1
|
Hájek M, Flögel U, S Tavares AA, Nichelli L, Kennerley A, Kahn T, Futterer JJ, Firsiori A, Grüll H, Saha N, Couñago F, Aydogan DB, Caligiuri ME, Faber C, Bell LC, Figueiredo P, Vilanova JC, Santini F, Mekle R, Waiczies S. MR beyond diagnostics at the ESMRMB annual meeting: MR theranostics and intervention. MAGMA (NEW YORK, N.Y.) 2024; 37:323-328. [PMID: 38865057 PMCID: PMC11316697 DOI: 10.1007/s10334-024-01176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Affiliation(s)
- Milan Hájek
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adriana A S Tavares
- Centre for Cardiovascular Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Lucia Nichelli
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France
- Department of Neuroradiology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Aneurin Kennerley
- Department of Sports and Exercise Science, Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Biology, University of York, York, UK
| | - Thomas Kahn
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Jurgen J Futterer
- Minimally Invasive Image-Guided Intervention Center (MAGIC), Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Aikaterini Firsiori
- Unit of Diagnostic and Interventional Neuroradiology, Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Holger Grüll
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Nandita Saha
- Max-Delbrück-Centrum Für Molekulare Medizin (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010, Madrid, Spain
| | - Dogu Baran Aydogan
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Eugenia Caligiuri
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Università Degli Studi "Magna Graecia", Catanzaro, Italy
| | - Cornelius Faber
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Münster, Germany
| | - Laura C Bell
- Early Clinical Development, Genentech Inc., South San Francisco, USA
| | - Patrícia Figueiredo
- Institute for Systems and Robotics, ISR-Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joan C Vilanova
- Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging (IDI) Girona, University of Girona, 17004, Girona, Spain
| | - Francesco Santini
- Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Ralf Mekle
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sonia Waiczies
- Max-Delbrück-Centrum Für Molekulare Medizin (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation Between the Charité Medical Faculty and the MDC, Berlin, Germany.
| |
Collapse
|
2
|
Abid J, Khalil FMA, Saeed S, Khan SU, Iqbal I, Khan SU, Anthony S, Shahzad R, Koerniati S, Naz F. Nano revolution in cardiovascular health: Nanoparticles (NPs) as tiny titans for diagnosis and therapeutics. Curr Probl Cardiol 2024; 49:102466. [PMID: 38369205 DOI: 10.1016/j.cpcardiol.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Cardiovascular diseases (CVDs) are known as life-threatening illnessescaused by severe abnormalities in the cardiovascular system. They are a leading cause of mortality and morbidity worldwide.Nanotechnology integrated substantialinnovations in cardiovascular diagnostic and therapeutic at the nanoscale. This in-depth analysis explores cutting-edge methods for diagnosing CVDs, including nanotechnological interventions and crucial components for identifying risk factors, developing treatment plans, and monitoring patients' progress with chronic CVDs.Intensive research has gone into making nano-carriers that can image and treat patients. To improve the efficiency of treating CVDs, the presentreview sheds light on a decision-tree-based solution by investigating recent and innovative approaches in CVD diagnosis by utilizing nanoparticles (NPs). Treatment choices for chronic diseases like CVD, whose etiology might take decades to manifest, are very condition-specific and disease-stage-based. Moreover, thisreview alsobenchmarks the changing landscape of employing NPs for targeted and better drug administration while examining the limitations of various NPs in CVD diagnosis, including cost, space, time, and complexity. To better understand and treatment of cardiovascular diseases, the conversation moves on to the nano-cardiovascular possibilities for medical research.We also focus on recent developments in nanoparticle applications, the ways they might be helpful, and the medical fields where they may find future use. Finally, this reviewadds to the continuing conversation on improved diagnosis and treatment approaches for cardiovascular disorders by discussing the obstacles and highlighting the revolutionary effects of nanotechnology.
Collapse
Affiliation(s)
- Junaid Abid
- Department of Food Science and Technology, University of Haripur, Pakistan; State Key Laboratory of Food nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, College of Science and Arts, Department of Biology, MohayilAsirAbha, 61421, Saudi Arabia
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, QLD, 4111, Australia
| | - Shahid Ullah Khan
- Women Medical and Dental College, Khyber Medical University, Khyber Pakhtunkhwa, Pakistan; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Imran Iqbal
- Department of PLR, Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Stefan Anthony
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China.
| | - Raheel Shahzad
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong 16911, Indonesia
| | - Sri Koerniati
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia
| | - Farkhanda Naz
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Cooke DJ, Maier EY, King TL, Lin H, Hendrichs S, Lee S, Mafy NN, Scott KM, Lu Y, Que EL. Dual Nanoparticle Conjugates for Highly Sensitive and Versatile Sensing Using 19 F Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2024; 63:e202312322. [PMID: 38016929 DOI: 10.1002/anie.202312322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Fluorine magnetic resonance imaging (19 F MRI) has emerged as an attractive alternative to conventional 1 H MRI due to enhanced specificity deriving from negligible background signal in this modality. We report a dual nanoparticle conjugate (DNC) platform as an aptamer-based sensor for use in 19 F MRI. DNC consists of core-shell nanoparticles with a liquid perfluorocarbon core and a mesoporous silica shell (19 F-MSNs), which give a robust 19 F MR signal, and superparamagnetic iron oxide nanoparticles (SPIONs) as magnetic quenchers. Due to the strong magnetic quenching effects of SPIONs, this platform is uniquely sensitive and functions with a low concentration of SPIONs (4 equivalents) relative to 19 F-MSNs. The probe functions as a "turn-on" sensor using target-induced dissociation of DNA aptamers. The thrombin binding aptamer was incorporated as a proof-of-concept (DNCThr ), and we demonstrate a significant increase in 19 F MR signal intensity when DNCThr is incubated with human α-thrombin. This proof-of-concept probe is highly versatile and can be adapted to sense ATP and kanamycin as well. Importantly, DNCThr generates a robust 19 F MRI "hot-spot" signal in response to thrombin in live mice, establishing this platform as a practical, versatile, and biologically relevant molecular imaging probe.
Collapse
Affiliation(s)
- Daniel J Cooke
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Esther Y Maier
- College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Tyler L King
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Haoding Lin
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Santiago Hendrichs
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Slade Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Noushaba N Mafy
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Kathleen M Scott
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Departments of chemical engineering, biomedical engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Emily L Que
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Li F, Shao H, Zhou G, Wang B, Xu Y, Liang W, Chen L. The recent applications of nanotechnology in the diagnosis and treatment of common cardiovascular diseases. Vascul Pharmacol 2023; 152:107200. [PMID: 37500029 DOI: 10.1016/j.vph.2023.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Almost a third of all fatalities may be attributed to cardiovascular disease (CVD), making it a primary cause of mortalities worldwide. Better diagnostic tools and secure, non-invasive imaging techniques are needed to offer accurate information on CVD progression. Several elements contribute to the success of CVD personalized therapy, and two of the most crucial are accurate diagnosis and early detection. The therapy options available for conditions with a pathogenesis that unfold over decades, such as CVD, are very condition-specific and disease-stage based. Nanotechnology is increasingly being used as a therapeutic tool in the biomedical area, where they are used in various contexts, including diagnostics, biosensing, and drug administration. This review article provides an overview of the most recent applications of nanotechnology in the detection and management of prevalent CVDs.
Collapse
Affiliation(s)
- Feize Li
- Department of Cardiology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China.
| | - Haibin Shao
- Department of Cardiology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Guoer Zhou
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Bingzhu Wang
- Internal Medicine of Integrated Traditional Chinese and Western Medicine, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Yan Xu
- Intensive Care Unit, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Lin Chen
- Department of Cardiology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China.
| |
Collapse
|
5
|
van Heeswijk RB, Bauer WR, Bönner F, Janjic JM, Mulder WJM, Schreiber LM, Schwitter J, Flögel U. Cardiovascular Molecular Imaging With Fluorine-19 MRI: The Road to the Clinic. Circ Cardiovasc Imaging 2023; 16:e014742. [PMID: 37725674 DOI: 10.1161/circimaging.123.014742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fluorine-19 (19F) magnetic resonance imaging is a unique quantitative molecular imaging modality that makes use of an injectable fluorine-containing tracer that generates the only visible 19F signal in the body. This hot spot imaging technique has recently been used to characterize a wide array of cardiovascular diseases and seen a broad range of technical improvements. Concurrently, its potential to be translated to the clinical setting is being explored. This review provides an overview of this emerging field and demonstrates its diagnostic potential, which shows promise for clinical translation. We will describe 19F magnetic resonance imaging hardware, pulse sequences, and tracers, followed by an overview of cardiovascular applications. Finally, the challenges on the road to clinical translation are discussed.
Collapse
Affiliation(s)
- Ruud B van Heeswijk
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland (R.B.v.H.)
| | - Wolfgang R Bauer
- Department of Internal Medicine I, Universitätsklinikum Würzburg, Germany (W.R.B.)
| | - Florian Bönner
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Germany (F.B.)
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA (J.M.J.)
| | - Willem J M Mulder
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, the Netherlands (W.J.M.M.)
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands (W.J.M.M.)
| | - Laura M Schreiber
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center (CHFC), Wuerzburg University Hospitals, Germany (L.M.S.)
| | - Juerg Schwitter
- Division of Cardiology, Cardiovascular Department (J.S.), Lausanne University Hospital (CHUV), Switzerland
- CMR Center (J.S.), Lausanne University Hospital (CHUV), Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), Switzerland (J.S.)
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging (U.F.), Heinrich Heine University, Germany
- Cardiovascular Research Institute Düsseldorf (CARID) (U.F.), Heinrich Heine University, Germany
| |
Collapse
|
6
|
Kakaei N, Amirian R, Azadi M, Mohammadi G, Izadi Z. Perfluorocarbons: A perspective of theranostic applications and challenges. Front Bioeng Biotechnol 2023; 11:1115254. [PMID: 37600314 PMCID: PMC10436007 DOI: 10.3389/fbioe.2023.1115254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/15/2023] [Indexed: 08/22/2023] Open
Abstract
Perfluorocarbon (PFC) are biocompatible compounds, chemically and biologically inert, and lacks toxicity as oxygen carriers. PFCs nanoemulsions and nanoparticles (NPs) are highly used in diagnostic imaging and enable novel imaging technology in clinical imaging modalities to notice and image pathological and physiological alterations. Therapeutics with PFCs such as the innovative approach to preventing thrombus formation, PFC nanodroplets utilized in ultrasonic medication delivery in arthritis, or PFC-based NPs such as Perfluortributylamine (PFTBA), Pentafluorophenyl (PFP), Perfluorohexan (PFH), Perfluorooctyl bromide (PFOB), and others, recently become renowned for oxygenating tumors and enhancing the effects of anticancer treatments as oxygen carriers for tumor hypoxia. In this review, we will discuss the recent advancements that have been made in PFC's applications in theranostic (therapeutics and diagnostics) as well as assess the benefits and drawbacks of these applications.
Collapse
Affiliation(s)
- Nasrin Kakaei
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Azadi
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Ding L, Rong G, Cheng Y. Fluorous Tagged Peptides for Intracellular Delivery and Biomedical Imaging. Macromol Biosci 2023; 23:e2300048. [PMID: 36918279 DOI: 10.1002/mabi.202300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Fluorous tagged peptides have shown promising features for biomedical applications such as drug delivery and multimodal imaging. The bioconjugation of fluoroalkyl ligands onto cargo peptides greatly enhances their proteolytic stability and membrane penetration via a proposed "fluorine effect". The tagged peptides also efficiently deliver other biomolecules such as DNA and siRNA into cells via a co-assembly strategy. The fluoroalkyl chains on peptides with antifouling properties enable efficient gene delivery in the presence of serum proteins. Besides intracellular biomolecule delivery, the amphiphilic peptides can be used to stabilized perfluorocarbon-filled microbubbles for ultrasound imaging. The fluorine nucleus on fluoroalkyls provides intrinsic probes for background-free magnetic resonance imaging. Labeling of fluorous tags with radionuclide 18 F also allows tracing the biodistribution of peptides via positron emission tomography imaging. This mini-review will discuss properties and mechanism of the fluorous tagged peptides in these applications.
Collapse
Affiliation(s)
- Lei Ding
- Department of Ultrasound Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Guangyu Rong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Fengxian District Central Hospital, Shanghai, 200241, P. R. China
| |
Collapse
|
8
|
Bouvain P, Ding Z, Kadir S, Kleimann P, Kluge N, Tiren ZB, Steckel B, Flocke V, Zalfen R, Petzsch P, Wachtmeister T, John G, Subramaniam N, Krämer W, Strasdeit T, Mehrabipour M, Moll JM, Schubert R, Ahmadian MR, Bönner F, Boeken U, Westenfeld R, Engel DR, Kelm M, Schrader J, Köhrer K, Grandoch M, Temme S, Flögel U. Non-invasive mapping of systemic neutrophil dynamics upon cardiovascular injury. NATURE CARDIOVASCULAR RESEARCH 2023; 2:126-143. [PMID: 39196054 PMCID: PMC11357992 DOI: 10.1038/s44161-022-00210-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/22/2022] [Indexed: 08/29/2024]
Abstract
Neutrophils play a complex role during onset of tissue injury and subsequent resolution and healing. To assess neutrophil dynamics upon cardiovascular injury, here we develop a non-invasive, background-free approach for specific mapping of neutrophil dynamics by whole-body magnetic resonance imaging using targeted multimodal fluorine-loaded nanotracers engineered with binding peptides specifically directed against murine or human neutrophils. Intravenous tracer application before injury allowed non-invasive three-dimensional visualization of neutrophils within their different hematopoietic niches over the entire body and subsequent monitoring of their egress into affected tissues. Stimulated murine and human neutrophils exhibited enhanced labeling due to upregulation of their target receptors, which could be exploited as an in vivo readout for their activation state in both sterile and nonsterile cardiovascular inflammation. This non-invasive approach will allow us to identify hidden origins of bacterial or sterile inflammation in patients and also to unravel cardiovascular disease states on the verge of severe aggravation due to enhanced neutrophil infiltration or activation.
Collapse
Affiliation(s)
- Pascal Bouvain
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Zhaoping Ding
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Shiwa Kadir
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Patricia Kleimann
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Nils Kluge
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Zeynep-Büsra Tiren
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Bodo Steckel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Vera Flocke
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Ria Zalfen
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Gordon John
- Dental Office/Oral Surgery, Dr. G. John, Plauen, Germany
| | - Nirojah Subramaniam
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wolfgang Krämer
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University, Freiburg im Breisgau, Germany
| | - Tobias Strasdeit
- Institute of Neuro- and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Rolf Schubert
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University, Freiburg im Breisgau, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Florian Bönner
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Udo Boeken
- Clinic for Cardiac Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ralf Westenfeld
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Daniel Robert Engel
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Schrader
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Maria Grandoch
- Institute for Translational Pharmacology, Heinrich Heine University, Düsseldorf, Germany
| | - Sebastian Temme
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany.
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany.
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
9
|
Abstract
Myocardial inflammation occurs following activation of the cardiac immune system, producing characteristic changes in the myocardial tissue. Cardiovascular magnetic resonance is the non-invasive imaging gold standard for myocardial tissue characterization, and is able to detect image signal changes that may occur resulting from inflammation, including edema, hyperemia, capillary leak, necrosis, and fibrosis. Conventional cardiovascular magnetic resonance for the detection of myocardial inflammation and its sequela include T2-weighted imaging, parametric T1- and T2-mapping, and gadolinium-based contrast-enhanced imaging. Emerging techniques seek to image several parameters simultaneously for myocardial tissue characterization, and to depict subtle immune-mediated changes, such as immune cell activity in the myocardium and cardiac cell metabolism. This review article outlines the underlying principles of current and emerging cardiovascular magnetic resonance methods for imaging myocardial inflammation.
Collapse
Affiliation(s)
- Katharine E Thomas
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (K.E.T., V.M.F.)
| | - Anastasia Fotaki
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, United Kingdom (A.F., R.M.B.)
| | - René M Botnar
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, United Kingdom (A.F., R.M.B.)
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile (R.M.B.)
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile (R.M.B.)
| | - Vanessa M Ferreira
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (K.E.T., V.M.F.)
| |
Collapse
|
10
|
Temme S, Kleimann P, Grandoch M, Wang X, Peter K, Simon F, Schrader J, Flögel U. Aktives Targeting zur Visualisierung von thrombotischen Prozessen mittels 19F-MRT. GEFÄSSCHIRURGIE 2022. [DOI: 10.1007/s00772-022-00961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Wang Y, Tan X, Usman A, Zhang Y, Sawczyk M, Král P, Zhang C, Whittaker AK. Elucidating the Impact of Hydrophilic Segments on 19F MRI Sensitivity of Fluorinated Block Copolymers. ACS Macro Lett 2022; 11:1195-1201. [DOI: 10.1021/acsmacrolett.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yiqing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adil Usman
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michał Sawczyk
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022; 7:231. [PMID: 35817770 PMCID: PMC9272665 DOI: 10.1038/s41392-022-01082-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
Aging-induced alternations of vasculature structures, phenotypes, and functions are key in the occurrence and development of vascular aging-related diseases. Multiple molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, vascular inflammation, cellular senescence, and epigenetic alterations are highly associated with vascular aging physiopathology. Advances in nanoparticles and nanotechnology, which can realize sensitive diagnostic modalities, efficient medical treatment, and better prognosis as well as less adverse effects on non-target tissues, provide an amazing window in the field of vascular aging and related diseases. Throughout this review, we presented current knowledge on classification of nanoparticles and the relationship between vascular aging and related diseases. Importantly, we comprehensively summarized the potential of nanoparticles-based diagnostic and therapeutic techniques in vascular aging and related diseases, including cardiovascular diseases, cerebrovascular diseases, as well as chronic kidney diseases, and discussed the advantages and limitations of their clinical applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China. .,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
13
|
Hof S, Marcus C, Kuebart A, Schulz J, Truse R, Raupach A, Bauer I, Flögel U, Picker O, Herminghaus A, Temme S. A Toolbox to Investigate the Impact of Impaired Oxygen Delivery in Experimental Disease Models. Front Med (Lausanne) 2022; 9:869372. [PMID: 35652064 PMCID: PMC9149176 DOI: 10.3389/fmed.2022.869372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/25/2022] [Indexed: 12/29/2022] Open
Abstract
Impaired oxygen utilization is the underlying pathophysiological process in different shock states. Clinically most important are septic and hemorrhagic shock, which comprise more than 75% of all clinical cases of shock. Both forms lead to severe dysfunction of the microcirculation and the mitochondria that can cause or further aggravate tissue damage and inflammation. However, the detailed mechanisms of acute and long-term effects of impaired oxygen utilization are still elusive. Importantly, a defective oxygen exploitation can impact multiple organs simultaneously and organ damage can be aggravated due to intense organ cross-talk or the presence of a systemic inflammatory response. Complexity is further increased through a large heterogeneity in the human population, differences in genetics, age and gender, comorbidities or disease history. To gain a deeper understanding of the principles, mechanisms, interconnections and consequences of impaired oxygen delivery and utilization, interdisciplinary preclinical as well as clinical research is required. In this review, we provide a "tool-box" that covers widely used animal disease models for septic and hemorrhagic shock and methods to determine the structure and function of the microcirculation as well as mitochondrial function. Furthermore, we suggest magnetic resonance imaging as a multimodal imaging platform to noninvasively assess the consequences of impaired oxygen delivery on organ function, cell metabolism, alterations in tissue textures or inflammation. Combining structural and functional analyses of oxygen delivery and utilization in animal models with additional data obtained by multiparametric MRI-based techniques can help to unravel mechanisms underlying immediate effects as well as long-term consequences of impaired oxygen delivery on multiple organs and may narrow the gap between experimental preclinical research and the human patient.
Collapse
Affiliation(s)
- Stefan Hof
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carsten Marcus
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anne Kuebart
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Schulz
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Richard Truse
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Annika Raupach
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Olaf Picker
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anna Herminghaus
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Temme
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Zhong Y, Ye M, Huang L, Hu L, Li F, Ni Q, Zhong J, Wu H, Xu F, Xu J, He X, Wang Z, Ran H, Wu Y, Guo D, Liang XJ. A Fibrin Site-Specific Nanoprobe for Imaging Fibrin-Rich Thrombi and Preventing Thrombus Formation in Venous Vessels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109955. [PMID: 35194836 DOI: 10.1002/adma.202109955] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Venous thromboembolism (VTE) is a prevalent public health issue worldwide. Before treatment, spatiotemporally accurate thrombus detection is essential. However, with the currently available imaging technologies, this is challenging. Herein, the development of a novel fibrin-specific nanoprobe (NP) based on the conjugation of poly(lactic-co-glycolic acid) with the pentapeptide Cys-Arg-Glu-Lys-Ala (CREKA) for selective and semiquantitative imaging in vivo is presented. By integrating Fe3 O4 and NIR fluorochrome (IR780), the NP can function as a highly sensitive sensor for the direct analysis of thrombi in vivo. The fibrin-specific NP distinguishes fibrin-rich thrombi from collagen-rich or erythrocyte-rich thrombi, which can be beneficial for future individually tailored therapeutic strategy. Furthermore, loading NPs with the ketotifen fumarate results in mast cell degranulation inhibition, and hence, NPs can prevent thrombosis without the risk of excessive bleeding. Thus, the use of fibrin-specific NPs may serve as a safe alternative approach for the detection and prevention of VTEs in susceptible populations in the future.
Collapse
Affiliation(s)
- Yixin Zhong
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Ultrasound Molecular Imaging & Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Man Ye
- Department of Radiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Rd, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Liandi Huang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Ultrasound Molecular Imaging & Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Liu Hu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiankun Ni
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongyun Wu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Xiaojing He
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Zhigang Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Ultrasound Molecular Imaging & Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Haitao Ran
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Ultrasound Molecular Imaging & Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Yunzhu Wu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Nanocarrier-Based Management of Venous and Arterial Thrombosis. CRYSTALS 2022. [DOI: 10.3390/cryst12040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cardiovascular diseases represent the leading cause of mortality worldwide, with recent epidemiological studies revealing an increasing trend of prevalence and incidence globally. Among cardiovascular disorders, both arterial and venous thrombosis and particularly their acute life-threating complications such as ischemic stroke, acute myocardial infarction, deep venous thrombosis and pulmonary embolism are responsible for more than 25% of all deaths worldwide. The modern approach following progresses in anticoagulant, thrombolytic and antiaggregant therapies has significantly improved the prognoses of these conditions in the last past decades. However, several challenges still remain such as achieving the optimal drug concentration at the injured site, reducing the shortcomings of drug resistance and the incidence of life-threatening hemorrhages. Nanomedicine is a well-known field of medicine in which atomic and molecular structures ranging between 0.1–100 nm are used in various domains due to their specific mechanical, electrical, thermal and magnetic properties. Recent experimental and clinical evidence have shown that nanotechnology could be a safe, effective and an appealing approach for various non-cardiovascular and cardiovascular diseases such as thromboembolic conditions. In this review, we have described the most promising nanotechnology-based approaches not only for the diagnosis, but also for the treatment of vascular thrombotic diseases.
Collapse
|
16
|
Li Y, Cui J, Li C, Zhou H, Chang J, Aras O, An F. 19 F MRI Nanotheranostics for Cancer Management: Progress and Prospects. ChemMedChem 2022; 17:e202100701. [PMID: 34951121 PMCID: PMC9432482 DOI: 10.1002/cmdc.202100701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Fluorine magnetic resonance imaging (19 F MRI) is a promising imaging technique for cancer diagnosis because of its excellent soft tissue resolution and deep tissue penetration, as well as the inherent high natural abundance, almost no endogenous interference, quantitative analysis, and wide chemical shift range of the 19 F nucleus. In recent years, scientists have synthesized various 19 F MRI contrast agents. By further integrating a wide variety of nanomaterials and cutting-edge construction strategies, magnetically equivalent 19 F atoms are super-loaded and maintain satisfactory relaxation efficiency to obtain high-intensity 19 F MRI signals. In this review, the nuclear magnetic resonance principle underlying 19 F MRI is first described. Then, the construction and performance of various fluorinated contrast agents are summarized. Finally, challenges and future prospects regarding the clinical translation of 19 F MRI nanoprobes are considered. This review will provide strategic guidance and panoramic expectations for designing new cancer theranostic regimens and realizing their clinical translation.
Collapse
Affiliation(s)
- Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Cui
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chenlong Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huimin Zhou
- College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jun Chang
- College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Feifei An
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
17
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Lin H, Tang X, Li A, Gao J. Activatable 19 F MRI Nanoprobes for Visualization of Biological Targets in Living Subjects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005657. [PMID: 33834558 DOI: 10.1002/adma.202005657] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Visualization of biological targets such as crucial cells and biomolecules in living subjects is critical for the studies of important biological processes. Though 1 H magnetic resonance imaging (MRI) has demonstrated its power in offering detailed anatomical and pathological information, its capacity for in vivo tracking of biological targets is limited by the high biological background of 1 H. 19 F distinguishes itself from its competitors as an exceptional complement to 1 H in MRI through its high sensitivity, low biological background, and broad chemical shift range. The specificity and sensitivity of 19 F MRI can be further boosted with activatable nanoprobes. The advantages of 19 F MRI with activatable nanoprobes enable in vivo detection and imaging at the cellular or even molecular level in deep tissues, rendering this technique appealing as a potential solution for visualization of biological targets in living subjects. Here, recent progress over the past decades on activatable 19 F MRI nanoprobes made from three major 19 F-containing compounds, as well as present challenges and potential opportunities, are summarized to provide a panoramic prospective for the people who are interested in this emerging and exciting field.
Collapse
Affiliation(s)
- Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
19
|
Temme S, Yakoub M, Bouvain P, Yang G, Schrader J, Stegbauer J, Flögel U. Beyond Vessel Diameters: Non-invasive Monitoring of Flow Patterns and Immune Cell Recruitment in Murine Abdominal Aortic Disorders by Multiparametric MRI. Front Cardiovasc Med 2021; 8:750251. [PMID: 34760945 PMCID: PMC8572976 DOI: 10.3389/fcvm.2021.750251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 02/03/2023] Open
Abstract
The pathophysiology of the initiation and progression of abdominal aortic aneurysms (AAAs) and aortic dissections (AADs) is still unclear. However, there is strong evidence that monocytes and macrophages are of crucial importance in these processes. Here, we utilized a molecular imaging approach based on background-free 19F MRI and employed perfluorocarbon nanoemulsions (PFCs) for in situ 19F labeling of monocytes/macrophages to monitor vascular inflammation and AAA/AAD formation in angiotensin II (angII)-treated apolipoproteinE-deficient (apoE-/-) mice. In parallel, we used conventional 1H MRI for the characterization of aortic flow patterns and morphology. AngII (1 μg/kg/min) was infused into apoE-/- mice via osmotic minipumps for 10 days and mice were monitored by multiparametric 1H/19F MRI. PFCs were intravenously injected directly after pump implantation followed by additional applications on day 2 and 4 to allow an efficient 19F loading of circulating monocytes. The combination of angiographic, hemodynamic, and anatomical measurements allowed an unequivocal classification of mice in groups with developing AAAs, AADs or without any obvious aortic vessel alterations despite the exposure to angII. Maximal luminal and external diameters of the aorta were enlarged in AAAs, whereas AADs showed either a slight decrease of the luminal diameter or no alteration. 1H/19F MRI after intravenous PFC application demonstrated significantly higher 19F signals in aortae of mice that developed AAAs or AADs as compared to mice in which no aortic disorders were detected. High resolution 1H/19F MRI of excised aortae revealed a patchy pattern of the 19F signals predominantly in the adventitia of the aorta. Histological analysis confirmed the presence of macrophages in this area and flow cytometry revealed higher numbers of immune cells in aortae of mice that have developed AAA/AAD. Importantly, there was a linear correlation of the 19F signal with the total number of infiltrated macrophages. In conclusion, our approach enables a precise differentiation between AAA and AAD as well as visualization and quantitative assessment of inflammatory active vascular lesions, and therefore may help to unravel the complex interplay between macrophage accumulation, vascular inflammation, and the development and progression of AAAs and AADs.
Collapse
Affiliation(s)
- Sebastian Temme
- Department of Experimental Anesthesia, Heinrich-Heine-University, Düsseldorf, Germany.,Experimental Cardiovascular Imaging, Heinrich-Heine-University, Düsseldorf, Germany
| | - Mina Yakoub
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Pascal Bouvain
- Experimental Cardiovascular Imaging, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Molecular Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Guang Yang
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Molecular Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
20
|
Mali A, Kaijzel EL, Lamb HJ, Cruz LJ. 19F-nanoparticles: Platform for in vivo delivery of fluorinated biomaterials for 19F-MRI. J Control Release 2021; 338:870-889. [PMID: 34492234 DOI: 10.1016/j.jconrel.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Fluorine-19 (19F) magnetic resonance imaging (MRI) features one of the most investigated and innovative techniques for quantitative and unambiguous cell tracking, providing information for both localization and number of cells. Because of the relative insensitivity of the MRI technique, a high number of magnetically equivalent fluorine atoms are required to gain detectable signals. However, an increased amount of 19F nuclei induces low solubility in aqueous solutions, making fluorine-based probes not suitable for in vivo imaging applications. In this context, nanoparticle-based platforms play a crucial role, since nanoparticles may carry a high payload of 19F-based contrast agents into the relevant cells or tissues, increase the imaging agents biocompatibility, and provide a highly versatile platform. In this review, we present an overview of the 19F-based nanoprobes for sensitive 19F-MRI, focusing on the main nanotechnologies employed to date, such as fluorine and theranostic nanovectors, including their design and applications.
Collapse
Affiliation(s)
- Alvja Mali
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Eric L Kaijzel
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
21
|
Flögel U, Temme S, Jacoby C, Oerther T, Keul P, Flocke V, Wang X, Bönner F, Nienhaus F, Peter K, Schrader J, Grandoch M, Kelm M, Levkau B. Multi-targeted 1H/ 19F MRI unmasks specific danger patterns for emerging cardiovascular disorders. Nat Commun 2021; 12:5847. [PMID: 34615876 PMCID: PMC8494909 DOI: 10.1038/s41467-021-26146-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Prediction of the transition from stable to acute coronary syndromes driven by vascular inflammation, thrombosis with subsequent microembolization, and vessel occlusion leading to irreversible myocardial damage is still an unsolved problem. Here, we introduce a multi-targeted and multi-color nanotracer platform technology that simultaneously visualizes evolving danger patterns in the development of progressive coronary inflammation and atherothrombosis prior to spontaneous myocardial infarction in mice. Individual ligand-equipped perfluorocarbon nanoemulsions are used as targeting agents and are differentiated by their specific spectral signatures via implementation of multi chemical shift selective 19F MRI. Thereby, we are able to identify areas at high risk of and predictive for consecutive development of myocardial infarction, at a time when no conventional parameter indicates any imminent danger. The principle of this multi-targeted approach can easily be adapted to monitor also a variety of other disease entities and constitutes a technology with disease-predictive potential.
Collapse
Affiliation(s)
- Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany.
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany.
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Sebastian Temme
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Anesthesiology, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Jacoby
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Petra Keul
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Vera Flocke
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Xiaowei Wang
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Florian Bönner
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Fabian Nienhaus
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Jürgen Schrader
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Maria Grandoch
- Department of Pharmacology and Clinical Pharmacology, Heinrich Heine University, Düsseldorf, Germany
| | - Malte Kelm
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
22
|
Wang C, Adams SR, Ahrens ET. Emergent Fluorous Molecules and Their Uses in Molecular Imaging. Acc Chem Res 2021; 54:3060-3070. [PMID: 34259521 DOI: 10.1021/acs.accounts.1c00278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This Account summarizes recent advances in the chemistry of fluorocarbon nanoemulsion (FC NE) functionalization. We describe new families of fluorous molecules, such as chelators, fluorophores, and peptides, that are soluble in FC oils. These materials have helped transform the field of in vivo molecular imaging by enabling sensitive and cell-specific imaging using magnetic resonance imaging (MRI), positron emission tomography (PET), and fluorescence detection. FC emulsions, historically considered for artificial blood substitutes, are routinely used for ultrasound imaging in clinic and have a proven safety profile and a well-characterized biodistribution and pharmacokinetics. The inertness of fluorocarbons contributes to their low toxicity but makes functionalization difficult. The high electronegativity of fluorine imparts very low cohesive energy density and Lewis basicity to heavily fluorinated compounds, making dissolution of metal ions and organic molecules challenging. Functionalization is further complicated by colloidal instability toward heat and pH, as well as limited availability of biocompatible surfactants.We have devised new fluorous chelators that overcome solubility barriers and are able to bind a range of metal ions with high thermodynamic stability and biocompatibility. NE harboring chelators in the fluorous phase are a powerful platform for the development of multimodal imaging agents. These compositions rapidly capture metal ions added to the aqueous phase, thereby functionalizing NEs in useful ways. For example, Fe3+ encapsulation imparts a strong paramagnetic relaxation effect on 19F T1 that dramatically accelerates 19F MRI data acquisition times and hence sensitivity in cell tracking applications. Alternatively, 89Zr encapsulation creates a sensitive and versatile PET probe for inflammatory macrophage detection. Adding lanthanides, such as Eu3+, renders NE luminescent. Beyond chelators, this Account further covers our progress in formulating NEs with fluorophores, such as cyanine or BODIPY dyes, with their utility demonstrated in fluorescence imaging, biosensing, flow cytometry and histology. Fluorous dyes soluble in FC oils are also key enablers for nascent whole-body imaging technologies such as cryo-fluorescence tomography (CFT). Additionally, fluorous cell-penetrating peptides inserted on the NE surface increase the uptake of NE by ∼8-fold in weakly phagocytic stem cells and lymphocytes used in immunotherapy, resulting in significant leaps in detection sensitivity in vivo.
Collapse
|
23
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
24
|
Wang X, Ziegler M, McFadyen JD, Peter K. Molecular Imaging of Arterial and Venous Thrombosis. Br J Pharmacol 2021; 178:4246-4269. [PMID: 34296431 DOI: 10.1111/bph.15635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022] Open
Abstract
Thrombosis contributes to one in four deaths worldwide and is the cause of a large proportion of mortality and morbidity. A reliable and rapid diagnosis of thrombosis will allow for immediate therapy, thereby providing significant benefits to patients. Molecular imaging is a fast-growing and captivating area of research, in both preclinical and clinical applications. Major advances have been achieved by improvements in three central areas of molecular imaging: 1) Better markers for diseases, with increased sensitivity and selectivity; 2) Optimised contrast agents with improved signal to noise ratio; 3) Progress in scanner technologies with higher sensitivity and resolution. Clinically available imaging modalities used for molecular imaging include, magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, as well as nuclear imaging, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT). In the preclinical imaging field, optical (fluorescence and bioluminescent) molecular imaging has provided new mechanistic insights in the pathology of thromboembolic diseases. Overall, the advances in molecular imaging, driven by the collaboration of various scientific disciplines, have substantially contributed to an improved understanding of thrombotic disease, and raises the exciting prospect of earlier diagnosis and individualised therapy for cardiovascular diseases. As such, these advances hold significant promise to be translated to clinical practice and ultimately to reduce mortality and morbidity in patients with thromboembolic diseases.
Collapse
Affiliation(s)
- Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Medicine, Monash University.,Department of Cardiometabolic Health, University of Melbourne
| | - Melanie Ziegler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute
| | - James D McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Cardiometabolic Health, University of Melbourne.,Clinical Hematology Department, Alfred Hospital
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Medicine, Monash University.,Department of Cardiometabolic Health, University of Melbourne.,Department of Cardiology, Alfred Hospital, Melbourne, Australia
| |
Collapse
|
25
|
Guo B, Li Z, Tu P, Tang H, Tu Y. Molecular Imaging and Non-molecular Imaging of Atherosclerotic Plaque Thrombosis. Front Cardiovasc Med 2021; 8:692915. [PMID: 34291095 PMCID: PMC8286992 DOI: 10.3389/fcvm.2021.692915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Thrombosis in the context of atherosclerosis typically results in life-threatening consequences, including acute coronary events and ischemic stroke. As such, early detection and treatment of thrombosis in atherosclerosis patients is essential. Clinical diagnosis of thrombosis in these patients is typically based upon a combination of imaging approaches. However, conventional imaging modalities primarily focus on assessing the anatomical structure and physiological function, severely constraining their ability to detect early thrombus formation or the processes underlying such pathology. Recently, however, novel molecular and non-molecular imaging strategies have been developed to assess thrombus composition and activity at the molecular and cellular levels more accurately. These approaches have been successfully used to markedly reduce rates of atherothrombotic events in patients suffering from acute coronary syndrome (ACS) by facilitating simultaneous diagnosis and personalized treatment of thrombosis. Moreover, these modalities allow monitoring of plaque condition for preventing plaque rupture and associated adverse cardiovascular events in such patients. Sustained developments in molecular and non-molecular imaging technologies have enabled the increasingly specific and sensitive diagnosis of atherothrombosis in animal studies and clinical settings, making these technologies invaluable to patients' health in the future. In the present review, we discuss current progress regarding the non-molecular and molecular imaging of thrombosis in different animal studies and atherosclerotic patients.
Collapse
Affiliation(s)
- Bingchen Guo
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoyue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peiyang Tu
- College of Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Hao Tang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingfeng Tu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Zhang H, Bo S, Zeng K, Wang J, Li Y, Yang Z, Zhou X, Chen S, Jiang ZX. Fluorinated porphyrin-based theranostics for dual imaging and chemo-photodynamic therapy. J Mater Chem B 2021; 8:4469-4474. [PMID: 32363372 DOI: 10.1039/d0tb00083c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Convenient strategies to transform regular liposomes or nano-micelles into multifunctional theranostics would be highly valuable in cancer therapy. Herein, we developed an amphiphilic fluorinated porphyrin dendrimer as a multifunctional "add-on" module which would self-assemble onto liposomal drug delivery systems and conveniently transform the liposomes into novel theranostics. Through cancer cells and murine xenograft tumor model assays, the theranostics showed valuable fluorescence/19F magnetic resonance dual modal imaging and highly efficient chemo-photodynamic therapy. The modular strategy facilitates the convenient and standardized preparation of multifunctional theranostics.
Collapse
Affiliation(s)
- Huaibin Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China. and State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Shaowei Bo
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Kai Zeng
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Jie Wang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yu Li
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xin Zhou
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Shizhen Chen
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
27
|
Xu J, Zhang Y, Nie G. Intelligent antithrombotic nanomedicines: Progress, opportunities, and challenges. VIEW 2021. [DOI: 10.1002/viw.20200145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
- GBA Research Innovation Institute for Nanotechnology Guangdong China
- Henan Institute of Advanced Technology Zhengzhou University Zhengzhou China
| |
Collapse
|
28
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
29
|
MRI-based molecular imaging of epicardium-derived stromal cells (EpiSC) by peptide-mediated active targeting. Sci Rep 2020; 10:21669. [PMID: 33303866 PMCID: PMC7728754 DOI: 10.1038/s41598-020-78600-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
After myocardial infarction (MI), epicardial cells reactivate their embryonic program, proliferate and migrate into the damaged tissue to differentiate into fibroblasts, endothelial cells and, if adequately stimulated, to cardiomyocytes. Targeting epicardium-derived stromal cells (EpiSC) by specific ligands might enable the direct imaging of EpiSCs after MI to better understand their biology, but also may permit the cell-specific delivery of small molecules to improve the post-MI healing process. Therefore, the aim of this study was to identify specific peptides by phage display screening to enable EpiSC specific cargo delivery by active targeting. To this end, we utilized a sequential panning of a phage library on cultured rat EpiSCs and then subtracted phage that nonspecifically bound blood immune cells. EpiSC specific phage were analyzed by deep sequencing and bioinformatics analysis to identify a total of 78 300 ± 31 900 different, EpiSC-specific, peptide insertion sequences. Flow cytometry of the five most highly abundant peptides (EP1, -2, -3, -7 or EP9) showed strong binding to EpiSCs but not to blood immune cells. The best binding properties were found for EP9 which was further studied by surface plasmon resonance (SPR). SPR revealed rapid and stable association of EpiSCs with EP9. As a negative control, THP-1 monocytes did not associate with EP9. Coupling of EP9 to perfluorocarbon nanoemulsions (PFCs) resulted in the efficient delivery of 19F cargo to EpiSCs and enabled their visualization by 19F MRI. Moreover, active targeting of EpiSCs by EP9-labelled PFCs was able to outcompete the strong phagocytic uptake of PFCs by circulating monocytes. In summary, we have identified a 7-mer peptide, (EP9) that binds to EpiSCs with high affinity and specificity. This peptide can be used to deliver small molecule cargos such as contrast agents to permit future in vivo tracking of EpiSCs by molecular imaging and to transfer small pharmaceutical molecules to modulate the biological activity of EpiSCs.
Collapse
|
30
|
Wu L, Liu F, Liu S, Xu X, Liu Z, Sun X. Perfluorocarbons-Based 19F Magnetic Resonance Imaging in Biomedicine. Int J Nanomedicine 2020; 15:7377-7395. [PMID: 33061385 PMCID: PMC7537992 DOI: 10.2147/ijn.s255084] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Fluorine-19 (19F) magnetic resonance (MR) molecular imaging is a promising noninvasive and quantitative molecular imaging approach with intensive research due to the high sensitivity and low endogenous background signal of the 19F atom in vivo. Perfluorocarbons (PFCs) have been used as blood substitutes since 1970s. More recently, a variety of PFC nanoparticles have been designed for the detection and imaging of physiological and pathological changes. These molecular imaging probes have been developed to label cells, target specific epitopes in tumors, monitor the prognosis and therapy efficacy and quantitate characterization of tumors and changes in tumor microenvironment noninvasively, therefore, significantly improving the prognosis and therapy efficacy. Herein, we discuss the recent development and applications of 19F MR techniques with PFC nanoparticles in biomedicine, with particular emphasis on ligand-targeted and quantitative 19F MR imaging approaches for tumor detection, oxygenation measurement, smart stimulus response and therapy efficacy monitoring, et al.
Collapse
Affiliation(s)
- Lina Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Fang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,Department of Medical Imaging, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Shuang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xiuan Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,Department of Medical Imaging, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Zhaoxi Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| |
Collapse
|
31
|
Wang X, Temme S, Grapentin C, Palasubramaniam J, Walsh A, Krämer W, Kleimann P, Havlas A, Schubert R, Schrader J, Flögel U, Peter K. Fluorine-19 Magnetic Resonance Imaging of Activated Platelets. J Am Heart Assoc 2020; 9:e016971. [PMID: 32885712 PMCID: PMC7727014 DOI: 10.1161/jaha.120.016971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute Melbourne Australia.,Molecular Imaging and Theranostics Laboratory Baker Heart and Diabetes Institute Melbourne Australia.,Department of Medicine Monash University Melbourne Australia
| | - Sebastian Temme
- Experimental Cardiovascular Imaging Department of Molecular Cardiology Heinrich Heine University Düsseldorf Düsseldorf Germany
| | | | - Jathushan Palasubramaniam
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute Melbourne Australia.,Molecular Imaging and Theranostics Laboratory Baker Heart and Diabetes Institute Melbourne Australia.,Department of Medicine Monash University Melbourne Australia
| | - Aidan Walsh
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute Melbourne Australia.,Molecular Imaging and Theranostics Laboratory Baker Heart and Diabetes Institute Melbourne Australia.,Department of Medicine Monash University Melbourne Australia
| | - Wolfgang Krämer
- Institute for Pharmaceutical Sciences University of Freiburg Germany
| | - Patricia Kleimann
- Experimental Cardiovascular Imaging Department of Molecular Cardiology Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Asli Havlas
- Experimental Cardiovascular Imaging Department of Molecular Cardiology Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Rolf Schubert
- Institute for Pharmaceutical Sciences University of Freiburg Germany
| | - Jürgen Schrader
- Experimental Cardiovascular Imaging Department of Molecular Cardiology Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging Department of Molecular Cardiology Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute Melbourne Australia.,Department of Medicine Monash University Melbourne Australia
| |
Collapse
|
32
|
In vivo clearance of 19F MRI imaging nanocarriers is strongly influenced by nanoparticle ultrastructure. Biomaterials 2020; 261:120307. [PMID: 32927288 DOI: 10.1016/j.biomaterials.2020.120307] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Perfluorocarbons hold great promise both as imaging agents, particularly for 19F MRI, and in therapy, such as oxygen delivery. 19F MRI is unique in its ability to unambiguously track and quantify a tracer while maintaining anatomic context, and without the use of ionizing radiation. This is particularly well-suited for inflammation imaging and quantitative cell tracking. However, perfluorocarbons, which are best suited for imaging - like perfluoro-15-crown-5 ether (PFCE) - tend to have extremely long biological retention. Here, we showed that the use of a multi-core PLGA nanoparticle entrapping PFCE allows for a 15-fold reduction of half-life in vivo compared to what is reported in literature. This unexpected rapid decrease in 19F signal was observed in liver, spleen and within the infarcted region after myocardial infarction and was confirmed by whole body NMR spectroscopy. We demonstrate that the fast clearance is due to disassembly of the ~200 nm nanoparticle into ~30 nm domains that remain soluble and are cleared quickly. We show here that the nanoparticle ultrastructure has a direct impact on in vivo clearance of its cargo i.e. allowing fast release of PFCE, and therefore also bringing the possibility of multifunctional nanoparticle-based imaging to translational imaging, therapy and diagnostics.
Collapse
|
33
|
Lewis AJM, Burrage MK, Ferreira VM. Cardiovascular magnetic resonance imaging for inflammatory heart diseases. Cardiovasc Diagn Ther 2020; 10:598-609. [PMID: 32695640 PMCID: PMC7369270 DOI: 10.21037/cdt.2019.12.09] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022]
Abstract
Inflammatory myocardial diseases represent a diverse group of conditions in which abnormal inflammation within the myocardium is the primary driver of cardiac dysfunction. Broad causes of myocarditis include infection by cardiotropic viruses or other infectious agents, to systemic autoimmune disease, or to toxins. Myocarditis due to viral aetiologies is a relatively common cause of acute chest pain syndromes in younger and middle-aged patients and often has a benign prognosis, though this and other forms of myocarditis also cause serious sequelae, including heart failure, arrhythmia and death. Endomyocardial biopsy remains the gold standard tool for tissue diagnosis of myocarditis in living individuals, although new imaging technologies have a crucial and complementary role. This review outlines the current state-of-the-art and future experimental cardiovascular magnetic resonance (CMR) imaging approaches for the detection of inflammation and immune cell activity in the heart. Multiparametric CMR, particularly with novel quantitative T1- and T2-mapping, is a valuable and widely-available tool for the non-invasive assessment of inflammatory heart diseases. Novel CMR molecular contrast agents will enable a more targeted assessment of immune cell activity and may be useful in guiding the development of novel therapeutics for myocarditis.
Collapse
Affiliation(s)
- Andrew J M Lewis
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Matthew K Burrage
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Vanessa M Ferreira
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Bouvain P, Temme S, Flögel U. Hot spot 19 F magnetic resonance imaging of inflammation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1639. [PMID: 32380579 DOI: 10.1002/wnan.1639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
Among the preclinical molecular imaging approaches, lately fluorine (19 F) magnetic resonance imaging (MRI) has garnered significant scientific interest in the biomedical research community, due to the unique properties of fluorinated materials and the 19 F nucleus. Fluorine is an intrinsically sensitive nucleus for MRI-there is negligible endogenous 19 F in the body and, thus, no background signal which allows the detection of fluorinated materials as "hot spots" by combined 1 H/19 F MRI and renders fluorine-containing molecules as ideal tracers with high specificity. In addition, perfluorocarbons are a family of compounds that exhibit a very high fluorine payload and are biochemically as well as physiologically inert. Perfluorocarbon nanoemulsions (PFCs) are well known to be readily taken up by immunocompetent cells, which can be exploited for the unequivocal identification of inflammatory foci by tracking the recruitment of PFC-loaded immune cells to affected tissues using 1 H/19 F MRI. The required 19 F labeling of immune cells can be accomplished either ex vivo by PFC incubation of isolated endogenous immune cells followed by their re-injection or by intravenous application of PFCs for in situ uptake by circulating immune cells. With both approaches, inflamed tissues can unambiguously be detected via background-free 19 F signals due to trafficking of PFC-loaded immune cells to affected organs. To extend 19 F MRI tracking beyond cells with phagocytic properties, the PFC surface can further be equipped with distinct ligands to generate specificity against epitopes and/or types of immune cells independent of phagocytosis. Recent developments also allow for concurrent detection of different PFCs with distinct spectral signatures allowing the simultaneous visualization of several targets, such as various immune cell subtypes labeled with these PFCs. Since ligands and targets can easily be adapted to a variety of problems, this approach provides a general and versatile platform for inflammation imaging which will strongly extend the frontiers of molecular MRI. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease.
Collapse
Affiliation(s)
- Pascal Bouvain
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Temme
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
35
|
Ullmann K, Poggemann L, Nirschl H, Leneweit G. Adsorption process for phospholipids of different chain lengths at a fluorocarbon/water interface studied by Du Noüy ring and spinning drop. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04618-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractFluorocarbons are novel systems in the fast-growing fields of diverse biomedical applications and fluorocarbon-water emulsions. However, characterization of these systems with modern measuring techniques such as drop profile analysis tensiometry is almost impossible because of practically identical refractive indexes and high-density differences. Due to the material properties of the fluorocarbon-water system, the invasive Du Noüy ring is the most appropriate method to measure interfacial tensions over long times. However, the influence of the ring on a fluorocarbon/water interface packed with phospholipids needs careful analysis. For the proof of methodology, the spinning drop tensiometry was used for comparison as a non-invasive technique to measure interfacial tension between water and perfluoroperhydrophenanthrene (PFPH) covered by 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) proving almost identical results. This demonstrates the validity of the invasive measurement technique for the studied system. The Du Noüy ring method was applied for further measurements of phospholipids with different chain lengths (1,2-dmyristoyl-sn-glycero-3-phostphatidylcholine, DMPC; 1,2-distearoyl-sn-glycero-3-phosphatidylcholine, DSPC) which revealed a difference in interfacial adsorption kinetics and equilibrium tensions. The Du Noüy ring tensiometry is appropriate to examine the slow adsorption kinetics of phospholipids emulsifying fluorocarbons. The results enable functional optimization of fluorocarbon emulsions regarding physical emulsification parameters and the selection of lipids.
Collapse
|
36
|
Petz A, Grandoch M, Gorski DJ, Abrams M, Piroth M, Schneckmann R, Homann S, Müller J, Hartwig S, Lehr S, Yamaguchi Y, Wight TN, Gorressen S, Ding Z, Kötter S, Krüger M, Heinen A, Kelm M, Gödecke A, Flögel U, Fischer JW. Cardiac Hyaluronan Synthesis Is Critically Involved in the Cardiac Macrophage Response and Promotes Healing After Ischemia Reperfusion Injury. Circ Res 2020; 124:1433-1447. [PMID: 30916618 DOI: 10.1161/circresaha.118.313285] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Immediate changes in the ECM (extracellular matrix) microenvironment occur after myocardial ischemia and reperfusion (I/R) injury. OBJECTIVE Aim of this study was to unravel the role of the early hyaluronan (HA)-rich ECM after I/R. METHODS AND RESULTS Genetic deletion of Has2 and Has1 was used in a murine model of cardiac I/R. Chemical exchange saturation transfer imaging was adapted to image cardiac ECM post-I/R. Of note, the cardiac chemical exchange saturation transfer signal was severely suppressed by Has2 deletion and pharmacological inhibition of HA synthesis 24 hours after I/R. Has2 KO ( Has2 deficient) mice showed impaired hemodynamic function suggesting a protective role for endogenous HA synthesis. In contrast to Has2 deficiency, Has1-deficient mice developed no specific phenotype compared with control post-I/R. Importantly, in Has2 KO mice, cardiac macrophages were diminished after I/R as detected by 19F MRI (magnetic resonance imaging) of perfluorcarbon-labeled immune cells, Mac-2/Galectin-3 immunostaining, and FACS (fluorescence-activated cell sorting) analysis (CD45+CD11b+Ly6G-CD64+F4/80+cells). In contrast to macrophages, cardiac Ly6Chigh and Ly6Clow monocytes were unaffected post-I/R compared with control mice. Mechanistically, inhibition of HA synthesis led to increased macrophage apoptosis in vivo and in vitro. In addition, α-SMA (α-smooth muscle actin)-positive cells were reduced in the infarcted myocardium and in the border zone. In vitro, the myofibroblast response as measured by Acta2 mRNA expression was reduced by inhibition of HA synthesis and of CD44 signaling. Furthermore, Has2 KO fibroblasts were less able to contract collagen gels in vitro. The effects of HA/CD44 on fibroblasts and macrophages post-I/R might also affect intercellular cross talk because cardiac fibroblasts were activated by monocyte/macrophages and, in turn, protected macrophages from apoptosis. CONCLUSIONS Increased HA synthesis contributes to postinfarct healing by supporting macrophage survival and by promoting the myofibroblast response. Additionally, imaging of cardiac HA by chemical exchange saturation transfer post-I/R might have translational value.
Collapse
Affiliation(s)
- Anne Petz
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Maria Grandoch
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Daniel J Gorski
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Marcel Abrams
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Marco Piroth
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Rebekka Schneckmann
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Susanne Homann
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Julia Müller
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Germany (S.H., S.L.).,German Center for Diabetes Research, München-Neuherberg, Germany (S.H., S.L.)
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Germany (S.H., S.L.).,German Center for Diabetes Research, München-Neuherberg, Germany (S.H., S.L.)
| | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Y.Y.)
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA (T.N.W.)
| | - Simone Gorressen
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Zhaoping Ding
- Institut für Molekulare Kardiologie (Z.D., U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Sebastian Kötter
- Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Martina Krüger
- Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Andre Heinen
- Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Malte Kelm
- CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Klinik für Kardiologie, Pneumologie und Angiologie (M. Kelm, U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Axel Gödecke
- CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Ulrich Flögel
- CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Institut für Molekulare Kardiologie (Z.D., U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Klinik für Kardiologie, Pneumologie und Angiologie (M. Kelm, U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Jens W Fischer
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
37
|
Hingorani DV, Chapelin F, Stares E, Adams SR, Okada H, Ahrens ET. Cell penetrating peptide functionalized perfluorocarbon nanoemulsions for targeted cell labeling and enhanced fluorine-19 MRI detection. Magn Reson Med 2019; 83:974-987. [PMID: 31631402 DOI: 10.1002/mrm.27988] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE A bottleneck in developing cell therapies for cancer is assaying cell biodistribution, persistence, and survival in vivo. Ex vivo cell labeling using perfluorocarbon (PFC) nanoemulsions, paired with 19 F MRI detection, is a non-invasive approach for cell product detection in vivo. Lymphocytes are small and weakly phagocytic limiting PFC labeling levels and MRI sensitivity. To boost labeling, we designed PFC nanoemulsion imaging probes displaying a cell-penetrating peptide, namely the transactivating transcription sequence (TAT) of the human immunodeficiency virus. We report optimized synthesis schemes for preparing TAT co-surfactant to complement the common surfactants used in PFC nanoemulsion preparations. METHODS We performed ex vivo labeling of primary human chimeric antigen receptor (CAR) T cells with nanoemulsion. Intracellular labeling was validated using electron microscopy and confocal imaging. To detect signal enhancement in vivo, labeled CAR T cells were intra-tumorally injected into mice bearing flank glioma tumors. RESULTS By incorporating TAT into the nanoemulsion, a labeling efficiency of ~1012 fluorine atoms per CAR T cell was achieved that is a >8-fold increase compared to nanoemulsion without TAT while retaining high cell viability (~84%). Flow cytometry phenotypic assays show that CAR T cells are unaltered after labeling with TAT nanoemulsion, and in vitro tumor cell killing assays display intact cytotoxic function. The 19 F MRI signal detected from TAT-labeled CAR T cells was 8 times higher than cells labeled with PFC without TAT. CONCLUSION The peptide-PFC nanoemulsion synthesis scheme presented can significantly enhance cell labeling and imaging sensitivity and is generalizable for other targeted imaging probes.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Radiology, University of California San Diego, California
| | - Fanny Chapelin
- Department of Bioengineering, University of California San Diego, California
| | - Emma Stares
- Department of Radiology, University of California San Diego, California
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, California
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, California
| | - Eric T Ahrens
- Department of Radiology, University of California San Diego, California
| |
Collapse
|
38
|
Cho MH, Shin SH, Park SH, Kadayakkara DK, Kim D, Choi Y. Targeted, Stimuli-Responsive, and Theranostic 19F Magnetic Resonance Imaging Probes. Bioconjug Chem 2019; 30:2502-2518. [DOI: 10.1021/acs.bioconjchem.9b00582] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mi Hyeon Cho
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Soo Hyun Shin
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Sang Hyun Park
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Deepak Kana Kadayakkara
- Department of Medicine, Bridgeport Hospital−Yale New Haven Health, Bridgeport, Connecticut 06610, United States
| | - Daehong Kim
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Yongdoo Choi
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| |
Collapse
|
39
|
Krämer W, Grapentin C, Bouvain P, Temme S, Flögel U, Schubert R. Rational manufacturing of functionalized, long-term stable perfluorocarbon-nanoemulsions for site-specific 19F magnetic resonance imaging. Eur J Pharm Biopharm 2019; 142:114-122. [PMID: 31220572 DOI: 10.1016/j.ejpb.2019.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Perfluorocarbon (PFC)-nanoemulsions (NE) are a convenient tool for 19F magnetic resonance imaging in cell and animal experiments. Typical preparation methods, like high-pressure homogenization or microfluidization, produce nanoemulsions in mL-scale. However, experiments usually require only miniscule amounts of PFC-NE, several 100 µL. For site-specific imaging tissue-specific ligands, e.g. peptides or antibodies, are covalently bound to the NE surface. This requires the use of expensive functionalized phospholipids containing reactive groups (e.g. maleimide), which often deteriorate quickly in liquid storage, rendering the manufacturing process highly cost-inefficient. A technique to manufacture storage stable NE that maintain their functionality for coupling of various ligands is desired. METHODS AND RESULTS Different PFC-NE formulations and preparation techniques were compared and the most suitable of these was tested in short-, as well as long-term stability tests. Droplet size stability was investigated by dynamic light scattering and cryogenic transmission electron microscopy over 1.5 a. Surface modifiability was assessed by a fluorescence assay. The utility of these NE was proven in an in vitro model. CONCLUSION The established PFC-NE platform offers a cost-efficient way to produce larger amounts of long-term storable imaging agents, which can be surface-modified on demand for application in targeted 19F MRI.
Collapse
Affiliation(s)
- W Krämer
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University of Freiburg, Freiburg, Germany.
| | - C Grapentin
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - P Bouvain
- Department of Molecular Cardiology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - S Temme
- Department of Molecular Cardiology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - U Flögel
- Department of Molecular Cardiology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - R Schubert
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University of Freiburg, Freiburg, Germany
| |
Collapse
|
40
|
Lanza GM, Cui G, Schmieder AH, Zhang H, Allen JS, Scott MJ, Williams T, Yang X. An unmet clinical need: The history of thrombus imaging. J Nucl Cardiol 2019; 26:986-997. [PMID: 28608182 PMCID: PMC5741521 DOI: 10.1007/s12350-017-0942-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/24/2017] [Indexed: 11/24/2022]
Abstract
Robust thrombus imaging is an unresolved clinical unmet need dating back to the mid 1970s. While early molecular imaging approaches began with nuclear SPECT imaging, contrast agents for virtually all biomedical imaging modalities have been demonstrated in vivo with unique strengths and common weaknesses. Two primary molecular imaging targets have been pursued for thrombus imaging: platelets and fibrin. Some common issues noted over 40 years ago persist today. Acute thrombus is readily imaged with all probes and modalities, but aged thrombus remains a challenge. Similarly, anti-coagulation continues to interfere with and often negate thrombus imaging efficacy, but heparin is clinically required in patients suspected of pulmonary embolism, deep venous thrombosis or coronary ruptured plaque prior to confirmatory diagnostic studies have been executed and interpreted. These fundamental issues can be overcome, but an innovative departure from the prior approaches will be needed.
Collapse
Affiliation(s)
- Gregory M Lanza
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA.
| | - Grace Cui
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Anne H Schmieder
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Huiying Zhang
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - John S Allen
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Michael J Scott
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Todd Williams
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Xiaoxia Yang
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| |
Collapse
|
41
|
Phagocytosis of a PFOB-Nanoemulsion for 19F Magnetic Resonance Imaging: First Results in Monocytes of Patients with Stable Coronary Artery Disease and ST-Elevation Myocardial Infarction. Molecules 2019; 24:molecules24112058. [PMID: 31151162 PMCID: PMC6600522 DOI: 10.3390/molecules24112058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022] Open
Abstract
Fluorine-19 magnetic resonance imaging (19F MRI) with intravenously applied perfluorooctyl bromide-nanoemulsions (PFOB-NE) has proven its feasibility to visualize inflammatory processes in experimental disease models. This approach is based on the properties of monocytes/macrophages to ingest PFOB-NE particles enabling specific cell tracking in vivo. However, information on safety (cellular function and viability), mechanism of ingestion and impact of specific disease environment on PFOB-NE uptake is lacking. This information is, however, crucial for the interpretation of 19F MRI signals and a possible translation to clinical application. To address these issues, whole blood samples were collected from patients with acute ST-elevation myocardial infarction (STEMI), stable coronary artery disease (SCAD) and healthy volunteers. Samples were exposed to fluorescently-labeled PFOB-NE and particle uptake, cell viability and migration activity was evaluated by flow cytometry and MRI. We were able to show that PFOB-NE is ingested by human monocytes in a time- and subset-dependent manner via active phagocytosis. Monocyte function (migration, phagocytosis) and viability was maintained after PFOB-NE uptake. Monocytes of STEMI and SCAD patients did not differ in their maximal PFOB-NE uptake compared to healthy controls. In sum, our study provides further evidence for a safe translation of PFOB-NE for imaging purposes in humans.
Collapse
|
42
|
Hill LK, Frezzo JA, Katyal P, Hoang DM, Gironda ZBY, Xu C, Xie X, Delgado-Fukushima E, Wadghiri YZ, Montclare JK. Protein-Engineered Nanoscale Micelles for Dynamic 19F Magnetic Resonance and Therapeutic Drug Delivery. ACS NANO 2019; 13:2969-2985. [PMID: 30758189 PMCID: PMC6945506 DOI: 10.1021/acsnano.8b07481] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Engineered proteins provide an interesting template for designing fluorine-19 (19F) magnetic resonance imaging (MRI) contrast agents, yet progress has been hindered by the unpredictable relaxation properties of fluorine. Herein, we present the biosynthesis of a protein block copolymer, termed "fluorinated thermoresponsive assembled protein" (F-TRAP), which assembles into a monodisperse nanoscale micelle with interesting 19F NMR properties and the ability to encapsulate and release small therapeutic molecules, imparting potential as a diagnostic and therapeutic (theranostic) agent. The assembly of the F-TRAP micelle, composed of a coiled-coil pentamer corona and a hydrophobic, thermoresponsive elastin-like polypeptide core, results in a drastic depression in spin-spin relaxation ( T2) times and unaffected spin-lattice relaxation ( T1) times. The nearly unchanging T1 relaxation rates and linearly dependent T2 relaxation rates have allowed for detection via zero echo time 19F MRI, and the in vivo MR potential has been preliminarily explored using 19F magnetic resonance spectroscopy (MRS). This fluorinated micelle has also demonstrated the ability to encapsulate the small-molecule chemotherapeutic doxorubicin and release its cargo in a thermoresponsive manner owing to its inherent stimuli-responsive properties, presenting an interesting avenue for the development of thermoresponsive 19F MRI/MRS-traceable theranostic agents.
Collapse
Affiliation(s)
- Lindsay K. Hill
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Biomedical Engineering, SUNY Downstate Medical Center, Brooklyn, New York 11203, United States
| | - Joseph A. Frezzo
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dung Minh Hoang
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Zakia Ben Youss Gironda
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Cynthia Xu
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Xuan Xie
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Erika Delgado-Fukushima
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Youssef Z. Wadghiri
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
| |
Collapse
|
43
|
Kim KS, Song CG, Kang PM. Targeting Oxidative Stress Using Nanoparticles as a Theranostic Strategy for Cardiovascular Diseases. Antioxid Redox Signal 2019; 30:733-746. [PMID: 29228781 PMCID: PMC6350062 DOI: 10.1089/ars.2017.7428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Nanomedicine is an application of nanotechnology that provides solutions to unmet medical challenges. The unique features of nanoparticles, such as their small size, modifiable components, and diverse functionality, make them attractive and suitable materials for novel diagnostic, therapeutic, or theranostic applications. Cardiovascular diseases (CVDs) are the major cause of noncommunicable illness in both developing and developed countries. Nanomedicine offers novel theranostic options for the treatment of CVDs. Recent Advances: Many innovative nanoparticles to target reactive oxygen species (ROS) have been developed. In this article, we review the characteristics of nanoparticles that are responsive to ROS, their limitations, and their potential clinical uses. Significant advances made in diagnosis of atherosclerosis and treatment of acute coronary syndrome using nanoparticles are discussed. CRITICAL ISSUES Although there is a tremendous potential for the nanoparticle applications in medicine, their safety should be considered while using in humans. We discuss the challenges that may be encountered with some of the innovative nanoparticles used in CVDs. FUTURE DIRECTIONS The unique properties of nanoparticles offer novel diagnostic tool and potential therapeutic strategies. However, nanomedicine is still in its infancy, and further in-depth studies are needed before wide clinical application is achieved.
Collapse
Affiliation(s)
- Kye S Kim
- 1 Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Harvard Medical School, Boston, Massachusetts
| | - Chul Gyu Song
- 3 Department of Electronic Engineering, Chonbuk National University, Jeonju, South Korea
| | - Peter M Kang
- 1 Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 905] [Impact Index Per Article: 150.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
45
|
Zhang H, Chen S, Yuan Y, Li Y, Jiang Z, Zhou X. 129Xe Hyper-CEST/19F MRI Multimodal Imaging System for Sensitive and Selective Tumor Cells Detection. ACS APPLIED BIO MATERIALS 2018; 2:27-32. [DOI: 10.1021/acsabm.8b00635] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huaibin Zhang
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center forMagnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shizhen Chen
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center forMagnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yaping Yuan
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center forMagnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yu Li
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - ZhongXing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xin Zhou
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center forMagnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
46
|
Bouvain P, Flocke V, Krämer W, Schubert R, Schrader J, Flögel U, Temme S. Dissociation of 19F and fluorescence signal upon cellular uptake of dual-contrast perfluorocarbon nanoemulsions. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:133-145. [PMID: 30498884 DOI: 10.1007/s10334-018-0723-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Perfluorocarbon nanoemulsions (PFCs) tagged with fluorescence dyes have been intensively used to confirm the in vivo 19F magnetic resonance imaging (MRI) localization of PFCs by post mortem histology or flow cytometry. However, only limited data are available on tagged PFCs and the potential dissociation of fluorescence and 19F label after cellular uptake over time. MATERIALS AND METHODS PFCs were coupled to rhodamine (Rho) or carboxyfluorescein (Cfl) and their fate was analyzed after in vitro uptake by J774, RAW and CHO cells by flow cytometry and 19F MRI. In separate in vivo experiments, the dual-labelled emulsions were intravenously applied into mice and their distribution was monitored in spleen and liver over 24 h. In a final step, time course of fluorescence and 19F signals from injected emulsions were tracked in a local inflammation model making use of a subcutaneous matrigel depot doped with LPS (lipopolysaccharide). RESULTS Internalization of fluorescence-labelled PFCs was associated with a substantial whitening over 24 h in all macrophage cell lines while the 19F signal remained stable over time. In all experiments, CflPFCs were more susceptible to bleaching than RhoPFCs. After intravenous injection of RhoPFCs, the fluorescence signal in spleen and liver peaked after 30 min and 2 h, respectively, followed by a successive decrease over 24 h, whereas the 19F signal continuously increased during this observation period. Similar results were found in the matrigel/LPS model, where we observed increasing 19F signals in the inflammatory hot spot over time while the fluorescence signal of immune cells isolated from the matrigel depot 24 h after its implantation was only marginally elevated over background levels. This resulted in a massive underestimation of the true PFC deposition in the reticuloendothelial system and at inflammatory hot spots. CONCLUSION Cellular uptake of fluorescently tagged PFCs leads to a dissociation of the fluorescence and the 19F label signal over time, which critically impacts on interpretation of long-term experiments validated by histology or flow cytometry.
Collapse
Affiliation(s)
- Pascal Bouvain
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University of Düsseldorf, Düsseldorf, NRW, Germany
| | - Vera Flocke
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University of Düsseldorf, Düsseldorf, NRW, Germany
- Department of Engineering Physics, University of Applied Science Münster, Münster, Germany
| | - Wolfgang Krämer
- Pharmaceutical Technology and Biopharmacy, Albert Ludwigs University, Freiburg, BW, Germany
| | - Rolf Schubert
- Pharmaceutical Technology and Biopharmacy, Albert Ludwigs University, Freiburg, BW, Germany
| | - Jürgen Schrader
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University of Düsseldorf, Düsseldorf, NRW, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University of Düsseldorf, Düsseldorf, NRW, Germany.
| | - Sebastian Temme
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University of Düsseldorf, Düsseldorf, NRW, Germany
| |
Collapse
|
47
|
Temme S, Baran P, Bouvain P, Grapentin C, Krämer W, Knebel B, Al-Hasani H, Moll JM, Floss D, Schrader J, Schubert R, Flögel U, Scheller J. Synthetic Cargo Internalization Receptor System for Nanoparticle Tracking of Individual Cell Populations by Fluorine Magnetic Resonance Imaging. ACS NANO 2018; 12:11178-11192. [PMID: 30372619 DOI: 10.1021/acsnano.8b05698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Specific detection of target structures or cells lacking particular surface epitopes still poses a serious problem for all imaging modalities. Here, we demonstrate the capability of synthetic "cargo internalization receptors" (CIRs) for tracking of individual cell populations by 1H/19F magnetic resonance imaging (MRI). To this end, a nanobody for green fluorescent protein (GFP) was used to engineer cell-surface-expressed CIRs which undergo rapid internalization after GFP binding. For 19F MR visibility, the GFP carrier was equipped with "contrast cargo", in that GFP was coupled to perfluorocarbon nanoemulsions (PFCs). To explore the suitability of different uptake mechanisms for this approach, CIRs were constructed by combination of the GFP nanobody and three different cytoplasmic tails that contained individual internalization motifs for endocytosis of the contrast cargo (CIR1-3). Exposure of CIR+ cells to GFP-PFCs resulted in highly specific binding and internalization as confirmed by fluorescence microscopy as well as flow cytometry and enabled visualization by 1H/19F MRI. In particular, expression of CIR2/3 resulted in substantial incorporation of 19F cargo and readily enabled in vivo visualization of GFP-PFC recruitment to transplanted CIR+ cells by 1H/19F MRI in mice. Competition experiments with blood immune cells revealed that CIR+ cells are predominantly loaded with GFP-PFCs even in the presence of cells with strong phagocytotic capacity. Importantly, binding and internalization of GFP-PFCs did not result in the activation of signaling cascades and therefore does not alter cell physiology. Overall, this approach represents a versatile in vivo imaging platform for tracking of individual cell populations by making use of cell-type-specific CIR+ mice.
Collapse
Affiliation(s)
- Sebastian Temme
- Experimental Cardiovascular Imaging, Molecular Cardiology , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Paul Baran
- Institute for Biochemistry and Molecular Biology II, Medical Faculty , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Pascal Bouvain
- Experimental Cardiovascular Imaging, Molecular Cardiology , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Christoph Grapentin
- Department of Pharmaceutical Technology and Biopharmacy , Albert Ludwig University Freiburg , 79104 Freiburg im Breisgau , Germany
| | - Wolfgang Krämer
- Department of Pharmaceutical Technology and Biopharmacy , Albert Ludwig University Freiburg , 79104 Freiburg im Breisgau , Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center , Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center , Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Jens Mark Moll
- Institute for Biochemistry and Molecular Biology II, Medical Faculty , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Doreen Floss
- Institute for Biochemistry and Molecular Biology II, Medical Faculty , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Jürgen Schrader
- Experimental Cardiovascular Imaging, Molecular Cardiology , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Rolf Schubert
- Department of Pharmaceutical Technology and Biopharmacy , Albert Ludwig University Freiburg , 79104 Freiburg im Breisgau , Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Jürgen Scheller
- Institute for Biochemistry and Molecular Biology II, Medical Faculty , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| |
Collapse
|
48
|
Preclinical 19F MRI cell tracking at 3 Tesla. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:123-132. [DOI: 10.1007/s10334-018-0715-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/06/2018] [Accepted: 10/27/2018] [Indexed: 01/11/2023]
|
49
|
Rahaghi FN, Minhas JK, Heresi GA. Diagnosis of Deep Venous Thrombosis and Pulmonary Embolism: New Imaging Tools and Modalities. Clin Chest Med 2018; 39:493-504. [PMID: 30122174 PMCID: PMC6317734 DOI: 10.1016/j.ccm.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Imaging continues to be the modality of choice for the diagnosis of venous thromboembolic disease, particularly when incorporated into diagnostic algorithms. Improvement in imaging techniques as well as new imaging modalities and processing methods have improved diagnostic accuracy and additionally are being leveraged in prognostication and decision making for choice of intervention. In this article, we review the role of imaging in diagnosis and prognostication of venous thromboembolism. We also discuss emerging imaging approaches that may in the near future find clinical usefulness in improving diagnosis and prognostication as well as differentiating disease phenotypes.
Collapse
Affiliation(s)
- Farbod N. Rahaghi
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School. 15 Francis Street, Boston MA 02115, ; Phone: 617-632-6770
| | - Jasleen K. Minhas
- Department of Medicine, North Shore Medical Center, 81 highland Ave Salem MA 10970, Phone: 978-354-4801
| | - Gustavo A. Heresi
- Respiratory Institute, Cleveland Clinic, Mail code A90, 9500 Euclid Ave, OH 44195, Phone: 216-636-5327
| |
Collapse
|
50
|
Yu M, Bouley BS, Xie D, Enriquez JS, Que EL. 19F PARASHIFT Probes for Magnetic Resonance Detection of H2O2 and Peroxidase Activity. J Am Chem Soc 2018; 140:10546-10552. [DOI: 10.1021/jacs.8b05685] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Meng Yu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Bailey S. Bouley
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Da Xie
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - José S. Enriquez
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Emily L. Que
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|