1
|
Li S, Li F, Wang Y, Li W, Wu J, Hu X, Tang T, Liu X. Multiple delivery strategies of nanocarriers for myocardial ischemia-reperfusion injury: current strategies and future prospective. Drug Deliv 2024; 31:2298514. [PMID: 38147501 PMCID: PMC10763895 DOI: 10.1080/10717544.2023.2298514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Acute myocardial infarction, characterized by high morbidity and mortality, has now become a serious health hazard for human beings. Conventional surgical interventions to restore blood flow can rapidly relieve acute myocardial ischemia, but the ensuing myocardial ischemia-reperfusion injury (MI/RI) and subsequent heart failure have become medical challenges that researchers have been trying to overcome. The pathogenesis of MI/RI involves several mechanisms, including overproduction of reactive oxygen species, abnormal mitochondrial function, calcium overload, and other factors that induce cell death and inflammatory responses. These mechanisms have led to the exploration of antioxidant and inflammation-modulating therapies, as well as the development of myocardial protective factors and stem cell therapies. However, the short half-life, low bioavailability, and lack of targeting of these drugs that modulate these pathological mechanisms, combined with liver and spleen sequestration and continuous washout of blood flow from myocardial sites, severely compromise the expected efficacy of clinical drugs. To address these issues, employing conventional nanocarriers and integrating them with contemporary biomimetic nanocarriers, which rely on passive targeting and active targeting through precise modifications, can effectively prolong the duration of therapeutic agents within the body, enhance their bioavailability, and augment their retention at the injured myocardium. Consequently, these approaches significantly enhance therapeutic effectiveness while minimizing toxic side effects. This article reviews current drug delivery systems used for MI/RI, aiming to offer a fresh perspective on treating this disease.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Fengmei Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Yan Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
2
|
Zhang Y, Wu F, Guo S, Yin R, Yuan M, Li X, Zhao X, Li X. Critical role of apoptosis in MeCP2-mediated epithelial-mesenchymal transition of ARPE-19 cells. J Cell Physiol 2024:e31429. [PMID: 39238182 DOI: 10.1002/jcp.31429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Proliferative vitreoretinopathy (PVR) is a complex disease that significantly contributes to recurrent retinal detachment. Its development is notably affected by epithelial-mesenchymal transition (EMT), where apoptosis plays a crucial role as a regulator of EMT. However, the function of MeCP2 in governing apoptosis and EMT in retinal pigment epithelial (RPE) cells and its implications for PVR development have remained inadequately understood. Thus, we investigated the impact of MeCP2 on proliferation, migration, apoptosis and EMT in ARPE-19 cells to provide a fresh perspective on the etiology of PVR. The morphological changes in ARPE-19 cells induced by recombinant human MeCP2 protein and MeCP2 knockdown were observed. Wound healing assay were performed to verify the effects of recombinant human MeCP2 protein and MeCP2 knockdown on ARPE-19 cell migration. Furthermore, cell proliferation was assessed using the CCK-8 assay and flow cytometry. Western blot analysis, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and immunofluorescence analysis were conducted to measure the protein levels associated with apoptosis, cell cycle and EMT. Western blot analysis and immunofluorescence assays confirmed that MeCP2 promoted EMT formation in ARPE-19 cells. The CCK-8 assay revealed that MeCP2 treatment enhanced the proliferation of ARPE-19 cells, whereas MeCP2 knockdown inhibited ARPE-19 cell proliferation. Treatment with recombinant human MeCP2 protein and MeCP2 knockdown altered the morphology of ARPE-19 cells. Wound healing assay demonstrated that MeCP2 knockdown inhibited ARPE-19 cell migration, and MeCP2 treatment promoted ARPE-19 cell migration. MeCP2 knockdown induced a G0/G1 phase block, inhibiting cell growth, and qRT-PCR data indicated reduced expression of cell cycle-related genes. Increased apoptosis was observed after MeCP2 knockdown in ARPE-19 cells. Overall, MeCP2 treatment stimulates cell proliferation, migration and EMT formation; conversely, MeCP2 knockdown inhibits EMT, cell proliferation, migration and cell cycle G1/S phase transition, and induces apoptosis.
Collapse
Affiliation(s)
- Yongya Zhang
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Fei Wu
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Sibei Guo
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Xinxiang Medical University, Zhengzhou, China
| | - Ruijie Yin
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Min Yuan
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xue Li
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xueru Zhao
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xiaohua Li
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Institute, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Xinxiang Medical University, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
3
|
Song Y, Cao S, Sun X, Chen G. The interplay of hydrogen sulfide and microRNAs in cardiovascular diseases: insights and future perspectives. Mamm Genome 2024; 35:309-323. [PMID: 38834923 DOI: 10.1007/s00335-024-10043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Hydrogen sulfide (H2S) is recognized as the third gasotransmitter, after nitric oxide (NO) and carbon monoxide (CO). It is known for its cardioprotective properties, including the relaxation of blood vessels, promotion of angiogenesis, regulation of myocardial cell apoptosis, inhibition of vascular smooth muscle cell proliferation, and reduction of inflammation. Additionally, abnormal H2S generation has been linked to the development of cardiovascular diseases (CVD), such as pulmonary hypertension, hypertension, atherosclerosis, vascular calcification, and myocardial injury. MicroRNAs (miRNAs) are non-coding, conserved, and versatile molecules that primarily influence gene expression by repressing translation and have emerged as biomarkers for CVD diagnosis. Studies have demonstrated that H2S can ameliorate cardiac dysfunction by regulating specific miRNAs, and certain miRNAs can also regulate H2S synthesis. The crosstalk between miRNAs and H2S offers a novel perspective for investigating the pathophysiology, prevention, and treatment of CVD. The present analysis outlines the interactions between H2S and miRNAs and their influence on CVD, providing insights into their future potential and advancement.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuo Cao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Guozhen Chen
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital, Yantai, Shandong, China.
| |
Collapse
|
4
|
Zhu Y, Ren S, Huang H, Wu J, You X, Gao J, Ren Y, Wang R, Zhao W, Tan S. Restoration of miR-299-3p promotes efferocytosis and ameliorates atherosclerosis via repressing CD47 in mice. FASEB J 2024; 38:e23857. [PMID: 39114953 DOI: 10.1096/fj.202400639r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/11/2024]
Abstract
Atherosclerotic plaque formation is largely attributed to the impaired efferocytosis, which is known to be associated with the pathologic upregulation of cluster of differentiation 47 (CD47), a key antiphagocytic molecule. By gene expression omnibus (GEO) datasets analysis, we identified that four miRNAs are aberrantly downregulated in atherosclerosis, coronary artery disease, and obesity. Of them, hsa-miR-299-3p (miR-299-3p) was predicted to target the 3'UTR of human CD47 mRNA by bioinformatics analysis. Further, we demonstrated that miR-299-3p negatively regulates CD47 expression by binding to the target sequence "CCCACAU" in the 3'UTR of CD47 mRNA through luciferase reporter assay and site-directed mutagenesis. Additionally, we found that miR-299-3p was downregulated by ~32% in foam cells in response to oxidized low-density lipoprotein (ox-LDL) stimulation, thus upregulating CD47 and contributing to the impaired efferocytosis. Whereas, restoration of miR-299-3p reversed the ox-LDL-induced upregulation of CD47, thereby facilitating efferocytosis. In high-fat diet (HFD) fed ApoE-/- mice, we discovered that miR-299-3p was downregulated thus leading to upregulation of CD47 in abdominal aorta. Conversely, miR-299-3p restoration potently suppressed HFD-induced upregulation of CD47 and promoted phagocytosis of foam cells by macrophages in atherosclerotic plaques, thereby reducing necrotic core, increasing plaque stability, and mitigating atherosclerosis. Conclusively, we identify miR-299-3p as a negative regulator of CD47, and reveal a molecular mechanism whereby the ox-LDL-induced downregulation of miR-299-3p leads to the upregulation of CD47 in foam cells thus contributing to the impaired efferocytosis in atherosclerosis, and propose miR-299-3p can potentially serve as an inhibitor of CD47 to promote efferocytosis and ameliorate atherosclerosis.
Collapse
Affiliation(s)
- Yingli Zhu
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuang Ren
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Haijuan Huang
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Jiale Wu
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Xiangyan You
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Jie Gao
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuzhi Ren
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Ruize Wang
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuhua Tan
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
5
|
Luo J, Wang L, Cui C, Chen H, Zeng W, Li X. MicroRNA-19a-3p inhibits endothelial dysfunction in atherosclerosis by targeting JCAD. BMC Cardiovasc Disord 2024; 24:394. [PMID: 39080547 PMCID: PMC11287888 DOI: 10.1186/s12872-024-04063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/19/2024] [Indexed: 08/03/2024] Open
Abstract
OBJECTIVE To examine the influences and mechanisms of MicroRNA-19a-3p (miR-19a-3p) on endothelial dysfunction in atherosclerosis. METHODS An analysis of miR-19a expression was carried out using the Gene Expression Omnibus (GEO) database. The effect of miR-19a-3p on endothelial function in HUVECs was evaluated by miR-19a-3p overexpression under TNF-α treatment. Luciferase assays were performed to explore the potential target genes. Overexpression of junctional protein associated with coronary artery disease (JCAD) was used to examine the effects of miR-19a-3p on cell adhesion, and proliferation. RESULTS MiR-19a-3p expression in endothelial cells decreased after exposure to TNF-α and/or oscillatory flow, consistent with the expression change of miR-19a-3p found in atherosclerotic plaques. Additionally, endothelial cell dysfunction and inflammation were significantly diminished by miR-19a-3p overexpression but markedly exacerbated by miR-19a-3p inhibition. MiR-19a-3p transfection significantly decreased the expression of JCAD by binding to the 3'-UTR of JCAD mRNA. Furthermore, the protective effect of miR-19a-3p against endothelial cell dysfunction and inflammation was achieved by regulating JCAD and was closely linked to the Hippo/YAP signaling pathway. CONCLUSION MiR-19a-3p expression is a crucial molecular switch in the onset of atherosclerosis and miR-19a-3p overexpression is a possible pharmacological therapeutic strategy for reversing the development of atherosclerosis.
Collapse
Affiliation(s)
- Jinque Luo
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
- College of Pharmacy, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Ling Wang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
- College of Pharmacy, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Chaoyue Cui
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
| | - Hongyu Chen
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
| | - Wanli Zeng
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
| | - Xin Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China.
| |
Collapse
|
6
|
Zhang Y, Ma Y, Zhang H, Xu J, Gao X, Zhang T, Liu X, Guo L, Zhao D. Environmental F actors coordinate circadian clock function and rhythm to regulate plant development. PLANT SIGNALING & BEHAVIOR 2023; 18:2231202. [PMID: 37481743 PMCID: PMC10364662 DOI: 10.1080/15592324.2023.2231202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Changes in the external environment necessitate plant growth plasticity, with environmental signals such as light, temperature, and humidity regulating growth and development. The plant circadian clock is a biological time keeper that can be "reset" to adjust internal time to changes in the external environment. Exploring the regulatory mechanisms behind plant acclimation to environmental factors is important for understanding how plant growth and development are shaped and for boosting agricultural production. In this review, we summarize recent insights into the coordinated regulation of plant growth and development by environmental signals and the circadian clock, further discussing the potential of this knowledge.
Collapse
Affiliation(s)
- Ying Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yuru Ma
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Hao Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Jiahui Xu
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xiaokuan Gao
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
| | - Tengteng Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xigang Liu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Lin Guo
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Dan Zhao
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Yu Z, Yin J, Tang Z, Hu T, Wang Z, Chen Y, Liu T, Zhang W. Non-coding RNAs are key players and promising therapeutic targets in atherosclerosis. Front Cell Dev Biol 2023; 11:1237941. [PMID: 37719883 PMCID: PMC10502512 DOI: 10.3389/fcell.2023.1237941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Cardiovascular disease (CVD) is the primary cause of death in humans. Atherosclerosis (AS) is the most common CVD and a major cause of many CVD-related fatalities. AS has numerous risk factors and complex pathogenesis, and while it has long been a research focus, most mechanisms underlying its progression remain unknown. Noncoding RNAs (ncRNAs) represent an important focus in epigenetics studies and are critical biological regulators that form a complex network of gene regulation. Abnormal ncRNA expression disrupts the normal function of tissues or cells, leading to disease development. A large body of evidence suggests that ncRNAs are involved in all stages of atherosclerosis, from initiation to progression, and that some are significantly differentially expressed during AS development, suggesting that they may be powerful markers for screening AS or potential treatment targets. Here, we review the role of ncRNAs in AS development and recent developments in the use of ncRNAs for AS-targeted therapy, providing evidence for ncRNAs as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhun Yu
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - JinZhu Yin
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhiTong Tang
- Department of Massage, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Ting Hu
- Internal Medicine of Chinese Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhuoEr Wang
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - Ying Chen
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Tianjia Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Wei Zhang
- Orthopedics Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
8
|
Du J, Wu W, Zhu B, Tao W, Liu L, Cheng X, Zhao M, Wu J, Li Y, Pei K. Recent advances in regulating lipid metabolism to prevent coronary heart disease. Chem Phys Lipids 2023; 255:105325. [PMID: 37414117 DOI: 10.1016/j.chemphyslip.2023.105325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
The pathogenesis of coronary heart disease is a highly complex process, with lipid metabolism disorders being closely linked to its development. Therefore, this paper analyzes the various factors that influence lipid metabolism, including obesity, genes, intestinal microflora, and ferroptosis, through a comprehensive review of basic and clinical studies. Additionally, this paper delves deeply into the pathways and patterns of coronary heart disease. Based on these findings, it proposes various intervention pathways and therapeutic methods, such as the regulation of lipoprotein enzymes, lipid metabolites, and lipoprotein regulatory factors, as well as the modulation of intestinal microflora and the inhibition of ferroptosis. Ultimately, this paper aims to offer new ideas for the prevention and treatment of coronary heart disease.
Collapse
Affiliation(s)
- Jingchun Du
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Wu
- Key laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Boran Zhu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lina Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaolan Cheng
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Ke Pei
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Farina FM, Weber C, Santovito D. The emerging landscape of non-conventional RNA functions in atherosclerosis. Atherosclerosis 2023; 374:74-86. [PMID: 36725418 DOI: 10.1016/j.atherosclerosis.2023.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Most of the human genome is transcribed into non-coding RNAs (ncRNAs), which encompass a heterogeneous family of transcripts including microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and others. Although the detailed modes of action of some classes are not fully elucidated, the common notion is that ncRNAs contribute to sculpting gene expression of eukaryotic cells at multiple levels. These range from the regulation of chromatin remodeling and transcriptional activity to post-transcriptional regulation of messenger RNA splicing, stability, and decay. Many of these functions ultimately govern the expression of coding and non-coding genes to affect diverse physiological and pathological mechanisms in vascular biology and beyond. As such, different classes of ncRNAs emerged as crucial regulators of vascular integrity as well as active players in the pathophysiology of atherosclerosis from the early stages of endothelial dysfunction to the clinically relevant complications. However, research in recent years revealed unexpected findings such as small ncRNAs being able to biophysically regulate protein function, the glycosylation of ncRNAs to be exposed on the cell surface, the release of ncRNAs in the extracellular space to act as ligands of receptors, and even the ability of non-coding portion of messenger RNAs to mediate structural functions. This evidence expanded the functional repertoire of ncRNAs far beyond gene regulation and highlighted an additional layer of biological control of cell function. In this Review, we will discuss these emerging aspects of ncRNA biology, highlight the implications for the mechanisms of vascular biology and atherosclerosis, and discuss possible translational implications.
Collapse
Affiliation(s)
- Floriana Maria Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| |
Collapse
|
10
|
Spinetti G, Mutoli M, Greco S, Riccio F, Ben-Aicha S, Kenneweg F, Jusic A, de Gonzalo-Calvo D, Nossent AY, Novella S, Kararigas G, Thum T, Emanueli C, Devaux Y, Martelli F. Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc Diabetol 2023; 22:122. [PMID: 37226245 PMCID: PMC10206598 DOI: 10.1186/s12933-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Martina Mutoli
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Soumaya Ben-Aicha
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy.
| |
Collapse
|
11
|
Škrlec I. Circadian system microRNAs - Role in the development of cardiovascular diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:225-267. [PMID: 37709378 DOI: 10.1016/bs.apcsb.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Circadian rhythm regulates numerous physiological processes, and disruption of the circadian clock can lead to cardiovascular disease. Cardiovascular disease is the leading cause of morbidity and mortality worldwide. Small non-coding RNAs, microRNAs (miRNAs), are involved in regulating gene expression, both those important for the cardiovascular system and key circadian clock genes. Epigenetic mechanisms based on miRNAs are essential for fine-tuning circadian physiology. Indeed, some miRNAs depend on circadian periodicity, others are under the influence of light, and still others are under the influence of core clock genes. Dysregulation of miRNAs involved in circadian rhythm modulation has been associated with inflammatory conditions of the endothelium and atherosclerosis, which can lead to coronary heart disease and myocardial infarction. Epigenetic processes are reversible through their association with environmental factors, enabling innovative preventive and therapeutic strategies for cardiovascular disease. Here, is a review of recent findings on how miRNAs modulate circadian rhythm desynchronization in cardiovascular disease. In the era of personalized medicine, the possibility of treatment with miRNA antagomirs should be time-dependent to correspond to chronotherapy and achieve the most significant efficacy.
Collapse
Affiliation(s)
- Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| |
Collapse
|
12
|
Yao J, Liang J, Li H. Screening for key genes in circadian regulation in advanced atherosclerosis: A bioinformatic analysis. Front Cardiovasc Med 2023; 9:990757. [PMID: 36712250 PMCID: PMC9878187 DOI: 10.3389/fcvm.2022.990757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Background Atherosclerosis (AS) is the most important cardiovascular disease threatening human health, leading to adverse events such as myocardial infarction and stroke. The research on the pathogenesis and causes of AS is being improved step by step, and many factors are associated with AS. However, the relationship between circadian regulation and the pathogenesis of AS is still unclear. Our study identified 2 key genes of circadian regulation in AS by bioinformatics analysis, which provides new perspectives to understand the relationship between circadian rhythm and AS. Methods We downloaded samples of early and advanced AS from public databases, screened key genes by weighted gene co-expression network analysis (WGCNA) and Lasso, calculated the immune cell content of the samples using "CIBERSORT," and analyzed the relationship between key genes and immune cells. Results We obtained the most relevant core modules for advanced AS and analyzed the functions of these modules. Two circadian rhythm-related genes were obtained, which influence the immune infiltration of this late AS. ROC curves demonstrated the efficacy of key genes to differentiate between early and advanced AS. Conclusion We identified 2 genes most associated with circadian rhythms in advanced AS, whose association with AS has not been elucidated and may become the next therapeutic target.
Collapse
Affiliation(s)
- Jiali Yao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China,*Correspondence: Hongliang Li,
| |
Collapse
|
13
|
The Effect of Diet on the Cardiac Circadian Clock in Mice: A Systematic Review. Metabolites 2022; 12:metabo12121273. [PMID: 36557311 PMCID: PMC9786298 DOI: 10.3390/metabo12121273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythms play important roles in regulating physiological and behavioral processes. These are adjusted by environmental cues, such as diet, which acts by synchronizing or attenuating the circadian rhythms of peripheral clocks, such as the liver, intestine, pancreas, white and brown adipose tissue, lungs, kidneys, as well as the heart. Some studies point to the influence of diet composition, feeding timing, and dietary restriction on metabolic homeostasis and circadian rhythms at various levels. Therefore, this systematic review aimed to discuss studies addressing the effect of diet on the heart clock in animal models and, additionally, the chronodisruption of the clock and its relation to the development of cardiovascular disorders in the last 15 years. A search was conducted in the PubMed, Scopus, and Embase databases. The PRISMA guide was used to construct the article. Nineteen studies met all inclusion and exclusion criteria. In summary, these studies have linked the circadian clock to cardiovascular health and suggested that maintaining a robust circadian system may reduce the risks of cardiometabolic and cardiovascular diseases. The effect of time-of-day-dependent eating on the modulation of circadian rhythms of the cardiac clock and energy homeostasis is notable, among its deleterious effects predominantly in the sleep (light) phase and/or at the end of the active phase.
Collapse
|
14
|
Xie Y, Chen H, Qu P, Qiao X, Guo L, Liu L. Novel insight on the role of Macrophages in atherosclerosis: Focus on polarization, apoptosis and efferocytosis. Int Immunopharmacol 2022; 113:109260. [DOI: 10.1016/j.intimp.2022.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
|
15
|
Evans PC, Davidson SM, Wojta J, Bäck M, Bollini S, Brittan M, Catapano AL, Chaudhry B, Cluitmans M, Gnecchi M, Guzik TJ, Hoefer I, Madonna R, Monteiro JP, Morawietz H, Osto E, Padró T, Sluimer JC, Tocchetti CG, Van der Heiden K, Vilahur G, Waltenberger J, Weber C. From novel discovery tools and biomarkers to precision medicine-basic cardiovascular science highlights of 2021/22. Cardiovasc Res 2022; 118:2754-2767. [PMID: 35899362 PMCID: PMC9384606 DOI: 10.1093/cvr/cvac114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Here, we review the highlights of cardiovascular basic science published in 2021 and early 2022 on behalf of the European Society of Cardiology Council for Basic Cardiovascular Science. We begin with non-coding RNAs which have emerged as central regulators cardiovascular biology, and then discuss how technological developments in single-cell 'omics are providing new insights into cardiovascular development, inflammation, and disease. We also review recent discoveries on the biology of extracellular vesicles in driving either protective or pathogenic responses. The Nobel Prize in Physiology or Medicine 2021 recognized the importance of the molecular basis of mechanosensing and here we review breakthroughs in cardiovascular sensing of mechanical force. We also summarize discoveries in the field of atherosclerosis including the role of clonal haematopoiesis of indeterminate potential, and new mechanisms of crosstalk between hyperglycaemia, lipid mediators, and inflammation. The past 12 months also witnessed major advances in the field of cardiac arrhythmia including new mechanisms of fibrillation. We also focus on inducible pluripotent stem cell technology which has demonstrated disease causality for several genetic polymorphisms in long-QT syndrome and aortic valve disease, paving the way for personalized medicine approaches. Finally, the cardiovascular community has continued to better understand COVID-19 with significant advancement in our knowledge of cardiovascular tropism, molecular markers, the mechanism of vaccine-induced thrombotic complications and new anti-viral therapies that protect the cardiovascular system.
Collapse
Affiliation(s)
| | | | | | | | - Sveva Bollini
- Department of Experimental Medicine (DIMES), University of Genova, L.go R. Benzi 10, 16132 Genova, Italy
| | - Mairi Brittan
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, Scotland
| | | | - Bill Chaudhry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matthijs Cluitmans
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
- Philips Research, Eindhoven, Netherlands
| | - Massimiliano Gnecchi
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia Division of Cardiology, Unit of Translational Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Medicine, University of Cape Town, South Africa
| | - Tomasz J Guzik
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Imo Hoefer
- Central Diagnostic Laboratory, UMC Utrecht, the Netherlands
| | - Rosalinda Madonna
- Institute of Cardiology, Department of Surgical, Medical, Molecular and Critical Care Area, University of Pisa, Pisa, 56124 Italy
- Department of Internal Medicine, Cardiology Division, University of Texas Medical School, Houston, TX, USA
| | - João P Monteiro
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, Scotland
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Elena Osto
- Institute of Clinical Chemistry and Department of Cardiology, Heart Center, University Hospital & University of Zurich, Switzerland
| | - Teresa Padró
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, and CIBERCV-Instituto de Salud Carlos III, Barcelona, Spain
| | - Judith C Sluimer
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, Netherland
- University/BHF Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, 80131 Napoli, Italy
| | - Kim Van der Heiden
- Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, and CIBERCV-Instituto de Salud Carlos III, Barcelona, Spain
| | - Johannes Waltenberger
- Cardiovascular Medicine, Medical Faculty, University of Muenster, Muenster, Germany
- Diagnostic and Therapeutic Heart Center, Zurich, Switzerland
| | | |
Collapse
|
16
|
Zhou F, Li K, Yang K. Adipose-Derived Stem Cell Exosomes and Related microRNAs in Atherosclerotic Cardiovascular Disease. J Cardiovasc Transl Res 2022; 16:453-462. [PMID: 36223051 DOI: 10.1007/s12265-022-10329-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death from noncommunicable diseases worldwide. The pathological development of ASCVD begins with atherosclerosis, followed by the narrowing and occlusion of the vascular lumen and, subsequently, ischemic necrosis in coronary arteries. Preventing atherosclerosis development and delaying ischemia progression may be effective ways of pre-diagnosing and treating ASCVD. Studies have demonstrated that exosomes from adipose-derived stem cells play an increasingly important role in basic research on cardiovascular diseases in terms of the impact of macrophage polarization and the endothelial, anti-apoptosis, and angiogenesis effects. The related microRNAs play a significant role in ASCVD. This study was novel in reviewing the role of exosomes from adipose-derived stem cells and related microRNAs in ASCVD. Therapeutic potentials of adipose-derived stem cell exosomes in terms of their impact on macrophage polarization, endothelial effect, anti-apoptosis intervention, and angiogenesis.
Collapse
Affiliation(s)
- Fan Zhou
- Department of Cardiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China
| | - Ke Li
- Department of Cardiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China
| | - Keping Yang
- Department of Cardiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China.
| |
Collapse
|
17
|
Yu H, Yu M, Li Z, Zhang E, Ma H. Identification and analysis of mitochondria-related key genes of heart failure. Lab Invest 2022; 20:410. [PMID: 36071497 PMCID: PMC9450345 DOI: 10.1186/s12967-022-03605-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022]
Abstract
Mitochondria-induced cell death is a vital mechanism of heart failure (HF). Thus, identification of mitochondria-related genes (Mito-RGs) based on transcriptome sequencing data of HF might provide novel diagnostic markers and therapeutic targets for HF. First, bioinformatics analysis was conducted on the GSE57338, GSE76701, GSE136547, and GSE77399 datasets in the Gene Expression Omnibus. Next, we analyzed HF-Mito differentially expressed genes (DEGs) using the protein-protein interaction (PPI) network for obtaining critical genes and exploring their functions. Subsequently, immune cell scores of the HF and normal groups were compared. The potential alteration mechanisms of the key genes were investigated by constructing a competing endogenous RNA network. Finally, we predicted potential therapeutic agents and validated the expression levels of the key genes. Twenty-three HF-Mito DEGs were acquired in the GSE57338 dataset, and the PPI network obtained four key genes, including IFIT3, XAF1, RSAD2, and MX1. According to gene set enrichment analysis, the key genes showed high enrichment in myogenesis and hypoxia. Immune cell analysis demonstrated that aDCs, B cells, and 20 other immune cell types varied between the HF and normal groups. Moreover, we observed that H19 might affect the expression of IFIT3, AXF1, and RSAD2. PCGEM1 might regulate RSAD2 expression. A total of 515 potential therapeutic drugs targeting the key genes, such as tretinoin, silicon dioxide, and bisphenol A, were acquired. Finally, IFIT3, RSAD2, and MX1 expression increased in HF samples compared with normal samples in the GSE76701 dataset, conforming to the GSE57338 dataset analysis. This work screened four key genes, namely, IFIT3, XAF1, RSAD2, and MX1, which can be further explored in subsequent studies for their specific molecular mechanisms in HF.
Collapse
Affiliation(s)
- Haozhen Yu
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Mujun Yu
- School of Life Sciences, Yan'an University, Yan'an, China
| | - Zhuang Li
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Enhu Zhang
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China.
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
18
|
Shen Y, Xu LR, Yan D, Zhou M, Han TL, Lu C, Tang X, Lin CP, Qian RZ, Guo DQ. BMAL1 modulates smooth muscle cells phenotypic switch towards fibroblast-like cells and stabilizes atherosclerotic plaques by upregulating YAP1. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166450. [PMID: 35598770 DOI: 10.1016/j.bbadis.2022.166450] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Ischemic heart diseases and ischemic stroke are closely related to circadian clock and unstable atherosclerotic plaques. Vascular smooth muscle cells (VSMCs) can stabilize or destabilize an atherosclerotic lesion through phenotypic switch. BMAL1 is not only an indispensable core component in circadian clock but also an important regulator in atherosclerosis and VSMCs proliferation. However, little is known about the modulation mechanisms of BMAL1 in VSMCs phenotypic switch and atherosclerotic plaque stability. METHODS We integrated histological analysis of human plaques, in vivo experiments of VSMC-specific Bmal1-/- mice, in vitro experiments, and gene set enrichment analysis (GSEA) of public datasets of human plaques to explore the function of BMAL1 in VSMCs phonotypic switch and plaque stability. FINDINGS Comparing to human unstable plaques, BMAL1 was higher in stable plaques, accompanied by elevated YAP1 and fibroblast maker FSP1 which were positively correlated with BMAL1. In response to Methyl-β-cyclodextrin-cholesterol, oxidized-low-density-lipoprotein and platelet-derived-growth-factor-BB, VSMCs embarked on phenotypic switch and upregulated BMAL, YAP1 and FSP1. Besides, BMAL1 overexpression promoted VSMCs phonotypic switch towards fibroblast-like cells by transcriptionally upregulating the expression of YAP1. BMAL1 or YAP1 knock-down inhibited VSMCs phonotypic switch and downregulated FSP1. Furthermore, VSMC-specific Bmal1-/- mice exhibited VSMCs with lower YAP1 and FSP1 levels, and more vulnerable plaques with less collagen content. In addition, BMAL1 suppressed the migration of VSMCs. The GSEA results of public datasets were consistent with our laboratory findings. INTERPRETATION Our results highlight the importance of BMAL1 as a major regulator in VSMCs phenotypic switch towards fibroblast-like cells which stabilize an atherosclerotic plaque.
Collapse
Affiliation(s)
- Yang Shen
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Li-Rong Xu
- Department of Pathology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dong Yan
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Min Zhou
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Tong-Lei Han
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Chao Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Rd., Shanghai 200032, China
| | - Xiao Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Chang-Po Lin
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China.
| | - Rui-Zhe Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Rd., Shanghai 200032, China.
| | - Da-Qiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China.
| |
Collapse
|
19
|
Liu F, Chen J, Luo C, Meng X. Pathogenic Role of MicroRNA Dysregulation in Podocytopathies. Front Physiol 2022; 13:948094. [PMID: 35845986 PMCID: PMC9277480 DOI: 10.3389/fphys.2022.948094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) participate in the regulation of various important biological processes by regulating the expression of various genes at the post-transcriptional level. Podocytopathies are a series of renal diseases in which direct or indirect damage of podocytes results in proteinuria or nephrotic syndrome. Despite decades of research, the exact pathogenesis of podocytopathies remains incompletely understood and effective therapies are still lacking. An increasing body of evidence has revealed a critical role of miRNAs dysregulation in the onset and progression of podocytopathies. Moreover, several lines of research aimed at improving common podocytopathies diagnostic tools and avoiding invasive kidney biopsies have also identified circulating and urine miRNAs as possible diagnostic and prognostic biomarkers for podocytopathies. The present review mainly aims to provide an updated overview of the recent achievements in research on the potential applicability of miRNAs involved in renal disorders related to podocyte dysfunction by laying particular emphasis on focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous nephropathy (MN), diabetic kidney disease (DKD) and IgA nephropathy (IgAN). Further investigation into these dysregulated miRNAs will not only generate novel insights into the mechanisms of podocytopathies, but also might yield novel strategies for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changqing Luo
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Changqing Luo, ; Xianfang Meng,
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Changqing Luo, ; Xianfang Meng,
| |
Collapse
|
20
|
Yin S, Zhang Z, Tang H, Yang K. The biological clock gene PER1 affects the development of oral squamous cell carcinoma by altering the circadian rhythms of cell proliferation and apoptosis. Chronobiol Int 2022; 39:1206-1219. [PMID: 35678317 DOI: 10.1080/07420528.2022.2082302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Circadian rhythms expressed by the biological clock gene PER1 are aberrantly altered in a variety of tumor cells, including oral squamous cell carcinoma (OSCC); however, their functions and mechanisms are unclear. Here, we found that compared with normal oral epithelial HOK cells, OSCC cells showed altered circadian rhythm characteristics of proliferation, apoptosis and PER1 expression, exhibiting abnormal changes in the 3 dimensions of mesor, amplitude and acrophase. It was further found that in OSCC cells overexpressing PER1 (OE-PER1-SCC15), the circadian rhythm characteristics of cell proliferation, apoptosis, p-AKT and p-mTOR expression were abnormally altered. After adding the AKT activator SC79 to OE-PER1-SCC15 cells, the circadian rhythm characteristics of cell proliferation, apoptosis and p-AKT and p-mTOR expression were altered in opposite ways. In vivo tumorigenic assays demonstrated that overexpression of PER1 inhibited OSCC growth. The circadian rhythm characteristics of cell proliferation and apoptosis, PER1, p-AKT and p-mTOR expression were altered similarly to those observed in vitro. Our findings demonstrate for the first time that PER1 regulates the circadian rhythm of OSCC cell proliferation and apoptosis by altering the circadian rhythm characteristics of the AKT/mTOR pathway. The results have the potential to provide a new strategy for circadian rhythm-based treatment of OSCC.
Collapse
Affiliation(s)
- Shilin Yin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Yuzhong District, China
| | - Zhiwei Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Yuzhong District, China
| | - Hong Tang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Yuzhong District, China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Yuzhong District, China
| |
Collapse
|
21
|
Yan X, Yang P, Liu H, Zhao Y, Wu Z, Zhang B. miR-4461 inhibits the progression of Gallbladder carcinoma via regulating EGFR/AKT signaling. Cell Cycle 2022; 21:1166-1177. [PMID: 35196196 PMCID: PMC9103642 DOI: 10.1080/15384101.2022.2042775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Increasing evidence has demonstrated that microRNAs (miRNAs) participated in the tumorigenesis, progression and recurrence of various malignancies including Gallbladder carcinoma (GBC). miR-4461 was reported to work as a tumor suppressor gene in renal cell carcinoma. However, the role of miR-4461 in GBC remains unknown. Herein, we show that miR-4461 is downregulated in gallbladder cancer stem cells (CSCs). Forced miR-4461 expression attenuates the self-renewal, tumorigenicity of gallbladder CSCs, and inhibits proliferation and metastasis of GBC cells. Conversely, miR-4461 knockdown promotes the self-renewal of gallbladder CSCs, and facilities proliferation and metastasis of GBC cells. Mechanistically, miR-4461 inhibits GBC progression via downregulating EGFR/AKT pathway. Special EGFR siRNA or AKT overexpression virus abolishes the discrepancy of self-renewal, tumorigenesis, growth, and metastasis between miR-4461 overexpression GBC cells and their control cells. In conclusion, miR-4461 suppresses GBC cells self-renewal, tumorigenicity, proliferation, and metastasis by inactivating EGFR/AKT signaling, and may therefore prove to be a potential therapeutic target for GBC patients.
Collapse
Affiliation(s)
- Xingzhou Yan
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Pinghua Yang
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,Zhixiong Wu Department of Critical Care Medicine, Huadong Hospital, Shanghai, 200040, China
| | - Hu Liu
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,CONTACT Baohua Zhang Department of Biliary Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| | - Yongyang Zhao
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,Zhixiong Wu Department of Critical Care Medicine, Huadong Hospital, Shanghai, 200040, China
| | - Zhixiong Wu
- Department of Critical Care Medicine, Huadong Hospital, Shanghai, China
| | - Baohua Zhang
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China,CONTACT Baohua Zhang Department of Biliary Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| |
Collapse
|
22
|
A time to heal: microRNA and circadian dynamics in cutaneous wound repair. Clin Sci (Lond) 2022; 136:579-597. [PMID: 35445708 PMCID: PMC9069467 DOI: 10.1042/cs20220011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022]
Abstract
Many biological systems have evolved circadian rhythms based on the daily cycles of daylight and darkness on Earth. Such rhythms are synchronised or entrained to 24-h cycles, predominantly by light, and disruption of the normal circadian rhythms has been linked to elevation of multiple health risks. The skin serves as a protective barrier to prevent microbial infection and maintain homoeostasis of the underlying tissue and the whole organism. However, in chronic non-healing wounds such as diabetic foot ulcers (DFUs), pressure sores, venous and arterial ulcers, a variety of factors conspire to prevent wound repair. On the other hand, keloids and hypertrophic scars arise from overactive repair mechanisms that fail to cease in a timely fashion, leading to excessive production of extracellular matrix (ECM) components such as such as collagen. Recent years have seen huge increases in our understanding of the functions of microRNAs (miRNAs) in wound repair. Concomitantly, there has been growing recognition of miRNA roles in circadian processes, either as regulators or targets of clock activity or direct responders to external circadian stimuli. In addition, miRNAs are now known to function as intercellular signalling mediators through extracellular vesicles (EVs). In this review, we explore the intersection of mechanisms by which circadian and miRNA responses interact with each other in relation to wound repair in the skin, using keratinocytes, macrophages and fibroblasts as exemplars. We highlight areas for further investigation to support the development of translational insights to support circadian medicine in the context of these cells.
Collapse
|
23
|
Hsu NW, Chou KC, Wang YTT, Hung CL, Kuo CF, Tsai SY. Building a model for predicting metabolic syndrome using artificial intelligence based on an investigation of whole-genome sequencing. J Transl Med 2022; 20:190. [PMID: 35484552 PMCID: PMC9052619 DOI: 10.1186/s12967-022-03379-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background The circadian system is responsible for regulating various physiological activities and behaviors and has been gaining recognition. The circadian rhythm is adjusted in a 24-h cycle and has transcriptional–translational feedback loops. When the circadian rhythm is interrupted, affecting the expression of circadian genes, the phenotypes of diseases could amplify. For example, the importance of maintaining the internal temporal homeostasis conferred by the circadian system is revealed as mutations in genes coding for core components of the clock result in diseases. This study will investigate the association between circadian genes and metabolic syndromes in a Taiwanese population. Methods We performed analysis using whole-genome sequencing, read vcf files and set target circadian genes to determine if there were variants on target genes. In this study, we have investigated genetic contribution of circadian-related diseases using population-based next generation whole genome sequencing. We also used significant SNPs to create a metabolic syndrome prediction model. Logistic regression, random forest, adaboost, and neural network were used to predict metabolic syndrome. In addition, we used random forest model variables importance matrix to select 40 more significant SNPs, which were subsequently incorporated to create new prediction models and to compare with previous models. The data was then utilized for training set and testing set using five-fold cross validation. Each model was evaluated with the following criteria: area under the receiver operating characteristics curve (AUC), precision, F1 score, and average precision (the area under the precision recall curve). Results After searching significant variants, we used Chi-Square tests to find some variants. We found 186 significant SNPs, and four predicting models which used 186 SNPs (logistic regression, random forest, adaboost and neural network), AUC were 0.68, 0.8, 0.82, 0.81 respectively. The F1 scores were 0.412, 0.078, 0.295, 0.552, respectively. The other three models which used the 40 SNPs (logistic regression, adaboost and neural network), AUC were 0.82, 0.81, 0.81 respectively. The F1 scores were 0.584, 0.395, 0.574, respectively. Conclusions Circadian gene defect may also contribute to metabolic syndrome. Our study found several related genes and building a simple model to predict metabolic syndrome. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03379-7.
Collapse
Affiliation(s)
- Nai-Wei Hsu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Kai-Chen Chou
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Yu-Ting Tina Wang
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Chung-Lieh Hung
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chien-Feng Kuo
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shin-Yi Tsai
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan. .,Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei City, Taiwan. .,Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA. .,Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan. .,Institute of Long-Term Care, Mackay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
24
|
Gui Y, Zheng H, Cao RY. Foam Cells in Atherosclerosis: Novel Insights Into Its Origins, Consequences, and Molecular Mechanisms. Front Cardiovasc Med 2022; 9:845942. [PMID: 35498045 PMCID: PMC9043520 DOI: 10.3389/fcvm.2022.845942] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Foam cells play a vital role in the initiation and development of atherosclerosis. This review aims to summarize the novel insights into the origins, consequences, and molecular mechanisms of foam cells in atherosclerotic plaques. Foam cells are originated from monocytes as well as from vascular smooth muscle cells (VSMC), stem/progenitor cells, and endothelium cells. Novel technologies including lineage tracing and single-cell RNA sequencing (scRNA-seq) have revolutionized our understanding of subtypes of monocyte- and VSMC-derived foam cells. By using scRNA-seq, three main clusters including resident-like, inflammatory, and triggering receptor expressed on myeloid cells-2 (Trem2 hi ) are identified as the major subtypes of monocyte-derived foam cells in atherosclerotic plaques. Foam cells undergo diverse pathways of programmed cell death including apoptosis, autophagy, necroptosis, and pyroptosis, contributing to the necrotic cores of atherosclerotic plaques. The formation of foam cells is affected by cholesterol uptake, efflux, and esterification. Novel mechanisms including nuclear receptors, non-coding RNAs, and gut microbiota have been discovered and investigated. Although the heterogeneity of monocytes and the complexity of non-coding RNAs make obstacles for targeting foam cells, further in-depth research and therapeutic exploration are needed for the better management of atherosclerosis.
Collapse
Affiliation(s)
- Yuzhou Gui
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Hongchao Zheng
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Richard Y. Cao
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Santovito D, Weber C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat Rev Cardiol 2022; 19:620-638. [PMID: 35304600 DOI: 10.1038/s41569-022-00680-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
Research showing that microRNAs (miRNAs) are versatile regulators of gene expression has instigated tremendous interest in cardiovascular research. The overwhelming majority of studies are predicated on the dogmatic notion that miRNAs regulate the expression of specific target mRNAs by inhibiting mRNA translation or promoting mRNA decay in the RNA-induced silencing complex (RISC). These efforts mostly identified and dissected contributions of multiple regulatory networks of miRNA-target mRNAs to cardiovascular pathogenesis. However, evidence from studies in the past decade indicates that miRNAs also operate beyond this canonical paradigm, featuring non-conventional regulatory functions and cellular localizations that have a pathophysiological role in cardiovascular disease. In this Review, we highlight the functional relevance of atypical miRNA biogenesis and localization as well as RISC heterogeneity. Moreover, we delineate remarkable non-canonical examples of miRNA functionality, including direct interactions with proteins beyond the Argonaute family and their role in transcriptional regulation in the nucleus and in mitochondria. We scrutinize the relevance of non-conventional biogenesis and non-canonical functions of miRNAs in cardiovascular homeostasis and pathology, and contextualize how uncovering these non-conventional properties can expand the scope of translational research in the cardiovascular field and beyond.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
26
|
Fredman G, MacNamara KC. Atherosclerosis is a major human killer and non-resolving inflammation is a prime suspect. Cardiovasc Res 2021; 117:2563-2574. [PMID: 34609505 PMCID: PMC8783387 DOI: 10.1093/cvr/cvab309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
The resolution of inflammation (or inflammation-resolution) is an active and highly coordinated process. Inflammation-resolution is governed by several endogenous factors, and specialized pro-resolving mediators (SPMs) are one such class of molecules that have robust biological function. Non-resolving inflammation is associated with a variety of human diseases, including atherosclerosis. Moreover, non-resolving inflammation is a hallmark of ageing, an inevitable process associated with increased risk for cardiovascular disease. Uncovering mechanisms as to why inflammation-resolution is impaired in ageing and in disease and identifying useful biomarkers for non-resolving inflammation are unmet needs. Recent work has pointed to a critical role for balanced ratios of SPMs and pro-inflammatory lipids (i.e. leucotrienes and/or specific prostaglandins) as a key determinant of timely inflammation resolution. This review will focus on the accumulating findings that support the role of non-resolving inflammation and imbalanced pro-resolving and pro-inflammatory mediators in atherosclerosis. We aim to provide insight as to why these imbalances occur, the importance of ageing in disease progression, and how haematopoietic function impacts inflammation-resolution and atherosclerosis. We highlight open questions regarding therapeutic strategies and mechanisms of disease to provide a framework for future studies that aim to tackle this important human disease.
Collapse
Affiliation(s)
- Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Katherine C MacNamara
- The Department of Immunology and Infectious Disease, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
27
|
Li W, Liu J, Cai J, Zhang XJ, Zhang P, She ZG, Chen S, Li H. NAFLD as a continuous driver in the whole spectrum of vascular disease. J Mol Cell Cardiol 2021; 163:118-132. [PMID: 34737121 DOI: 10.1016/j.yjmcc.2021.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022]
Abstract
Vascular disease is the prime determinant to cardiovascular morbidities and mortalities, which comprises the early vascular damage and subsequent cardiovascular events. Non-alcohol Fatty Liver Disease (NAFLD) is a systemic metabolic disorder that drives the progression of vascular disease through complex interactions. Although a causal relationship between NAFLD and cardiovascular disease (CVD) has not been established, a growing number of epidemiological studies have demonstrated an independent association between NAFLD and early vascular disease and subsequent cardiovascular events. In addition, mechanistic studies suggest that NAFLD initiates and accelerates vascular injury by increasing systemic inflammation and oxidative stress, impairing insulin sensitivity and lipid metabolism, and modulating epigenetics, the intestinal flora and hepatic autonomic nervous system; thus, NAFLD is a putative driving force for CVD progression. In this review, we summarize the clinical evidence supporting the association of NAFLD with subclinical vascular disease and cardiovascular events and discuss the potential mechanisms by which NAFLD promotes the progression of vascular disease.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jiayi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China.
| | - Shaoze Chen
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
28
|
Nuclear Receptors and Clock Components in Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22189721. [PMID: 34575881 PMCID: PMC8468608 DOI: 10.3390/ijms22189721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVD) are still the first cause of death worldwide. Their main origin is the development of atherosclerotic plaque, which consists in the accumulation of lipids and inflammatory leucocytes within the vascular wall of large vessels. Beyond dyslipidemia, diabetes, obesity, hypertension and smoking, the alteration of circadian rhythms, in shift workers for instance, has recently been recognized as an additional risk factor. Accordingly, targeting a pro-atherogenic pathway at the right time window, namely chronotherapy, has proven its efficiency in reducing plaque progression without affecting healthy tissues in mice, thus providing the rationale of such an approach to treat CVD and to reduce drug side effects. Nuclear receptors are transcriptional factors involved in the control of many physiological processes. Among them, Rev-erbs and RORs control metabolic homeostasis, inflammatory processes and the biological clock. In this review, we discuss the opportunity to dampen atherosclerosis progression by targeting such ligand-activated core clock components in a (chrono-)therapeutic approach in order to treat CVD.
Collapse
|