascular Research Laboratory, Medical Research Institute, Galilee Medical Center, Nahariya 2210001, Israel;
| | - Efrat Shuster-Biton
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
- The Cardiovascular Research Laboratory, Medical Research Institute, Galilee Medical Center, Nahariya 2210001, Israel;
| | - Elias Daud
- The Cardiology Department, Galilee Medical Center, Nahariya 2210001, Israel; (E.D.); (S.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| | - Shaul Atar
- The Cardiology Department, Galilee Medical Center, Nahariya 2210001, Israel; (E.D.); (S.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| |
Collapse
|
18
|
Yusuf SM, Norton GR, Peterson VR, Mthembu N, Libhaber CD, Tade G, Bello H, Bamaiyi AJ, Mmopi KN, Dessein PH, Peters F, Sareli P, Woodiwiss AJ. Role of atrial natriuretic peptide in the dissociation between flow relations with ventricular mass and function in a community with volume-dependent hypertension. Front Cardiovasc Med 2023; 10:1175145. [PMID: 37265568 PMCID: PMC10230032 DOI: 10.3389/fcvm.2023.1175145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Background Whether differential effects of volume load on left ventricular mass (LVM) and function occur in sustained volume-dependent primary hypertension, and the impact of atrial natriuretic peptide (ANP) on these effects, is unknown. Methods From aortic pressure, velocity and diameter measurements and echocardiography, we determined in an African community (n = 772), the impact of systemic flow-induced increases in central pulse pressure (PPc) and circulating ANP (ELISA) on LVM and indexes of function. Results Stroke volume (SV), but not aortic flow (Q), was associated with LVM and mean wall thickness (MWT) beyond stroke work and confounders (p < 0.0001). Adjustments for SV markedly decreased the relationships between PPc and LVMI or MWT. However, neither SV, nor Q were independently associated with either myocardial s', e', or E/e' (p > 0.14) and adjustments for neither SV nor Q modified relationships between PPc and s', e' or E/e' (p < 0.005 to <0.0001). SV was nevertheless strongly and independently associated with ANP (p < 0.0001) and ANP was similarly strikingly associated with s' (p < 0.0001) and e' (p < 0.0005), but not E/e', independent of confounders and several determinants of afterload. Importantly, ANP concentrations were inversely rather than positively associated with LV diastolic dysfunction (DD) (p < 0.005) and lower rather than higher ANP concentrations contributed markedly to the ability to detect DD in those with, but not without LV hypertrophy. Conclusion In populations with sustained volume-dependent hypertension, flow (SV)-related increases in PP have a major impact on LV structure, but not on function, an effect attributed to parallel striking beneficial actions of ANP on myocardial function.
Collapse
|
19
|
Sasset L, Manzo OL, Zhang Y, Marino A, Rubinelli L, Riemma MA, Chalasani MLS, Dasoveanu DC, Roviezzo F, Jankauskas SS, Santulli G, Bucci MR, Lu TT, Di Lorenzo A. Nogo-A reduces ceramide de novo biosynthesis to protect from heart failure. Cardiovasc Res 2023; 119:506-519. [PMID: 35815623 PMCID: PMC10226746 DOI: 10.1093/cvr/cvac108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Growing evidence correlate the accrual of the sphingolipid ceramide in plasma and cardiac tissue with heart failure (HF). Regulation of sphingolipid metabolism in the heart and the pathological impact of its derangement remain poorly understood. Recently, we discovered that Nogo-B, a membrane protein of endoplasmic reticulum, abundant in the vascular wall, down-regulates the sphingolipid de novo biosynthesis via serine palmitoyltransferase (SPT), first and rate liming enzyme, to impact vascular functions and blood pressure. Nogo-A, a splice isoform of Nogo, is transiently expressed in cardiomyocyte (CM) following pressure overload. Cardiac Nogo is up-regulated in dilated and ischaemic cardiomyopathies in animals and humans. However, its biological function in the heart remains unknown. METHODS AND RESULTS We discovered that Nogo-A is a negative regulator of SPT activity and refrains ceramide de novo biosynthesis in CM exposed to haemodynamic stress, hence limiting ceramide accrual. At 7 days following transverse aortic constriction (TAC), SPT activity was significantly up-regulated in CM lacking Nogo-A and correlated with ceramide accrual, particularly very long-chain ceramides, which are the most abundant in CM, resulting in the suppression of 'beneficial' autophagy. At 3 months post-TAC, mice lacking Nogo-A in CM showed worse pathological cardiac hypertrophy and dysfunction, with ca. 50% mortality rate. CONCLUSION Mechanistically, Nogo-A refrains ceramides from accrual, therefore preserves the 'beneficial' autophagy, mitochondrial function, and metabolic gene expression, limiting the progression to HF under sustained stress.
Collapse
Affiliation(s)
- Linda Sasset
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Onorina Laura Manzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano 49, Naples 80131, Italy
| | - Yi Zhang
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, China
| | - Alice Marino
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Luisa Rubinelli
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Maria Antonietta Riemma
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano 49, Naples 80131, Italy
| | - Madhavi Latha S Chalasani
- Department of Microbiology and Immunology, Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dragos C Dasoveanu
- Department of Microbiology and Immunology, Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano 49, Naples 80131, Italy
| | - Stanislovas S Jankauskas
- Department of Medicine (Cardiology) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Cardiology) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Maria Rosaria Bucci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano 49, Naples 80131, Italy
| | - Theresa T Lu
- Department of Microbiology and Immunology, Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
20
|
Farag A, Mandour AS, Hendawy H, Elhaieg A, Elfadadny A, Tanaka R. A review on experimental surgical models and anesthetic protocols of heart failure in rats. Front Vet Sci 2023; 10:1103229. [PMID: 37051509 PMCID: PMC10083377 DOI: 10.3389/fvets.2023.1103229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Heart failure (HF) is a serious health and economic burden worldwide, and its prevalence is continuously increasing. Current medications effectively moderate the progression of symptoms, and there is a need for novel preventative and reparative treatments. The development of novel HF treatments requires the testing of potential therapeutic procedures in appropriate animal models of HF. During the past decades, murine models have been extensively used in fundamental and translational research studies to better understand the pathophysiological mechanisms of HF and develop more effective methods to prevent and control congestive HF. Proper surgical approaches and anesthetic protocols are the first steps in creating these models, and each successful approach requires a proper anesthetic protocol that maintains good recovery and high survival rates after surgery. However, each protocol may have shortcomings that limit the study's outcomes. In addition, the ethical regulations of animal welfare in certain countries prohibit the use of specific anesthetic agents, which are widely used to establish animal models. This review summarizes the most common and recent surgical models of HF and the anesthetic protocols used in rat models. We will highlight the surgical approach of each model, the use of anesthesia, and the limitations of the model in the study of the pathophysiology and therapeutic basis of common cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Ahmed Farag
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
- Ahmed S. Mandour
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Asmaa Elhaieg
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur El-Beheira, Egypt
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Ryou Tanaka
| |
Collapse
|
21
|
Xu X, Elkenani M, Tan X, Hain JK, Cui B, Schnelle M, Hasenfuss G, Toischer K, Mohamed BA. DNA Methylation Analysis Identifies Novel Epigenetic Loci in Dilated Murine Heart upon Exposure to Volume Overload. Int J Mol Sci 2023; 24:ijms24065885. [PMID: 36982963 PMCID: PMC10059258 DOI: 10.3390/ijms24065885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Left ventricular (LV) dilatation, a prominent risk factor for heart failure (HF), precedes functional deterioration and is used to stratify patients at risk for arrhythmias and cardiac mortality. Aberrant DNA methylation contributes to maladaptive cardiac remodeling and HF progression following pressure overload and ischemic cardiac insults. However, no study has examined cardiac DNA methylation upon exposure to volume overload (VO) despite being relatively common among HF patients. We carried out global methylome analysis of LV harvested at a decompensated HF stage following exposure to VO induced by aortocaval shunt. VO resulted in pathological cardiac remodeling, characterized by massive LV dilatation and contractile dysfunction at 16 weeks after shunt. Although methylated DNA was not markedly altered globally, 25 differentially methylated promoter regions (DMRs) were identified in shunt vs. sham hearts (20 hypermethylated and 5 hypomethylated regions). The validated hypermethylated loci in Junctophilin-2 (Jph2), Signal peptidase complex subunit 3 (Spcs3), Vesicle-associated membrane protein-associated protein B (Vapb), and Inositol polyphosphate multikinase (Ipmk) were associated with the respective downregulated expression and were consistently observed in dilated LV early after shunt at 1 week after shunt, before functional deterioration starts to manifest. These hypermethylated loci were also detected peripherally in the blood of the shunt mice. Altogether, we have identified conserved DMRs that could be novel epigenetic biomarkers in dilated LV upon VO exposure.
Collapse
Affiliation(s)
- Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Manar Elkenani
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xiaoying Tan
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, 37075 Göttingen, Germany
| | - Jara Katharina Hain
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Baolong Cui
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Moritz Schnelle
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| |
Collapse
|
22
|
Wang C, Ramahdita G, Genin G, Huebsch N, Ma Z. Dynamic mechanobiology of cardiac cells and tissues: Current status and future perspective. BIOPHYSICS REVIEWS 2023; 4:011314. [PMID: 37008887 PMCID: PMC10062054 DOI: 10.1063/5.0141269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/08/2023] [Indexed: 03/31/2023]
Abstract
Mechanical forces impact cardiac cells and tissues over their entire lifespan, from development to growth and eventually to pathophysiology. However, the mechanobiological pathways that drive cell and tissue responses to mechanical forces are only now beginning to be understood, due in part to the challenges in replicating the evolving dynamic microenvironments of cardiac cells and tissues in a laboratory setting. Although many in vitro cardiac models have been established to provide specific stiffness, topography, or viscoelasticity to cardiac cells and tissues via biomaterial scaffolds or external stimuli, technologies for presenting time-evolving mechanical microenvironments have only recently been developed. In this review, we summarize the range of in vitro platforms that have been used for cardiac mechanobiological studies. We provide a comprehensive review on phenotypic and molecular changes of cardiomyocytes in response to these environments, with a focus on how dynamic mechanical cues are transduced and deciphered. We conclude with our vision of how these findings will help to define the baseline of heart pathology and of how these in vitro systems will potentially serve to improve the development of therapies for heart diseases.
Collapse
Affiliation(s)
| | - Ghiska Ramahdita
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | | - Zhen Ma
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
23
|
Gunata M, Parlakpinar H. Experimental heart failure models in small animals. Heart Fail Rev 2023; 28:533-554. [PMID: 36504404 DOI: 10.1007/s10741-022-10286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is one of the most critical health and economic burdens worldwide, and its prevalence is continuously increasing. HF is a disease that occurs due to a pathological change arising from the function or structure of the heart tissue and usually progresses. Numerous experimental HF models have been created to elucidate the pathophysiological mechanisms that cause HF. An understanding of the pathophysiology of HF is essential for the development of novel efficient therapies. During the past few decades, animal models have provided new insights into the complex pathogenesis of HF. Success in the pathophysiology and treatment of HF has been achieved by using animal models of HF. The development of new in vivo models is critical for evaluating treatments such as gene therapy, mechanical devices, and new surgical approaches. However, each animal model has advantages and limitations, and none of these models is suitable for studying all aspects of HF. Therefore, the researchers have to choose an appropriate experimental model that will fully reflect HF. Despite some limitations, these animal models provided a significant advance in the etiology and pathogenesis of HF. Also, experimental HF models have led to the development of new treatments. In this review, we discussed widely used experimental HF models that continue to provide critical information for HF patients and facilitate the development of new treatment strategies.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye.
| |
Collapse
|
24
|
Hegner P, Lebek S, Schaner B, Ofner F, Gugg M, Maier LS, Arzt M, Wagner S. CaMKII-Dependent Contractile Dysfunction and Pro-Arrhythmic Activity in a Mouse Model of Obstructive Sleep Apnea. Antioxidants (Basel) 2023; 12:antiox12020315. [PMID: 36829874 PMCID: PMC9952298 DOI: 10.3390/antiox12020315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Left ventricular contractile dysfunction and arrhythmias frequently occur in patients with sleep-disordered breathing (SDB). The CaMKII-dependent dysregulation of cellular Ca homeostasis has recently been described in SDB patients, but these studies only partly explain the mechanism and are limited by the patients' heterogeneity. Here, we analyzed contractile function and Ca homeostasis in a mouse model of obstructive sleep apnea (OSA) that is not limited by confounding comorbidities. OSA was induced by artificial tongue enlargement with polytetrafluorethylene (PTFE) injection into the tongue of wildtype mice and mice with a genetic ablation of the oxidative activation sites of CaMKII (MMVV knock-in). After eight weeks, cardiac function was assessed with echocardiography. Reactive oxygen species (ROS) and Ca transients were measured using confocal and epifluorescence microscopy, respectively. Wildtype PTFE mice exhibited an impaired ejection fraction, while MMVV PTFE mice were fully protected. As expected, isolated cardiomyocytes from PTFE mice showed increased ROS production. We further observed decreased levels of steady-state Ca transients, decreased levels of caffeine-induced Ca transients, and increased pro-arrhythmic activity (defined as deviations from the diastolic Ca baseline) only in wildtype but not in MMVV PTFE mice. In summary, in the absence of any comorbidities, OSA was associated with contractile dysfunction and pro-arrhythmic activity and the inhibition of the oxidative activation of CaMKII conveyed cardioprotection, which may have therapeutic implications.
Collapse
Affiliation(s)
- Philipp Hegner
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benedikt Schaner
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Florian Ofner
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mathias Gugg
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lars Siegfried Maier
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
25
|
Xu R, Ding Z, Li H, Shi J, Cheng L, Xu H, Wu J, Zou Y. Identification of early cardiac dysfunction and heterogeneity after pressure and volume overload in mice by high-frequency echocardiographic strain imaging. Front Cardiovasc Med 2023; 9:1071249. [PMID: 36712248 PMCID: PMC9880208 DOI: 10.3389/fcvm.2022.1071249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Object Aortic stenosis and regurgitation are clinically important conditions characterized with different hypertrophic types induced by pressure or volume overload, respectively, but with comparable cardiac function in compensated stage. Speckle-tracking based strain imaging has been applied to assess subtle alterations in cardiac abnormality, but its application in differentiating these two types of ventricular hypertrophy is still sparse. Here, we performed strain imaging analysis of cardiac remodeling in these two loading conditions. Methods C57BL/6J mice were subjected to transverse aortic constriction (TAC)-induced pressure overload or aortic regurgitation (AR)-induced volume overload. Conventional echocardiography and strain imaging were comprehensively assessed to detect stimulus-specific alterations in TAC and AR hearts. Results Conventional echocardiography did not detect significant changes in left ventricular systolic (ejection fraction and fractional shortening) and diastolic (E/E') function in either TAC or AR mice. On the contrary, global strain analysis revealed global longitudinal strain and strain rate were remarkably impaired in TAC while preserved in AR mice, although global radial, and circumferential strain and strain rate were significantly reduced in both models. Regional strain analysis in the long axis demonstrated that longitudinal strain and strain rate in all or most segments were decreased in TAC but maintained or slightly dented in AR mice, while radial strain and strain rate indicated overt decline in both models. Moreover, decreased radial and circumferential strain and strain rate were observed in most segments of TAC and AR mice in the short axis. Conclusion Strain imaging is superior to conventional echocardiography to detect subtle changes in myocardial deformation, with longitudinal strain and strain rate indicating distinct functional changes in pressure versus volume overload myocardial hypertrophy, making it potentially an advanced approach for early detection and differential diagnosis of cardiac dysfunction.
Collapse
Affiliation(s)
- Ran Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Shi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leilei Cheng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,*Correspondence: Jian Wu,
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Yunzeng Zou,
| |
Collapse
|
26
|
Reuter SP, Soonpaa MH, Field D, Simpson E, Rubart-von der Lohe M, Lee HK, Sridhar A, Ware SM, Green N, Li X, Ofner S, Marchuk DA, Wollert KC, Field LJ. Cardiac Troponin I-Interacting Kinase Affects Cardiomyocyte S-Phase Activity but Not Cardiomyocyte Proliferation. Circulation 2023; 147:142-153. [PMID: 36382596 PMCID: PMC9839600 DOI: 10.1161/circulationaha.122.061130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Identifying genetic variants that affect the level of cell cycle reentry and establishing the degree of cell cycle progression in those variants could help guide development of therapeutic interventions aimed at effecting cardiac regeneration. We observed that C57Bl6/NCR (B6N) mice have a marked increase in cardiomyocyte S-phase activity after permanent coronary artery ligation compared with infarcted DBA/2J (D2J) mice. METHODS Cardiomyocyte cell cycle activity after infarction was monitored in D2J, (D2J×B6N)-F1, and (D2J×B6N)-F1×D2J backcross mice by means of bromodeoxyuridine or 5-ethynyl-2'-deoxyuridine incorporation using a nuclear-localized transgenic reporter to identify cardiomyocyte nuclei. Genome-wide quantitative trait locus analysis, fine scale genetic mapping, whole exome sequencing, and RNA sequencing analyses of the backcross mice were performed to identify the gene responsible for the elevated cardiomyocyte S-phase phenotype. RESULTS (D2J×B6N)-F1 mice exhibited a 14-fold increase in cardiomyocyte S-phase activity in ventricular regions remote from infarct scar compared with D2J mice (0.798±0.09% versus 0.056±0.004%; P<0.001). Quantitative trait locus analysis of (D2J×B6N)-F1×D2J backcross mice revealed that the gene responsible for differential S-phase activity was located on the distal arm of chromosome 3 (logarithm of the odds score=6.38; P<0.001). Additional genetic and molecular analyses identified 3 potential candidates. Of these, Tnni3k (troponin I-interacting kinase) is expressed in B6N hearts but not in D2J hearts. Transgenic expression of TNNI3K in a D2J genetic background results in elevated cardiomyocyte S-phase activity after injury. Cardiomyocyte S-phase activity in both Tnni3k-expressing and Tnni3k-nonexpressing mice results in the formation of polyploid nuclei. CONCLUSIONS These data indicate that Tnni3k expression increases the level of cardiomyocyte S-phase activity after injury.
Collapse
Affiliation(s)
- Sean P. Reuter
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Mark H. Soonpaa
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Dorothy Field
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Ed Simpson
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine
| | | | - Han Kyu Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine
| | - Arthi Sridhar
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Stephanie M. Ware
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Nick Green
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine
| | - Xiaochun Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine
| | - Susan Ofner
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine
| | - Douglas A. Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine
| | - Kai C. Wollert
- Department of Cardiology and Angiology, Division of Molecular and Translational Cardiology, Hannover Medical School
| | - Loren J. Field
- Krannert Cardiovascular Research Center, Indiana University School of Medicine
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| |
Collapse
|
27
|
Bengel P, Elkenani M, Beuthner BE, Pietzner M, Mohamed BA, Pollok-Kopp B, Krätzner R, Toischer K, Puls M, Fischer A, Binder L, Hasenfuß G, Schnelle M. Metabolomic Profiling in Patients with Different Hemodynamic Subtypes of Severe Aortic Valve Stenosis. Biomolecules 2023; 13:95. [PMID: 36671480 PMCID: PMC9855798 DOI: 10.3390/biom13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Severe aortic stenosis (AS) is a common pathological condition in an ageing population imposing significant morbidity and mortality. Based on distinct hemodynamic features, i.e., ejection fraction (EF), transvalvular gradient and stroke volume, four different AS subtypes can be distinguished: (i) normal EF and high gradient, (ii) reduced EF and high gradient, (iii) reduced EF and low gradient, and (iv) normal EF and low gradient. These subtypes differ with respect to pathophysiological mechanisms, cardiac remodeling, and prognosis. However, little is known about metabolic changes in these different hemodynamic conditions of AS. Thus, we carried out metabolomic analyses in serum samples of 40 AS patients (n = 10 per subtype) and 10 healthy blood donors (controls) using ultrahigh-performance liquid chromatography-tandem mass spectroscopy. A total of 1293 biochemicals could be identified. Principal component analysis revealed different metabolic profiles in all of the subgroups of AS (All-AS) vs. controls. Out of the determined biochemicals, 48% (n = 620) were altered in All-AS vs. controls (p < 0.05). In this regard, levels of various acylcarnitines (e.g., myristoylcarnitine, fold-change 1.85, p < 0.05), ketone bodies (e.g., 3-hydroxybutyrate, fold-change 11.14, p < 0.05) as well as sugar metabolites (e.g., glucose, fold-change 1.22, p < 0.05) were predominantly increased, whereas amino acids (e.g., leucine, fold-change 0.8, p < 0.05) were mainly reduced in All-AS. Interestingly, these changes appeared to be consistent amongst all AS subtypes. Distinct differences between AS subtypes were found for metabolites belonging to hemoglobin metabolism, diacylglycerols, and dihydrosphingomyelins. These findings indicate that relevant changes in substrate utilization appear to be consistent for different hemodynamic subtypes of AS and may therefore reflect common mechanisms during AS-induced heart failure. Additionally, distinct metabolites could be identified to significantly differ between certain AS subtypes. Future studies need to define their pathophysiological implications.
Collapse
Affiliation(s)
- Philipp Bengel
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Manar Elkenani
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Bo E. Beuthner
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
- Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Belal A. Mohamed
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Beatrix Pollok-Kopp
- Department of Transfusion Medicine, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ralph Krätzner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Karl Toischer
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Miriam Puls
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Andreas Fischer
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
- Division Vascular Signaling and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Lutz Binder
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Gerd Hasenfuß
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Moritz Schnelle
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
28
|
Linz B, Hesselkilde EM, Skarsfeldt MA, Hertel JN, Sattler SM, Yan Y, Tfelt-Hansen J, Diness JG, Bentzen BH, Linz D, Jespersen T. Pharmacological inhibition of SK-channels with AP14145 prevents atrial arrhythmogenic changes in a porcine model for obstructive respiratory events. J Cardiovasc Electrophysiol 2023; 34:126-134. [PMID: 36482155 PMCID: PMC10107889 DOI: 10.1111/jce.15769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) creates a complex substrate for atrial fibrillation (AF), which is refractory to many clinically available pharmacological interventions. We investigated atrial antiarrhythmogenic properties and ventricular electrophysiological safety of small-conductance Ca2+ -activated K+ (SK)-channel inhibition in a porcine model for obstructive respiratory events. METHODS In spontaneously breathing pigs, obstructive respiratory events were simulated by intermittent negative upper airway pressure (INAP) applied via a pressure device connected to the intubation tube. INAP was applied for 75 s, every 10 min, three times before and three times during infusion of the SK-channel inhibitor AP14145. Atrial effective refractory periods (AERP) were acquired before (pre-INAP), during (INAP) and after (post-) INAP. AF-inducibility was determined by a S1S2 atrial pacing protocol. Ventricular arrhythmicity was evaluated by heart rate adjusted QT-interval duration (QT-paced) and electromechanical window (EMW) shortening. RESULTS During vehicle infusion, INAP transiently shortened AERP (pre-INAP: 135 ± 10 ms vs. post-INAP 101 ± 11 ms; p = .008) and increased AF-inducibility. QT-paced prolonged during INAP (pre-INAP 270 ± 7 ms vs. INAP 275 ± 7 ms; p = .04) and EMW shortened progressively throughout INAP and post-INAP (pre-INAP 80 ± 4 ms; INAP 59 ± 6 ms, post-INAP 46 ± 10 ms). AP14145 prolonged baseline AERP, partially prevented INAP-induced AERP-shortening and reduced AF-susceptibility. AP14145 did not alter QT-paced at baseline (pre-AP14145 270 ± 7 ms vs. AP14145 268 ± 6 ms, p = .83) or QT-paced and EMW-shortening during INAP. CONCLUSION In a pig model for obstructive respiratory events, the SK-channel-inhibitor AP14145 prevented INAP-associated AERP-shortening and AF-susceptibility without impairing ventricular electrophysiology. Whether SK-channels represent a target for OSA-related AF in humans warrants further study.
Collapse
Affiliation(s)
- Benedikt Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Eva M Hesselkilde
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Mark A Skarsfeldt
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark.,Acesion Pharma, Copenhagen, Denmark
| | - Julie N Hertel
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Stefan M Sattler
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Yannan Yan
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Bo H Bentzen
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark.,Acesion Pharma, Copenhagen, Denmark
| | - Dominik Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark.,Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia.,Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Thomas Jespersen
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, Cardiac Physiology Laboratory, Panum Institutet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Alim CC, Ko CY, Mira Hernandez J, Shen EY, Baidar S, Chen‐Izu Y, Bers DM, Bossuyt J. Nitrosylation of cardiac CaMKII at Cys290 mediates mechanical afterload-induced increases in Ca 2+ transient and Ca 2+ sparks. J Physiol 2022; 600:4865-4879. [PMID: 36227145 PMCID: PMC9827875 DOI: 10.1113/jp283427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiac mechanical afterload induces an intrinsic autoregulatory increase in myocyte Ca2+ dynamics and contractility to enhance contraction (known as the Anrep effect or slow force response). Our prior work has implicated both nitric oxide (NO) produced by NO synthase 1 (NOS1) and calcium/calmodulin-dependent protein kinase II (CaMKII) activity as required mediators of this form of mechano-chemo-transduction. To test whether a single S-nitrosylation site on CaMKIIδ (Cys290) mediates enhanced sarcoplasmic reticulum Ca2+ leak and afterload-induced increases in sarcoplasmic reticulum (SR) Ca2+ uptake and release, we created a novel CRISPR-based CaMKIIδ knock-in (KI) mouse with a Cys to Ala mutation at C290. These CaMKIIδ-C290A-KI mice exhibited normal cardiac morphometry and function, as well as basal myocyte Ca2+ transients (CaTs) and β-adrenergic responses. However, the NO donor S-nitrosoglutathione caused an acute increased Ca2+ spark frequency in wild-type (WT) myocytes that was absent in the CaMKIIδ-C290A-KI myocytes. Using our cell-in-gel system to exert multiaxial three-dimensional mechanical afterload on myocytes during contraction, we found that WT myocytes exhibited an afterload-induced increase in Ca2+ sparks and Ca2+ transient amplitude and rate of decline. These afterload-induced effects were prevented in both cardiac-specific CaMKIIδ knockout and point mutant CaMKIIδ-C290A-KI myocytes. We conclude that CaMKIIδ activation by S-nitrosylation at the C290 site is essential in mediating the intrinsic afterload-induced enhancement of myocyte SR Ca2+ uptake, release and Ca2+ transient amplitude (the Anrep effect). The data also indicate that NOS1 activation is upstream of S-nitrosylation at C290 of CaMKII, and that this molecular mechano-chemo-transduction pathway is beneficial in allowing the heart to increase contractility to limit the reduction in stroke volume when aortic pressure (afterload) is elevated. KEY POINTS: A novel CRISPR-based CaMKIIδ knock-in mouse was created in which kinase activation by S-nitrosylation at Cys290 (C290A) is prevented. How afterload affects Ca2+ signalling was measured in cardiac myocytes that were embedded in a hydrogel that imposes a three-dimensional afterload. This mechanical afterload induced an increase in Ca2+ transient amplitude and decay in wild-type myocytes, but not in cardiac-specific CaMKIIδ knockout or C290A knock-in myocytes. The CaMKIIδ-C290 S-nitrosylation site is essential for the afterload-induced enhancement of Ca2+ transient amplitude and Ca2+ sparks.
Collapse
Affiliation(s)
- Chidera C. Alim
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| | | | - Juliana Mira Hernandez
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA,Research Group in Veterinary MedicineSchool of Veterinary MedicineUniversity Corporation LasallistaCaldasAntioquiaColombia
| | - Erin Y. Shen
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| | - Sonya Baidar
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| | - Ye Chen‐Izu
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA,Department of Biomedical EngineeringUniversity of CaliforniaDavisCAUSA,Department of Internal Medicine/CardiologyUniversity of CaliforniaDavisCAUSA
| | - Donald M. Bers
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| | - Julie Bossuyt
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
30
|
Ji M, Liu Y, Zuo Z, Xu C, Lin L, Li Y. Downregulation of amphiregulin improves cardiac hypertrophy via attenuating oxidative stress and apoptosis. Biol Direct 2022; 17:21. [PMID: 35996142 PMCID: PMC9394079 DOI: 10.1186/s13062-022-00334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Amphiregulin (AREG) is a ligand of epidermal growth factor receptor and participates in the fibrosis of multiple organs. However, whether AREG can regulate hypertrophic cardiomyopathy is not well known. This research aims to explore the effect of AREG on cardiac hypertrophy, and whether the oxidative stress and apoptosis was involved in the influence of AREG on cardiac hypertrophy. Angiotensin (Ang) II induced cardiac hypertrophy in mice and neonatal rat cardiomyocytes (NRCMs) or HL-1 cells in vitro. AREG expressions raised in the heart of mice. After AREG downregulation, the increases of Ang II induced cardiac weight and cardiomyocytes area were inhibited. Down-regulation of AREG could inhibit Ang II induced the increases of atrial natriuretic peptide, brain natriuretic peptide, beta-myosin heavy chain in the heart of mice, and NRCMs and HL-1 cells. The enhancement of oxidative stress in mice heart with Ang II treatment was alleviated by AREG knockdown. The raises of Ang II induced Bax and cleaved caspase3 in mice heart were inhibited by AREG downregulation. AREG downregulation reduced myocardial hypertrophy via inhibition of oxidative and apoptosis. AREG may be a target for future cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- Mingyue Ji
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Yun Liu
- Department of Intensive Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi Zuo
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Cheng Xu
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, 150 JimoRoad, Shanghai, 200120, China.
| | - Yong Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
31
|
Mohamed BA, Elkenani M, Mobarak S, Marques Rodrigues D, Annamalai K, Schnelle M, Bader M, Hasenfuss G, Toischer K. Hemodynamic stress-induced cardiac remodelling is not modulated by ablation of phosphodiesterase 4D interacting protein. J Cell Mol Med 2022; 26:4440-4452. [PMID: 35860864 PMCID: PMC9357604 DOI: 10.1111/jcmm.17468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022] Open
Abstract
Adrenergic stimulation in the heart activates the protein kinase A (PKA), which phosphorylates key proteins involved in intracellular Ca2+ handling. PKA is held in proximity to its substrates by protein scaffolds, the A kinase anchoring proteins (AKAPs). We have previously identified the transcript of phosphodiesterase 4D interacting protein (Pde4dip; also known as myomegalin), one of the sarcomeric AKAPs, as being differentially expressed following hemodynamic overload, a condition inducing hyperadrenergic state in the heart. Here, we addressed whether PDE4DIP is involved in the adverse cardiac remodelling following hemodynamic stress. Homozygous Pde4dip knockout (KO) mice, generated by CRISPR-Cas9 technology, and wild-type (WT) littermates were exposed to aortocaval shunt (shunt) or transthoracic aortic constriction (TAC) to induce hemodynamic volume overload (VO) or pressure overload (PO), respectively. The mortality, cardiac structure, function and pathological cardiac remodelling were followed up after hemodynamic injuries. The PDE4DIP protein level was markedly downregulated in volume-overloaded- but upregulated in pressure-overloaded-WT hearts. Following shunt or TAC, mortality rates were comparably increased in both genotypes. Twelve weeks after shunt or TAC, Pde4dip-KO animals showed a similar degree of cardiac hypertrophy, dilatation and dysfunction as WT mice. Cardiomyocyte hypertrophy, myocardial fibrosis, reactivation of cardiac stress genes and downregulation of ATPase, Ca2+ transporting, cardiac muscle, slow twitch 2 transcript did not differ between WT and Pde4dip-KO hearts following shunt or TAC. In summary, despite a differential expression of PDE4DIP protein in remodelled WT hearts, Pde4dip deficiency does not modulate adverse cardiac remodelling after hemodynamic VO or PO.
Collapse
Affiliation(s)
- Belal A Mohamed
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Manar Elkenani
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Sherok Mobarak
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Marques Rodrigues
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Karthika Annamalai
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Moritz Schnelle
- DZHK (German Centre for Cardiovascular Research), Göttingen, Germany.,Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Charité Universitätsmedizin, Berlin, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| |
Collapse
|
32
|
Budde H, Hassoun R, Mügge A, Kovács Á, Hamdani N. Current Understanding of Molecular Pathophysiology of Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:928232. [PMID: 35874547 PMCID: PMC9301384 DOI: 10.3389/fphys.2022.928232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Heart Failure (HF) is the most common cause of hospitalization in the Western societies. HF is a heterogeneous and complex syndrome that may result from any dysfunction of systolic or diastolic capacity. Abnormal diastolic left ventricular function with impaired relaxation and increased diastolic stiffness is characteristic of heart failure with preserved ejection fraction (HFpEF). HFpEF accounts for more than 50% of all cases of HF. The prevalence increases with age: from around 1% for those aged <55 years to >10% in those aged 70 years or over. Nearly 50% of HF patients have HFrEF and the other 50% have HFpEF/HFmrEF, mainly based on studies in hospitalized patients. The ESC Long-Term Registry, in the outpatient setting, reports that 60% have HFrEF, 24% have HFmrEF, and 16% have HFpEF. To some extent, more than 50% of HF patients are female. HFpEF is closely associated with co-morbidities, age, and gender. Epidemiological evidence suggests that HFpEF is highly represented in older obese women and proposed as 'obese female HFpEF phenotype'. While HFrEF phenotype is more a male phenotype. In addition, metabolic abnormalities and hemodynamic perturbations in obese HFpEF patients appear to have a greater impact in women then in men (Sorimachi et al., European J of Heart Fail, 2022, 22). To date, numerous clinical trials of HFpEF treatments have produced disappointing results. This outcome suggests that a "one size fits all" approach to HFpEF may be inappropriate and supports the use of tailored, personalized therapeutic strategies with specific treatments for distinct HFpEF phenotypes. The most important mediators of diastolic stiffness are the cardiomyocytes, endothelial cells, and extracellular matrix (ECM). The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress are major factors that promote the development of HFpEF pathologies. These signalling networks contribute to the development of the diseases. Inhibition and/or attenuation of these signalling networks also delays the onset of disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to inflammation and oxidative stress and emphasize the nature of the contribution of most important cells to the development of HFpEF via increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas Mügge
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
33
|
Nardi Gemme C, Silva TQAC, Martins LC, da Silva LM, Paim LR, Sposito A, Nadruz W, Fernandes F, San Juan Dertkigil S, da Silva Wanderley J, de Almeida EA, Metze K, Neilan TG, Jerosch-Herold M, Coelho-Filho OR. Diffuse Myocardial Fibrosis and Cardiomyocyte Diameter Are Associated With Heart Failure Symptoms in Chagas Cardiomyopathy. Front Cardiovasc Med 2022; 9:880151. [PMID: 35783835 PMCID: PMC9247201 DOI: 10.3389/fcvm.2022.880151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/26/2022] [Indexed: 11/15/2022] Open
Abstract
Background Chronic Chagas cardiomyopathy (CCC) constitutes the most life-threatening consequence of the Trypanosoma cruzi infection. Our goal was to test in CCC the associations of the myocardial tissue phenotype with cardiac dysfunction, and heart failure (HF) severity, using cardiac magnetic resonance (CMR). Methods We performed a prospective observational cohort of patients with consecutive CCC with a CMR protocol, including ventricular function, myocardial T1, and late gadolinium enhancement (LGE). Extracellular volume (ECV), and intracellular water lifetime, τic, a measure of cardiomyocyte diameter, were compared to CCC disease progression, including Rassi score and New York Heart Association (NYHA) class. An exploratory prognostic analysis was performed to investigate the association of both ECV and τic with CV death. Results A total of 37 patients with intermediate-to-high-risk CCC were enrolled (Chagas Rassi score ≥7, mean left ventricle (LV) ejection fraction (EF) 32 ± 16%). Myocardial ECV (0.40 ± 0.07) was correlated with Rassi score (r = 0.43; P = 0.009), higher NYHA class, and LV EF (r = -0.51; P = 0.0015). τic decreased linearly with NYHA class (P = 0.007 for non-parametric test of linear trend) and showed a positive association with LV EF (r = 0.47; P = 0.004). Over a median follow-up of 734 days (range: 6-2,943 days), CV death or cardiac transplantation occurred in 10 patients. The Rassi score (heart rate [HR] = 1.3; 95% CI = [1.0, 1.8]; P = 0.028) and ECV (HR = 3.4 for 0.1 change, 95% CI = [1.1, 11.0], P = 0.039) were simultaneously associated with CV death. Conclusion In patients with intermediate-to-high-risk CCC, an expanded ECV and regression of cardiomyocyte diameter were associated with worsening systolic function and HF severity, respectively. The exploratory analysis indicates that ECV may have a prognostic value to identify patients with CCC at a higher risk for cardiovascular events.
Collapse
Affiliation(s)
| | - Thiago Quinaglia A. C. Silva
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
- Division of Cardiology, Department of Radiology, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Luiz C. Martins
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Luis Miguel da Silva
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Layde Rosane Paim
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Andrei Sposito
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Wilson Nadruz
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Fabio Fernandes
- Cardiomyopathy Unit, Heart Institute, University of São Paulo, São Paulo, Brazil
| | | | | | - Eros A. de Almeida
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Konradin Metze
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Tomas G. Neilan
- Division of Cardiology, Department of Radiology, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael Jerosch-Herold
- Non-invasive Cardiovascular Imaging Program, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
34
|
Pilz PM, Ward JE, Chang WT, Kiss A, Bateh E, Jha A, Fisch S, Podesser BK, Liao R. Large and Small Animal Models of Heart Failure With Reduced Ejection Fraction. Circ Res 2022; 130:1888-1905. [PMID: 35679365 DOI: 10.1161/circresaha.122.320246] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heart failure (HF) describes a heterogenous complex spectrum of pathological conditions that results in structural and functional remodeling leading to subsequent impairment of cardiac function, including either systolic dysfunction, diastolic dysfunction, or both. Several factors chronically lead to HF, including cardiac volume and pressure overload that may result from hypertension, valvular lesions, acute, or chronic ischemic injuries. Major forms of HF include hypertrophic, dilated, and restrictive cardiomyopathy. The severity of cardiomyopathy can be impacted by other comorbidities such as diabetes or obesity and external stress factors. Age is another major contributor, and the number of patients with HF is rising worldwide in part due to an increase in the aged population. HF can occur with reduced ejection fraction (HF with reduced ejection fraction), that is, the overall cardiac function is compromised, and typically the left ventricular ejection fraction is lower than 40%. In some cases of HF, the ejection fraction is preserved (HF with preserved ejection fraction). Animal models play a critical role in facilitating the understanding of molecular mechanisms of how hearts fail. This review aims to summarize and describe the strengths, limitations, and outcomes of both small and large animal models of HF with reduced ejection fraction that are currently used in basic and translational research. The driving defect is a failure of the heart to adequately supply the tissues with blood due to impaired filling or pumping. An accurate model of HF with reduced ejection fraction would encompass the symptoms (fatigue, dyspnea, exercise intolerance, and edema) along with the pathology (collagen fibrosis, ventricular hypertrophy) and ultimately exhibit a decrease in cardiac output. Although countless experimental studies have been published, no model completely recapitulates the full human disease. Therefore, it is critical to evaluate the strength and weakness of each animal model to allow better selection of what animal models to use to address the scientific question proposed.
Collapse
Affiliation(s)
- Patrick M Pilz
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA (P.M.P., E.B., R.L.).,Ludwig Boltzmann Institute at the Center for Biomedical Research, Medical University of Vienna, Austria (P.M.P., A.K., B.K.P.)
| | - Jennifer E Ward
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA (J.E.W., S.F., R.L.)
| | - Wei-Ting Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Taiwan (W.-T.C.).,Department of Cardiology, Chi-Mei Medical Center, Taiwan (W.-T.C.)
| | - Attila Kiss
- Ludwig Boltzmann Institute at the Center for Biomedical Research, Medical University of Vienna, Austria (P.M.P., A.K., B.K.P.)
| | - Edward Bateh
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA (P.M.P., E.B., R.L.)
| | - Alokkumar Jha
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA (P.M.P., E.B., R.L.)
| | - Sudeshna Fisch
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA (J.E.W., S.F., R.L.)
| | - Bruno K Podesser
- Ludwig Boltzmann Institute at the Center for Biomedical Research, Medical University of Vienna, Austria (P.M.P., A.K., B.K.P.)
| | - Ronglih Liao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA (P.M.P., E.B., R.L.).,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA (J.E.W., S.F., R.L.)
| |
Collapse
|
35
|
Turgut E, Özdemir H, Turan G, Bayram M, Karcaaltincaba D. Comparison of cardiac morphology and function in small for gestational age fetuses and fetuses with late-onset fetal growth retardation. J Perinat Med 2022; 50:391-397. [PMID: 34905668 DOI: 10.1515/jpm-2021-0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/01/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To compare cardiac structural and functional findings of fetuses with fetal growth restriction (FGR) and small for gestational age (SGA). METHODS In this prospective cohort study, patients were classified into three groups using Delphi procedure according to fetal weight, umbilical, uterine artery Doppler and cerebroplacental ratio. Fetal cardiac ultrasonographic morphology and Doppler examination was performed to all pregnant women at 36 weeks of gestation. RESULTS Seventy three patients were included in the study. There were one (6.7%) patient in the control group, 2 (13.3%) in the SGA group and 12 (80%) in the FGR group who needed neonatal intensive care unit (NICU) and NICU requirement was significantly higher in FGR fetuses (p<0.001). Left spherical index was found to be lower only among FGR fetuses (p=0.046). Left ventricular wall thickness was decreased and the right/left ventricular wall ratio was increased in FGR fetuses (p=0.006, p<0.001). Tricuspid/mitral valve ratio and mitral annular plane systolic excursion value was lower in FGR fetuses (p=0.034, p=0.024 respectively). Also, myocardial performance index was remarkably higher in FGR group (p=0.002). CONCLUSIONS We detected cardiac morphological changes in cases of both SGA and FGR-more pronounced in the FGR cases. Findings related to morphological changes on the left side in FGR cases were considered secondary to volume increase in FGR cases as an indicator of a brain-protective effect. In the FGR group, both systolic and diastolic dysfunctions were detected in the left heart.
Collapse
Affiliation(s)
- Ezgi Turgut
- Department of Obstetrics and Gynecology, Division of Perinatology, Gazi University Medical Faculty, Ankara, Turkey
| | - Halis Özdemir
- Department of Obstetrics and Gynecology, Division of Perinatology, Gazi University Medical Faculty, Ankara, Turkey
| | - Gökçe Turan
- Department of Obstetrics and Gynecology, Division of Perinatology, Gazi University Medical Faculty, Ankara, Turkey
| | - Merih Bayram
- Department of Obstetrics and Gynecology, Division of Perinatology, Gazi University Medical Faculty, Ankara, Turkey
| | - Deniz Karcaaltincaba
- Department of Obstetrics and Gynecology, Division of Perinatology, Gazi University Medical Faculty, Ankara, Turkey
| |
Collapse
|
36
|
Gömöri K, Herwig M, Budde H, Hassoun R, Mostafi N, Zhazykbayeva S, Sieme M, Modi S, Szabados T, Pipis J, Farkas-Morvay N, Leprán I, Ágoston G, Baczkó I, Kovács Á, Mügge A, Ferdinandy P, Görbe A, Bencsik P, Hamdani N. Ca2+/calmodulin-dependent protein kinase II and protein kinase G oxidation contributes to impaired sarcomeric proteins in hypertrophy model. ESC Heart Fail 2022; 9:2585-2600. [PMID: 35584900 PMCID: PMC9288768 DOI: 10.1002/ehf2.13973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Aims Volume overload (VO) induced hypertrophy is one of the hallmarks to the development of heart diseases. Understanding the compensatory mechanisms involved in this process might help preventing the disease progression. Methods and results Therefore, the present study used 2 months old Wistar rats, which underwent an aortocaval fistula to develop VO‐induced hypertrophy. The animals were subdivided into four different groups, two sham operated animals served as age‐matched controls and two groups with aortocaval fistula. Echocardiography was performed prior termination after 4‐ and 8‐month. Functional and molecular changes of several sarcomeric proteins and their signalling pathways involved in the regulation and modulation of cardiomyocyte function were investigated. Results The model was characterized with preserved ejection fraction in all groups and with elevated heart/body weight ratio, left/right ventricular and atrial weight at 4‐ and 8‐month, which indicates VO‐induced hypertrophy. In addition, 8‐months groups showed increased left ventricular internal diameter during diastole, RV internal diameter, stroke volume and velocity‐time index compared with their age‐matched controls. These changes were accompanied by increased Ca2+ sensitivity and titin‐based cardiomyocyte stiffness in 8‐month VO rats compared with other groups. The altered cardiomyocyte mechanics was associated with phosphorylation deficit of sarcomeric proteins cardiac troponin I, myosin binding protein C and titin, also accompanied with impaired signalling pathways involved in phosphorylation of these sarcomeric proteins in 8‐month VO rats compared with age‐matched control group. Impaired protein phosphorylation status and dysregulated signalling pathways were associated with significant alterations in the oxidative status of both kinases CaMKII and PKG explaining by this the elevated Ca2+ sensitivity and titin‐based cardiomyocyte stiffness and perhaps the development of hypertrophy. Conclusions Our findings showed VO‐induced cardiomyocyte dysfunction via deranged phosphorylation of myofilament proteins and signalling pathways due to increased oxidative state of CaMKII and PKG and this might contribute to the development of hypertrophy.
Collapse
Affiliation(s)
- Kamilla Gömöri
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Melissa Herwig
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Nusratul Mostafi
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Saltanat Zhazykbayeva
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Marcel Sieme
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Suvasini Modi
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Tamara Szabados
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Judit Pipis
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | | | - István Leprán
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Gergely Ágoston
- Institute of Family Medicine, University of Szeged, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Árpád Kovács
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas Mügge
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Péter Bencsik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany.,HCEMM-Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
37
|
Analysis of Therapeutic Targets of A Novel Peptide Athycaltide-1 in the Treatment of Isoproterenol-Induced Pathological Myocardial Hypertrophy. Cardiovasc Ther 2022; 2022:2715084. [PMID: 35599721 PMCID: PMC9085328 DOI: 10.1155/2022/2715084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial hypertrophy is a pathological feature of many heart diseases. This is a complex process involving all types of cells in the heart and interactions with circulating cells. This study is aimed at identifying the differentially expressed proteins (DEPs) in myocardial hypertrophy rats induced by isoprenaline (ISO) and treated with novel peptide Athycaltide-1 (ATH-1) and exploring the mechanism of its improvement. ITRAQ was performed to compare the three different heart states in control group, ISO group, and ATH-1 group. Pairwise comparison showed that there were 121 DEPs in ISO/control (96 upregulated and 25 downregulated), 47 DEPs in ATH-1/ISO (27 upregulated and 20 downregulated), and 116 DEPs in ATH-1/control (77 upregulated and 39 downregulated). Protein network analysis was then performed using the STRING software. Functional analysis revealed that Hspa1 protein, oxidative stress, and MAPK signaling pathway were significantly involved in the occurrence and development of myocardial hypertrophy, which was further validated by vivo model. It is proved that ATH-1 can reduce the expression of Hspa1 protein and the level of oxidative stress in hypertrophic myocardium and further inhibit the phosphorylation of p38 MAPK, JNK, and ERK1/2.
Collapse
|
38
|
Xiang Q, Wang M, Ding Y, Fan M, Tong H, Chen J, Yu P, Shen L, Chen X. Qili Qiangxin Capsule Combined With Sacubitril/Valsartan for HFrEF: A Systematic Review and Meta-Analysis. Front Pharmacol 2022; 13:832782. [PMID: 35444529 PMCID: PMC9014182 DOI: 10.3389/fphar.2022.832782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Background: Heart failure with reduced ejection fraction (HFrEF) is a complex, chronic disease and is among the top causes of morbidity and mortality. Angiotensin receptor-neprilysin inhibitor drugs represented by sacubitril/valsartan are the key drugs for the treatment of HFrEF in western medicine, and Qili Qiangxin Capsule (QQC) is a vital drug for the treatment of HFrEF in Chinese medicine. In recent years, there have been many relevant clinical studies on the combination of the two in the treatment of HFrEF. There are no systematic reviews or meta-analyses specific to sacubitril/valsartan combined with QQC for the treatment of HFrEF, so there is an urgent need to evaluate the effectiveness and safety of these two drugs. Objective: To systematically assess the safety and effectiveness of QQC combined with sacubitril/valsartan in the treatment of HFrEF through a meta-analysis. Methods: Searching studies on the combination of QQC and sacubitril/valsartan in the treatment of HFrEF, from databases such as PubMed, Cochrane Library, Web of Science, Wanfang Databases, Chinese Biomedical Literature Database, China Science and Technology Journal Database, and China National Knowledge Infrastructure, prior to 31 October 2021. Two reviewers regulated research selection, data extraction, and risk of bias assessment. Review Manager Software 5.4 was used for meta-analysis. Results: There were 26 studies with 2,427 patients included in total. The meta-analysis showed the combination therapy has significant advantages in improving the clinical efficacy, 6-MWT (RR = 1.18, 95% CI: 1.11-1.26, MD = 70.65, 95% CI: 23.92-117.39), superior in ameliorating LVEF, LVEDD, LVESD, and SV (LVEF: MD = 5.41, 95% CI: 4.74-6.08; LVEDD: MD = -4.41, 95% CI: -6.19 to -2.64; LVESD: MD = -3.56, 95% CI: -4.58 to -2.54; and SV: MD = 5.04, 95% CI: 3.67-6.40), and in improving BNP, NT-proBNP, AngII, and ALD (BNP: MD = -97.55, 95% CI: -112.79 to -82.31; NT-proBNP: MD = -277.22, 95% CI: -348.44 to -206.01; AngII: MD = -11.48, 95% CI: -15.21 to -7.76; and ALD: MD = -26.03, 95% CI: -38.91 to -13.15), and all the differences have statistical advantages (p < 0.05). There are no advantages in improving CO and adverse events (MD = 0.66, 95% CI: -0.12 to 1.43 and RR = 0.62, 95% CI: 0.37-1.04, respectively), and the differences have no statistical advantages. Conclusion: Compared with the control group, QQC combined with sacubitril/valsartan may be effective in the treatment of HFrEF. However, the conclusion of this study must be interpreted carefully due to the high risk and ambiguity of bias in the included trials.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengxi Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhan Ding
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Manlu Fan
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huaqin Tong
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiandong Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Peng Yu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Le Shen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
39
|
Linz B, Hertel JN, Jespersen T, Linz D. Mechanisms and therapeutic opportunities in atrial fibrillation in relationship to alcohol use and abuse. Can J Cardiol 2022; 38:1352-1363. [DOI: 10.1016/j.cjca.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
|
40
|
Hartmann N, Preuß L, Mohamed BA, Schnelle M, Renner A, Hasenfuß G, Toischer K. Different activation of MAPKs and Akt/GSK3β after preload vs. afterload elevation. ESC Heart Fail 2022; 9:1823-1831. [PMID: 35315235 PMCID: PMC9065823 DOI: 10.1002/ehf2.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Aims Pressure overload (PO) and volume overload (VO) lead to concentric or eccentric hypertrophy. Previously, we could show that activation of signalling cascades differ in in vivo mouse models. Activation of these signal cascades could either be induced by intrinsic load sensing or neuro‐endocrine substances like catecholamines or the renin‐angiotensin‐aldosterone system. Methods and results We therefore analysed the activation of classical cardiac signal pathways [mitogen‐activated protein kinases (MAPKs) (ERK, p38, and JNK) and Akt‐GSK3β] in in vitro of mechanical overload (ejecting heart model, rabbit and human isolated muscle strips). Selective elevation of preload in vitro increased AKT and GSK3β phosphorylation after 15 min in isolated rabbit muscles strips (AKT 49%, GSK3β 26%, P < 0.05) and in mouse ejecting hearts (AKT 51%, GSK49%, P < 0.05), whereas phosphorylation of MAPKs was not influenced by increased preload. Selective elevation of afterload revealed an increase in ERK phosphorylation in the ejecting heart (43%, P < 0.05), but not in AKT, GSK3β, and the other MAPKs. Elevation of preload and afterload in the ejecting heart induced a significant phosphorylation of ERK (95%, P < 0.001) and showed a moderate increased AKT (P = 0.14) and GSK3β (P = 0.21) phosphorylation, which did not reach significance. Preload and afterload elevation in muscles strips from human failing hearts showed neither AKT nor ERK phosphorylation changes. Conclusions Our data show that preload activates the AKT–GSK3β and afterload the ERK pathway in vitro, indicating an intrinsic mechanism independent of endocrine signalling.
Collapse
Affiliation(s)
- Nico Hartmann
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, 37075, Germany
| | - Lena Preuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, 37075, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, 37075, Germany.,DZHK, German Centre for Cardiovascular Research, Göttingen, Germany
| | - Moritz Schnelle
- Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.,DZHK, German Centre for Cardiovascular Research, Göttingen, Germany
| | - Andre Renner
- Department of Thoracic, Cardiac and Vascular Surgery (Heart and Diabetes Center), North Rhine Westphalia, Bad Oeynhausen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, 37075, Germany.,DZHK, German Centre for Cardiovascular Research, Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, 37075, Germany.,DZHK, German Centre for Cardiovascular Research, Göttingen, Germany
| |
Collapse
|
41
|
Bevere M, Morabito C, Guarnieri S, Mariggiò MA. Mice lacking growth-associated protein 43 develop cardiac remodeling and hypertrophy. Histochem Cell Biol 2022; 157:547-556. [PMID: 35201398 PMCID: PMC9114049 DOI: 10.1007/s00418-022-02089-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/01/2022]
Abstract
Growth-associated protein 43 (GAP43) is found in skeletal muscle, localized near the calcium release units. In interaction with calmodulin (CaM), it indirectly modulates the activity of dihydropyridine and ryanodine Ca2+ channels. GAP43–CaM interaction plays a key role in intracellular Ca2+ homeostasis and, consequently, in skeletal muscle activity. The control of intracellular Ca2+ signaling is also an important functional requisite in cardiac physiology. The aim of this study is to define the impact of GAP43 on cardiac tissue at macroscopic and cellular levels, using GAP43 knockout (GAP43−/−) newborn C57/BL6 mice. Hearts from newborn GAP43−/− mice were heavier than hearts from wild-type (WT) ones. In these GAP43−/− hearts, histological section analyses revealed a thicker ventricular wall and interventricular septum with a reduced ventricular chamber area. In addition, increased collagen deposits between fibers and increased expression levels of myosin were observed in hearts from GAP43−/− mice. Cardiac tropism and rhythm are controlled by multiple intrinsic and extrinsic factors, including cellular events such those linked to intracellular Ca2+ dynamics, in which GAP43 plays a role. Our data revealed that, in the absence of GAP43, there were cardiac morphological alterations and signs of hypertrophy, suggesting that GAP43 could play a role in the functional processes of the whole cardiac muscle. This paves the way for further studies investigating GAP43 involvement in signaling dynamics at the cellular level.
Collapse
Affiliation(s)
- Michele Bevere
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Caterina Morabito
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy. .,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| | - Maria A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
42
|
Pitoulis FG, Nunez-Toldra R, Xiao K, Kit-Anan W, Mitzka S, Jabbour RJ, Harding SE, Perbellini F, Thum T, de Tombe PP, Terracciano CM. Remodelling of adult cardiac tissue subjected to physiological and pathological mechanical load in vitro. Cardiovasc Res 2022; 118:814-827. [PMID: 33723566 PMCID: PMC8859636 DOI: 10.1093/cvr/cvab084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/11/2021] [Indexed: 01/14/2023] Open
Abstract
AIMS Cardiac remodelling is the process by which the heart adapts to its environment. Mechanical load is a major driver of remodelling. Cardiac tissue culture has been frequently employed for in vitro studies of load-induced remodelling; however, current in vitro protocols (e.g. cyclic stretch, isometric load, and auxotonic load) are oversimplified and do not accurately capture the dynamic sequence of mechanical conformational changes experienced by the heart in vivo. This limits translational scope and relevance of findings. METHODS AND RESULTS We developed a novel methodology to study chronic load in vitro. We first developed a bioreactor that can recreate the electromechanical events of in vivo pressure-volume loops as in vitro force-length loops. We then used the bioreactor to culture rat living myocardial slices (LMS) for 3 days. The bioreactor operated based on a 3-Element Windkessel circulatory model enabling tissue mechanical loading based on physiologically relevant parameters of afterload and preload. LMS were continuously stretched/relaxed during culture simulating conditions of physiological load (normal preload and afterload), pressure-overload (normal preload and high afterload), or volume-overload (high preload & normal afterload). At the end of culture, functional, structural, and molecular assays were performed to determine load-induced remodelling. Both pressure- and volume-overloaded LMS showed significantly decreased contractility that was more pronounced in the latter compared with physiological load (P < 0.0001). Overloaded groups also showed cardiomyocyte hypertrophy; RNAseq identified shared and unique genes expressed in each overload group. The PI3K-Akt pathway was dysregulated in volume-overload while inflammatory pathways were mostly associated with remodelling in pressure-overloaded LMS. CONCLUSION We have developed a proof-of-concept platform and methodology to recreate remodelling under pathophysiological load in vitro. We show that LMS cultured in our bioreactor remodel as a function of the type of mechanical load applied to them.
Collapse
Affiliation(s)
- Fotios G Pitoulis
- National Heart and Lung Institute, Imperial College London, 72 Du Cane Road, Hammersmith Hospital, ICTEM Building, W12 0NN London, UK
| | - Raquel Nunez-Toldra
- National Heart and Lung Institute, Imperial College London, 72 Du Cane Road, Hammersmith Hospital, ICTEM Building, W12 0NN London, UK
| | - Ke Xiao
- Institute for Molecular and Translational Therapeutic Strategies, Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, J3 Building, Level 1, Room 3030, 30625 Hannover, Germany
| | - Worrapong Kit-Anan
- National Heart and Lung Institute, Imperial College London, 72 Du Cane Road, Hammersmith Hospital, ICTEM Building, W12 0NN London, UK
| | - Saskia Mitzka
- Institute for Molecular and Translational Therapeutic Strategies, Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, J3 Building, Level 1, Room 3030, 30625 Hannover, Germany
| | - Richard J Jabbour
- National Heart and Lung Institute, Imperial College London, 72 Du Cane Road, Hammersmith Hospital, ICTEM Building, W12 0NN London, UK
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, 72 Du Cane Road, Hammersmith Hospital, ICTEM Building, W12 0NN London, UK
| | - Filippo Perbellini
- Institute for Molecular and Translational Therapeutic Strategies, Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, J3 Building, Level 1, Room 3030, 30625 Hannover, Germany
| | - Thomas Thum
- National Heart and Lung Institute, Imperial College London, 72 Du Cane Road, Hammersmith Hospital, ICTEM Building, W12 0NN London, UK
- Institute for Molecular and Translational Therapeutic Strategies, Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, J3 Building, Level 1, Room 3030, 30625 Hannover, Germany
| | - Pieter P de Tombe
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Rm E202 (MC901), Chicago, IL 60612-7342, USA
| | - Cesare M Terracciano
- National Heart and Lung Institute, Imperial College London, 72 Du Cane Road, Hammersmith Hospital, ICTEM Building, W12 0NN London, UK
| |
Collapse
|
43
|
Enhanced Cardiac CaMKII Oxidation and CaMKII-Dependent SR Ca Leak in Patients with Sleep-Disordered Breathing. Antioxidants (Basel) 2022; 11:antiox11020331. [PMID: 35204213 PMCID: PMC8868143 DOI: 10.3390/antiox11020331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Sleep-disordered breathing (SDB) is associated with increased oxidant generation. Oxidized Ca/calmodulin kinase II (CaMKII) can contribute to atrial arrhythmias by the stimulation of sarcoplasmic reticulum Ca release events, i.e., Ca sparks. Methods: We prospectively enrolled 39 patients undergoing cardiac surgery to screen for SDB and collected right atrial appendage biopsies. Results: SDB was diagnosed in 14 patients (36%). SDB patients had significantly increased levels of oxidized and activated CaMKII (assessed by Western blotting/specific pulldown). Moreover, SDB patients showed a significant increase in Ca spark frequency (CaSpF measured by confocal microscopy) compared with control subjects. CaSpF was 3.58 ± 0.75 (SDB) vs. 2.49 ± 0.84 (no SDB) 1/100 µm−1s−1 (p < 0.05). In linear multivariable regression models, SDB severity was independently associated with increased CaSpF (B [95%CI]: 0.05 [0.03; 0.07], p < 0.001) after adjusting for important comorbidities. Interestingly, 30 min exposure to the CaMKII inhibitor autocamtide-2 related autoinhibitory peptide normalized the increased CaSpF and eliminated the association between SDB and CaSpF (B [95%CI]: 0.01 [−0.1; 0.03], p = 0.387). Conclusions: Patients with SDB have increased CaMKII oxidation/activation and increased CaMKII-dependent CaSpF in the atrial myocardium, independent of major clinical confounders, which may be a novel target for treatment of atrial arrhythmias in SDB.
Collapse
|
44
|
Xu Q, Ding H, Li S, Dong S, Li L, Shi B, Zhong M, Zhang G. Sleeve Gastrectomy Ameliorates Diabetes-Induced Cardiac Hypertrophy Correlates With the MAPK Signaling Pathway. Front Physiol 2021; 12:785799. [PMID: 34858216 PMCID: PMC8631968 DOI: 10.3389/fphys.2021.785799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Cardiac hypertrophy as a main pathological manifestation of diabetic cardiomyopathy (DCM), is a significant complication of diabetes. Bariatric surgery has been proven to relieve DCM; however, whether it can alleviate diabetes-induced cardiac hypertrophy is undefined. Methods: Diabetic and obese rats were performed sleeve gastrectomy (SG) after having diabetes for 16weeks. The rats were euthanized 8weeks after SG. Metabolic parameters, heart function parameters, myocardial glucose uptake, morphometric and histological changes, and the expression level of mitogen-activated protein kinases (MAPKs) were determined and compared among the control group (CON group), diabetes mellitus group (DM group), sham operation group (SHAM group), and SG group. Results: Compared with the SHAM group, the blood glucose, body weight, insulin resistance, and other metabolic parameters were significantly improved in the SG group. There was also a marked improvement in myocardial morphometric and histological parameters after SG. Furthermore, the myocardial glucose uptake and heart function were reversed after SG. Additionally, the phosphorylation of MAPKs was inhibited after SG, including p38 MAPKs, c-Jun N-terminal kinases (JNKs), and extracellular signal-regulated kinases 1/2 (ERK1/2). The expression of DUSP6, which dephosphorylates ERK1/2, was upregulated after SG. These findings suggest that SG ameliorated diabetes-induced cardiac hypertrophy correlates with the MAPK signaling pathway. Conclusion: These results showed that diabetes-induced cardiac hypertrophy was ameliorated after SG was closely related to the inhibition of the MAPK signaling pathway and upregulation of DUSP6. Therefore, this study provides a novel strategy for treating diabetes-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Qian Xu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Huanxin Ding
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Songhan Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shuohui Dong
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Linchuan Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Bowen Shi
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Guangyong Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
45
|
Corporan D, Segura A, Padala M. Ultrastructural Adaptation of the Cardiomyocyte to Chronic Mitral Regurgitation. Front Cardiovasc Med 2021; 8:714774. [PMID: 34733889 PMCID: PMC8559873 DOI: 10.3389/fcvm.2021.714774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023] Open
Abstract
Introduction: Mitral regurgitation (MR) imposes volume overload on the left ventricle (LV) and elevates wall stress, triggering its adverse remodeling. Pronounced LV dilation, minimal wall thinning, and a gradual decline in cardiac ejection fraction (EF) are observed. The structural changes in the myocardium that define these gross, organ level remodeling are not known. Cardiomyocyte elongation and slippage have both been hypothesized, but neither are confirmed, nor are the changes to the cardiomyocyte structure known. Using a rodent model of MR, we used immunohistochemistry and transmission electron microscopy (TEM) to describe the ultrastructural remodeling of the cardiomyocyte. Methods: Twenty-four male Sprague-Dawley rats (350–400 g) were assigned to two groups: group (1) rats induced with severe MR (n = 18) and group (2) control rats that were healthy and age and weight matched (n = 6). MR was induced in the beating heart using a 23-G ultrasound-guided, transapical needle to perforate the anterior mitral leaflet, and the rats were followed to 2, 10, and 20 weeks (n = 6/time-point). Echocardiography was performed to quantify MR severity and to measure LV volume and function at each time-point. Explanted myocardial tissue were examined with TEM and immunohistochemistry to investigate the ultrastructural changes. Results: MR induced rapid and significant increase in end-diastolic volume (EDV), with a 50% increase by 2 weeks, compared with control. Rise in end-systolic volume (ESV) was more gradual; however, by 20 weeks, both EDV and ESV in MR rats were increased by 126% compared with control. A significant decline in EF was measured at 10 weeks of MR. At the ultrastructural level, as early as 2 weeks after MR, cardiomyocyte elongation and increase in cross-sectional area were observed. TEM depicted sarcomere shortening, with loss of Z-line and I-band. Desmin, a cytoskeletal protein that is uniformly distributed along the length of the cardiomyocyte, was disorganized and localized to the intercalated disc, in the rats induced with MR and not in the controls. In the rats with MR, the linear registry of the mitochondrial arrangement along the sarcomeres was lost, with mitochondrial fragmentation, aggregation around the nucleus, and irregularities in the cristae. Discussion: In the setting of chronic mitral regurgitation, LV dilatation occured by cardiomyocyte elongation, which manifests at the subcellular level as distinct ultrastructural alterations of the sarcomere, cytoskeleton, and mitochondria. Since the cytoskeleton not only provides tensegrity but has functional consequences on myocyte function, further investigation into the impact of cytoskeletal remodeling on progressive heart failure or recovery of function upon correcting the valve lesion are needed.
Collapse
Affiliation(s)
- Daniella Corporan
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GE, United States.,Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, Emory University, Atlanta, GE, United States
| | - Ana Segura
- Department of Pathology, Texas Heart Institute, Houston, TX, United States
| | - Muralidhar Padala
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GE, United States.,Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, Emory University, Atlanta, GE, United States
| |
Collapse
|
46
|
Ion Channel Impairment and Myofilament Ca 2+ Sensitization: Two Parallel Mechanisms Underlying Arrhythmogenesis in Hypertrophic Cardiomyopathy. Cells 2021; 10:cells10102789. [PMID: 34685769 PMCID: PMC8534456 DOI: 10.3390/cells10102789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Life-threatening ventricular arrhythmias are the main clinical burden in patients with hypertrophic cardiomyopathy (HCM), and frequently occur in young patients with mild structural disease. While massive hypertrophy, fibrosis and microvascular ischemia are the main mechanisms underlying sustained reentry-based ventricular arrhythmias in advanced HCM, cardiomyocyte-based functional arrhythmogenic mechanisms are likely prevalent at earlier stages of the disease. In this review, we will describe studies conducted in human surgical samples from HCM patients, transgenic animal models and human cultured cell lines derived from induced pluripotent stem cells. Current pieces of evidence concur to attribute the increased risk of ventricular arrhythmias in early HCM to different cellular mechanisms. The increase of late sodium current and L-type calcium current is an early observation in HCM, which follows post-translation channel modifications and increases the occurrence of early and delayed afterdepolarizations. Increased myofilament Ca2+ sensitivity, commonly observed in HCM, may promote afterdepolarizations and reentry arrhythmias with direct mechanisms. Decrease of K+-currents due to transcriptional regulation occurs in the advanced disease and contributes to reducing the repolarization-reserve and increasing the early afterdepolarizations (EADs). The presented evidence supports the idea that patients with early-stage HCM should be considered and managed as subjects with an acquired channelopathy rather than with a structural cardiac disease.
Collapse
|
47
|
Islam MMT, Tarnowski D, Zhang M, Trum M, Lebek S, Mustroph J, Daniel H, Moellencamp J, Pabel S, Sossalla S, El‐Armouche A, Nikolaev VO, Shah AM, Eaton P, Maier LS, Sag CM, Wagner S. Enhanced Heart Failure in Redox-Dead Cys17Ser PKARIα Knock-In Mice. J Am Heart Assoc 2021; 10:e021985. [PMID: 34583520 PMCID: PMC8649132 DOI: 10.1161/jaha.121.021985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background PKARIα (protein kinase A type I-α regulatory subunit) is redox-active independent of its physiologic agonist cAMP. However, it is unknown whether this alternative mechanism of PKARIα activation may be of relevance to cardiac excitation-contraction coupling. Methods and Results We used a redox-dead transgenic mouse model with homozygous knock-in replacement of redox-sensitive cysteine 17 with serine within the regulatory subunits of PKARIα (KI). Reactive oxygen species were acutely evoked by exposure of isolated cardiac myocytes to AngII (angiotensin II, 1 µmol/L). The long-term relevance of oxidized PKARIα was investigated in KI mice and their wild-type (WT) littermates following transverse aortic constriction (TAC). AngII increased reactive oxygen species in both groups but with RIα dimer formation in WT only. AngII induced translocation of PKARI to the cell membrane and resulted in protein kinase A-dependent stimulation of ICa (L-type Ca current) in WT with no effect in KI myocytes. Consequently, Ca transients were reduced in KI myocytes as compared with WT cells following acute AngII exposure. Transverse aortic constriction-related reactive oxygen species formation resulted in RIα oxidation in WT but not in KI mice. Within 6 weeks after TAC, KI mice showed an enhanced deterioration of contractile function and impaired survival compared with WT. In accordance, compared with WT, ventricular myocytes from failing KI mice displayed significantly reduced Ca transient amplitudes and lack of ICa stimulation. Conversely, direct pharmacological stimulation of ICa using Bay K8644 rescued Ca transients in AngII-treated KI myocytes and contractile function in failing KI mice in vivo. Conclusions Oxidative activation of PKARIα with subsequent stimulation of ICa preserves cardiac function in the setting of acute and chronic oxidative stress.
Collapse
Affiliation(s)
- M. M. Towhidul Islam
- Department of Internal Medicine IIUniversity Medical Center RegensburgRegensburgGermany
- Department of Biochemistry and Molecular BiologyUniversity of DhakaBangladesh
| | - Daniel Tarnowski
- Department of Internal Medicine IIUniversity Medical Center RegensburgRegensburgGermany
| | - Min Zhang
- School of Cardiovascular Medicine & SciencesKings College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Maximilian Trum
- Department of Internal Medicine IIUniversity Medical Center RegensburgRegensburgGermany
| | - Simon Lebek
- Department of Internal Medicine IIUniversity Medical Center RegensburgRegensburgGermany
| | - Julian Mustroph
- Department of Internal Medicine IIUniversity Medical Center RegensburgRegensburgGermany
| | - Henriette Daniel
- Department of Internal Medicine IIUniversity Medical Center RegensburgRegensburgGermany
| | - Johanna Moellencamp
- Department of Internal Medicine IIUniversity Medical Center RegensburgRegensburgGermany
| | - Steffen Pabel
- Department of Internal Medicine IIUniversity Medical Center RegensburgRegensburgGermany
| | - Samuel Sossalla
- Department of Internal Medicine IIUniversity Medical Center RegensburgRegensburgGermany
| | - Ali El‐Armouche
- Department of Pharmacology and ToxicologyTechnical University DresdenDresdenGermany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular ResearchUniversity Medical Center Hamburg‐EppendorfEppendorfGermany
| | - Ajay M. Shah
- School of Cardiovascular Medicine & SciencesKings College London British Heart Foundation Centre of ExcellenceLondonUnited Kingdom
| | - Philip Eaton
- The William Harvey Research InstituteBarts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUnited Kingdom
| | - Lars S. Maier
- Department of Internal Medicine IIUniversity Medical Center RegensburgRegensburgGermany
| | - Can Martin Sag
- Department of Internal Medicine IIUniversity Medical Center RegensburgRegensburgGermany
| | - Stefan Wagner
- Department of Internal Medicine IIUniversity Medical Center RegensburgRegensburgGermany
| |
Collapse
|
48
|
Jarkovská D, Miklovič M, Švíglerová J, Červenka L, Škaroupková P, Melenovský V, Štengl M. Effects of Trandolapril on Structural, Contractile and Electrophysiological Remodeling in Experimental Volume Overload Heart Failure. Front Pharmacol 2021; 12:729568. [PMID: 34566652 PMCID: PMC8460913 DOI: 10.3389/fphar.2021.729568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic volume overload induces multiple cardiac remodeling processes that finally result in eccentric cardiac hypertrophy and heart failure. We have hypothesized that chronic angiotensin-converting enzyme (ACE) inhibition by trandolapril might affect various remodeling processes differentially, thus allowing their dissociation. Cardiac remodeling due to chronic volume overload and the effects of trandolapril were investigated in rats with an aortocaval fistula (ACF rats). The aortocaval shunt was created using a needle technique and progression of cardiac remodeling to heart failure was followed for 24 weeks. In ACF rats, pronounced eccentric cardiac hypertrophy and contractile and proarrhythmic electrical remodeling were associated with increased mortality. Trandolapril substantially reduced the electrical proarrhythmic remodeling and mortality, whereas the effect on cardiac hypertrophy was less pronounced and significant eccentric hypertrophy was preserved. Effective suppression of electrical proarrhythmic remodeling and mortality but not hypertrophy indicates that the beneficial therapeutic effects of ACE inhibitor trandolapril in volume overload heart failure might be dissociated from pure antihypertrophic effects.
Collapse
Affiliation(s)
- Dagmar Jarkovská
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Matúš Miklovič
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Pathophysiology, 2 Faculty of Medicine, Charles University, Prague, Czechia
| | - Jitka Švíglerová
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Pathophysiology, 2 Faculty of Medicine, Charles University, Prague, Czechia
| | - Petra Škaroupková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Milan Štengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
49
|
Li H, Liu Q, Wang S, Huang L, Huang S, Yue Y, Feng K, Wu Z. A New Minimally Invasive Method of Transverse Aortic Constriction in Mice. J Cardiovasc Transl Res 2021; 15:635-643. [PMID: 34498212 DOI: 10.1007/s12265-021-10170-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/20/2021] [Indexed: 11/26/2022]
Abstract
Transverse aortic constriction (TAC) in mice is the most popular model to mimic pressure overload heart disease. In this study, we developed a convenient, quick, and less invasive new TAC mice model. Briefly, after anesthetization, endotracheal intubation was then performed, and the endotracheal tube was connected to a ventilator. The second intercostal space was opened and then the home-made retractors were used to push aside the thymus gently. A tunnel under the aortic arch was made and a segment of 6-0 monofilament polypropylene suture which had been threaded through a specifically modified blunted 26-gauge syringe needle was passed through the tunnel. A blunted 27-gauge needle was placed parallel to the transverse aorta and then three knots were tied quickly. After ligation, the spacer was removed promptly and gently to achieve a constriction of 0.4 mm in diameter. Five weeks after TAC, cardiac hypertrophy, fibrosis, and left ventricular dysfunction were observed. The mouse was anesthetized with pentobarbital (50 mg/kg) via intraperitoneal injection. Endotracheal intubation under direct vision was then performed and the endotracheal tube was connected to a ventilator. The second intercostal space was opened and then the home-made retractors were used to push aside the thymus gently. A tunnel under the aortic arch was made and a segment of 6-0 monofilament polypropylene suture which had been threaded through a specifically modified blunted 26-gauge syringe needle was passed through the tunnel.
Collapse
Affiliation(s)
- Huayang Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, Guangdong Province, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou , Guangdong Province, China
| | - Quan Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, Guangdong Province, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou , Guangdong Province, China
| | - Shunjun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, Guangdong Province, China
| | - Lin Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, Guangdong Province, China
| | - Suiqing Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, Guangdong Province, China
| | - Yuan Yue
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, Guangdong Province, China
| | - Kangni Feng
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, Guangdong Province, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, Guangdong Province, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou , Guangdong Province, China
| |
Collapse
|
50
|
Abstract
Objective Arteriovenous fistulae (AVF) placed for hemodialysis have high flow rates that can stimulate left ventricular (LV) hypertrophy. LV hypertrophy generally portends poor cardiac outcomes, yet clinical studies point to superior cardiac-specific outcomes for patients with AVF when compared with other dialysis modalities. We hypothesize that AVF induce physiologic cardiac hypertrophy with cardioprotective features. Methods We treated 9- to 11-week-old C57Bl/6 male and female mice with sham laparotomy or an aortocaval fistula via a 25G needle. Cardiac chamber size and function were assessed with serial echocardiography, and cardiac computed tomography angiography. Hearts were harvested at 5 weeks postoperatively, and the collagen content was assessed with Masson's trichrome. Bulk messenger RNA sequencing was performed from LV of sham and AVF mice at 10 days. Differentially expressed genes were analyzed using Ingenuity Pathway Analysis (Qiagen) to identify affected pathways and predict downstream biological effects. Results Mice with AVF had similar body weight and wet lung mass, but increased cardiac mass compared with sham-operated mice. AVF increased cardiac output while preserving LV systolic and diastolic function, as well as indices of right heart function; all four cardiac chambers were enlarged, with a slight decrement in the relative LV wall thickness. Histology showed preserved collagen density within each of the four chambers without areas of fibrosis. RNA sequencing captured 19 384 genes, of which 857 were significantly differentially expressed, including transcripts from extracellular matrix-related genes, ion channels, metabolism, and cardiac fetal genes. The top upstream regulatory molecules predicted include activation of angiogenic (Vegf, Akt1), procardiomyocyte survival (Hgf, Foxm1, Erbb2, Lin9, Areg), and inflammation-related (CSF2, Tgfb1, TNF, Ifng, Ccr2, IL6) genes, as well as the inactivation of cardiomyocyte antiproliferative factors (Cdkn1a, FoxO3, α-catenin). The predicted downstream effects include a decrease in heart damage, and increased arrhythmia, angiogenesis, and cardiogenesis. There were no significant sex-dependent differences in the AVF-stimulated cardiac adaptation. Conclusions AVF stimulate adaptive cardiac hypertrophy in wild-type mice without heart failure or pathologic fibrosis. Transcriptional correlates suggest AVF-induced cardiac remodeling has some cardioprotective, although also arrhythmogenic features. (JVS–Vascular Science 2021;2:110-28.) Clinical Relevance Arteriovenous fistulae (AVF) are commonly used as access for hemodialysis in patients with end-stage renal disease. AVF induce a high-output state that is associated with long-term structural cardiac remodeling, including left ventricle hypertrophy, but this element has uncertain clinical significance. Although left ventricle hypertrophy has traditionally been associated with an increased risk of cardiovascular disease, clinical studies have suggested that cardiac-specific outcomes of patients with end-stage renal disease were better with AVF compared with other dialysis modalities. This study uses a mouse model of AVF to study the structural, functional, and molecular correlates of AVF-induced cardiac remodeling. It finds that AVF causes an adaptive cardiac hypertrophy without functional decline or fibrosis. Transcriptional correlates suggest an electrical remodeling and the upregulation of proangiogenic, procardiogenic, and prosurvival factors, implying that AVF-induced cardiac hypertrophy is potentially cardioprotective, but also arrhythmogenic.
Collapse
|