1
|
Yagiz E, Garg P, Cen SY, Nayak KS, Tian Y. Simultaneous multi-slice cardiac real-time MRI at 0.55T. Magn Reson Med 2024. [PMID: 39506513 DOI: 10.1002/mrm.30364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE To determine the feasibility of simultaneous multi-slice (SMS) real-time MRI (RT-MRI) at 0.55T for the evaluation of cardiac function. METHODS Cardiac CINE MRI is routinely used to evaluate left-ventricular (LV) function. The standard is sequential multi-slice balanced SSFP (bSSFP) over a stack of short-axis slices using electrocardiogram (ECG) gating and breath-holds. SMS has been used in CINE imaging to reduce the number of breath-holds by a factor of 2-4 at 1.5T, 3T, and recently at 0.55T. This work aims to determine if SMS is similarly effective in the RT-MRI evaluation of cardiac function. We used an SMS bSSFP pulse sequence with golden-angle spirals at 0.55T with an SMS factor of three. We cover the LV with three acquisitions for SMS, and nine for single-band (SB). Imaging was performed on 9 healthy volunteers and 1 patient with myocardial fibrosis and sternal wires. A spatio-temporal constrained reconstruction is used, with regularization parameters selected by a board-certified cardiologist. Images were quantitatively analyzed with a normalized contrast and an Edge Sharpness (ES) score. RESULTS There was a statistically significant 2-fold difference in contrast between SMS and SB and no significant difference in ES score. The contrast for SMS and SB were 13.38/29.05 at mid-diastole and 10.79/22.26 at end-systole; the ES scores for SMS and SB were 1.77/1.83 at mid-diastole and 1.50/1.72 at end-systole. CONCLUSIONS SMS cardiac RT-MRI at 0.55T is feasible and provides sufficient blood-myocardium contrast to evaluate LV function in three slices simultaneously without any gating or periodic motion assumptions.
Collapse
Affiliation(s)
- Ecrin Yagiz
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Parveen Garg
- Division of Cardiology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Steven Y Cen
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Ye Tian
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Harada T, Tada A, Borlaug BA. Imaging and mechanisms of heart failure with preserved ejection fraction: a state-of-the-art review. Eur Heart J Cardiovasc Imaging 2024; 25:1475-1490. [PMID: 38912836 DOI: 10.1093/ehjci/jeae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
Understanding of the pathophysiology of heart failure with preserved ejection fraction (HFpEF) has advanced rapidly over the past two decades. Currently, HFpEF is recognized as a heterogeneous syndrome, and there is a growing movement towards developing personalized treatments based on phenotype-guided strategies. Left ventricular dysfunction is a fundamental pathophysiological abnormality in HFpEF; however, recent evidence also highlights significant roles for the atria, right ventricle, pericardium, and extracardiac contributors. Imaging plays a central role in characterizing these complex and highly integrated domains of pathophysiology. This review focuses on established evidence, recent insights, and the challenges that need to be addressed concerning the pathophysiology of HFpEF, with a focus on imaging-based evaluations and opportunities for further research.
Collapse
Affiliation(s)
- Tomonari Harada
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Atsushi Tada
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Ipek R, Holland J, Cramer M, Rider O. CMR to characterize myocardial structure and function in heart failure with preserved left ventricular ejection fraction. Eur Heart J Cardiovasc Imaging 2024; 25:1491-1504. [PMID: 39205602 PMCID: PMC11522877 DOI: 10.1093/ehjci/jeae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Despite remarkable progress in therapeutic drugs, morbidity, and mortality for heart failure (HF) remains high in developed countries. HF with preserved ejection fraction (HFpEF) now accounts for around half of all HF cases. It is a heterogeneous disease, with multiple aetiologies, and as such poses a significant diagnostic challenge. Cardiac magnetic resonance (CMR) has become a valuable non-invasive modality to assess cardiac morphology and function, but beyond that, the multi-parametric nature of CMR allows novel approaches to characterize haemodynamics and with magnetic resonance spectroscopy (MRS), the study of metabolism. Furthermore, exercise CMR, when combined with lung water imaging provides an in-depth understanding of the underlying pathophysiological and mechanistic processes in HFpEF. Thus, CMR provides a comprehensive phenotyping tool for HFpEF, which points towards a targeted and personalized therapy with improved diagnostics and prevention.
Collapse
Affiliation(s)
- Rojda Ipek
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jennifer Holland
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| | - Mareike Cramer
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Oliver Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
4
|
Istratoaie S, Gargani L, Popescu BA, Thomas L, Voigt JU, Donal E. How to diagnose heart failure with preserved ejection fraction. Eur Heart J Cardiovasc Imaging 2024; 25:1505-1516. [PMID: 39012791 DOI: 10.1093/ehjci/jeae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major healthcare problem that is raising in prevalence. There has been a shift in HpEF management towards early diagnosis and phenotype-specific targeted treatment. However, the diagnosis of HFpEF remains a challenge due to the lack of universal criteria and patient heterogeneity. This review aims to provide a comprehensive assessment of the diagnostic workup of HFpEF, highlighting the role of echocardiography in HFpEF phenotyping.
Collapse
Affiliation(s)
- Sabina Istratoaie
- Cardiology, University of Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, 2 Rue Henri le Guilloux, F-35000 Rennes, France
- Department of Pharmacology, Toxicology, and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Luna Gargani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Bogdan A Popescu
- University of Medicine and Pharmacy 'Carol Davila'-Euroecolab, Emergency Institute for Cardiovascular Diseases 'Prof. Dr. C. C. Iliescu', Bucharest, Romania
| | - Liza Thomas
- Westmead Clinical School, University of Sydney, Westmead NSW, Australia
- Australia and Cardiology Department, Westmead Hospital, Westmead NSW, Australia
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, Catholic University of Leuven and Department of Cardiovascular Diseases University Hospitals Leuven, Leuven, Belgium
| | - Erwan Donal
- Cardiology, University of Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, 2 Rue Henri le Guilloux, F-35000 Rennes, France
| |
Collapse
|
5
|
Belmonte M, Foà A, Paolisso P, Bergamaschi L, Gallinoro E, Polimeni A, Scarsini R, Muscoli S, Amicone S, De Vita A, Villano A, Angeli F, Armillotta M, Sucato V, Tremamunno S, Morrone D, Indolfi C, Filardi PP, Ribichini F, Lanza GA, Chieffo A, Barbato E, Pizzi C. Coronary microvascular dysfunction beyond the spectrum of chronic coronary syndromes. Prog Cardiovasc Dis 2024:S0033-0620(24)00142-7. [PMID: 39447854 DOI: 10.1016/j.pcad.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
The prevalence of coronary microvascular dysfunction (CMD) beyond the spectrum of chronic coronary syndromes (CCS) is non-negligible, pertaining to pathophysiological and therapeutical implications. Thanks to the availability of accurate and safe non-invasive technique, CMD can be identified as a key player in heart failure, cardiomyopathies, Takotsubo syndrome, aortic stenosis. While CMD is widely recognized as a cause of myocardial ischemia leading to a worse prognosis even in the absence of obstructive coronary artery disease, the characterization of CMD patterns beyond CCS might provide valuable insights on the underlying disease progression, being potentially a "red flag" of adverse cardiac remodeling and a major determinant of response to therapy and outcomes. In this review, we aimed to provide an overview of the latest evidence on the prevalence, mechanistic and prognostic implications of CMD beyond the spectrum of CCS (i.e. heart failure, cardiomyopathies, Takotsubo syndrome, aortic stenosis).
Collapse
Affiliation(s)
- Marta Belmonte
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Alberto Foà
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna; Department of Medical and Surgical Sciences - DIMEC; Alma Mater Studiorum, University of Bologna, Italy
| | - Pasquale Paolisso
- IRCCS Ospedale Galeazzi Sant'Ambrogio, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Luca Bergamaschi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna; Department of Medical and Surgical Sciences - DIMEC; Alma Mater Studiorum, University of Bologna, Italy
| | - Emanuele Gallinoro
- IRCCS Ospedale Galeazzi Sant'Ambrogio, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Alberto Polimeni
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Cardiovascular Research Center, Magna Graecia University, Catanzaro, Italy
| | - Roberto Scarsini
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Saverio Muscoli
- U.O.C. Cardiologia, Fondazione Policlinico "Tor Vergata", Rome, Italy
| | - Sara Amicone
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna; Department of Medical and Surgical Sciences - DIMEC; Alma Mater Studiorum, University of Bologna, Italy
| | - Antonio De Vita
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angelo Villano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Angeli
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna; Department of Medical and Surgical Sciences - DIMEC; Alma Mater Studiorum, University of Bologna, Italy
| | - Matteo Armillotta
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna; Department of Medical and Surgical Sciences - DIMEC; Alma Mater Studiorum, University of Bologna, Italy
| | - Vincenzo Sucato
- Division of Cardiology, University Hospital Paolo Giaccone, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Saverio Tremamunno
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Doralisa Morrone
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine-Cardiology Division, University Hospital of Pisa, Italy
| | - Ciro Indolfi
- Istituto di Cardiologia, Dipartimento di Scienze Mediche e Chirurgiche, Università degli Studi "Magna Graecia", Catanzaro, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | | | - Flavio Ribichini
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Gaetano Antonio Lanza
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alaide Chieffo
- Vita Salute San Raffaele University, Milan, Italy; Interventional Cardiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Barbato
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Italy
| | - Carmine Pizzi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna; Department of Medical and Surgical Sciences - DIMEC; Alma Mater Studiorum, University of Bologna, Italy.
| |
Collapse
|
6
|
Laws JL, Maya TR, Gupta DK. Stress Echocardiography for Assessment of Diastolic Function. Curr Cardiol Rep 2024:10.1007/s11886-024-02142-2. [PMID: 39373960 DOI: 10.1007/s11886-024-02142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
PURPOSE OF REVIEW Diastolic dysfunction is an important, though often underappreciated, cause for exertional dyspnea. Echocardiography enables noninvasive evaluation of diastolic function and filling pressure, but images acquired at rest may be insensitive for detection of exertional abnormalities. This review focuses on stress echocardiography to assess diastolic function, including traditional and novel techniques, with emphasis on specific patient sub-groups in whom this testing may be valuable. RECENT FINDINGS Emerging data informs patient selection for diastolic stress testing. Further, increasing literature provides considerations for performance and interpretation of diastolic metrics relevant to patients with heart failure with preserved ejection fraction, hypertrophic cardiomyopathy, athletes, and those with microvascular coronary dysfunction. Methods, such as speckle-tracking and multi-modality imaging, provide additional and complementary information for non-invasive diastolic assessment. This review serves as a guide to optimally utilize existing and novel techniques of stress echocardiography for diastolic assessment across a broad range of patients.
Collapse
Affiliation(s)
- J Lukas Laws
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2525 West End Ave, Suite 300, Nashville, TN, 37203, USA
| | - Tania Ruiz Maya
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2525 West End Ave, Suite 300, Nashville, TN, 37203, USA
| | - Deepak K Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2525 West End Ave, Suite 300, Nashville, TN, 37203, USA.
| |
Collapse
|
7
|
Lobeek M, Gorter TM, Rienstra M. Epicardial adipose tissue and exercise intolerance in HFpEF. IJC HEART & VASCULATURE 2024; 54:101485. [PMID: 39415966 PMCID: PMC11481610 DOI: 10.1016/j.ijcha.2024.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Michelle Lobeek
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Thomas M. Gorter
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Michiel Rienstra
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
von Haehling S, Assmus B, Bekfani T, Dworatzek E, Edelmann F, Hashemi D, Hellenkamp K, Kempf T, Raake P, Schütt KA, Wachter R, Schulze PC, Hasenfuss G, Böhm M, Bauersachs J. Heart failure with preserved ejection fraction: diagnosis, risk assessment, and treatment. Clin Res Cardiol 2024; 113:1287-1305. [PMID: 38602566 PMCID: PMC11371894 DOI: 10.1007/s00392-024-02396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/02/2024] [Indexed: 04/12/2024]
Abstract
The aetiology of heart failure with preserved ejection fraction (HFpEF) is heterogenous and overlaps with that of several comorbidities like atrial fibrillation, diabetes mellitus, chronic kidney disease, valvular heart disease, iron deficiency, or sarcopenia. The diagnosis of HFpEF involves evaluating cardiac dysfunction through imaging techniques and assessing increased left ventricular filling pressure, which can be measured directly or estimated through various proxies including natriuretic peptides. To better narrow down the differential diagnosis of HFpEF, European and American heart failure guidelines advocate the use of different algorithms including comorbidities that require diagnosis and rigorous treatment during the evaluation process. Therapeutic recommendations differ between guidelines. Whilst sodium glucose transporter 2 inhibitors have a solid evidence base, the recommendations differ with regard to the use of inhibitors of the renin-angiotensin-aldosterone axis. Unless indicated for specific comorbidities, the use of beta-blockers should be discouraged in HFpEF. The aim of this article is to provide an overview of the current state of the art in HFpEF diagnosis, clinical evaluation, and treatment.
Collapse
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| | - Birgit Assmus
- Department of Cardiology and Angiology, Universitätsklinikum Gießen und Marburg, Giessen, Germany
| | - Tarek Bekfani
- Department of Cardiology and Angiology, Universitätsklinikum Magdeburg, Magdeburg, Germany
| | - Elke Dworatzek
- Institute of Gender in Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frank Edelmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Djawid Hashemi
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| | - Kristian Hellenkamp
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Tibor Kempf
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Philipp Raake
- I. Medical Department, Cardiology, Pneumology, Endocrinology and Intensive Care Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Katharina A Schütt
- Department of Internal Medicine I, University Hospital RWTH Aachen, Aachen, Germany
| | - Rolf Wachter
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Paul Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, FSU, Jena, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Michael Böhm
- Kardiologie, Angiologie und Internistische Intensivmedizin, Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University, Homburg, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Schulz A, Backhaus SJ, Lange T, Evertz R, Kutty S, Kowallick JT, Hasenfuß G, Schuster A. Impact of epicardial adipose tissue on cardiac function and morphology in patients with diastolic dysfunction. ESC Heart Fail 2024; 11:2013-2022. [PMID: 38480481 PMCID: PMC11287361 DOI: 10.1002/ehf2.14744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/19/2024] [Accepted: 02/11/2024] [Indexed: 07/31/2024] Open
Abstract
AIMS This study aimed to identify the impact of increased epicardial adipose tissue (EAT) and its regional distribution on cardiac function in patients with diastolic dysfunction. METHODS AND RESULTS Sixty-eight patients with exertional dyspnoea (New York Heart Association ≥II), preserved ejection fraction (≥50%), and diastolic dysfunction (E/e' ≥ 8) underwent rest and stress right heart catheterization, transthoracic echocardiography, and cardiovascular magnetic resonance (CMR). EAT volumes were depicted from CMR short-axis stacks. First, the impact of increased EAT above the median was investigated. Second, the association of ventricular and atrial EAT with myocardial deformation at rest and during exercise stress was analysed in a multivariable regression analysis. Patients with high EAT had higher HFA-PEFF and H2FPEFF scores as well as N-terminal prohormone of brain natriuretic peptide levels (all P < 0.048). They were diagnosed with manifest heart failure with preserved ejection fraction (HFpEF) more frequently (low EAT: 37% vs. high EAT: 64%; P = 0.029) and had signs of adverse remodelling indicated by higher T1 times (P < 0.001). No differences in biventricular volumetry and left ventricular mass (all P > 0.074) were observed. Patients with high EAT had impaired atrial strain at rest and during exercise stress, and impaired ventricular strain during exercise stress. Regionally increased EAT was independently associated with functional impairment of the adjacent chambers. CONCLUSIONS Patients with diastolic dysfunction and increased EAT show more pronounced signs of diastolic functional failure and adverse structural remodelling. Despite similar morphological characteristics, patients with high EAT show significant cardiac functional impairment, in particular in the atria. Our results indicate that regionally increased EAT directly induces atrial functional failure, which represents a distinct pathophysiological feature in HFpEF.
Collapse
Affiliation(s)
- Alexander Schulz
- Department of Cardiology and PneumologyUniversity Medical Center Göttingen, Georg August University of GöttingenGöttingenGermany
- German Centre for Cardiovascular Research (DZHK), Partner Site GöttingenGöttingenGermany
| | - Sören J. Backhaus
- Department of CardiologyCampus Kerckhoff of the Justus‐Liebig‐University Giessen, Kerckhoff‐ClinicBad NauheimGermany
| | - Torben Lange
- Department of Cardiology and PneumologyUniversity Medical Center Göttingen, Georg August University of GöttingenGöttingenGermany
- German Centre for Cardiovascular Research (DZHK), Partner Site GöttingenGöttingenGermany
| | - Ruben Evertz
- Department of Cardiology and PneumologyUniversity Medical Center Göttingen, Georg August University of GöttingenGöttingenGermany
- German Centre for Cardiovascular Research (DZHK), Partner Site GöttingenGöttingenGermany
| | - Shelby Kutty
- Taussig Heart CenterJohns Hopkins Hospital and School of MedicineBaltimoreMDUSA
| | - Johannes T. Kowallick
- German Centre for Cardiovascular Research (DZHK), Partner Site GöttingenGöttingenGermany
- Institute for Diagnostic and Interventional RadiologyUniversity Medical Center Göttingen, Georg August University of GöttingenGöttingenGermany
| | - Gerd Hasenfuß
- Department of Cardiology and PneumologyUniversity Medical Center Göttingen, Georg August University of GöttingenGöttingenGermany
- German Centre for Cardiovascular Research (DZHK), Partner Site GöttingenGöttingenGermany
| | - Andreas Schuster
- Department of Cardiology and PneumologyUniversity Medical Center Göttingen, Georg August University of GöttingenGöttingenGermany
- German Centre for Cardiovascular Research (DZHK), Partner Site GöttingenGöttingenGermany
| |
Collapse
|
10
|
Schulz A, Schellinger IN, Backhaus SJ, Adler AS, Lange T, Evertz R, Kowallick JT, Hoffmann A, Matek C, Tsao PS, Hasenfuß G, Raaz U, Schuster A. Association of Cardiac MRI-derived Aortic Stiffness with Early Stages and Progression of Heart Failure with Preserved Ejection Fraction. Radiol Cardiothorac Imaging 2024; 6:e230344. [PMID: 39145733 PMCID: PMC11369653 DOI: 10.1148/ryct.230344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/28/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Purpose To investigate if aortic stiffening as detected with cardiac MRI is an early phenomenon in the development and progression of heart failure with preserved ejection fraction (HFpEF). Materials and Methods Both clinical and preclinical studies were performed. The clinical study was a secondary analysis of the prospective HFpEF stress trial (August 2017 through September 2019) and included 48 participants (median age, 69 years [range, 65-73 years]; 33 female, 15 male) with noncardiac dyspnea (NCD, n = 21), overt HFpEF at rest (pulmonary capillary wedge pressure [PCWP] ≥ 15 mm Hg, n = 14), and masked HFpEF at rest diagnosed during exercise stress (PCWP ≥ 25 mm Hg, n = 13) according to right heart catheterization. Additionally, all participants underwent echocardiography and cardiac MRI at rest and during exercise stress. Aortic pulse wave velocity (PWV) was calculated. The mechanistic preclinical study characterized cardiac function and structure in transgenic mice with induced arterial stiffness (Runx2-smTg mice). Statistical analyses comprised nonparametric and parametric comparisons, Spearman correlations, and logistic regression models. Results Participants with HFpEF showed increased PWV (NCD vs masked HFpEF: 7.0 m/sec [IQR: 5.0-9.5 m/sec] vs 10.0 m/sec [IQR: 8.0-13.4 m/sec], P = .005; NCD vs overt HFpEF: 7.0 m/sec [IQR: 5.0-9.5 m/sec] vs 11.0 m/sec [IQR: 7.5-12.0 m/sec], P = .01). Increased PWV correlated with higher PCWP (P = .006), left atrial and left ventricular long-axis strain (all P < .02), and N-terminal pro-brain natriuretic peptide levels (P < .001). Participants with overt HFpEF had higher levels of myocardial fibrosis, as demonstrated by increased native T1 times (1199 msec [IQR: 1169-1228 msec] vs 1234 msec [IQR: 1208-1255 msec], P = .009). Aortic stiffness was independently associated with HFpEF on multivariable analyses (odds ratio, 1.31; P = .049). Runx2-smTG mice exhibited an "HFpEF" phenotype compared with wild-type controls, with preserved left ventricular fractional shortening but an early and late diastolic mitral annulus velocity less than 1 (mean, 0.67 ± 0.39 [standard error of the mean] vs 1.45 ± 0.47; P = .004), increased myocardial collagen deposition (mean, 11% ± 1 vs 2% ± 1; P < .001), and increased brain natriuretic peptide levels (mean, 171 pg/mL ± 23 vs 101 pg/mL ± 10; P < .001). Conclusion This study provides translational evidence that increased arterial stiffness might be associated with development and progression of HFpEF and may facilitate its early detection. Keywords: MR Functional Imaging, MR Imaging, Animal Studies, Cardiac, Aorta, Heart ClinicalTrials.gov identifier NCT03260621 Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Alexander Schulz
- From the Department of Medicine, Cardiovascular Division, Beth Israel
Deaconess Medical Center and Harvard Medical School, Boston, Mass (A. Schulz);
Department of Cardiology and Pneumology, University Medical Center
Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40,
37099 Göttingen, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H.,
U.R., A. Schuster); German Center for Cardiovascular Research (DZHK), Partner
Site Lower Saxony, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H., U.R.,
A. Schuster); School of Biomedical Engineering and Imaging Sciences,
King’s College London, London, United Kingdom (S.J.B., A. Schuster);
Institute of Biomedical Imaging, University of Graz, Graz, Austria (A.S.A.);
FORUM Radiology, Rosdorf, Germany (J.T.K.); German Center for Cardiovascular
Research (DZHK), Partner Site Lower Saxony, Germany (J.T.K.); Department of
General, Visceral, Transplant, Vascular and Pediatric Surgery, University
Hospital Würzburg, Würzburg, Germany (A.H.); Institute of
Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany (C.M.); Division of Cardiovascular
Medicine, Stanford University School of Medicine, Stanford, Calif (P.S.T.); VA
Palo Alto Health Care System, Palo Alto, Calif (P.S.T.); and FORUM Cardiology,
Rosdorf, Germany (A. Schuster)
| | - Isabel N. Schellinger
- From the Department of Medicine, Cardiovascular Division, Beth Israel
Deaconess Medical Center and Harvard Medical School, Boston, Mass (A. Schulz);
Department of Cardiology and Pneumology, University Medical Center
Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40,
37099 Göttingen, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H.,
U.R., A. Schuster); German Center for Cardiovascular Research (DZHK), Partner
Site Lower Saxony, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H., U.R.,
A. Schuster); School of Biomedical Engineering and Imaging Sciences,
King’s College London, London, United Kingdom (S.J.B., A. Schuster);
Institute of Biomedical Imaging, University of Graz, Graz, Austria (A.S.A.);
FORUM Radiology, Rosdorf, Germany (J.T.K.); German Center for Cardiovascular
Research (DZHK), Partner Site Lower Saxony, Germany (J.T.K.); Department of
General, Visceral, Transplant, Vascular and Pediatric Surgery, University
Hospital Würzburg, Würzburg, Germany (A.H.); Institute of
Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany (C.M.); Division of Cardiovascular
Medicine, Stanford University School of Medicine, Stanford, Calif (P.S.T.); VA
Palo Alto Health Care System, Palo Alto, Calif (P.S.T.); and FORUM Cardiology,
Rosdorf, Germany (A. Schuster)
| | | | - Ansgar S. Adler
- From the Department of Medicine, Cardiovascular Division, Beth Israel
Deaconess Medical Center and Harvard Medical School, Boston, Mass (A. Schulz);
Department of Cardiology and Pneumology, University Medical Center
Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40,
37099 Göttingen, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H.,
U.R., A. Schuster); German Center for Cardiovascular Research (DZHK), Partner
Site Lower Saxony, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H., U.R.,
A. Schuster); School of Biomedical Engineering and Imaging Sciences,
King’s College London, London, United Kingdom (S.J.B., A. Schuster);
Institute of Biomedical Imaging, University of Graz, Graz, Austria (A.S.A.);
FORUM Radiology, Rosdorf, Germany (J.T.K.); German Center for Cardiovascular
Research (DZHK), Partner Site Lower Saxony, Germany (J.T.K.); Department of
General, Visceral, Transplant, Vascular and Pediatric Surgery, University
Hospital Würzburg, Würzburg, Germany (A.H.); Institute of
Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany (C.M.); Division of Cardiovascular
Medicine, Stanford University School of Medicine, Stanford, Calif (P.S.T.); VA
Palo Alto Health Care System, Palo Alto, Calif (P.S.T.); and FORUM Cardiology,
Rosdorf, Germany (A. Schuster)
| | - Torben Lange
- From the Department of Medicine, Cardiovascular Division, Beth Israel
Deaconess Medical Center and Harvard Medical School, Boston, Mass (A. Schulz);
Department of Cardiology and Pneumology, University Medical Center
Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40,
37099 Göttingen, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H.,
U.R., A. Schuster); German Center for Cardiovascular Research (DZHK), Partner
Site Lower Saxony, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H., U.R.,
A. Schuster); School of Biomedical Engineering and Imaging Sciences,
King’s College London, London, United Kingdom (S.J.B., A. Schuster);
Institute of Biomedical Imaging, University of Graz, Graz, Austria (A.S.A.);
FORUM Radiology, Rosdorf, Germany (J.T.K.); German Center for Cardiovascular
Research (DZHK), Partner Site Lower Saxony, Germany (J.T.K.); Department of
General, Visceral, Transplant, Vascular and Pediatric Surgery, University
Hospital Würzburg, Würzburg, Germany (A.H.); Institute of
Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany (C.M.); Division of Cardiovascular
Medicine, Stanford University School of Medicine, Stanford, Calif (P.S.T.); VA
Palo Alto Health Care System, Palo Alto, Calif (P.S.T.); and FORUM Cardiology,
Rosdorf, Germany (A. Schuster)
| | - Ruben Evertz
- From the Department of Medicine, Cardiovascular Division, Beth Israel
Deaconess Medical Center and Harvard Medical School, Boston, Mass (A. Schulz);
Department of Cardiology and Pneumology, University Medical Center
Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40,
37099 Göttingen, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H.,
U.R., A. Schuster); German Center for Cardiovascular Research (DZHK), Partner
Site Lower Saxony, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H., U.R.,
A. Schuster); School of Biomedical Engineering and Imaging Sciences,
King’s College London, London, United Kingdom (S.J.B., A. Schuster);
Institute of Biomedical Imaging, University of Graz, Graz, Austria (A.S.A.);
FORUM Radiology, Rosdorf, Germany (J.T.K.); German Center for Cardiovascular
Research (DZHK), Partner Site Lower Saxony, Germany (J.T.K.); Department of
General, Visceral, Transplant, Vascular and Pediatric Surgery, University
Hospital Würzburg, Würzburg, Germany (A.H.); Institute of
Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany (C.M.); Division of Cardiovascular
Medicine, Stanford University School of Medicine, Stanford, Calif (P.S.T.); VA
Palo Alto Health Care System, Palo Alto, Calif (P.S.T.); and FORUM Cardiology,
Rosdorf, Germany (A. Schuster)
| | - Johannes T. Kowallick
- From the Department of Medicine, Cardiovascular Division, Beth Israel
Deaconess Medical Center and Harvard Medical School, Boston, Mass (A. Schulz);
Department of Cardiology and Pneumology, University Medical Center
Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40,
37099 Göttingen, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H.,
U.R., A. Schuster); German Center for Cardiovascular Research (DZHK), Partner
Site Lower Saxony, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H., U.R.,
A. Schuster); School of Biomedical Engineering and Imaging Sciences,
King’s College London, London, United Kingdom (S.J.B., A. Schuster);
Institute of Biomedical Imaging, University of Graz, Graz, Austria (A.S.A.);
FORUM Radiology, Rosdorf, Germany (J.T.K.); German Center for Cardiovascular
Research (DZHK), Partner Site Lower Saxony, Germany (J.T.K.); Department of
General, Visceral, Transplant, Vascular and Pediatric Surgery, University
Hospital Würzburg, Würzburg, Germany (A.H.); Institute of
Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany (C.M.); Division of Cardiovascular
Medicine, Stanford University School of Medicine, Stanford, Calif (P.S.T.); VA
Palo Alto Health Care System, Palo Alto, Calif (P.S.T.); and FORUM Cardiology,
Rosdorf, Germany (A. Schuster)
| | - Annett Hoffmann
- From the Department of Medicine, Cardiovascular Division, Beth Israel
Deaconess Medical Center and Harvard Medical School, Boston, Mass (A. Schulz);
Department of Cardiology and Pneumology, University Medical Center
Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40,
37099 Göttingen, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H.,
U.R., A. Schuster); German Center for Cardiovascular Research (DZHK), Partner
Site Lower Saxony, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H., U.R.,
A. Schuster); School of Biomedical Engineering and Imaging Sciences,
King’s College London, London, United Kingdom (S.J.B., A. Schuster);
Institute of Biomedical Imaging, University of Graz, Graz, Austria (A.S.A.);
FORUM Radiology, Rosdorf, Germany (J.T.K.); German Center for Cardiovascular
Research (DZHK), Partner Site Lower Saxony, Germany (J.T.K.); Department of
General, Visceral, Transplant, Vascular and Pediatric Surgery, University
Hospital Würzburg, Würzburg, Germany (A.H.); Institute of
Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany (C.M.); Division of Cardiovascular
Medicine, Stanford University School of Medicine, Stanford, Calif (P.S.T.); VA
Palo Alto Health Care System, Palo Alto, Calif (P.S.T.); and FORUM Cardiology,
Rosdorf, Germany (A. Schuster)
| | - Christian Matek
- From the Department of Medicine, Cardiovascular Division, Beth Israel
Deaconess Medical Center and Harvard Medical School, Boston, Mass (A. Schulz);
Department of Cardiology and Pneumology, University Medical Center
Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40,
37099 Göttingen, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H.,
U.R., A. Schuster); German Center for Cardiovascular Research (DZHK), Partner
Site Lower Saxony, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H., U.R.,
A. Schuster); School of Biomedical Engineering and Imaging Sciences,
King’s College London, London, United Kingdom (S.J.B., A. Schuster);
Institute of Biomedical Imaging, University of Graz, Graz, Austria (A.S.A.);
FORUM Radiology, Rosdorf, Germany (J.T.K.); German Center for Cardiovascular
Research (DZHK), Partner Site Lower Saxony, Germany (J.T.K.); Department of
General, Visceral, Transplant, Vascular and Pediatric Surgery, University
Hospital Würzburg, Würzburg, Germany (A.H.); Institute of
Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany (C.M.); Division of Cardiovascular
Medicine, Stanford University School of Medicine, Stanford, Calif (P.S.T.); VA
Palo Alto Health Care System, Palo Alto, Calif (P.S.T.); and FORUM Cardiology,
Rosdorf, Germany (A. Schuster)
| | - Philip S. Tsao
- From the Department of Medicine, Cardiovascular Division, Beth Israel
Deaconess Medical Center and Harvard Medical School, Boston, Mass (A. Schulz);
Department of Cardiology and Pneumology, University Medical Center
Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40,
37099 Göttingen, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H.,
U.R., A. Schuster); German Center for Cardiovascular Research (DZHK), Partner
Site Lower Saxony, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H., U.R.,
A. Schuster); School of Biomedical Engineering and Imaging Sciences,
King’s College London, London, United Kingdom (S.J.B., A. Schuster);
Institute of Biomedical Imaging, University of Graz, Graz, Austria (A.S.A.);
FORUM Radiology, Rosdorf, Germany (J.T.K.); German Center for Cardiovascular
Research (DZHK), Partner Site Lower Saxony, Germany (J.T.K.); Department of
General, Visceral, Transplant, Vascular and Pediatric Surgery, University
Hospital Würzburg, Würzburg, Germany (A.H.); Institute of
Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany (C.M.); Division of Cardiovascular
Medicine, Stanford University School of Medicine, Stanford, Calif (P.S.T.); VA
Palo Alto Health Care System, Palo Alto, Calif (P.S.T.); and FORUM Cardiology,
Rosdorf, Germany (A. Schuster)
| | - Gerd Hasenfuß
- From the Department of Medicine, Cardiovascular Division, Beth Israel
Deaconess Medical Center and Harvard Medical School, Boston, Mass (A. Schulz);
Department of Cardiology and Pneumology, University Medical Center
Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40,
37099 Göttingen, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H.,
U.R., A. Schuster); German Center for Cardiovascular Research (DZHK), Partner
Site Lower Saxony, Germany (A. Schulz, I.N.S., S.J.B., T.L., R.E., G.H., U.R.,
A. Schuster); School of Biomedical Engineering and Imaging Sciences,
King’s College London, London, United Kingdom (S.J.B., A. Schuster);
Institute of Biomedical Imaging, University of Graz, Graz, Austria (A.S.A.);
FORUM Radiology, Rosdorf, Germany (J.T.K.); German Center for Cardiovascular
Research (DZHK), Partner Site Lower Saxony, Germany (J.T.K.); Department of
General, Visceral, Transplant, Vascular and Pediatric Surgery, University
Hospital Würzburg, Würzburg, Germany (A.H.); Institute of
Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany (C.M.); Division of Cardiovascular
Medicine, Stanford University School of Medicine, Stanford, Calif (P.S.T.); VA
Palo Alto Health Care System, Palo Alto, Calif (P.S.T.); and FORUM Cardiology,
Rosdorf, Germany (A. Schuster)
| | | | | |
Collapse
|
11
|
Inoue K, Smiseth OA. Left atrium as key player and essential biomarker in heart failure. J Cardiol 2024:S0914-5087(24)00135-7. [PMID: 39084316 DOI: 10.1016/j.jjcc.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
This article reviews roles of the left atrium as regulator of left ventricular filling, as compensatory reserve in left ventricular dysfunction and as diagnostic marker in patients with cardiovascular disorders. Application of novel imaging tools to assess left atrial function and their integration with conventional clinical methods are discussed. This includes a review of clinical applications of left atrial strain as a method to quantify the reservoir and booster pump components of left atrial function. Emerging methods for assessing left atrial wall stiffness and active work by pressure-strain loop analysis are discussed. Recommendations for how to apply left atrial strain in clinical routine to diagnose elevated left ventricular filling pressure are provided. Furthermore, a role for left atrial strain in the diagnostic work-up in patients suspected of pre-capillary pulmonary hypertension is proposed. The article also reviews how to implement parameters of atrial structure and function in clinical routine as recommended by recent international guidelines for imaging of heart failure.
Collapse
Affiliation(s)
- Katsuji Inoue
- Department of Community Emergency Medicine, Ehime University Graduate School of Medicine, Yawatahama, Ehime, Japan.
| | - Otto A Smiseth
- Institute for Surgical Research, Division of Cardiovascular and Pulmonary Diseases, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Chrysohoou C, Konstantinou K, Tsioufis K. The Role of NT-proBNP Levels in the Diagnosis and Treatment of Heart Failure with Preserved Ejection Fraction-It Is Not Always a Hide-and-Seek Game. J Cardiovasc Dev Dis 2024; 11:225. [PMID: 39057645 PMCID: PMC11277408 DOI: 10.3390/jcdd11070225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Although heart failure with preserved ejection fraction (HFpEF) has become the predominant heart failure subtype, it remains clinically under-recognized. This has been attributed to the complex pathophysiological mechanisms that accompany individuals with several co-morbidities and symptoms and signs of HFpEF. Natriuretic peptides have been recognized as playing an important role in the diagnosis and monitoring of patients with heart failure with reduced ejection fraction (HFrEF), but their role in HFpEF remains controversial, driven by the different pathophysiological characteristics of these patients. The type of diet consumed has shown various modifying effects on plasma levels of NPs, irrespective of pharmacological treatment.
Collapse
Affiliation(s)
- Christina Chrysohoou
- 1st Cardiology Clinic, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.K.)
| | | | | |
Collapse
|
13
|
Ge Y. CMR in the dynamic assessment of MR. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1399-1400. [PMID: 38976109 DOI: 10.1007/s10554-024-03189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Affiliation(s)
- Yin Ge
- Division of Cardiology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
| |
Collapse
|
14
|
Lange T, Backhaus SJ, Schulz A, Hashemi D, Evertz R, Kowallick JT, Hasenfuß G, Kelle S, Schuster A. CMR-based cardiac phenotyping in different forms of heart failure. Int J Cardiovasc Imaging 2024; 40:1585-1596. [PMID: 38878148 PMCID: PMC11258094 DOI: 10.1007/s10554-024-03145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/15/2024] [Indexed: 07/19/2024]
Abstract
Heart failure (HF) is a heterogenous disease requiring precise diagnostics and knowledge of pathophysiological processes. Since structural and functional imaging data are scarce we hypothesized that cardiac magnetic resonance (CMR)-based analyses would provide accurate characterization and mechanistic insights into different HF groups comprising preserved (HFpEF), mid-range (HFmrEF) and reduced ejection fraction (HFrEF). 22 HFpEF, 17 HFmrEF and 15 HFrEF patients as well as 19 healthy volunteers were included. CMR image assessment contained left atrial (LA) and left ventricular (LV) volumetric evaluation as well as left atrioventricular coupling index (LACI). Furthermore, CMR feature-tracking included LV and LA strain in terms of reservoir (Es), conduit (Ee) and active boosterpump (Ea) function. CMR-based tissue characterization comprised T1 mapping as well as late-gadolinium enhancement (LGE) analyses. HFpEF patients showed predominant atrial impairment (Es 20.8%vs.25.4%, p = 0.02 and Ee 8.3%vs.13.5%, p = 0.001) and increased LACI compared to healthy controls (14.5%vs.23.3%, p = 0.004). Patients with HFmrEF showed LV enlargement but mostly preserved LA function with a compensatory increase in LA boosterpump (LA Ea: 15.0%, p = 0.049). In HFrEF LA and LV functional impairment was documented (Es: 14.2%, Ee: 5.4% p < 0.001 respectively; Ea: 8.8%, p = 0.02). This was paralleled by non-invasively assessed progressive fibrosis (T1 mapping and LGE; HFrEF > HFmrEF > HFpEF). CMR-imaging reveals insights into HF phenotypes with mainly atrial affection in HFpEF, ventricular affection with atrial compensation in HFmrEF and global impairment in HFrEF paralleled by progressive LV fibrosis. These data suggest a necessity for a personalized HF management based on imaging findings for future optimized patient management.
Collapse
Affiliation(s)
- Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Centre of Cardiovascular Research (DZHK), partner site Lower Saxony, Göttingen, Germany
| | - Sören J Backhaus
- Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-Universität Gießen, Kerckhoff-Clinic, Bad Nauheim, Germany
| | - Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Centre of Cardiovascular Research (DZHK), partner site Lower Saxony, Göttingen, Germany
| | - Djawid Hashemi
- Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Centre of Cardiovascular Research (DZHK), partner site Lower Saxony, Göttingen, Germany
| | - Johannes T Kowallick
- German Centre of Cardiovascular Research (DZHK), partner site Lower Saxony, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Centre of Cardiovascular Research (DZHK), partner site Lower Saxony, Göttingen, Germany
| | - Sebastian Kelle
- Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.
- German Centre of Cardiovascular Research (DZHK), partner site Lower Saxony, Göttingen, Germany.
| |
Collapse
|
15
|
Backhaus SJ, Nasopoulou A, Lange T, Schulz A, Evertz R, Kowallick JT, Hasenfuß G, Lamata P, Schuster A. Left Atrial Roof Enlargement Is a Distinct Feature of Heart Failure With Preserved Ejection Fraction. Circ Cardiovasc Imaging 2024; 17:e016424. [PMID: 39012942 PMCID: PMC11251503 DOI: 10.1161/circimaging.123.016424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/29/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND It remains unknown to what extent intrinsic atrial cardiomyopathy or left ventricular diastolic dysfunction drive atrial remodeling and functional failure in heart failure with preserved ejection fraction (HFpEF). Computational 3-dimensional (3D) models fitted to cardiovascular magnetic resonance allow state-of-the-art anatomic and functional assessment, and we hypothesized to identify a phenotype linked to HFpEF. METHODS Patients with exertional dyspnea and diastolic dysfunction on echocardiography (E/e', >8) were prospectively recruited and classified as HFpEF or noncardiac dyspnea based on right heart catheterization. All patients underwent rest and exercise-stress right heart catheterization and cardiovascular magnetic resonance. Computational 3D anatomic left atrial (LA) models were generated based on short-axis cine sequences. A fully automated pipeline was developed to segment cardiovascular magnetic resonance images and build 3D statistical models of LA shape and find the 3D patterns discriminant between HFpEF and noncardiac dyspnea. In addition, atrial morphology and function were quantified by conventional volumetric analyses and deformation imaging. A clinical follow-up was conducted after 24 months for the evaluation of cardiovascular hospitalization. RESULTS Beyond atrial size, the 3D LA models revealed roof dilation as the main feature found in masked HFpEF (diagnosed during exercise-stress only) preceding a pattern shift to overall atrial size in overt HFpEF (diagnosed at rest). Characteristics of the 3D model were integrated into the LA HFpEF shape score, a biomarker to characterize the gradual remodeling between noncardiac dyspnea and HFpEF. The LA HFpEF shape score was able to discriminate HFpEF (n=34) to noncardiac dyspnea (n=34; area under the curve, 0.81) and was associated with a risk for atrial fibrillation occurrence (hazard ratio, 1.02 [95% CI, 1.01-1.04]; P=0.003), as well as cardiovascular hospitalization (hazard ratio, 1.02 [95% CI, 1.00-1.04]; P=0.043). CONCLUSIONS LA roof dilation is an early remodeling pattern in masked HFpEF advancing to overall LA enlargement in overt HFpEF. These distinct features predict the occurrence of atrial fibrillation and cardiovascular hospitalization. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03260621.
Collapse
Affiliation(s)
- Sören J. Backhaus
- Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-University Giessen, Kerckhoff-Clinic, Bad Nauheim, Germany (S.J.B.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany (S.J.B.)
| | - Anastasia Nasopoulou
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (A.N., P.L.)
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Germany (T.L., A. Schulz, R.E., G.H., A. Schuster)
- DZHK, Partner Site Lower Saxony, Germany (T.L., A. Schulz, R.E., J.T.K., G.H., A. Schuster)
| | - Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Germany (T.L., A. Schulz, R.E., G.H., A. Schuster)
- DZHK, Partner Site Lower Saxony, Germany (T.L., A. Schulz, R.E., J.T.K., G.H., A. Schuster)
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Germany (T.L., A. Schulz, R.E., G.H., A. Schuster)
- DZHK, Partner Site Lower Saxony, Germany (T.L., A. Schulz, R.E., J.T.K., G.H., A. Schuster)
| | - Johannes T. Kowallick
- DZHK, Partner Site Lower Saxony, Germany (T.L., A. Schulz, R.E., J.T.K., G.H., A. Schuster)
- FORUM Radiology, Rosdorf, Germany (J.T.K.)
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Germany (T.L., A. Schulz, R.E., G.H., A. Schuster)
- DZHK, Partner Site Lower Saxony, Germany (T.L., A. Schulz, R.E., J.T.K., G.H., A. Schuster)
| | - Pablo Lamata
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (A.N., P.L.)
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Germany (T.L., A. Schulz, R.E., G.H., A. Schuster)
- DZHK, Partner Site Lower Saxony, Germany (T.L., A. Schulz, R.E., J.T.K., G.H., A. Schuster)
- FORUM Cardiology, Rosdorf, Germany (A. Schuster)
- School of Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom (A. Schuster)
| |
Collapse
|
16
|
Backhaus SJ, Schulz A, Lange T, Schmidt-Schweda LS, Hellenkamp K, Evertz R, Kowallick JT, Kutty S, Hasenfuß G, Schuster A. Prognostic and diagnostic implications of impaired rest and exercise-stress left atrial compliance in heart failure with preserved ejection fraction: Insights from the HFpEF stress trial. Int J Cardiol 2024; 404:131949. [PMID: 38471649 DOI: 10.1016/j.ijcard.2024.131949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND With emerging therapies, early diagnosis of heart failure with preserved ejection fraction (HFpEF) comes to the fore. Whilst the reference standard of exercise-stress right heart catheterisation is well established, the clinical routine struggles between feasibility of exercise-stress and diagnostic accuracy of available tests. METHODS The HFpEF Stress Trial (DZHK-17) prospectively enrolled 75 patients with exertional dyspnoea and echocardiographic signs of diastolic dysfunction (E/e' > 8) who underwent simultaneous rest and exercise-stress echocardiography and right heart catheterisation (RHC). HFpEF was defined according to pulmonary capillary wedge pressure (HFpEF: PCWP rest: ≥15 mmHg stress: ≥25 mmHg). Patients were classified as non-cardiac dyspnoea (NCD) in the absence of HFpEF and cardiovascular disease. LA compliance was defined as reservoir strain (Es)/(E/e'). Follow-up was conducted after 4 years to evaluate cardiovascular hospitalisation (CVH). RESULTS The final study population included 68 patients (HFpEF n = 34 and NCD n = 34) of which 23 reached the clinical endpoint, 1 patient was lost to follow-up. Patients with HFpEF according to the HFA-PEFF score (≥5 points) had significantly lower LA compliance at rest (p < 0.001) compared to patients with a score ≤ 4. LA compliance at rest outperformed E/e' (AUC 0.78 vs 0.87, p = 0.024) and showed a statistical trend to outperform Es (AUC 0.79 vs 0.87, p = 0.090) for the diagnosis of HFpEF. LA compliance at rest predicted CVH (HR 2.83, 95% CI 1.70-4.74, p < 0.001) irrespective of concomitant atrial fibrillation. CONCLUSIONS LA compliance at rest can be obtained from clinical routine imaging and bears strong diagnostic and prognostic accuracy. Addition of LA compliance can improve the role of echocardiography as the primary test and gatekeeper.
Collapse
Affiliation(s)
- Sören J Backhaus
- Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-University Giessen, Kerckhoff-Clinic, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Alexander Schulz
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Torben Lange
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Lennart S Schmidt-Schweda
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany
| | - Kristian Hellenkamp
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany
| | - Ruben Evertz
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Johannes T Kowallick
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany; University Medical Center Göttingen (UMG), Institute for Diagnostic and Interventional Radiology, Göttingen, Germany
| | - Shelby Kutty
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, MD, USA
| | - Gerd Hasenfuß
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Andreas Schuster
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
17
|
Garg P, Grafton-Clarke C, Matthews G, Swoboda P, Zhong L, Aung N, Thomson R, Alabed S, Demirkiran A, Vassiliou VS, Swift AJ. Sex-specific cardiac magnetic resonance pulmonary capillary wedge pressure. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae038. [PMID: 38751456 PMCID: PMC11095051 DOI: 10.1093/ehjopen/oeae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Aims Heart failure (HF) with preserved ejection fraction disproportionately affects women. There are no validated sex-specific tools for HF diagnosis despite widely reported differences in cardiac structure. This study investigates whether sex, as assigned at birth, influences cardiac magnetic resonance (CMR) assessment of left ventricular filling pressure (LVFP), a hallmark of HF agnostic to ejection fraction. Methods and results A derivation cohort of patients with suspected pulmonary hypertension and HF from the Sheffield centre underwent invasive right heart catheterization and CMR within 24 h of each other. A sex-specific CMR model to estimate LVFP, measured as pulmonary capillary wedge pressure (PCWP), was developed using multivariable regression. A validation cohort of patients with confirmed HF from the Leeds centre was used to evaluate for the primary endpoints of HF hospitalization and major adverse cardiovascular events (MACEs). Comparison between generic and sex-specific CMR-derived PCWP was undertaken. A total of 835 (60% female) and 454 (36% female) patients were recruited into the derivation and validation cohorts respectively. A sex-specific model incorporating left atrial volume and left ventricular mass was created. The generic CMR PCWP showed significant differences between males and females (14.7 ± 4 vs. 13 ± 3.0 mmHg, P > 0.001), not present with the sex-specific CMR PCWP (14.1 ± 3 vs. 13.8 mmHg, P = 0.3). The sex-specific, but not the generic, CMR PCWP was associated with HF hospitalization (hazard ratio 3.9, P = 0.0002) and MACE (hazard ratio 2.5, P = 0.001) over a mean follow-up period of 2.4 ± 1.2 years. Conclusion Accounting for sex improves precision and prognostic performance of CMR biomarkers for HF.
Collapse
Affiliation(s)
- Pankaj Garg
- Norwich Medical School, University of East Anglia, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Department of Cardiology, Norfolk and Norwich University NHS Foundation Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Ciaran Grafton-Clarke
- Norwich Medical School, University of East Anglia, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Department of Cardiology, Norfolk and Norwich University NHS Foundation Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Gareth Matthews
- Norwich Medical School, University of East Anglia, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Department of Cardiology, Norfolk and Norwich University NHS Foundation Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Peter Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Signature Programme of Cardiovascular Metabolic and Disorders, Duke-NUS Medical School, 8 College Road, Singapore
| | - Nay Aung
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Ross Thomson
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Samer Alabed
- National Institute for Health and Care Research, Sheffield Biomedical Research Centre, Sheffield, UK
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ahmet Demirkiran
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Cardiology, Kocaeli City Hospital, Kocaeli, Turkey
| | - Vassilios S Vassiliou
- Norwich Medical School, University of East Anglia, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Department of Cardiology, Norfolk and Norwich University NHS Foundation Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Andrew J Swift
- National Institute for Health and Care Research, Sheffield Biomedical Research Centre, Sheffield, UK
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Zhao Y, Song Y, Mu X. Application of left atrial strain derived from cardiac magnetic resonance feature tracking to predict cardiovascular disease: A comprehensive review. Heliyon 2024; 10:e27911. [PMID: 38560271 PMCID: PMC10979159 DOI: 10.1016/j.heliyon.2024.e27911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The structural and functional changes of the left atrium (LA)are important for maintaining the filling of the left ventricle (LV), whether the hemodynamics is stable or not, and are valuable for evaluating LV diastolic dysfunction and grading the severity. Studies over the past decade have shown that LA structural alterations are linked to several cardiovascular disorders, and LA enlargement has been identified as a strong predictor of several cardiovascular diseases. However, LA structural or volumetric abnormalities are commonly seen in the advanced stages of disease and do not adequately represent functional changes throughout the cardiac cycle. In recent years, LA strain obtained using cardiac magnetic resonance feature tracking (CMR-FT)technology has been shown to provide early monitoring of LA tension damage while also comprehensively reflecting LA functional changes in three phases, providing deeper insights into cardiovascular disease risk, prognosis of cardiovascular disease, and evaluation of therapeutic efficacy. When compared to the ultrasound speckle tracking approach, the CMR-FT technique provides improved spatial resolution, repeatability, and reproducibility. We report a comprehensive review of the most recent studies on CMR-LA strain in the past five years, including normal reference values, early detection of disease, incremental diagnosis, improvement of risk stratification, assessment of the value of atrial-ventricular hemodynamics and coupled injury, major adverse cardiovascular events and prognostic value, as well as future research perspectives and current limitations, aiming at providing an objective reference for the further exploration of the value of the application of CMR-LA strain in various cardiac disorders.
Collapse
Affiliation(s)
- Yetong Zhao
- Department of Radiology, Central Hospital of Dalian University of Technology, Dalian, 116033, PR China
- Department of Graduate School, Dalian Medical University, Dalian, 116000, PR China
| | - Yang Song
- Department of Radiology, Central Hospital of Dalian University of Technology, Dalian, 116033, PR China
| | - Xiaolin Mu
- Department of Radiology, Central Hospital of Dalian University of Technology, Dalian, 116033, PR China
| |
Collapse
|
19
|
Liu J, Li J, Xia C, He W, Li X, Shen S, Zhou X, Tong N, Peng L. The effect of hyperlipidemia and body fat distribution on subclinical left ventricular function in obesity: a cardiovascular magnetic resonance study. Cardiovasc Diabetol 2024; 23:120. [PMID: 38566090 PMCID: PMC10985902 DOI: 10.1186/s12933-024-02208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Obesity is often associated with multiple comorbidities. However, whether obese subjects with hyperlipidemia in the absence of other complications have worse cardiac indices than metabolically healthy obese subjects is unclear. Therefore, we aimed to determine the effect of hyperlipidemia on subclinical left ventricular (LV) function in obesity and to evaluate the association of cardiac parameters with body fat distribution. MATERIALS AND METHODS Ninety-two adults were recruited and divided into 3 groups: obesity with hyperlipidemia (n = 24, 14 males), obesity without hyperlipidemia (n = 25, 13 males), and c ntrols (n = 43, 25 males). LV strain parameters (peak strain (PS), peak diastolic strain rate (PDSR), peak systolic strain rate) derived from cardiovascular magnetic resonance tissue tracking were measured and compared. Dual-energy X-ray absorptiometer was used to measure body fat distribution. Correlations of hyperlipidemia and body fat distribution with LV strain were assessed by multivariable linear regression. RESULTS Obese individuals with preserved LV ejection fraction showed lower global LV longitudinal, circumferential, and radial PS and longitudinal and circumferential PDSR than controls (all P < 0.05). Among obese patients, those with hyperlipidemia had lower longitudinal PS and PDSR and circumferential PDSR than those without hyperlipidemia (- 12.8 ± 2.9% vs. - 14.2 ± 2.7%, 0.8 ± 0.1 s-1 vs. 0.9 ± 0.3 s-1, 1.2 ± 0.2 s-1 vs. 1.4 ± 0.2 s-1; all P < 0.05). Multivariable linear regression demonstrated that hyperlipidemia was independently associated with circumferential PDSR (β = - 0.477, P < 0.05) in obesity after controlling for growth differences, other cardiovascular risk factors, and central fat distribution. In addition, android fat had an independently negative relationship with longitudinal and radial PS (β = - 0.486 and β = - 0.408, respectively; all P < 0.05); and visceral fat was negatively associated with longitudinal PDSR (β = - 0.563, P < 0.05). Differently, gynoid fat was positively correlated with circumferential PS and PDSR and radial PDSR (β = 0.490, β = 0.481, and β = 0.413, respectively; all P < 0.05). CONCLUSION Hyperlipidemia is independently associated with subclinical LV diastolic dysfunction in obesity. Central fat distribution (android and visceral fat) has a negative association, while peripheral fat distribution (gynoid fat) has a positive association on subclinical LV function. These results suggest that appropriate management of hyperlipidemia may be beneficial for obese patients, and that the differentiation of fat distribution in different regions may facilitate the precise management of obese patients. Clinical trials registration Effect of lifestyle intervention on metabolism of obese patients based on smart phone software (ChiCTR1900026476).
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Jing Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Wenzhang He
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Xue Li
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Sumin Shen
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, 200126, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China.
| | - Liqing Peng
- Department of Radiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, China.
| |
Collapse
|
20
|
Schulz A, Mittelmeier H, Wagenhofer L, Backhaus SJ, Lange T, Evertz R, Kutty S, Kowallick JT, Hasenfuß G, Schuster A. Assessment of the cardiac output at rest and during exercise stress using real-time cardiovascular magnetic resonance imaging in HFpEF-patients. Int J Cardiovasc Imaging 2024; 40:853-862. [PMID: 38236362 PMCID: PMC11052864 DOI: 10.1007/s10554-024-03054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
This methodological study aimed to validate the cardiac output (CO) measured by exercise-stress real-time phase-contrast cardiovascular magnetic resonance imaging (CMR) in patients with heart failure and preserved ejection fraction (HFpEF). 68 patients with dyspnea on exertion (NYHA ≥ II) and echocardiographic signs of diastolic dysfunction underwent rest and exercise stress right heart catheterization (RHC) and CMR within 24 h. Patients were diagnosed as overt HFpEF (pulmonary capillary wedge pressure (PCWP) ≥ 15mmHg at rest), masked HFpEF (PCWP ≥ 25mmHg during exercise stress but < 15mmHg at rest) and non-cardiac dyspnea. CO was calculated using RHC as the reference standard, and in CMR by the volumetric stroke volume, conventional phase-contrast and rest and stress real-time phase-contrast imaging. At rest, the CMR based CO showed good agreement with RHC with an ICC of 0.772 for conventional phase-contrast, and 0.872 for real-time phase-contrast measurements. During exercise stress, the agreement of real-time CMR and RHC was good with an ICC of 0.805. Real-time measurements underestimated the CO at rest (Bias:0.71 L/min) and during exercise stress (Bias:1.4 L/min). Patients with overt HFpEF had a significantly lower cardiac index compared to patients with masked HFpEF and with non-cardiac dyspnea during exercise stress, but not at rest. Real-time phase-contrast CO can be assessed with good agreement with the invasive reference standard at rest and during exercise stress. While moderate underestimation of the CO needs to be considered with non-invasive testing, the CO using real-time CMR provides useful clinical information and could help to avoid unnecessary invasive procedures in HFpEF patients.
Collapse
Affiliation(s)
- Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Hannah Mittelmeier
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
| | - Lukas Wagenhofer
- Institute of Biomedical Imaging, University of Technology Graz, Graz, Austria
| | - Sören J Backhaus
- Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-University Giessen, Kerckhoff-Clinic, Bad Nauheim, Germany
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Shelby Kutty
- Taussig Heart Center, Johns Hopkins Hospital and School of Medicine, Baltimore, MD, 21287, USA
| | - Johannes T Kowallick
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
21
|
Cheng JF, Huang PS, Chen ZW, Huang CY, Lan CW, Chen SY, Lin LY, Wu CK. Post-exercise left atrial conduit strain predicted hemodynamic change in heart failure with preserved ejection fraction. Eur Radiol 2024; 34:1825-1835. [PMID: 37650970 DOI: 10.1007/s00330-023-10142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 07/04/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVES Left ventricle function directly impacts left atrial (LA) conduit function, and LA conduit strain is associated with exercise intolerance in patients with heart failure with preserved ejection fraction (HFpEF). Pulmonary capillary wedge pressure (PCWP) before and during exercise is the current gold standard for diagnosing HFpEF. Post-exercise ΔPCWP can lead to worse long-term outcomes. This study examined the correlation between LA strain and post-exercise ΔPCWP in patients with HFpEF. METHODS We enrolled 100 subjects, including 74 with HFpEF and 26 with non-cardiac dyspnea, from November 2017 to December 2020. Subjects underwent echocardiography, invasive cardiac catheterization, and expired gas analysis at rest and during exercise. Arterial blood pressure, right atrial pressure, pulmonary artery pressure, and PCWP were recorded during cardiac catheterization. Cardiac output, stroke volume, pulmonary vascular resistance, pulmonary artery compliance, systemic vascular resistance, and LV stroke work were calculated using standard formulas. RESULTS Exercise LA conduit strain significantly correlated with both post-exercise ΔPCWP (r = - 0.707, p < 0.001) and exercise PCWP (r = - 0.659; p < 0.001). Exercise LA conduit strain differentiated patients who did and did not meet the 2016 European Society of Cardiology HFpEF criteria with an area under the curve of 0.69 (95% confidence interval, 0.548-0.831) using a cutoff value of 14.25, with a sensitivity of 0.64 and a specificity of 0.68. CONCLUSIONS Exercise LA conduit strain significantly correlates with post-exercise ΔPCWP and has a comparable power to identify patients with HFpEF. Additional studies are warranted to confirm the ability of LA conduit strain to predict long-term outcomes among patients with HFpEF. CLINICAL RELEVANCE STATEMENT Exercise left atrial conduit strain was highly associated with the difference of post-exercise pulmonary capillary wedge pressure and may indicate increased mortality risk in patients with heart failure with preserved ejection fraction, and also has comparable diagnostic ability. KEY POINTS • Left atrial conduit strain is associated with exercise intolerance in patients with heart failure with preserved ejection fraction. • Left atrial conduit strain during exercise can identify patients with heart failure with preserved ejection fraction. • Exercise left atrial conduit strain significantly correlates with the difference of pulmonary capillary wedge pressure during and before exercise which might predict the long-term outcomes of heart failure with preserved ejection fraction patients.
Collapse
Affiliation(s)
- Jen-Fang Cheng
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
- Division of Hospitalist, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Pang-Shuo Huang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Yun-Lin Branch, Douliu, Taiwan
| | - Zheng-Wei Chen
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Yun-Lin Branch, Douliu, Taiwan
| | - Chen-Yu Huang
- Division of Cardiology, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Chen-Wei Lan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Ssu-Yuan Chen
- Department of Physical Medicine & Rehabilitation, Fu Jen Catholic University Hospital and Fu Jen Catholic University School of Medicine, New Taipei City, Taiwan
- Department of Physical Medicine & Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Cho-Kai Wu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
22
|
Backhaus SJ, Schulz A, Lange T, Schmidt-Schweda LS, Evertz R, Kowallick J, Hasenfuß G, Schuster A. Real-time cardiovascular magnetic resonance imaging for non-invasive characterisation of heart failure with preserved ejection fraction: final outcomes of the HFpEF stress trial. Clin Res Cardiol 2024; 113:496-508. [PMID: 38170248 PMCID: PMC10881625 DOI: 10.1007/s00392-023-02363-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The diagnosis of heart failure with preserved ejection fraction (HFpEF) remains challenging. Recently, the HFpEF Stress Trial demonstrated feasibility and accuracy of non-invasive cardiovascular magnetic resonance (CMR) real-time (RT) exercise-stress atrial function imaging for early identification of HFpEF. However, no outcome data have yet been presented. METHODS The HFpEF Stress Trial (DZHK-17) prospectively recruited 75 patients with dyspnea on exertion and echocardiographic preserved EF and signs of diastolic dysfunction (E/e' > 8). 68 patients entered the final study cohort and were characterized as HFpEF (n = 34) or non-cardiac dyspnea (n = 34) according to pulmonary capillary wedge pressure (HFpEF: PCWP rest: ≥ 15 mmHg stress: ≥ 25 mmHg). These patients were contacted by telephone and hospital charts were reviewed. The clinical endpoint was cardiovascular events (CVE). RESULTS Follow-up was performed after 48 months; 1 patient was lost to follow-up. HFpEF patients were more frequently compared to non-cardiac dyspnea (15 vs. 8, p = 0.059). Hospitalised patients during follow-up had higher H2FPEF scores (5 vs. 3, p < 0.001), and impaired left atrial (LA) function at rest (p ≤ 0.002) and stress (p ≤ 0.006). Impairment of CMR-derived atrial function parameters at rest and during exercise-stress (p ≤ 0.003) was associated with increased likelihood for CVE. CMR-Feature Tracking LA Es/Ee (p = 0.016/0.017) and RT-CMR derived LA long axis strain (p = 0.003) were predictors of CVE independent of the presence of atrial fibrillation. CONCLUSIONS Left atrial function emerged as the strongest predictor for 4-year outcome in the HFpEF Stress Trial. A combination of rest and exercise-stress LA function quantification allows accurate diagnostic and prognostic stratification in HFpEF. CLINICALTRIALS gov: NCT03260621.
Collapse
Affiliation(s)
- Sören J Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Lennart S Schmidt-Schweda
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Johannes Kowallick
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Department of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
23
|
Hasenfuß G, Schuster A, Bergau L, Toischer K. [Precision medicine enhances personalized medicine in cardiology]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024; 65:239-247. [PMID: 38294501 DOI: 10.1007/s00108-024-01663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
Personalized medicine and precision medicine, frequently used synonymously, shall be clearly differentiated. Accordingly, personalization in cardiac medicine is based on the clinical presentation of a patient, as well as his/her cardiovascular risk factors and comorbidities, electrocardiography, imaging, and biomarkers for myocardial load and ischemia. Personalization is based on large clinical trials with detailed subgroup analyses and is practiced on the basis of guidelines. Further in depth personalization is achieved by precision medicine, which is based on innovative imaging for myocardial structure, coronary morphology, and electrophysiology. From the clinical perspective, genome analyses are relevant for comparatively rare monogenetic cardiovascular diseases. While these as well as transcriptome and metabolome analyses play a significant role in cardiovascular research with great translation potential, they have not yet been broadly introduced in the diagnosis, prevention, and treatment of complex cardiovascular diseases. Furthermore, digital technologies have considerable potential in cardiovascular precision medicine. On the one hand, this is based on the frequency of the diseases with the availability of Big Data and, on the other hand, on the availability of bio-signals and sensors of those signals in cardiovascular diseases.
Collapse
Affiliation(s)
- G Hasenfuß
- Herzzentrum Göttingen, Klinik für Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Georg-August-Universität, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland.
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Standort Göttingen, Göttingen, Deutschland.
| | - A Schuster
- Herzzentrum Göttingen, Klinik für Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Georg-August-Universität, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Standort Göttingen, Göttingen, Deutschland
| | - L Bergau
- Herzzentrum Göttingen, Klinik für Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Georg-August-Universität, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Standort Göttingen, Göttingen, Deutschland
| | - K Toischer
- Herzzentrum Göttingen, Klinik für Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Georg-August-Universität, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Standort Göttingen, Göttingen, Deutschland
| |
Collapse
|
24
|
Backhaus SJ, Schulz A, Lange T, Evertz R, Kowallick JT, Hasenfuß G, Schuster A. Rest and exercise-stress estimated pulmonary capillary wedge pressure using real-time free-breathing cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 2024; 26:101032. [PMID: 38431079 PMCID: PMC10950869 DOI: 10.1016/j.jocmr.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/08/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Identification of increased pulmonary capillary wedge pressure (PCWP) by right heart catheterization (RHC) is the reference standard for the diagnosis of heart failure with preserved ejection fraction (HFpEF). Recently, cardiovascular magnetic resonance (CMR) imaging estimation of PCWP at rest was introduced as a non-invasive alternative. Since many patients are only identified during physiological exercise-stress, we hypothesized that novel exercise-stress CMR-derived PCWP emerges superior compared to its assessment at rest. METHODS The HFpEF-Stress Trial prospectively recruited 75 patients with exertional dyspnea and diastolic dysfunction who then underwent rest and exercise-stress RHC and CMR. HFpEF was defined according to PCWP (overt HFpEF ≥15 mmHg at rest, masked HFpEF ≥25 mmHg during exercise-stress). CMR-derived PCWP was calculated based on previously published formula using left ventricular mass and either biplane left atrial volume (LAV) or monoplane left atrial area (LAA). RESULTS LAV (rest/stress: r = 0.50/r = 0.55, p < 0.001) and LAA PCWP (rest/stress: r = 0.50/r = 0.48, p < 0.001) correlated significantly with RHC-derived PCWP while numerically overestimating PCWP at rest and underestimating PCWP during exercise-stress. LAV and LAA PCWP showed good diagnostic accuracy to detect HFpEF (area under the receiver operating characteristic curve (AUC) LAV rest 0.73, stress 0.81; LAA rest 0.72, stress 0.77) with incremental diagnostic value for the detection of masked HFpEF using exercise-stress (AUC LAV rest 0.54 vs stress 0.67, p = 0.019, LAA rest 0.52 vs stress 0.66, p = 0.012). LAV but not LAA PCWP during exercise-stress was a predictor for 24 months hospitalization independent of a medical history for atrial fibrillation (hazard ratio (HR) 1.26, 95% confidence interval 1.02-1.55, p = 0.032). CONCLUSION Non-invasive PCWP correlates well with the invasive reference at rest and during exercise stress. There is overall good diagnostic accuracy for HFpEF assessment using CMR-derived estimated PCWP despite deviations in absolute agreement. Non-invasive exercise derived PCWP may particularly facilitate detection of masked HFpEF in the future.
Collapse
Affiliation(s)
- Sören J Backhaus
- Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-University Giessen, Kerckhoff-Clinic, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany.
| | - Alexander Schulz
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| | - Torben Lange
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| | - Ruben Evertz
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| | - Johannes T Kowallick
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany; University Medical Center Göttingen (UMG), Institute for Diagnostic and Interventional Radiology, Göttingen, Germany.
| | - Gerd Hasenfuß
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| | - Andreas Schuster
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
25
|
Schilling M, Unterberg-Buchwald C, Lotz J, Uecker M. Assessment of deep learning segmentation for real-time free-breathing cardiac magnetic resonance imaging at rest and under exercise stress. Sci Rep 2024; 14:3754. [PMID: 38355969 PMCID: PMC10866998 DOI: 10.1038/s41598-024-54164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
In recent years, a variety of deep learning networks for cardiac MRI (CMR) segmentation have been developed and analyzed. However, nearly all of them are focused on cine CMR under breathold. In this work, accuracy of deep learning methods is assessed for volumetric analysis (via segmentation) of the left ventricle in real-time free-breathing CMR at rest and under exercise stress. Data from healthy volunteers (n = 15) for cine and real-time free-breathing CMR at rest and under exercise stress were analyzed retrospectively. Exercise stress was performed using an ergometer in the supine position. Segmentations of two deep learning methods, a commercially available technique (comDL) and an openly available network (nnU-Net), were compared to a reference model created via the manual correction of segmentations obtained with comDL. Segmentations of left ventricular endocardium (LV), left ventricular myocardium (MYO), and right ventricle (RV) are compared for both end-systolic and end-diastolic phases and analyzed with Dice's coefficient. The volumetric analysis includes the cardiac function parameters LV end-diastolic volume (EDV), LV end-systolic volume (ESV), and LV ejection fraction (EF), evaluated with respect to both absolute and relative differences. For cine CMR, nnU-Net and comDL achieve Dice's coefficients above 0.95 for LV and 0.9 for MYO, and RV. For real-time CMR, the accuracy of nnU-Net exceeds that of comDL overall. For real-time CMR at rest, nnU-Net achieves Dice's coefficients of 0.94 for LV, 0.89 for MYO, and 0.90 for RV and the mean absolute differences between nnU-Net and the reference are 2.9 mL for EDV, 3.5 mL for ESV, and 2.6% for EF. For real-time CMR under exercise stress, nnU-Net achieves Dice's coefficients of 0.92 for LV, 0.85 for MYO, and 0.83 for RV and the mean absolute differences between nnU-Net and reference are 11.4 mL for EDV, 2.9 mL for ESV, and 3.6% for EF. Deep learning methods designed or trained for cine CMR segmentation can perform well on real-time CMR. For real-time free-breathing CMR at rest, the performance of deep learning methods is comparable to inter-observer variability in cine CMR and is usable for fully automatic segmentation. For real-time CMR under exercise stress, the performance of nnU-Net could promise a higher degree of automation in the future.
Collapse
Affiliation(s)
- Martin Schilling
- Institute for Diagnostic and Interventional Radiology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Christina Unterberg-Buchwald
- Institute for Diagnostic and Interventional Radiology, Universitätsmedizin Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Clinic of Cardiology and Pneumology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Joachim Lotz
- Institute for Diagnostic and Interventional Radiology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Martin Uecker
- Institute for Diagnostic and Interventional Radiology, Universitätsmedizin Göttingen, Göttingen, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria.
| |
Collapse
|
26
|
Schmidt-Rimpler J, Backhaus SJ, Hartmann FP, Schaten P, Lange T, Evertz R, Schulz A, Kowallick JT, Lapinskas T, Hasenfuß G, Kelle S, Schuster A. Impact of temporal and spatial resolution on atrial feature tracking cardiovascular magnetic resonance imaging. Int J Cardiol 2024; 396:131563. [PMID: 37926379 DOI: 10.1016/j.ijcard.2023.131563] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Myocardial deformation assessment by cardiovascular magnetic resonance-feature tracking (CMR-FT) has incremental prognostic value over volumetric analyses. Recently, atrial functional analyses have come to the fore. However, to date recommendations for optimal resolution parameters for accurate atrial functional analyses are still lacking. METHODS CMR-FT was performed in 12 healthy volunteers and 9 ischemic heart failure (HF) patients. Cine sequences were acquired using different temporal (20, 30, 40 and 50 frames/cardiac cycle) and spatial resolution parameters (high 1.5 × 1.5 mm in plane and 5 mm slice thickness, standard 1.8 × 1.8 × 8 mm and low 3.0 × 3.0 × 10 mm). Inter- and intra-observer reproducibility were calculated. RESULTS Increasing temporal resolution is associated with higher absolute strain and strain rate (SR) values. Significant changes in strain assessment for left atrial (LA) total strain occurred between 20 and 30 frames/cycle amounting to 2,5-4,4% in absolute changes depending on spatial resolution settings. From 30 frames/cycle onward, absolute strain values remained unchanged. Significant changes of LA strain rate assessment were observed up to the highest temporal resolution of 50 frames/cycle. Effects of spatial resolution on strain assessment were smaller. For LA total strain a general trend emerged for a mild decrease in strain values obtained comparing the lowest to the highest spatial resolution at temporal resolutions of 20, 40 and 50 frames/cycle (p = 0.006-0.046) but not at 30 frames/cycle (p = 0.140). CONCLUSION Temporal and to a smaller extent spatial resolution affect atrial functional assessment. Consistent strain assessment requires a standard spatial resolution and a temporal resolution of 30 frames/cycle, whilst SR assessment requires even higher settings of at least 50 frames/cycle.
Collapse
Affiliation(s)
- Jonas Schmidt-Rimpler
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology, Georg-August University, Göttingen, Germany
| | - Sören J Backhaus
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Finn P Hartmann
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany
| | - Philip Schaten
- Graz University of Technology, Institute of Biomedical Imaging, Graz, Austria
| | - Torben Lange
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ruben Evertz
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Alexander Schulz
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Johannes T Kowallick
- University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology, Georg-August University, Göttingen, Germany
| | - Tomas Lapinskas
- German Heart Center Berlin (DHZB), University of Berlin, Department of Internal Medicine / Cardiology, Charité Campus Virchow Clinic, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany; Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gerd Hasenfuß
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Sebastian Kelle
- German Heart Center Berlin (DHZB), University of Berlin, Department of Internal Medicine / Cardiology, Charité Campus Virchow Clinic, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Andreas Schuster
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
27
|
Contijoch F, Rasche V, Seiberlich N, Peters DC. The future of CMR: All-in-one vs. real-time CMR (Part 2). J Cardiovasc Magn Reson 2024; 26:100998. [PMID: 38237901 PMCID: PMC11211235 DOI: 10.1016/j.jocmr.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Cardiac Magnetic Resonance (CMR) protocols can be lengthy and complex, which has driven the research community to develop new technologies to make these protocols more efficient and patient-friendly. Two different approaches to improving CMR have been proposed, specifically "all-in-one" CMR, where several contrasts and/or motion states are acquired simultaneously, and "real-time" CMR, in which the examination is accelerated to avoid the need for breathholding and/or cardiac gating. The goal of this two-part manuscript is to describe these two different types of emerging rapid CMR protocols. To this end, the vision of all-in-one and real-time imaging are described, along with techniques which have been devised and tested along the pathway of clinical implementation. The pros and cons of the different methods are presented, and the remaining open needs of each are detailed. Part 1 tackles the "All-in-One" approaches, and Part 2 focuses on the "Real-Time" approaches along with an overall summary of these emerging methods.
Collapse
Affiliation(s)
| | - Volker Rasche
- Ulm University Medical Center, Department of Internal Medicine II, Ulm, Germany
| | - Nicole Seiberlich
- Michigan Institute for Imaging Technology and Translation, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
28
|
Genovese D, De Michieli L, Prete G, De Lazzari M, Previtero M, Mele D, Cernetti C, Tarantini G, Iliceto S, Perazzolo Marra M. Left atrial expansion index measured with cardiovascular magnetic resonance estimates pulmonary capillary wedge pressure in dilated cardiomyopathy. J Cardiovasc Magn Reson 2023; 25:71. [PMID: 38031092 PMCID: PMC10688459 DOI: 10.1186/s12968-023-00977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Pulmonary capillary wedge pressure (PCWP) assessment is fundamental for managing dilated cardiomyopathy (DCM) patients. Although cardiovascular magnetic resonance (CMR) has become the gold-standard imaging technique for evaluating cardiac chamber volume and function, PCWP is not routinely assessed with CMR. Therefore, this study aimed to validate the left atrial expansion index (LAEI), a LA reservoir function parameter able to estimate filling pressure with echocardiography, as a novel CMR-measured parameter for non-invasive PCWP estimation in DCM patients. METHODS We performed a retrospective, single-center, cross-sectional study. We included electively admitted DCM patients referred to our tertiary center for further diagnostic evaluation that underwent a clinically indicated right heart catheterization (RHC) and CMR within 24 h. PCWP invasively measured during RHC was used as the reference. LAEI was calculated from CMR-measured LA maximal and minimal volumes as LAEI = ( (LAVmax-LAVmin)/LAVmin) × 100. RESULTS We enrolled 126 patients (47 ± 14 years; 68% male; PCWP = 17 ± 9.3 mmHg) randomly divided into derivation (n = 92) and validation (n = 34) cohorts with comparable characteristics. In the derivation cohort, the log-transformed (ln) LAEI showed a strong linear correlation with PCWP (r = 0.81, p < 0.001) and remained a strong independent PCWP determinant over clinical and conventional CMR parameters. Moreover, lnLAEI accurately identified PCWP ≥ 15 mmHg (AUC = 0.939, p < 0.001), and the optimal cut-off identified (lnLAEI ≤ 3.85) in the derivation cohort discriminated PCWP ≥ 15 mmHg with 82.4% sensitivity, 88.2% specificity, and 85.3% accuracy in the validation cohort. Finally, the equation PCWP = 52.33- (9.17xlnLAEI) obtained from the derivation cohort predicted PCWP (-0.1 ± 5.7 mmHg) in the validation cohort. CONCLUSIONS In this cohort of DCM patients, CMR-measured LAEI resulted in a novel and useful parameter for non-invasive PCWP evaluation.
Collapse
Affiliation(s)
- Davide Genovese
- Cardiology Unit, Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy.
- Cardiology Unit, Cardio-Neuro-Vascular Department, Ca' Foncello Hospital, Treviso, Italy.
| | - Laura De Michieli
- Cardiology Unit, Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Giacomo Prete
- Cardiology Unit, Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Manuel De Lazzari
- Cardiology Unit, Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Marco Previtero
- Cardiology Unit, Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Donato Mele
- Cardiology Unit, Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Carlo Cernetti
- Cardiology Unit, Cardio-Neuro-Vascular Department, Ca' Foncello Hospital, Treviso, Italy
| | - Giuseppe Tarantini
- Cardiology Unit, Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Sabino Iliceto
- Cardiology Unit, Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Martina Perazzolo Marra
- Cardiology Unit, Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
29
|
Addison D, Neilan TG, Barac A, Scherrer-Crosbie M, Okwuosa TM, Plana JC, Reding KW, Taqueti VR, Yang EH, Zaha VG. Cardiovascular Imaging in Contemporary Cardio-Oncology: A Scientific Statement From the American Heart Association. Circulation 2023; 148:1271-1286. [PMID: 37732422 DOI: 10.1161/cir.0000000000001174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Advances in cancer therapeutics have led to dramatic improvements in survival, now inclusive of nearly 20 million patients and rising. However, cardiovascular toxicities associated with specific cancer therapeutics adversely affect the outcomes of patients with cancer. Advances in cardiovascular imaging have solidified the critical role for robust methods for detecting, monitoring, and prognosticating cardiac risk among patients with cancer. However, decentralized evaluations have led to a lack of consensus on the optimal uses of imaging in contemporary cancer treatment (eg, immunotherapy, targeted, or biological therapy) settings. Similarly, available isolated preclinical and clinical studies have provided incomplete insights into the effectiveness of multiple modalities for cardiovascular imaging in cancer care. The aims of this scientific statement are to define the current state of evidence for cardiovascular imaging in the cancer treatment and survivorship settings and to propose novel methodological approaches to inform the optimal application of cardiovascular imaging in future clinical trials and registries. We also propose an evidence-based integrated approach to the use of cardiovascular imaging in routine clinical settings. This scientific statement summarizes and clarifies available evidence while providing guidance on the optimal uses of multimodality cardiovascular imaging in the era of emerging anticancer therapies.
Collapse
|
30
|
Wernhart S, Goertz A, Hedderich J, Papathanasiou M, Hoffmann J, Rassaf T, Luedike P. Diastolic exercise stress testing in heart failure with preserved ejection fraction: The DEST-HF study. Eur J Heart Fail 2023; 25:1768-1780. [PMID: 37565370 DOI: 10.1002/ejhf.2995] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
AIMS Pulmonary capillary wedge pressure (PAWP) ≥25 mmHg during bicycle ergometry is recommended to uncover occult heart failure with preserved ejection fraction. We hypothesized that PAWP increase would differ in available diastolic stress tests and that the margin of PAWP ≥25 mmHg would only be reliably achieved through ergometry. METHODS AND RESULTS We conducted a prospective, single-arm study in patients with an intermediate risk for heart failure with preserved ejection fraction according to the ESC HFA-PEFF score. A total of 19 patients underwent four stress test modalities in randomized order: leg raise, fluid challenge, handgrip, and bicycle ergometry. The primary outcome was the difference (Δ) between resting and exercise PAWP in each modality. Secondary outcomes were differences (Δ) in mean pulmonary artery pressure (mPAP), cardiac output (CO), as well as the ratios between mPAP and PAWP to CO. Compared to resting values, passive leg raise (Δ7.7 ± 8.0 mmHg, p = 0.030), fluid challenge (Δ9.2 ± 6.4 mmHg, p = 0.003), dynamic handgrip (Δ9.6 ± 7.5 mmHg, p = 0.002), and bicycle ergometry (Δ22.3 ± 5.0 mmHg, p < 0.001) uncovered increased PAWP during exercise. Amongst these, bicycle ergometry also demonstrated the highest ΔmPAP (27.2 ± 7.1 mmHg, p < 0.001), ΔCO (3.3 ± 2.6 L/min, p < 0.001), ΔmPAP/CO ratio (2.3 ± 2.0 mmHg/L/min, p < 0.001), and ΔPAWP/CO ratio (2.2 ± 1.4 mmHg/L/min, p < 0.001) compared to other modalities. PAWP ≥25 mmHg was only reliably achieved in bicycle ergometry (31.1 ± 3.9 mmHg). In all other modalities only 10.5% of patients achieved PAWP ≥25 mmHg (handgrip 18.4 ± 6.6 mmHg, fluid 18.1 ± 5.6 mmHg, leg raise 16.5 ± 7.0 mmHg). CONCLUSIONS We demonstrate that bicycle ergometry exhibits a distinct haemodynamic response with higher increase of PAWP compared to other modalities. This finding needs to be considered for valid detection of exercise PAWP ≥25 mmHg when non-bicycle tests remain inconclusive.
Collapse
Affiliation(s)
- Simon Wernhart
- Department of Cardiology and Vascular Medicine, University Hospital Essen, University Duisburg-Essen, West German Heart and Vascular Center, Essen, Germany
| | - Annika Goertz
- Department of Cardiology and Vascular Medicine, University Hospital Essen, University Duisburg-Essen, West German Heart and Vascular Center, Essen, Germany
| | | | - Maria Papathanasiou
- Department of Cardiology and Vascular Medicine, University Hospital Essen, University Duisburg-Essen, West German Heart and Vascular Center, Essen, Germany
| | - Julia Hoffmann
- Department of Cardiology and Vascular Medicine, University Hospital Essen, University Duisburg-Essen, West German Heart and Vascular Center, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, University Hospital Essen, University Duisburg-Essen, West German Heart and Vascular Center, Essen, Germany
| | - Peter Luedike
- Department of Cardiology and Vascular Medicine, University Hospital Essen, University Duisburg-Essen, West German Heart and Vascular Center, Essen, Germany
| |
Collapse
|
31
|
Elliott AD, Ariyaratnam J, Howden EJ, La Gerche A, Sanders P. Influence of exercise training on the left atrium: implications for atrial fibrillation, heart failure, and stroke. Am J Physiol Heart Circ Physiol 2023; 325:H822-H836. [PMID: 37505470 DOI: 10.1152/ajpheart.00322.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The left atrium (LA) plays a critical role in receiving pulmonary venous return and modulating left ventricular (LV) filling. With the onset of exercise, LA function contributes to the augmentation in stroke volume. Due to the growing focus on atrial imaging, there is now evidence that structural remodeling and dysfunction of the LA is associated with adverse outcomes including incident cardiovascular disease. In patients with established disease, pathological changes in atrial structure and function are associated with exercise intolerance, increased hospital admissions and mortality, independent of left ventricular function. Exercise training is widely recommended in patients with cardiovascular disease to improve patient outcomes and maintain functional capacity. There are widely documented changes in LV function with exercise, yet less attention has been given to the LA. In this review, we first describe LA physiology at rest and during exercise, before exploring its association with cardiac disease outcomes including atrial fibrillation, heart failure, and stroke. The adaptation of the LA to short- and longer-term exercise training is evaluated through review of longitudinal studies of exercise training in healthy participants free of cardiovascular disease and athletes. We then consider the changes in LA structure and function among patients with established disease, where adverse atrial remodeling may be implicated in the disease process. Finally, we consider important future directions for assessment of atrial structure and function using novel imaging modalities, in response to acute and chronic exercise.
Collapse
Affiliation(s)
- Adrian D Elliott
- Center for Heart Rhythm Disorders, University of Adelaide, South Australian Health and Medical Research Institute and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jonathan Ariyaratnam
- Center for Heart Rhythm Disorders, University of Adelaide, South Australian Health and Medical Research Institute and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Erin J Howden
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andre La Gerche
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Prashanthan Sanders
- Center for Heart Rhythm Disorders, University of Adelaide, South Australian Health and Medical Research Institute and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
32
|
Kasa G, Bayes-Genis A, Delgado V. Latest Updates in Heart Failure Imaging. Heart Fail Clin 2023; 19:407-418. [PMID: 37714583 DOI: 10.1016/j.hfc.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Heart failure (HF), a challenging and heterogeneous syndrome, still remains a major health problem worldwide, despite all the advances in prevention, diagnosis, and treatment of cardiovascular disease. Cardiac imaging plays a pivotal role in the classification of HF, accurate diagnosis of underlying etiology and decision-making. Integration of other imaging techniques such as cardiac magnetic resonance, nuclear imaging, and exercise imaging testing is important to characterize HF accurately. This article reviews the role of multimodality imaging to diagnose patients with HF.
Collapse
Affiliation(s)
- Gizem Kasa
- Cardiovascular Imaging Section, Department of Cardiology, Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Antoni Bayes-Genis
- Cardiovascular Imaging Section, Department of Cardiology, Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Victoria Delgado
- Cardiovascular Imaging Section, Department of Cardiology, Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|
33
|
Kwan CT, Ching OHS, Yap PM, Fung SY, Tang HS, Tse WWV, Kwan CNF, Chow YHP, Yiu NC, Lee YP, Lau JWK, Fong AHT, Ren QW, Wu MZ, Wan EYF, Lee KCK, Leung CY, Li A, Montero D, Vardhanabhuti V, Hai JSH, Siu CW, Tse HF, Zingan V, Zhao X, Wang H, Pennell DJ, Mohiaddin R, Senior R, Yiu KH, Ng MY. Intraventricular 4D flow cardiovascular magnetic resonance for assessing patients with heart failure with preserved ejection fraction: a pilot study. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023; 39:2015-2027. [PMID: 37380904 DOI: 10.1007/s10554-023-02909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Diagnosing heart failure with preserved ejection fraction (HFpEF) remains challenging. Intraventricular four-dimensional flow (4D flow) phase-contrast cardiovascular magnetic resonance (CMR) can assess different components of left ventricular (LV) flow including direct flow, delayed ejection, retained inflow and residual volume. This could be utilised to identify HFpEF. This study investigated if intraventricular 4D flow CMR could differentiate HFpEF patients from non-HFpEF and asymptomatic controls. Suspected HFpEF patients and asymptomatic controls were recruited prospectively. HFpEF patients were confirmed using European Society of Cardiology (ESC) 2021 expert recommendations. Non-HFpEF patients were diagnosed if suspected HFpEF patients did not fulfil ESC 2021 criteria. LV direct flow, delayed ejection, retained inflow and residual volume were obtained from 4D flow CMR images. Receiver operating characteristic (ROC) curves were plotted. 63 subjects (25 HFpEF patients, 22 non-HFpEF patients and 16 asymptomatic controls) were included in this study. 46% were male, mean age 69.8 ± 9.1 years. CMR 4D flow derived LV direct flow and residual volume could differentiate HFpEF vs combined group of non-HFpEF and asymptomatic controls (p < 0.001 for both) as well as HFpEF vs non-HFpEF patients (p = 0.021 and p = 0.005, respectively). Among the 4 parameters, direct flow had the largest area under curve (AUC) of 0.781 when comparing HFpEF vs combined group of non-HFpEF and asymptomatic controls, while residual volume had the largest AUC of 0.740 when comparing HFpEF and non-HFpEF patients. CMR 4D flow derived LV direct flow and residual volume show promise in differentiating HFpEF patients from non-HFpEF patients.
Collapse
Affiliation(s)
- Chi Ting Kwan
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - On Hang Samuel Ching
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pui Min Yap
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Sau Yung Fung
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hok Shing Tang
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wan Wai Vivian Tse
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheuk Nam Felix Kwan
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yin Hay Phoebe Chow
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Nga Ching Yiu
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yung Pok Lee
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jessica Wing Ka Lau
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ambrose Ho Tung Fong
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Qing-Wen Ren
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Mei-Zhen Wu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Eric Yuk Fai Wan
- Department of Family Medicine and Primary Care, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ka Chun Kevin Lee
- Department of Medicine and Geriatrics, Ruttonjee and Tang Shiu Kin Hospitals, Wan Chai, Hong Kong
| | - Chun Yu Leung
- Department of Medicine, Tseung Kwan O Hospital, Hong Hau, Hong Kong
| | - Andrew Li
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, New Territories, Hong Kong
| | - David Montero
- School of Public Health, Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Varut Vardhanabhuti
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jojo Siu Han Hai
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chung-Wah Siu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hung-Fat Tse
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | - Xiaoxi Zhao
- Circle Cardiovascular Imaging Inc, Calgary, Canada
| | | | - Dudley John Pennell
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Raad Mohiaddin
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Roxy Senior
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Kai-Hang Yiu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ming-Yen Ng
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
34
|
Lange T, Gertz RJ, Schulz A, Backhaus SJ, Evertz R, Kowallick JT, Hasenfuß G, Desch S, Thiele H, Stiermaier T, Eitel I, Schuster A. Impact of myocardial deformation on risk prediction in patients following acute myocardial infarction. Front Cardiovasc Med 2023; 10:1199936. [PMID: 37636296 PMCID: PMC10449121 DOI: 10.3389/fcvm.2023.1199936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background Strain analyses derived from cardiovascular magnetic resonance-feature tracking (CMR-FT) provide incremental prognostic benefit in patients sufferring from acute myocardial infarction (AMI). This study aims to evaluate and revalidate previously reported prognostic implications of comprehensive strain analyses in a large independent cohort of patients with ST-elevation myocardial infarction (STEMI). Methods Overall, 566 STEMI patients enrolled in the CONDITIONING-LIPSIA trial including pre- and/or postconditioning treatment in addition to conventional percutaneous coronary intervention underwent CMR imaging in median 3 days after primary percutaneous coronary intervention. CMR-based left atrial (LA) reservoir (Es), conduit (Ee), and boosterpump (Ea) strain analyses, as well as left ventricular (LV) global longitudinal strain (GLS), circumferential strain (GCS), and radial strain (GRS) analyses were carried out. Previously identified cutoff values were revalidated for risk stratification. Major adverse cardiac events (MACE) comprising death, reinfarction, and new congestive heart failure were assessed within 12 months after the occurrence of the index event. Results Both atrial and ventricular strain values were significantly reduced in patients with MACE (p < 0.01 for all). Predetermined LA and LV strain cutoffs enabled accurate risk assessment. All LA and LV strain values were associated with MACE on univariable regression modeling (p < 0.001 for all), with LA Es emerging as an independent predictor of MACE on multivariable regression modeling (HR 0.92, p = 0.033). Furthermore, LA Es provided an incremental prognostic value above LVEF (a c-index increase from 0.7 to 0.74, p = 0.03). Conclusion External validation of CMR-FT-derived LA and LV strain evaluations confirmed the prognostic value of cardiac deformation assessment in STEMI patients. In the present study, LA strain parameters especially enabled further risk stratification and prognostic assessment over and above clinically established risk parameters. Clinical Trial Registration ClinicalTrials.gov, identifier NCT02158468.
Collapse
Affiliation(s)
- Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Roman J. Gertz
- Institute for Diagnostic and Interventional Radiology,Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Sören J. Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Johannes T. Kowallick
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Steffen Desch
- Department of Internal Medicine/Cardiology and Leipzig Heart Science, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology and Leipzig Heart Science, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Thomas Stiermaier
- Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Heart Center Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Ingo Eitel
- Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Heart Center Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| |
Collapse
|
35
|
Reddy YNV, Borlaug BA. Exercise echocardiography to diagnose heart failure with preserved ejection fraction: Are two measures better than one? Eur J Heart Fail 2023; 25:1304-1306. [PMID: 37114334 DOI: 10.1002/ejhf.2876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023] Open
Affiliation(s)
- Yogesh N V Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
36
|
Harada T, Kagami K, Shina T, Sorimachi H, Yuasa N, Saito Y, Naito A, Yoshida K, Kato T, Wada N, Ishii H, Obokata M. Diagnostic value of reduced left atrial compliance during ergometry exercise in heart failure with preserved ejection fraction. Eur J Heart Fail 2023; 25:1293-1303. [PMID: 37062872 DOI: 10.1002/ejhf.2862] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/19/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023] Open
Abstract
AIMS Diagnosis of heart failure with preserved ejection fraction (HFpEF) remains challenging in patients presenting with chronic dyspnoea. We sought to determine the diagnostic value of reduced left atrial (LA) compliance during exercise to diagnose HFpEF. METHODS AND RESULTS Ergometry exercise stress echocardiography was performed in 225 patients with HFpEF and 262 non-heart failure controls (non-cardiac dyspnoea [NCD]) in Protocol 1, where the diagnosis of HFpEF was defined by the HFA-PEFF algorithm. In Protocol 2, the diagnosis of HFpEF was ascertained by exercise right heart catheterization in 67 participants (49 HFpEF and 18 NCD). Speckle-tracking echocardiography was performed at rest and during exercise to determine LA compliance (ratio of LA reservoir strain to E/e'). As compared with NCD, patients with HFpEF demonstrated decreased LA reservoir strain and compliance at rest, and these differences further increased during exercise in Protocol 1. Exercise LA compliance discriminated HFpEF from NCD (area under the curve 0.87, p < 0.0001), with a superior diagnostic ability to exercise E/e' ratio (DeLong p = 0.005). Exercise LA compliance demonstrated incremental diagnostic value over clinical factors (age, systemic hypertension, and atrial fibrillation) and resting LA compliance (χ2 212.4 vs. 166.2, p < 0.0001). These findings were confirmed in Protocol 2. CONCLUSION Left atrial compliance during exercise demonstrated superior diagnostic ability to exercise E/e' ratio, with incremental diagnostic value over the resting LA compliance. Exercise LA compliance may enhance the diagnosis of HFpEF among patients with dyspnoea.
Collapse
Affiliation(s)
- Tomonari Harada
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuki Kagami
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
- Division of Cardiovascular Medicine, National Defense Medical College, Saitama, Japan
| | - Takayuki Shina
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hidemi Sorimachi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Naoki Yuasa
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuki Saito
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Ayami Naito
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
- Division of Cardiovascular Medicine, National Defense Medical College, Saitama, Japan
| | - Kuniko Yoshida
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Toshimitsu Kato
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Naoki Wada
- Department of Rehabilitation Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideki Ishii
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
37
|
Halfmann MC, Müller L, von Henning U, Kloeckner R, Schöler T, Kreitner KF, Düber C, Wenzel P, Varga-Szemes A, Göbel S, Emrich T. Cardiac MRI-based right-to-left ventricular blood pool T2 relaxation times ratio correlates with exercise capacity in patients with chronic heart failure. J Cardiovasc Magn Reson 2023; 25:33. [PMID: 37331991 PMCID: PMC10278263 DOI: 10.1186/s12968-023-00943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND MRI T2 mapping has been proven to be sensitive to the level of blood oxygenation. We hypothesized that impaired exercise capacity in chronic heart failure is associated with a greater difference between right (RV) to left ventricular (LV) blood pool T2 relaxation times due to a higher level of peripheral blood desaturation, compared to patients with preserved exercise capacity and to healthy controls. METHODS Patients with chronic heart failure (n = 70) who had undergone both cardiac MRI (CMR) and a 6-min walk test (6MWT) were retrospectively identified. Propensity score matched healthy individuals (n = 35) served as control group. CMR analyses included cine acquisitions and T2 mapping to obtain blood pool T2 relaxation times of the RV and LV. Following common practice, age- and gender-adjusted nominal distances and respective percentiles were calculated for the 6MWT. The relationship between the RV/LV T2 blood pool ratio and the results from 6MWT were evaluated by Spearman's correlation coefficients and regression analyses. Inter-group differences were assessed by independent t-tests and univariate analysis of variance. RESULTS The RV/LV T2 ratio moderately correlated with the percentiles of nominal distances in the 6MWT (r = 0.66) while ejection fraction, end-diastolic and end-systolic volumes showed no correlation (r = 0.09, 0.07 and - 0.01, respectively). In addition, there were significant differences in the RV/LV T2 ratio between patients with and without significant post-exercise dyspnea (p = 0.001). Regression analyses showed that RV/LV T2 ratio was an independent predictor of the distance walked and the presence of post-exercise dyspnea (p < 0.001). CONCLUSION The proposed RV/LV T2 ratio, obtained by two simple measurements on a routinely acquired four-chamber T2 map, was superior to established parameters of cardiac function to predict exercise capacity and the presence of post-exercise dyspnea in patients with chronic heart failure.
Collapse
Affiliation(s)
- Moritz C. Halfmann
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckst. 1, 55131 Mainz, Germany
| | - Lukas Müller
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst. 1, 55131 Mainz, Germany
| | - Urs von Henning
- Department of Cardiology, University Medical Center Mainz-Center of Cardiology, Johannes Gutenberg University, Langenbeckst.1, 55131 Mainz, Germany
| | - Roman Kloeckner
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst. 1, 55131 Mainz, Germany
- Department for Interventional Radiology, University Hospital of Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Theresia Schöler
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst. 1, 55131 Mainz, Germany
| | - Karl-Friedrich Kreitner
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst. 1, 55131 Mainz, Germany
| | - Christoph Düber
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst. 1, 55131 Mainz, Germany
| | - Philip Wenzel
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckst. 1, 55131 Mainz, Germany
- Department of Cardiology, University Medical Center Mainz-Center of Cardiology, Johannes Gutenberg University, Langenbeckst.1, 55131 Mainz, Germany
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 5 Courtenay Drive, Charleston, SC 29425-2260 USA
| | - Sebastian Göbel
- Department of Cardiology, University Medical Center Mainz-Center of Cardiology, Johannes Gutenberg University, Langenbeckst.1, 55131 Mainz, Germany
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst. 1, 55131 Mainz, Germany
| | - Tilman Emrich
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckst. 1, 55131 Mainz, Germany
| |
Collapse
|
38
|
Schulz A, Lange T, Evertz R, Kowallick JT, Hasenfuß G, Backhaus SJ, Schuster A. Sex-Specific Impairment of Cardiac Functional Reserve in HFpEF: Insights From the HFpEF Stress Trial. JACC. ADVANCES 2023; 2:100327. [PMID: 38938247 PMCID: PMC11198589 DOI: 10.1016/j.jacadv.2023.100327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 06/29/2024]
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) has been observed to have a twice as high prevalence in women compared to men with similar predisposing risk factors between both sexes. Objectives This study aimed to identify sex-specific pathophysiological features in HFpEF using rest and exercise stress right heart catheterization (RHC), echocardiography and cardiovascular magnetic resonance imaging (CMR). Methods Seventy-five patients with exertional dyspnea, preserved ejection fraction (EF) (≥50%), and signs of diastolic dysfunction on echocardiography were prospectively recruited in the HFpEF Stress Trial. Patients underwent RHC, echocardiography and CMR at rest and during exercise stress. Patients were diagnosed with HFpEF and noncardiac dyspnea according to RHC measurements. Results After exclusion, the final study cohort comprised 68 patients (females n = 44, males n = 24) with a mean age of 66.9 ± 9.7 years. Compared to men, women with HFpEF revealed lower right ventricular stroke volumes during exercise stress (females 38.1 vs males 50.4 mL/m2 BSA; P = 0.011). This was accompanied by a decreasing left atrial EF in women but not men comparing resting to exercise conditions (females -2.7% vs males 2.5%, P = 0.020) and impaired left ventricular filling (females 35.5 vs males 44.2 mL/m2 BSA, P = 0.017) in women with HFpEF during exercise stress. These sex-specific differences were not present in noncardiac dyspnea. Conclusions Women with HFpEF demonstrate sex-specific functional alterations of right ventricular, left atrial, and left ventricular function during exercise stress. This unique pathophysiology represents a sex-specific diagnostic target, which may allow early identification of women with HFpEF for future individualized therapeutic approaches.
Collapse
Affiliation(s)
- Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Johannes T. Kowallick
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology, Georg-August University, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Sören J. Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
39
|
Östenson B, Ostenfeld E, Edlund J, Heiberg E, Arheden H, Steding-Ehrenborg K. Endurance-trained subjects and sedentary controls increase ventricular contractility and efficiency during exercise: Feasibility of hemodynamics assessed by non-invasive pressure-volume loops. PLoS One 2023; 18:e0285592. [PMID: 37163493 PMCID: PMC10171617 DOI: 10.1371/journal.pone.0285592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
INTRODUCTION Pressure-volume (PV) loops can be used to assess both load-dependent and load-independent measures of cardiac hemodynamics. However, analysis of PV loops during exercise is challenging as it requires invasive measures. Using a novel method, it has been shown that left ventricular (LV) PV loops at rest can be obtained non-invasively from cardiac magnetic resonance imaging (CMR) and brachial pressures. Therefore, the aim of this study was to assess if LV PV loops can be obtained non-invasively from CMR during exercise to assess cardiac hemodynamics. METHODS Thirteen endurance trained (ET; median 48 years [IQR 34-60]) and ten age and sex matched sedentary controls (SC; 43 years [27-57]) were included. CMR images were acquired at rest and during moderate intensity supine exercise defined as 60% of expected maximal heart rate. Brachial pressures were obtained in conjunction with image acquisition. RESULTS Contractility measured as maximal ventricular elastance (Emax) increased in both groups during exercise (ET: 1.0 mmHg/ml [0.9-1.1] to 1.1 mmHg/ml [0.9-1.2], p<0.01; SC: 1.1 mmHg/ml [0.9-1.2] to 1.2 mmHg/ml [1.0-1.3], p<0.01). Ventricular efficiency (VE) increased in ET from 70% [66-73] at rest to 78% [75-80] (p<0.01) during exercise and in SC from 68% [63-72] to 75% [73-78] (p<0.01). Arterial elastance (EA) decreased in both groups (ET: 0.8 mmHg/ml [0.7-0.9] to 0.7 mmHg/ml [0.7-0.9], p<0.05; SC: 1.0 mmHg/ml [0.9-1.2] to 0.9 mmHg/ml [0.8-1.0], p<0.05). Ventricular-arterial coupling (EA/Emax) also decreased in both groups (ET: 0.9 [0.8-1.0] to 0.7 [0.6-0.8], p<0.01; SC: 1.0 [0.9-1.1] to 0.7 [0.7-0.8], p<0.01). CONCLUSIONS This study demonstrates for the first time that LV PV loops can be generated non-invasively during exercise using CMR. ET and SC increase ventricular efficiency and contractility and decrease afterload and ventricular-arterial coupling during moderate supine exercise. These results confirm known physiology. Therefore, this novel method is applicable to be used during exercise in different cardiac disease states, which has not been possible non-invasively before.
Collapse
Affiliation(s)
- Björn Östenson
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Ellen Ostenfeld
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Jonathan Edlund
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Einar Heiberg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Håkan Arheden
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Katarina Steding-Ehrenborg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
40
|
Borlaug BA, Sharma K, Shah SJ, Ho JE. Heart Failure With Preserved Ejection Fraction: JACC Scientific Statement. J Am Coll Cardiol 2023; 81:1810-1834. [PMID: 37137592 DOI: 10.1016/j.jacc.2023.01.049] [Citation(s) in RCA: 130] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 05/05/2023]
Abstract
The incidence and prevalence of heart failure with preserved ejection fraction (HFpEF) continue to rise in tandem with the increasing age and burdens of obesity, sedentariness, and cardiometabolic disorders. Despite recent advances in the understanding of its pathophysiological effects on the heart, lungs, and extracardiac tissues, and introduction of new, easily implemented approaches to diagnosis, HFpEF remains under-recognized in everyday practice. This under-recognition presents an even greater concern given the recent identification of highly effective pharmacologic-based and lifestyle-based treatments that can improve clinical status and reduce morbidity and mortality. HFpEF is a heterogenous syndrome and recent studies have suggested an important role for careful, pathophysiological-based phenotyping to improve patient characterization and to better individualize treatment. In this JACC Scientific Statement, we provide an in-depth and updated examination of the epidemiology, pathophysiology, diagnosis, and treatment of HFpEF.
Collapse
Affiliation(s)
- Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| | - Kavita Sharma
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sanjiv J Shah
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jennifer E Ho
- CardioVascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Ünlü S, Özden Ö, Çelik A. Imaging in Heart Failure with Preserved Ejection Fraction: A Multimodality Imaging Point of View. Card Fail Rev 2023; 9:e04. [PMID: 37387734 PMCID: PMC10301698 DOI: 10.15420/cfr.2022.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 07/01/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an important global health problem. Despite increased prevalence due to improved diagnostic options, limited improvement has been achieved in cardiac outcomes. HFpEF is an extremely complex syndrome and multimodality imaging is important for diagnosis, identifying its different phenotypes and determining prognosis. Evaluation of left ventricular filling pressures using echocardiographic diastolic function parameters is the first step of imaging in clinical practice. The role of echocardiography is becoming more popular and with the recent developments in deformation imaging, cardiac MRI is extremely important as it can provide tissue characterisation, identify fibrosis and optimal volume measurements of cardiac chambers. Nuclear imaging methods can also be used in the diagnosis of specific diseases, such as cardiac amyloidosis.
Collapse
Affiliation(s)
- Serkan Ünlü
- Department of Cardiology, Gazi UniversityAnkara, Turkey
| | - Özge Özden
- Cardiology Department, Memorial Bahçelievler HospitalIstanbul, Turkey
| | - Ahmet Çelik
- Department of Cardiology, Mersin UniversityMersin, Turkey
| |
Collapse
|
42
|
The DZHK research platform: maximisation of scientific value by enabling access to health data and biological samples collected in cardiovascular clinical studies. Clin Res Cardiol 2023:10.1007/s00392-023-02177-5. [PMID: 36884078 DOI: 10.1007/s00392-023-02177-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
The German Centre for Cardiovascular Research (DZHK) is one of the German Centres for Health Research and aims to conduct early and guideline-relevant studies to develop new therapies and diagnostics that impact the lives of people with cardiovascular disease. Therefore, DZHK members designed a collaboratively organised and integrated research platform connecting all sites and partners. The overarching objectives of the research platform are the standardisation of prospective data and biological sample collections among all studies and the development of a sustainable centrally standardised storage in compliance with general legal regulations and the FAIR principles. The main elements of the DZHK infrastructure are web-based and central units for data management, LIMS, IDMS, and transfer office, embedded in a framework consisting of the DZHK Use and Access Policy, and the Ethics and Data Protection Concept. This framework is characterised by a modular design allowing a high standardisation across all studies. For studies that require even tighter criteria additional quality levels are defined. In addition, the Public Open Data strategy is an important focus of DZHK. The DZHK operates as one legal entity holding all rights of data and biological sample usage, according to the DZHK Use and Access Policy. All DZHK studies collect a basic set of data and biosamples, accompanied by specific clinical and imaging data and biobanking. The DZHK infrastructure was constructed by scientists with the focus on the needs of scientists conducting clinical studies. Through this, the DZHK enables the interdisciplinary and multiple use of data and biological samples by scientists inside and outside the DZHK. So far, 27 DZHK studies recruited well over 11,200 participants suffering from major cardiovascular disorders such as myocardial infarction or heart failure. Currently, data and samples of five DZHK studies of the DZHK Heart Bank can be applied for.
Collapse
|
43
|
Morbach C, Störk S. [Heart failure with preserved ejection fraction (HFpEF) : Diagnosis and treatment]. Herz 2023; 48:159-168. [PMID: 36763127 DOI: 10.1007/s00059-022-05156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/11/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for around half of all hospitalizations associated with heart failure. The prevalence of HFpEF is increasing, mainly due to an aging population and a growing burden of comorbidities, such as hypertension, diabetes, and obesity. Despite increased research efforts, there are still important gaps in terms of the pathophysiological understanding of HFpEF and the practice-related diagnostics. As HFpEF may also be due to rare cardiac diseases, in unclear constellations patients should be referred at an early stage to specialized centers for diagnostics and treatment to facilitate best clinical care. Only recently, evidence has emerged that innovative pharmacological approaches are also able to reduce hard clinical endpoints in HFpEF. These strategies now await implementation into routine care.
Collapse
Affiliation(s)
- Caroline Morbach
- Department Klinische Forschung und Epidemiologie, Deutsches Zentrum für Herzinsuffizienz Würzburg, Universitätsklinikum Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Deutschland
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Deutschland
- Interdisziplinäres Amyloidosezentrum Nordbayern, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Stefan Störk
- Department Klinische Forschung und Epidemiologie, Deutsches Zentrum für Herzinsuffizienz Würzburg, Universitätsklinikum Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Deutschland.
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Deutschland.
- Interdisziplinäres Amyloidosezentrum Nordbayern, Universitätsklinikum Würzburg, Würzburg, Deutschland.
| |
Collapse
|
44
|
Hashemi D, Doeblin P, Blum M, Weiss KJ, Schneider M, Beyer R, Pieske B, Duengen HD, Edelmann F, Kelle S. Reduced functional capacity is associated with the proportion of impaired myocardial deformation assessed in heart failure patients by CMR. Front Cardiovasc Med 2023; 10:1038337. [PMID: 36844739 PMCID: PMC9947709 DOI: 10.3389/fcvm.2023.1038337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Aims Heart failure (HF) does not only reduce the life expectancy in patients, but their life is also often limited by HF symptoms leading to a reduced quality of life (QoL) and a diminished exercise capacity. Novel parameters in cardiac imaging, including both global and regional myocardial strain imaging, promise to contribute to better patient characterization and ultimately to better patient management. However, many of these methods are not part of clinical routine yet, their associations with clinical parameters have been poorly studied. An imaging parameters that also indicate the clinical symptom burden of HF patients would make cardiac imaging more robust toward incomplete clinical information and support the clinical decision process. Methods and results This prospective study conducted at two centers in Germany between 2017 and 2018 enrolled stable outpatient subjects with HF [n = 56, including HF with reduced ejection fraction (HFrEF), HF with mid-range ejection fraction (HFmrEF), and HF with preserved ejection fraction (HFpEF)] and a control cohort (n = 19). Parameters assessed included measures for external myocardial function, for example, cardiac index and myocardial deformation measurements by cardiovascular magnetic resonance imaging, left ventricular global longitudinal strain (GLS), the global circumferential strain (GCS), and the regional distribution of segment deformation within the LV myocardium, as well as basic phenotypical characteristics including the Minnesota Living with Heart Failure Questionnaire (MLHFQ) and the 6-minute walk test (6MWT). If less than 80% of the LV segments are preserved in their deformation capacity the functional capacity by 6MWT (6 minutes walking distance: MyoHealth ≥ 80%: 579.8 ± 177.6 m; MyoHealth 60-<80%: 401.3 ± 121.7 m; MyoHealth 40-<60%: 456.4 ± 68.9 m; MyoHealth < 40%: 397.6 ± 125.9 m, overall p-value: 0.03) as well as the symptom burden are significantly impaired (NYHA class: MyoHealth ≥ 80%: 0.6 ± 1.1 m; MyoHealth 60-<80%: 1.7 ± 1.2 m; MyoHealth 40-<60%: 1.8 ± 0.7 m; MyoHealth < 40%: 2.4 ± 0.5 m; overall p-value < 0.01). Differences were also observed in the perceived exertion assessed by on the Borg scale (MyoHealth ≥ 80%: 8.2 ± 2.3 m; MyoHealth 60-<80%: 10.4 ± 3.2 m; MyoHealth 40-<60%: 9.8 ± 2.1 m; MyoHealth < 40%: 11.0 ± 2.9 m; overall p-value: 0.20) as well as quality of life measures (MLHFQ; MyoHealth ≥ 80%: 7.5 ± 12.4 m; MyoHealth 60-<80%: 23.4 ± 23.4 m; MyoHealth 40-<60%: 20.5 ± 21.2 m; MyoHealth < 40%: 27.4 ± 24.4 m; overall p-value: 0.15)-while these differences were not significant. Conclusion The share of LV segments with preserved myocardial contraction promises to discriminate between symptomatic and asymptomatic subjects based on the imaging findings, even when the LV ejection fraction is preserved. This finding is promising to make imaging studies more robust toward incomplete clinical information.
Collapse
Affiliation(s)
- Djawid Hashemi
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Berlin, Germany,Department of Internal Medicine and Cardiology, German Heart Institute Berlin, Berlin, Germany,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany,*Correspondence: Djawid Hashemi,
| | - Patrick Doeblin
- Department of Internal Medicine and Cardiology, German Heart Institute Berlin, Berlin, Germany,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Moritz Blum
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Karl Jakob Weiss
- Department of Internal Medicine and Cardiology, German Heart Institute Berlin, Berlin, Germany,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Matthias Schneider
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Berlin, Germany,Department of Internal Medicine and Cardiology, German Heart Institute Berlin, Berlin, Germany
| | - Rebecca Beyer
- Department of Internal Medicine and Cardiology, German Heart Institute Berlin, Berlin, Germany,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Berlin, Germany,Department of Internal Medicine and Cardiology, German Heart Institute Berlin, Berlin, Germany,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Hans-Dirk Duengen
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Berlin, Germany,Department of Internal Medicine and Cardiology, German Heart Institute Berlin, Berlin, Germany
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Berlin, Germany,Department of Internal Medicine and Cardiology, German Heart Institute Berlin, Berlin, Germany
| | - Sebastian Kelle
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Berlin, Germany,Department of Internal Medicine and Cardiology, German Heart Institute Berlin, Berlin, Germany,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| |
Collapse
|
45
|
Marwick TH, Chandrashekhar Y. Imaging During Exercise: Is There Added Value? JACC Cardiovasc Imaging 2023; 16:264-267. [PMID: 36754480 DOI: 10.1016/j.jcmg.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Borlaug BA. Exercise Echocardiography: How Hard Do We Really Need to Push? JACC Cardiovasc Imaging 2023; 16:156-158. [PMID: 36752423 DOI: 10.1016/j.jcmg.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
47
|
Harada T, Obokata M, Kagami K, Sorimachi H, Kato T, Takama N, Wada N, Ishii H. Utility of E/e' Ratio During Low-Level Exercise to Diagnose Heart Failure With Preserved Ejection Fraction. JACC Cardiovasc Imaging 2023; 16:145-155. [PMID: 36752422 DOI: 10.1016/j.jcmg.2022.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND E/e' ratio during exercise is the key parameter in identifying elevated pulmonary capillary wedge pressure (PCWP), and thus heart failure with preserved ejection fraction (HFpEF). However, its diagnostic value is limited when mitral inflow or tissue velocities are fused during elevated heart rate. OBJECTIVES The authors hypothesized that E/e' ratio during low-level (20 W) exercise (E/e'20W) can help diagnose HFpEF. METHODS Ergometric exercise stress echocardiography was performed in 215 dyspneic patients with an EF ≥50%. The authors determined the feasibility of E/e' ratio at each stage (frequency of patients who had measurable E/e' without E-A fusion among 215 participants) and examined whether E/e'20W could predict normal E/e' ratio during peak exercise (E/e'peak ≤15). The authors also evaluated whether E/e'20W could predict normal PCWP during exercise (PCWP <25 mm Hg) in a subset of participants (n = 45) who underwent exercise right heart catheterization. RESULTS The feasibility of the E/e' ratio decreased from 100% at rest to 96.3% during 20-W exercise and 74.9% during peak exercise caused by E-A fusion. In patients with E/e'peak >15, there was an increase in E/e' ratio from rest to 20-W exercise (11.2 ± 2.1 to 16.3 ± 3.5; P < 0.0001), but it did not change significantly from 20-W exercise to peak exercise (P = 0.12). E/e'20W predicted E/e'peak ≤15 (AUC: 0.91; P < 0.0001) with the cutoff value of ≤12.4 showing high specificity (94%) and positive predictive value (98%). During 20-W exercise, 93% of the HFpEF patients developed PCWP ≥25 mm Hg. E/e'20W predicted normal PCWP during exercise (AUC: 0.77; P = 0.01) with the cutoff value of ≤12.4 showing high specificity (83%). CONCLUSIONS E/e' ratio during low-level exercise is highly feasible and predicts normal E/e' ratio or PCWP during peak exercise with high specificity. These data suggest that E/e'20W could be used as an alternative to the peak exercise value to rule out HFpEF in patients with dyspnea.
Collapse
Affiliation(s)
- Tomonari Harada
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Kazuki Kagami
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Division of Cardiovascular Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hidemi Sorimachi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Toshimitsu Kato
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Noriaki Takama
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Naoki Wada
- Department of Rehabilitation Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hideki Ishii
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
48
|
Schuster A, Schulz A, Lange T, Evertz R, Hartmann F, Kowallick JT, Hellenkamp K, Uecker M, Seidler T, Hasenfuß G, Backhaus SJ. Concomitant latent pulmonary vascular disease leads to impaired global cardiac performance in heart failure with preserved ejection fraction. Eur J Heart Fail 2023; 25:322-331. [PMID: 36691723 DOI: 10.1002/ejhf.2781] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 01/25/2023] Open
Abstract
AIMS The REDUCE-LAP II trial demonstrated adverse outcomes after interatrial shunt device (IASD) placement in heart failure with preserved ejection fraction (HFpEF) attributed to latent pulmonary vascular disease (PVD). We hypothesized that exercise stress cardiovascular magnetic resonance (CMR) imaging could provide non-invasive characterization of cardiac and pulmonary physiology for improved patient selection. METHODS AND RESULTS The HFpEF-Stress trial prospectively enrolled 75 patients with exertional dyspnoea and diastolic dysfunction. Patients underwent rest and exercise stress right heart catheterization, echocardiography and CMR imaging. Pulmonary artery and capillary wedge pressures, cardiac index (CI) and pulmonary vascular resistance (PVR) were calculated. Latent PVD was defined as increased PVR ≥ 1.74 Wood units during exercise stress. CMR assessed long-axis strains (LAS) and filling volumes of all cardiac chambers. Right ventricular (RV) function was further quantified by stroke and peak flow volumes. Patients with latent PVD (n = 24) showed lower RV function (rest tricuspid annular plane systolic excursion, p = 0.010; stress RV LAS, p < 0.001) compared to patients without (n = 43). During exercise stress, RV stroke and peak flow volumes (p < 0.001) were reduced and led to impaired left atrial filling (p = 0.040) with a strong statistical trend to impaired ventricular (LV) filling (p = 0.098). This subsequently resulted in reduced LV-CI (p < 0.001) despite preserved LV systolic function (LV LAS p ≥ 0.255). The degree of RV dysfunction during exercise stress best predicted latent PVD (RV peak flow, area under the curve at rest 0.73 vs. stress 0.89, p = 0.004). CONCLUSIONS Latent PVD is a feature of HFpEF and is associated with impaired RV functional reserve, global diastolic filling and LV-CI. This can be quantified by CMR and used to identify patients likely to benefit from IASD implantation.
Collapse
Affiliation(s)
- Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Finn Hartmann
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Johannes T Kowallick
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,University Medical Center Göttingen (UMG), Institute for Diagnostic and Interventional Radiology, Göttingen, Germany
| | - Kristian Hellenkamp
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Martin Uecker
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,University Medical Center Göttingen (UMG), Institute for Diagnostic and Interventional Radiology, Göttingen, Germany.,Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Tim Seidler
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Sören J Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
49
|
Segeroth M, Winkel DJ, Strebel I, Yang S, van der Stouwe JG, Formambuh J, Badertscher P, Cyriac J, Wasserthal J, Caobelli F, Madaffari A, Lopez-Ayala P, Zellweger M, Sauter A, Mueller C, Bremerich J, Haaf P. Pulmonary transit time of cardiovascular magnetic resonance perfusion scans for quantification of cardiopulmonary haemodynamics. Eur Heart J Cardiovasc Imaging 2023:6994365. [PMID: 36662127 PMCID: PMC10364617 DOI: 10.1093/ehjci/jead001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/26/2022] [Indexed: 01/21/2023] Open
Abstract
AIMS Pulmonary transit time (PTT) is the time blood takes to pass from the right ventricle to the left ventricle via pulmonary circulation. We aimed to quantify PTT in routine cardiovascular magnetic resonance imaging perfusion sequences. PTT may help in the diagnostic assessment and characterization of patients with unclear dyspnoea or heart failure (HF). METHODS AND RESULTS We evaluated routine stress perfusion cardiovascular magnetic resonance scans in 352 patients, including an assessment of PTT. Eighty-six of these patients also had simultaneous quantification of N-terminal pro-brain natriuretic peptide (NTproBNP). NT-proBNP is an established blood biomarker for quantifying ventricular filling pressure in patients with presumed HF. Manually assessed PTT demonstrated low inter-rater variability with a correlation between raters >0.98. PTT was obtained automatically and correctly in 266 patients using artificial intelligence. The median PTT of 182 patients with both left and right ventricular ejection fraction >50% amounted to 6.8 s (Pulmonary transit time: 5.9-7.9 s). PTT was significantly higher in patients with reduced left ventricular ejection fraction (<40%; P < 0.001) and right ventricular ejection fraction (<40%; P < 0.0001). The area under the receiver operating characteristics curve (AUC) of PTT for exclusion of HF (NT-proBNP <125 ng/L) was 0.73 (P < 0.001) with a specificity of 77% and sensitivity of 70%. The AUC of PTT for the inclusion of HF (NT-proBNP >600 ng/L) was 0.70 (P < 0.001) with a specificity of 78% and sensitivity of 61%. CONCLUSION PTT as an easily, even automatically obtainable and robust non-invasive biomarker of haemodynamics might help in the evaluation of patients with dyspnoea and HF.
Collapse
Affiliation(s)
- Martin Segeroth
- Department of Radiology and Nuclear Medicine, University Hospital, Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - David Jean Winkel
- Department of Radiology and Nuclear Medicine, University Hospital, Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Ivo Strebel
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Shan Yang
- Department of Research and Analysis, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Jan Gerrit van der Stouwe
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Jude Formambuh
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Patrick Badertscher
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Joshy Cyriac
- Department of Research and Analysis, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Jakob Wasserthal
- Department of Research and Analysis, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Federico Caobelli
- Department of Radiology and Nuclear Medicine, University Hospital, Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Antonio Madaffari
- Department of Cardiology, University Hospital Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Pedro Lopez-Ayala
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Michael Zellweger
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Alexander Sauter
- Department of Radiology and Nuclear Medicine, University Hospital, Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Christian Mueller
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Jens Bremerich
- Department of Radiology and Nuclear Medicine, University Hospital, Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Philip Haaf
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| |
Collapse
|
50
|
Steenhorst JJ, Hirsch A, van den Berg LEM, Kamphuis LS, Merkus D, Boersma E, Helbing WA. Standardizing submaximal exercise intensities for use of supine push-pull exercise during cardiovascular magnetic resonance. Clin Physiol Funct Imaging 2023; 43:10-19. [PMID: 36036156 DOI: 10.1111/cpf.12784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) imaging during supine exercise at (sub)maximal oxygen consumption (VO2 ) offers unique diagnostic insights. However, maximal VO2 is not achievable in the supine position and standardizing submaximal exercise intensities remains challenging. Using heart rate or workload could be a viable option to translate VO2 -based submaximal exercise intensities. AIM To translate submaximal exercise intensities upright cycling exercise (UCE) to supine push-pull exercise (SPPE), by comparing heart rate or workload determined during UCE, with heart rate and workload during SPPE at similar exercise intensities. METHODS AND RESULTS Sixteen healthy young adults (20.4 ± 2.2 years; 8 female) underwent cardiopulmonary UCE and SPPE testing [mean ± standard deviation maximal VO2 : 3.2 ± 0.6 vs. 5 ± 0.3 L min-1 , p < 0.001 and median (interquartile range) of the maximum workload: 310 (244, 361) vs. 98 (98, 100), p < 0.001, respectively]. Heart rate at 40% and 60% of maximal VO2 , as determined by UCE, showed low bias (-3 and 0 bpm, respectively) and wide limits of agreement (±26 and ±28 bpm, respectively), in Bland-Altman analysis. VO2 /Workload relation was exponential and less efficient during SPPE compared to UCE. Generalized estimated equation analysis predicted model-based mean workload during SPPE, with acceptable 95% confidence interval. CONCLUSION Heart rate during UCE at submaximal exercise intensities can reasonably well be used to for SPPE in healthy subjects. Using workload, an ergometer specific, model-based mean can be used to determine exercise intensities during SPPE. Individual variations in response to posture and movement change are high. During clinical interpretation of exercise CMR, individual exercise intensity has to be considered.
Collapse
Affiliation(s)
- Jarno J Steenhorst
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Pediatric Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alexander Hirsch
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Linda E M van den Berg
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lieke S Kamphuis
- Department of Pulmonology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphne Merkus
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Walter-Brendel Centre of Experimental Medicine, LMU Munich, University Hospital, Munich, Germany
| | - Eric Boersma
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem A Helbing
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Pediatric Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|