1
|
Choi GW, Kim JH, Kang DW, Cho HY. A journey into siRNA therapeutics development: A focus on Pharmacokinetics and Pharmacodynamics. Eur J Pharm Sci 2025; 205:106981. [PMID: 39643127 DOI: 10.1016/j.ejps.2024.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
siRNA therapeutics are emerging novel modalities targeting highly specific mRNA via RNA interference mechanism. Its unique pharmacokinetics (PKs) and pharmacodynamics (PDs) are significant challenges for clinical use. Furthermore, naked siRNA is a highly soluble macromolecule with a negative charge, making plasma membrane penetration a significant hurdle. It is also vulnerable to nuclease degradation. Therefore, advanced formulation technologies, such as lipid nanoparticles and N-acetylgalactosamine conjugation, have been developed and are now used in clinical practice to enhance target organ delivery and stability. The innate complex biological mechanisms of siRNA, along with its formulation, are major determinants of the PK/PD characteristics of siRNA products. To systematically and quantitatively understand these characteristics, it is essential to develop and utilize quantitative PK/PD models for siRNA therapeutics. In this review, the effects of formulation on the PKs and PK/PD models of approved siRNA products were presented, highlighting the importance of selecting appropriate biomarkers and understanding formulation, PKs, and PDs for quantitative interpreting the relationship between plasma concentration, organ concentration, biomarkers, and efficacy.
Collapse
Affiliation(s)
- Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Ju Hee Kim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Dong Wook Kang
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
2
|
Goeddel LA, Grant MC, Bandeen-Roche K, Vetter TR. Fortifying the Evidence Pyramid in Anesthesiology and Perioperative Medicine: From Cornerstone to Capstone. Anesth Analg 2025; 140:366-372. [PMID: 39008424 DOI: 10.1213/ane.0000000000007032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Affiliation(s)
- Lee A Goeddel
- From the Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael C Grant
- From the Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Karen Bandeen-Roche
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Thomas R Vetter
- Department of Surgery and Perioperative Care, Dell Medical School at The University of Texas at Austin, Austin, Texas
| |
Collapse
|
3
|
Azzopardi G, Mekhaimar A, Haines RW, Stephens TJ, Puthucheary Z, Prowle JR. Clinician assessment of kidney function from plasma creatinine values during critical illness: A scenario-based international multi-professional survey. J Crit Care 2025; 85:154926. [PMID: 39418913 DOI: 10.1016/j.jcrc.2024.154926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE During critical illness interpretation of serum creatinine is affected by non-steady state conditions, reduced creatinine generation, and altered distribution. We evaluated healthcare professionals' ability to adjudicate underlying kidney function, based on simulated creatinine values. METHODS We developed an online survey, incorporating 12 scenarios with simulated trajectories of creatinine based on profiles of muscle mass, GFR and fluid balance using bespoke kinetic modelling. Participants predicted true underlying GFR (<5, 5-14, 15-29, 30-44, 45-59, 60-90, >90 ml.min-1.1.73 m-2) and AKI stage (stages 1-3, defined as 33 %, 50 %, 66 % decrease in GFR from baseline) during the first 7-days and at ICU discharge. RESULTS 100 of 103 respondents from 16 countries, 94 completed 1 or more scenarios. 43(43 %) were senior physicians, 74(74 %) critical care and 31(31 %) nephrology physicians. Over the first 7-days, true GFR was correctly estimated 43 % of the time and underlying AKI stage in 57 % of patient days. At ICU discharge GFR was predicted 35 % of the time. At all timepoints, over and under-estimation of GFR was observed. CONCLUSION Participants displayed marked variation in estimation of kidney function, suggesting difficulty in accounting for multiple confounders. There is need for alternative, unbiased measures of kidney function in critical illness to avoid misclassifying kidney disease.
Collapse
Affiliation(s)
- Giada Azzopardi
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, Whitechapel Road, London E1 1FR, UK; Critical Care and Peri-operative Medicine Research Group, William Harvey Research Institute, Faculty of Medicine, Queen Mary University of London, London, UK.
| | - Ayah Mekhaimar
- Critical Care and Peri-operative Medicine Research Group, William Harvey Research Institute, Faculty of Medicine, Queen Mary University of London, London, UK
| | - Ryan W Haines
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, Whitechapel Road, London E1 1FR, UK; Critical Care and Peri-operative Medicine Research Group, William Harvey Research Institute, Faculty of Medicine, Queen Mary University of London, London, UK
| | - Timothy J Stephens
- Critical Care and Peri-operative Medicine Research Group, William Harvey Research Institute, Faculty of Medicine, Queen Mary University of London, London, UK
| | - Zudin Puthucheary
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, Whitechapel Road, London E1 1FR, UK; Critical Care and Peri-operative Medicine Research Group, William Harvey Research Institute, Faculty of Medicine, Queen Mary University of London, London, UK
| | - John R Prowle
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, Whitechapel Road, London E1 1FR, UK; Critical Care and Peri-operative Medicine Research Group, William Harvey Research Institute, Faculty of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Ciucci G, Braga L, Zacchigna S. Discovery platforms for RNA therapeutics. Br J Pharmacol 2025; 182:281-295. [PMID: 38760893 DOI: 10.1111/bph.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/20/2024] Open
Abstract
RNA therapeutics are emerging as a unique opportunity to drug currently "undruggable" molecules and diseases. While their advantages over conventional, small molecule drugs, their therapeutic implications and the tools for their effective in vivo delivery have been extensively reviewed, little attention has been so far paid to the technological platforms exploited for the discovery of RNA therapeutics. Here, we provide an overview of the existing platforms and ex vivo assays for RNA discovery, their advantages and disadvantages, as well as their main fields of application, with specific focus on RNA therapies that have reached either phase 3 or market approval. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Giulio Ciucci
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Luca Braga
- Functional Cell Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
5
|
Hariri G, Legrand M. New drugs for acute kidney injury. JOURNAL OF INTENSIVE MEDICINE 2025; 5:3-11. [PMID: 39872831 PMCID: PMC11763585 DOI: 10.1016/j.jointm.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 01/30/2025]
Abstract
Acute kidney injury (AKI) presents a significant challenge in the management of critically ill patients, as it is associated with increased mortality, prolonged hospital stays, and increased healthcare costs. In certain conditions, such as during sepsis or after cardiac surgery, AKI is one of the most frequent complications, affecting 30%-50% of patients. Over time, even after the resolution of AKI, it can evolve into chronic kidney disease, a leading global cause of mortality, and cardiovascular complications. Despite significant improvement in the care of critically ill patients over the past two decades, the incidence of AKI remains stable, and novel approaches aiming at reducing its occurrence or improving AKI outcomes are still mostly lacking. However, recent insights into the pathophysiology of AKI within critical care settings have shed light on new pathways for both prevention and treatment, providing various new therapeutic targets aimed to mitigating kidney injury. These advancements highlight the intricate and multifaceted nature of the mechanisms underlying AKI, which could explain the challenge of identifying an effective treatment. Among these targets, modulation of the inflammatory responses and the cellular metabolism, hemodynamic regulation and enhancement of cellular repair mechanisms, have emerged as promising options. These multifaceted approaches offer renewed hope for limiting the incidence and severity of AKI in critically ill patients. Several ongoing clinical trials are evaluating the efficacy of these different strategies and we are facing an exiting time with multiple therapeutic interventions being tested to prevent or treat AKI. In this review, we aim to provide a summary of the new drugs evaluated for preventing or treating AKI in critical care and surgical settings.
Collapse
Affiliation(s)
- Geoffroy Hariri
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, UCSF, San Francisco, CA, USA
- Sorbonne Université, GRC 29, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU DREAM, Département d'anesthésie et réanimation, Institut de Cardiologie, Hôpital La Pitié-Salpêtrière, Paris, France
| | - Matthieu Legrand
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, UCSF, San Francisco, CA, USA
- Investigation Network Initiative Cardiovascular and Renal Clinical Trialist Network, Nancy, France
| |
Collapse
|
6
|
Mikutis S, Bernardes GJL. Technologies for Targeted RNA Degradation and Induced RNA Decay. Chem Rev 2024; 124:13301-13330. [PMID: 39499674 PMCID: PMC11638902 DOI: 10.1021/acs.chemrev.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect. This review covers the origins and advanced use cases of targeted RNA degrader technologies grouped by the nature of the targeting modality as well as by the mode of degradation. It covers both well-established methods and clinically successful platforms such as RNA interference, as well as emerging approaches such as recruitment of RNA quality control machinery, CRISPR, and direct targeted RNA degradation. We also share our thoughts on the biggest hurdles in this field, as well as possible ways to overcome them.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
7
|
Zeng J, Su X, Lin S, Li Z, Zhao Y, Zheng Z. Cardiac Surgery-Specific Subtle Perioperative Serum Creatinine Change in Defining Acute Kidney Injury After Coronary Surgery. JACC. ADVANCES 2024; 3:101326. [PMID: 39493313 PMCID: PMC11530901 DOI: 10.1016/j.jacadv.2024.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 11/05/2024]
Abstract
Background Cardiac surgery-associated acute kidney injury (CSA-AKI) is prevalent and increasingly reported. Its diagnosis traditionally follows the Kidney Disease: Improving Global Outcomes (KDIGO) AKI criteria. However, little evidence supports its appropriateness for cardiac surgery patients, particularly regarding the subtle serum creatinine change (ΔSCr) that defines mild AKI. Objectives The purpose of the study was to investigate the ΔSCr threshold specific to CSA-AKI and compare its impact on CSA-AKI incidence and prognosis with the KDIGO AKI criteria threshold. Methods A 10-year coronary surgery cohort with serial perioperative SCr measurements was retrospectively analyzed. The relationship and prognostically significant threshold of 48-hour absolute ΔSCr with 30-day mortality were explored using multivariate restricted cubic spline analysis and receiver-operating characteristic curve analysis. AKI incidence and prognostic value were compared between adopting the KDIGO or new thresholds. Results Among 37,706 patients, 20,290 (53.8%) developed KDIGO-defined AKI. For stage-1 AKI (18,835, 49.9%), the majority (75.2%) were solely attributed to the KDIGO absolute criterion (48-hour ΔSCr ≥0.3 mg/dL). The 48-hour ΔSCr threshold associated with an adjusted odds ratio ≥1.00 for 30-day mortality was 0.549 mg/dL. A similar threshold (0.553 mg/dL) was also identified based on the Youden index cutoff. Applying the 0.55 mg/dL threshold to define stage 1 CSA-AKI, the overall and stage-1 CSA-AKI incidence decreased to 21.0% and 17.2%, with 27.7% of the stage-1 CSA-AKI solely attributed to the new criterion. The prognostic value for AKI defined by this new threshold was significantly higher than the KDIGO criteria. Conclusions A cardiac surgery-specific ΔSCr threshold in defining AKI was notably higher compared with the current general AKI definition.
Collapse
Affiliation(s)
- Juntong Zeng
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoting Su
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shen Lin
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- Key Laboratory of Coronary Heart Disease Risk Prediction and Precision Therapy, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhongchen Li
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yan Zhao
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- Key Laboratory of Coronary Heart Disease Risk Prediction and Precision Therapy, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhe Zheng
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
- Key Laboratory of Coronary Heart Disease Risk Prediction and Precision Therapy, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
8
|
Martín-Fernández M, Casanova AG, Jorge-Monjas P, Morales AI, Tamayo E, López Hernández FJ. A wide scope, pan-comparative, systematic meta-analysis of the efficacy of prophylactic strategies for cardiac surgery-associated acute kidney injury. Biomed Pharmacother 2024; 178:117152. [PMID: 39047420 DOI: 10.1016/j.biopha.2024.117152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Acute kidney injury (AKI) is the most common complication of cardiac surgery. Cardiac surgery-associated AKI (CSA-AKI) is caused by systemic and renal hemodynamic impairment and parenchymal injury. Prophylaxis of CSA-AKI remains an unmet priority, for which preventive strategies based on drug therapies, hydration procedures, and remote ischemic preconditioning (RIPC) have been tested in pre-clinical and clinical studies, with variable success. Contradicting reports and scarce or insufficiently pondered information have blurred conclusions. Therefore, with an aim to contribute to consolidating the available information, we carried out a wide scope, pan-comparative meta-analysis including the accessible information about the most relevant nephroprotective approaches assayed. After a thorough examination of 1892 documents retrieved from PubMed and Web of Science, 150 studies were used for the meta-analysis. Individual odds ratios of efficacy at reducing AKI incidence, need for dialysis, and plasma creatinine elevation were obtained for each alleged protectant. Also, the combined class effect of drug families and protective strategies was also meta-analyzed. Our results show that no drug family or procedure affords substantial protection against CSA-AKI. Only, a mild but significant reduction in the incidence of CSA-AKI by preemptive treatment with dopaminergic and adrenergic drugs, vasodilators, and the RIPC technique. The integrated analysis suggests that single-drug approaches are unlikely to cope with the variety of individual pathophysiological scenarios potentially underlying CSA-AKI. Accordingly, a theragnostic approach involving the etiopathological diagnosis of kidney frailty is necessary to guide research towards the development of pharmacological combinations concomitantly and effectively addressing the key mechanisms of CSA-AKI.
Collapse
Affiliation(s)
- Marta Martín-Fernández
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, Universidad de Valladolid, Valladolid 47005, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| | - Alfredo G Casanova
- Instituto de Investigación Biomédica de Salamanca (IBSAL) de la Fundación Instituto de Ciencias de la Salud de Castilla y León (ICSCYL), Salamanca, Spain; National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain; Department of Physiology and Pharmacology, Universidad de Salamanca (USAL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Pablo Jorge-Monjas
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain; Department of Anesthesiology and Critical Care, Clinical University Hospital of Valladolid, Valladolid, Spain; Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid 47005, Spain
| | - Ana I Morales
- Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL) de la Fundación Instituto de Ciencias de la Salud de Castilla y León (ICSCYL), Salamanca, Spain; National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain; Department of Physiology and Pharmacology, Universidad de Salamanca (USAL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Eduardo Tamayo
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain; Department of Anesthesiology and Critical Care, Clinical University Hospital of Valladolid, Valladolid, Spain; Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid 47005, Spain
| | - Francisco J López Hernández
- Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL) de la Fundación Instituto de Ciencias de la Salud de Castilla y León (ICSCYL), Salamanca, Spain; National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain; Department of Physiology and Pharmacology, Universidad de Salamanca (USAL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.
| |
Collapse
|
9
|
Maeda A, Inokuchi R, Bellomo R, Doi K. Heterogeneity in the definition of major adverse kidney events: a scoping review. Intensive Care Med 2024; 50:1049-1063. [PMID: 38801518 PMCID: PMC11245451 DOI: 10.1007/s00134-024-07480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Acute kidney injury (AKI) is associated with persistent renal dysfunction, the receipt of dialysis, dialysis dependence, and mortality. Accordingly, the concept of major adverse kidney events (MAKE) has been adopted as an endpoint for assessing the impact of AKI. However, applied criteria or observation periods for operationalizing MAKE appear to vary across studies. To evaluate this heterogeneity for MAKE evaluation, we performed a systematic scoping review of studies that employed MAKE as an AKI endpoint. Four major academic databases were searched, and we identified 122 studies with increasing numbers over time. We found marked heterogeneity in applied criteria and observation periods for MAKE across these studies, with some even lacking a description of criteria. Moreover, 13 different observation periods were employed, with 30 days and 90 days as the most common. Persistent renal dysfunction was evaluated by estimated glomerular filtration rate (34%) or serum creatinine concentration (48%); however, 37 different definitions for this component were employed in terms of parameters, cut-off criteria, and assessment periods. The definition for the dialysis component also showed significant heterogeneity regarding assessment periods and duration of dialysis requirement (chronic vs temporary). Finally, MAKE rates could vary by 7% [interquartile range: 1.7-16.7%] with different observation periods or by 36.4% with different dialysis component definitions. Our findings revealed marked heterogeneity in MAKE definitions, particularly regarding component assessment and observation periods. Dedicated discussion is needed to establish uniform and acceptable standards to operationalize MAKE in terms of selection and applied criteria of components, observation period, and reporting criteria for future trials on AKI and related conditions.
Collapse
Affiliation(s)
- Akinori Maeda
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Department of Emergency and Critical Care Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryota Inokuchi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Clinical Engineering, The University of Tokyo Hospital, Tokyo, Japan
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, VIC, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care, The Royal Melbourne Hospital, Melbourne, Australia
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
10
|
Noh MR, Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of accidental and programmed cell death. Am J Physiol Renal Physiol 2024; 327:F4-F20. [PMID: 38660714 PMCID: PMC11390133 DOI: 10.1152/ajprenal.00275.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The involvement of cell death in acute kidney injury (AKI) is linked to multiple factors including energy depletion, electrolyte imbalance, reactive oxygen species, inflammation, mitochondrial dysfunction, and activation of several cell death pathway components. Since our review in 2003, discussing the relative contributions of apoptosis and necrosis, several other forms of cell death have been identified and are shown to contribute to AKI. Currently, these various forms of cell death can be fundamentally divided into accidental cell death and regulated or programmed cell death based on functional aspects. Several death initiator and effector molecules switch molecules that may act as signaling components triggering either death or protective mechanisms or alternate cell death pathways have been identified as part of the machinery. Intriguingly, several of these cell death pathways share components and signaling pathways suggesting complementary or compensatory functions. Thus, defining the cross talk between distinct cell death pathways and identifying the unique molecular effectors for each type of cell death may be required to develop novel strategies to prevent cell death. Furthermore, depending on the multiple forms of cell death simultaneously induced in different AKI settings, strategies for combination therapies that block multiple cell death pathways need to be developed to completely prevent injury, cell death, and renal function. This review highlights the various cell death pathways, cross talk, and interactions between different cell death modalities in AKI.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Babu J Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
11
|
Burmakin M, Gilmour PS, Gram M, Shushakova N, Sandoval RM, Molitoris BA, Larsson TE. Therapeutic α-1-microglobulin ameliorates kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 2024; 327:F103-F112. [PMID: 38779750 DOI: 10.1152/ajprenal.00067.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
α-1-Microglobulin (A1M) is a circulating glycoprotein with antioxidant, heme-binding, and mitochondrial protection properties. The investigational drug RMC-035, a modified therapeutic A1M protein, was assessed for biodistribution and pharmacological activity in a broad set of in vitro and in vivo experiments, supporting its clinical development. Efficacy and treatment posology were assessed in various models of kidney ischemia and reperfusion injury (IRI). Real-time glomerular filtration rate (GFR), functional renal biomarkers, tubular injury biomarkers (NGAL and KIM-1), and histopathology were evaluated. Fluorescently labeled RMC-035 was used to assess biodistribution. RMC-035 demonstrated consistent and reproducible kidney protection in rat IRI models as well as in a model of IRI imposed on renal impairment and in a mouse IRI model, where it reduced mortality. Its pharmacological activity was most pronounced with combined dosing pre- and post-ischemia and weaker with either pre- or post-ischemia dosing alone. RMC-035 rapidly distributed to the kidneys via glomerular filtration and selective luminal uptake by proximal tubular cells. IRI-induced expression of kidney heme oxygenase-1 was inhibited by RMC-035, consistent with its antioxidative properties. RMC-035 also dampened IRI-associated inflammation and improved mitochondrial function, as shown by tubular autofluorescence. Taken together, the efficacy of RMC-035 is congruent with its targeted mechanism(s) and biodistribution profile, supporting its further clinical evaluation as a novel kidney-protective therapy.NEW & NOTEWORTHY A therapeutic A1M protein variant (RMC-035) is currently in phase 2 clinical development for renal protection in patients undergoing open-chest cardiac surgery. It targets several key pathways underlying kidney injury in this patient group, including oxidative stress, heme toxicity, and mitochondrial dysfunction. RMC-035 is rapidly eliminated from plasma, distributing to kidney proximal tubules, and demonstrates dose-dependent efficacy in numerous models of ischemia-reperfusion injury, particularly when administered before ischemia. These results support its continued clinical evaluation.
Collapse
Affiliation(s)
- Mikhail Burmakin
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
- Guard Therapeutics International AB, Stockholm, Sweden
| | | | - Magnus Gram
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neonatology, Skåne University Hospital, Lund, Sweden
- Biofilms - Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Nelli Shushakova
- Renal Disease and Transplantation, Phenos GmbH, Hannover, Germany
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Ruben M Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Tobias E Larsson
- Guard Therapeutics International AB, Stockholm, Sweden
- Division of Nephrology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
12
|
Kamenshchikov NO, Podoksenov YK, Kozlov BN, Maslov LN, Mukhomedzyanov AV, Tyo MA, Boiko AM, Margolis NY, Boshchenko AA, Serebryakova ON, Dzyuman AN, Shirshin AS, Buranov SN, Selemir VD. The Nephroprotective Effect of Nitric Oxide during Extracorporeal Circulation: An Experimental Study. Biomedicines 2024; 12:1298. [PMID: 38927505 PMCID: PMC11201384 DOI: 10.3390/biomedicines12061298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
This study aims to determine the effectiveness of administering 80 ppm nitric oxide in reducing kidney injury, mitochondrial dysfunction and regulated cell death in kidneys during experimental perfusion. Twenty-four sheep were randomized into four groups: two groups received 80 ppm NO conditioning with 90 min of cardiopulmonary bypass (CPB + NO) or 90 min of CPB and hypothermic circulatory arrest (CPB + CA + NO), while two groups received sham protocols (CPB and CPB + CA). Kidney injury was assessed using laboratory (neutrophil gelatinase-associated lipocalin, an acute kidney injury biomarker) and morphological methods (morphometric histological changes in kidney biopsy specimens). A kidney biopsy was performed 60 min after weaning from mechanical perfusion. NO did not increase the concentrations of inhaled NO2 and methemoglobin significantly. The NO-conditioning groups showed less severe kidney injury and mitochondrial dysfunction, with statistical significance in the CPB + NO group and reduced tumor necrosis factor-α expression as a trigger of apoptosis and necroptosis in renal tissue in the CPB + CA + NO group compared to the CPB + CA group. The severity of mitochondrial dysfunction in renal tissue was insignificantly lower in the NO-conditioning groups. We conclude that NO administration is safe and effective at reducing kidney injury, mitochondrial dysfunction and regulated cell death in kidneys during experimental CPB.
Collapse
Affiliation(s)
- Nikolay O. Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Yuri K. Podoksenov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Boris N. Kozlov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Alexander V. Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Mark A. Tyo
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Alexander M. Boiko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Natalya Yu. Margolis
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Alla A. Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Olga N. Serebryakova
- Department of Morphology and General Pathology, Siberian State Medical University, 2 Moskovsky trakt, Tomsk 634050, Russia; (O.N.S.); (A.N.D.)
| | - Anna N. Dzyuman
- Department of Morphology and General Pathology, Siberian State Medical University, 2 Moskovsky trakt, Tomsk 634050, Russia; (O.N.S.); (A.N.D.)
| | - Alexander S. Shirshin
- Federal State Unitary Enterprise “Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics”, 37, Mira Ave., Nizhny Novgorod Region, Sarov 607190, Russia; (A.S.S.); (S.N.B.); (V.D.S.)
| | - Sergey N. Buranov
- Federal State Unitary Enterprise “Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics”, 37, Mira Ave., Nizhny Novgorod Region, Sarov 607190, Russia; (A.S.S.); (S.N.B.); (V.D.S.)
| | - Victor D. Selemir
- Federal State Unitary Enterprise “Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics”, 37, Mira Ave., Nizhny Novgorod Region, Sarov 607190, Russia; (A.S.S.); (S.N.B.); (V.D.S.)
| |
Collapse
|
13
|
Scurt FG, Bose K, Mertens PR, Chatzikyrkou C, Herzog C. Cardiac Surgery-Associated Acute Kidney Injury. KIDNEY360 2024; 5:909-926. [PMID: 38689404 PMCID: PMC11219121 DOI: 10.34067/kid.0000000000000466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
AKI is a common and serious complication of cardiac surgery that has a significant impact on patient morbidity and mortality. The Kidney Disease Improving Global Outcomes definition of AKI is widely used to classify and identify AKI associated with cardiac surgery (cardiac surgery-associated AKI [CSA-AKI]) on the basis of changes in serum creatinine and/or urine output. There are various preoperative, intraoperative, and postoperative risk factors for the development of CSA-AKI which should be recognized and addressed as early as possible to expedite its diagnosis, reduce its occurrence, and prevent or ameliorate its devastating complications. Crucial issues are the inaccuracy of serum creatinine as a surrogate parameter of kidney function in the perioperative setting of cardiothoracic surgery and the necessity to discover more representative markers of the pathophysiology of AKI. However, except for the tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein 7 ratio, other diagnostic biomarkers with an acceptable sensitivity and specificity are still lacking. This article provides a comprehensive review of various aspects of CSA-AKI, including pathogenesis, risk factors, diagnosis, biomarkers, classification, prevention, and treatment management.
Collapse
Affiliation(s)
- Florian G. Scurt
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Bose
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Magdeburg, Germany
| | - Peter R. Mertens
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Christos Chatzikyrkou
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Carolin Herzog
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
14
|
Flannery AH, Woodward BM, Barreto EF, Moe OW, Neyra JA. 'Reviving' the call for standardization of the composite outcome of major adverse kidney events in critical care nephrology research. Intensive Care Med 2024; 50:784-786. [PMID: 38619609 DOI: 10.1007/s00134-024-07429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Alexander H Flannery
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY, USA.
- Division of Nephrology, Bone, and Mineral Metabolism, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA.
| | - Blake M Woodward
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | | | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Javier A Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Ahirwar K, Kumar A, Srivastava N, Saraf SA, Shukla R. Harnessing the potential of nanoengineered siRNAs carriers for target responsive glioma therapy: Recent progress and future opportunities. Int J Biol Macromol 2024; 266:131048. [PMID: 38522697 DOI: 10.1016/j.ijbiomac.2024.131048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Past scientific testimonials in the field of glioma research, the deadliest tumor among all brain cancer types with the life span of 10-15 months after diagnosis is considered as glioblastoma multiforme (GBM). Even though the availability of treatment options such as chemotherapy, radiotherapy, and surgery, are unable to completely cure GBM due to tumor microenvironment complexity, intrinsic cellular signalling, and genetic mutations which are involved in chemoresistance. The blood-brain barrier is accountable for restricting drugs entry at the tumor location and related biological challenges like endocytic degradation, short systemic circulation, and insufficient cellular penetration lead to tumor aggression and progression. The above stated challenges can be better mitigated by small interfering RNAs (siRNA) by knockdown genes responsible for tumor progression and resistance. However, siRNA encounters with challenges like inefficient cellular transfection, short circulation time, endogenous degradation, and off-target effects. The novel functionalized nanocarrier approach in conjunction with biological and chemical modification offers an intriguing potential to address challenges associated with the naked siRNA and efficiently silence STAT3, coffilin-1, EGFR, VEGF, SMO, MGMT, HAO-1, GPX-4, TfR, LDLR and galectin-1 genes in GBM tumor. This review highlights the nanoengineered siRNA carriers, their recent advancements, future perspectives, and strategies to overcome the systemic siRNA delivery challenges for glioma treatment.
Collapse
Affiliation(s)
- Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Ankit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India.
| |
Collapse
|
16
|
Hurtado K, Scholpa NE, Schnellmann JG, Schnellmann RG. Serotonin regulation of mitochondria in kidney diseases. Pharmacol Res 2024; 203:107154. [PMID: 38521286 PMCID: PMC11823281 DOI: 10.1016/j.phrs.2024.107154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
Serotonin, while conventionally recognized as a neurotransmitter in the CNS, has recently gained attention for its role in the kidney. Specifically, serotonin is not only synthesized in the kidney, but it also regulates glomerular function, vascular resistance, and mitochondrial homeostasis. Because of serotonin's importance to mitochondrial health, this review is focused on the role of serotonin and its receptors in mitochondrial function in the context of acute kidney injury, chronic kidney disease, and diabetic kidney disease, all of which are characterized by mitochondrial dysfunction and none of which has approved pharmacological treatments. Evidence indicates that activation of certain serotonin receptors can stimulate mitochondrial biogenesis (MB) and restore mitochondrial homeostasis, resulting in improved renal function. Serotonin receptor agonists that induce MB are therefore of interest as potential therapeutic strategies for renal injury and disease. SIGNIFICANCE STATEMENT: Mitochondrial dysfunction is associated with many human renal diseases such as acute kidney injury, chronic kidney disease, and diabetic kidney disease, which are associated with increased morbidity and mortality. Unfortunately, none of these pathologies has an FDA-approved pharmacological intervention, underscoring the urgency of identifying new therapeutics for such disorders. Studies show that induction of mitochondrial biogenesis via serotonin (5-hydroxytryptamine, 5-HT) receptors reduces kidney injury markers, restores mitochondrial and renal function after kidney injury, and decreases mortality, suggesting that targeting 5-HT receptors may be a promising therapeutic avenue for mitochondrial dysfunction in kidney diseases. While numerous reviews describe the importance of mitochondria and mitochondrial quality control mechanisms in kidney disease, the relevance of 5-HT receptor-mediated mitochondrial metabolic modulation in the kidney has yet to be thoroughly explored.
Collapse
Affiliation(s)
- Kevin Hurtado
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Natalie E Scholpa
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States; Southern VA Healthcare System, Tucson, AZ, United States
| | | | - Rick G Schnellmann
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States; Southern VA Healthcare System, Tucson, AZ, United States; Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ, United States; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States; Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
17
|
Tang Q, Khvorova A. RNAi-based drug design: considerations and future directions. Nat Rev Drug Discov 2024; 23:341-364. [PMID: 38570694 PMCID: PMC11144061 DOI: 10.1038/s41573-024-00912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
More than 25 years after its discovery, the post-transcriptional gene regulation mechanism termed RNAi is now transforming pharmaceutical development, proved by the recent FDA approval of multiple small interfering RNA (siRNA) drugs that target the liver. Synthetic siRNAs that trigger RNAi have the potential to specifically silence virtually any therapeutic target with unprecedented potency and durability. Bringing this innovative class of medicines to patients, however, has been riddled with substantial challenges, with delivery issues at the forefront. Several classes of siRNA drug are under clinical evaluation, but their utility in treating extrahepatic diseases remains limited, demanding continued innovation. In this Review, we discuss principal considerations and future directions in the design of therapeutic siRNAs, with a particular emphasis on chemistry, the application of informatics, delivery strategies and the importance of careful target selection, which together influence therapeutic success.
Collapse
Affiliation(s)
- Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
18
|
Provenzano M, Hu L, Tringali E, Senatore M, Talarico R, Di Dio M, Ruotolo C, La Manna G, Garofalo C, Zaza G. Improving Kidney Disease Care: One Giant Leap for Nephrology. Biomedicines 2024; 12:828. [PMID: 38672183 PMCID: PMC11048002 DOI: 10.3390/biomedicines12040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Nephrology is an ever-evolving field of medicine. The importance of such a discipline is related to the high clinical impact of kidney disease. In fact, abnormalities of kidney function and/or structure are common in the general population, reaching an overall prevalence of about 10%. More importantly, the onset of kidney damage is related to a strikingly high risk of cardiovascular events, mortality, and progression to kidney failure which, in turn, compromises quality and duration of life. Attempts to comprehend the pathogenesis and molecular mechanisms involved in kidney disease occurrence have prompted the development and implementation of novel drugs in clinical practice with the aim of treating the 'specific cause' of kidney disease (including chronic kidney disease, glomerular disease, and genetic kidney disorders) and the main immunological complications following kidney transplantation. Herein, we provide an overview of the principal emerging drug classes with proved efficacy in the context of the aforementioned clinical conditions. This can represent a simplified guide for clinical nephrologists to remind them of the vast and heterogeneous armamentarium of drugs that should be used in the present and the future to improve the management of patients suffering from kidney disease.
Collapse
Affiliation(s)
- Michele Provenzano
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.S.); (R.T.)
| | - Lilio Hu
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.H.); (E.T.); (G.L.M.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Edoardo Tringali
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.H.); (E.T.); (G.L.M.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Massimo Senatore
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.S.); (R.T.)
| | - Roberta Talarico
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.S.); (R.T.)
| | - Michele Di Dio
- Division of Urology, Department of Surgery, SS Annunziata Hospital, 87100 Cosenza, Italy;
| | - Chiara Ruotolo
- Unit of Nephrology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.R.); (C.G.)
| | - Gaetano La Manna
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.H.); (E.T.); (G.L.M.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Carlo Garofalo
- Unit of Nephrology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.R.); (C.G.)
| | - Gianluigi Zaza
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.S.); (R.T.)
| |
Collapse
|
19
|
Wang N, Zhang C. Recent Advances in the Management of Diabetic Kidney Disease: Slowing Progression. Int J Mol Sci 2024; 25:3086. [PMID: 38542060 PMCID: PMC10970506 DOI: 10.3390/ijms25063086] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 01/03/2025] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of chronic kidney disease (CKD), and it heightens the risk of cardiovascular incidents. The pathogenesis of DKD is thought to involve hemodynamic, inflammatory, and metabolic factors that converge on the fibrotic pathway. Genetic predisposition and unhealthy lifestyle practices both play a significant role in the development and progression of DKD. In spite of the recent emergence of angiotensin receptors blockers (ARBs)/angiotensin converting enzyme inhibitor (ACEI), sodium-glucose cotransporter 2 (SGLT2) inhibitors, and nonsteroidal mineralocorticoid receptors antagonists (NS-MRAs), current therapies still fail to effectively arrest the progression of DKD. Glucagon-like peptide 1 receptor agonists (GLP-1RAs), a promising class of agents, possess the potential to act as renal protectors, effectively slowing the progression of DKD. Other agents, including pentoxifylline (PTF), selonsertib, and baricitinib hold great promise as potential therapies for DKD due to their anti-inflammatory and antifibrotic properties. Multidisciplinary treatment, encompassing lifestyle modifications and drug therapy, can effectively decelerate the progression of DKD. Based on the treatment of heart failure, it is recommended to use multiple drugs in combination rather than a single-use drug for the treatment of DKD. Unearthing the mechanisms underlying DKD is urgent to optimize the management of DKD. Inflammatory and fibrotic factors (including IL-1, MCP-1, MMP-9, CTGF, TNF-a and TGF-β1), along with lncRNAs, not only serve as diagnostic biomarkers, but also hold promise as therapeutic targets. In this review, we delve into the potential mechanisms and the current therapies of DKD. We also explore the additional value of combing these therapies to develop novel treatment strategies. Drawing from the current understanding of DKD pathogenesis, we propose HIF inhibitors, AGE inhibitors, and epigenetic modifications as promising therapeutic targets for the future.
Collapse
Affiliation(s)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
20
|
Pérez-Carrión MD, Posadas I, Ceña V. Nanoparticles and siRNA: A new era in therapeutics? Pharmacol Res 2024; 201:107102. [PMID: 38331236 DOI: 10.1016/j.phrs.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Since its discovery in 1998, the use of small interfering RNA (siRNA) has been increasing in biomedical studies because of its ability to very selectively inhibit the expression of any target gene. Thus, siRNAs can be used to generate therapeutic compounds for different diseases, including those that are currently 'undruggable'. This has led siRNA-based therapeutic compounds to break into clinical settings, with them holding the promise to potentially revolutionise therapeutic approaches. To date, the United States Food and Drug Administration (FDA) have approved 5 compounds for treating different diseases including hypercholesterolemia, transthyretin-mediated amyloidosis (which leads to polyneuropathy), hepatic porphyria, and hyperoxaluria. This current article presents an overview of the molecular mechanisms involved in the selective pharmacological actions of siRNA-based compounds. It also describes the ongoing clinical trials of siRNA-based therapeutic compounds for hepatic diseases, pulmonary diseases, atherosclerosis, hypertriglyceridemia, transthyretin-mediated amyloidosis, and hyperoxaluria, kidney diseases, and haemophilia, as well as providing a description of FDA-approved siRNA therapies. Because of space constraints and to provide an otherwise comprehensive review, siRNA-based compounds applied to cancer therapies have been excluded. Finally, we discuss how the use of lipid-based nanoparticles to deliver siRNAs holds promise for selectively targeting mRNA-encoding proteins associated with the genesis of different diseases. Thus, siRNAs can help reduce the cellular levels of these proteins, thereby contributing to disease treatment. As consequence, a marked increase in the number of marketed siRNA-based medicines is expected in the next two decades, which will likely open up a new era of therapeutics.
Collapse
Affiliation(s)
- María Dolores Pérez-Carrión
- Unidad Asociada CSIC-UCLM Neurodeath. Instituto de Nanociencia Molecular (INAMOL). Universidad de Castilla-La Mancha, Albacete, Spain; CIBER, Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Posadas
- Unidad Asociada CSIC-UCLM Neurodeath. Instituto de Nanociencia Molecular (INAMOL). Universidad de Castilla-La Mancha, Albacete, Spain; CIBER, Instituto de Salud Carlos III, Madrid, Spain
| | - Valentín Ceña
- Unidad Asociada CSIC-UCLM Neurodeath. Instituto de Nanociencia Molecular (INAMOL). Universidad de Castilla-La Mancha, Albacete, Spain; CIBER, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Zarbock A, Forni LG, Ostermann M, Ronco C, Bagshaw SM, Mehta RL, Bellomo R, Kellum JA. Designing acute kidney injury clinical trials. Nat Rev Nephrol 2024; 20:137-146. [PMID: 37653237 DOI: 10.1038/s41581-023-00758-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Acute kidney injury (AKI) is a common clinical condition with various causes and is associated with increased mortality. Despite advances in supportive care, AKI increases not only the risk of premature death compared with the general population but also the risk of developing chronic kidney disease and progressing towards kidney failure. Currently, no specific therapy exists for preventing or treating AKI other than mitigating further injury and supportive care. To address this unmet need, novel therapeutic interventions targeting the underlying pathophysiology must be developed. New and well-designed clinical trials with appropriate end points must be subsequently designed and implemented to test the efficacy of such new interventions. Herein, we discuss predictive and prognostic enrichment strategies for patient selection, as well as primary and secondary end points that can be used in different clinical trial designs (specifically, prevention and treatment trials) to evaluate novel interventions and improve the outcomes of patients at a high risk of AKI or with established AKI.
Collapse
Affiliation(s)
- Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital of Münster, Münster, Germany.
- Outcomes Research Consortium, Cleveland, OH, USA.
| | - Lui G Forni
- Department of Critical Care, Royal Surrey Hospital Foundation Trust, Guildford, UK
- School of Medicine, Faculty of Health Sciences, University of Surrey, Guildford, UK
| | - Marlies Ostermann
- Department of Intensive Care, King's College London, Guy's & St Thomas' Hospital, London, UK
| | - Claudio Ronco
- Department of Medicine, University of Padova, Padua, Italy
- International Renal Research Institute of Vicenza, Vicenza, Italy
- Department of Nephrology, San Bortolo Hospital, Vicenza, Italy
| | - Sean M Bagshaw
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta and Alberta Health Services, Edmonton, Alberta, Canada
| | - Ravindra L Mehta
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rinaldo Bellomo
- Department of Critical Care, University of Melbourne, Parkville, Victoria, Australia
- Department of Intensive Care, Austin Hospital, Melbourne, Victoria, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - John A Kellum
- The Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Goleij P, Sanaye PM, Rezaee A, Tabari MAK, Arefnezhad R, Motedayyen H. RNA therapeutics for kidney injury. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:69-95. [PMID: 38458744 DOI: 10.1016/bs.pmbts.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
RNA therapy involves utilizing RNA-based molecules to control biological pathways, aiming to cure specific diseases. As our understanding of RNA functions and their roles has expanded, the application of RNA therapies has broadened to target various therapeutic points. This approach holds promise for treating a range of diseases, including kidney diseases. Therapeutic RNA can be employed to target specific genes or pathways implicated in the development of kidney conditions, such as inflammation, fibrosis, and oxidative stress. This review highlights the therapeutic potential of RNA-based therapies across different types of kidney diseases, encompassing infection, inflammation, nephrotoxicity, and ischemia/reperfusion injury. Furthermore, studies have pinpointed the specific kidney cells involved in RNA therapy. To address challenges hindering the potential impact of RNA-based drugs on their targets, nanotechnology is integrated, and RNA-loaded vehicles with ligands are explored for more efficient outcomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
23
|
Martinsen E, Jinnurine T, Subramani S, Rogne M. Advances in RNA therapeutics for modulation of 'undruggable' targets. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:249-294. [PMID: 38458740 DOI: 10.1016/bs.pmbts.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Over the past decades, drug discovery utilizing small pharmacological compounds, fragment-based therapeutics, and antibody therapy have significantly advanced treatment options for many human diseases. However, a major bottleneck has been that>70% of human proteins/genomic regions are 'undruggable' by the above-mentioned approaches. Many of these proteins constitute essential drug targets against complex multifactorial diseases like cancer, immunological disorders, and neurological diseases. Therefore, alternative approaches are required to target these proteins or genomic regions in human cells. RNA therapeutics is a promising approach for many of the traditionally 'undruggable' targets by utilizing methods such as antisense oligonucleotides, RNA interference, CRISPR/Cas-based genome editing, aptamers, and the development of mRNA therapeutics. In the following chapter, we will put emphasis on recent advancements utilizing these approaches against challenging drug targets, such as intranuclear proteins, intrinsically disordered proteins, untranslated genomic regions, and targets expressed in inaccessible tissues.
Collapse
Affiliation(s)
| | | | - Saranya Subramani
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Marie Rogne
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
24
|
Sarzani R, Spannella F, Di Pentima C, Giulietti F, Landolfo M, Allevi M. Molecular Therapies in Cardiovascular Diseases: Small Interfering RNA in Atherosclerosis, Heart Failure, and Hypertension. Int J Mol Sci 2023; 25:328. [PMID: 38203499 PMCID: PMC10778861 DOI: 10.3390/ijms25010328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Small interfering RNA (siRNA) represents a novel, fascinating therapeutic strategy that allows for selective reduction in the production of a specific protein through RNA interference. In the cardiovascular (CV) field, several siRNAs have been developed in the last decade. Inclisiran has been shown to significantly reduce low-density lipoprotein cholesterol (LDL-C) circulating levels with a reassuring safety profile, also in older patients, by hampering proprotein convertase subtilisin/kexin type 9 (PCSK9) production. Olpasiran, directed against apolipoprotein(a) mRNA, prevents the assembly of lipoprotein(a) [Lp(a)] particles, a lipoprotein linked to an increased risk of ischemic CV disease and heart valve damage. Patisiran, binding transthyretin (TTR) mRNA, has demonstrated an ability to improve heart failure and polyneuropathy in patients with TTR amyloidosis, even in older patients with wild-type form. Zilebesiran, designed to reduce angiotensinogen secretion, significantly decreases systolic and diastolic blood pressure (BP). Thanks to their effectiveness, safety, and tolerability profile, and with a very low number of administrations in a year, thus overcoming adherence issues, these novel drugs are the leaders of a new era in molecular therapies for CV diseases.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, ESH “Hypertension Excellence Centre”, SISA LIPIGEN Centre, IRCCS INRCA, 60127 Ancona, Italy; (R.S.); (M.L.)
- Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, 60126 Ancona, Italy
| | - Francesco Spannella
- Internal Medicine and Geriatrics, ESH “Hypertension Excellence Centre”, SISA LIPIGEN Centre, IRCCS INRCA, 60127 Ancona, Italy; (R.S.); (M.L.)
- Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, 60126 Ancona, Italy
| | - Chiara Di Pentima
- Internal Medicine and Geriatrics, ESH “Hypertension Excellence Centre”, SISA LIPIGEN Centre, IRCCS INRCA, 60127 Ancona, Italy; (R.S.); (M.L.)
| | - Federico Giulietti
- Internal Medicine and Geriatrics, ESH “Hypertension Excellence Centre”, SISA LIPIGEN Centre, IRCCS INRCA, 60127 Ancona, Italy; (R.S.); (M.L.)
| | - Matteo Landolfo
- Internal Medicine and Geriatrics, ESH “Hypertension Excellence Centre”, SISA LIPIGEN Centre, IRCCS INRCA, 60127 Ancona, Italy; (R.S.); (M.L.)
- Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, 60126 Ancona, Italy
| | - Massimiliano Allevi
- Internal Medicine and Geriatrics, ESH “Hypertension Excellence Centre”, SISA LIPIGEN Centre, IRCCS INRCA, 60127 Ancona, Italy; (R.S.); (M.L.)
- Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, 60126 Ancona, Italy
| |
Collapse
|
25
|
Balakrishna A, Walco J, Billings FT, Lopez MG. Perioperative Acute Kidney Injury: Implications, Approach, Prevention. Adv Anesth 2023; 41:205-224. [PMID: 38251619 PMCID: PMC11079993 DOI: 10.1016/j.aan.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Acute kidney injury remains a common and significant contributor to perioperative morbidity. Acute kidney injury worsens patient outcomes, and anesthesiologists should make significant efforts to prevent, assess, and treat perioperative renal injury. The authors discuss the impact of renal injury on patient outcomes and putative underlying mechanisms, evidence underlying treatments for acute kidney injury, and practices that may prevent the development of perioperative renal injury.
Collapse
Affiliation(s)
- Aditi Balakrishna
- Division of Anesthesiology Critical Care Medicine, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy Walco
- Division of Anesthesiology Critical Care Medicine, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frederic T Billings
- Division of Anesthesiology Critical Care Medicine, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marcos G Lopez
- Division of Anesthesiology Critical Care Medicine, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
26
|
Costigan C, Balgobin S, Zappitelli M. Drugs in treating paediatric acute kidney injury. Pediatr Nephrol 2023; 38:3923-3936. [PMID: 37052689 DOI: 10.1007/s00467-023-05956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Acute kidney injury (AKI) is a complex syndrome which affects a significant proportion of hospitalized children. The breadth and impact of AKI on health outcomes in both adults and children have come to the fore in recent years with increasing awareness encouraging research advancement. Despite this, management strategies for most types of AKI remain heavily reliant on fluid and electrolyte management, hemodynamic optimization, nephrotoxin avoidance and appropriate initiation of kidney replacement therapy. Specific drugs targeting the mechanisms involved in AKI remain elusive. Recent improvement in appreciation of the complexity of AKI pathophysiology has allowed for greater opportunity to consider novel therapeutic agents. A number of drugs specifically targeting AKI are in various stages of development. This review will consider some novel and repurposed agents; interrogate the plausibility of the proposed mechanisms of action, as they relate to what we know about the pathophysiology of AKI; and review the level of existing literature supporting their efficacy. The evidence base, particularly in children, is limited.
Collapse
Affiliation(s)
- Caoimhe Costigan
- Department of Pediatrics, Division of Nephrology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Steve Balgobin
- Department of Pediatrics, Division of Nephrology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael Zappitelli
- Department of Pediatrics, Division of Nephrology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
- Peter Gilgan Centre for Research and Learning, 686 Bay Street, 11th floor, Rm 11.9722, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
27
|
Li N, Han L, Wang X, Qiao O, Zhang L, Gong Y. Biotherapy of experimental acute kidney injury: emerging novel therapeutic strategies. Transl Res 2023; 261:69-85. [PMID: 37329950 DOI: 10.1016/j.trsl.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Acute kidney injury (AKI) is a complex and heterogeneous disease with high incidence and mortality, posing a serious threat to human life and health. Usually, in clinical practice, AKI is caused by crush injury, nephrotoxin exposure, ischemia-reperfusion injury, or sepsis. Therefore, most AKI models for pharmacological experimentation are based on this. The current research promises to develop new biological therapies, including antibody therapy, non-antibody protein therapy, cell therapy, and RNA therapy, that could help mitigate the development of AKI. These approaches can promote renal repair and improve systemic hemodynamics after renal injury by reducing oxidative stress, inflammatory response, organelles damage, and cell death, or activating cytoprotective mechanisms. However, no candidate drugs for AKI prevention or treatment have been successfully translated from bench to bedside. This article summarizes the latest progress in AKI biotherapy, focusing on potential clinical targets and novel treatment strategies that merit further investigation in future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Lu Han
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Li Zhang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| |
Collapse
|
28
|
Ranasinghe P, Addison ML, Dear JW, Webb DJ. Small interfering RNA: Discovery, pharmacology and clinical development-An introductory review. Br J Pharmacol 2023; 180:2697-2720. [PMID: 36250252 DOI: 10.1111/bph.15972] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
Post-transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using synthetic structurally well-defined short double-stranded RNA (small interfering RNA [siRNA]), has advanced rapidly in recent years. This introductory review describes the utility of siRNA, by exploring the underpinning biology, pharmacology, recent advances and clinical developments, alongside potential limitations and ongoing challenges. Mediated by the RNA-induced silencing complex, siRNAs bind to specific complementary mRNAs, which are subsequently degraded. siRNA therapy offers advantages over other therapeutic approaches, including ability of specifically designed siRNAs to potentially target any mRNA and improved patient adherence through infrequent administration associated with a very long duration of action. Key pharmacokinetic and pharmacodynamic challenges include targeted administration, poor tissue penetration, nuclease inactivation, rapid renal elimination, immune activation and off-target effects. These have been overcome by chemical modification of siRNA and/or by utilising a range of delivery systems, increasing bioavailability and stability to allow successful clinical translation. Patisiran (hereditary transthyretin-mediated amyloidosis) was the first licensed siRNA, followed by givosiran (acute hepatic porphyria), lumasiran (primary hyperoxaluria type 1) and inclisiran (familial hypercholesterolaemia), which all use N-acetylgalactosamine (GalNAc) linkage for effective liver-directed delivery. Others are currently under development for indications varying from rare genetic diseases to common chronic non-communicable diseases (hypertension, cancer). Technological advances are paving the way for broader clinical use. Ongoing challenges remain in targeting organs beyond the liver and reaching special sites (e.g., brain). By overcoming these barriers, siRNA therapy has the potential to substantially widen its therapeutic impact.
Collapse
Affiliation(s)
- Priyanga Ranasinghe
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Melisande L Addison
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - James W Dear
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - David J Webb
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Palmer TC, Hunter RW. Using RNA-based therapies to target the kidney in cardiovascular disease. Front Cardiovasc Med 2023; 10:1250073. [PMID: 37868774 PMCID: PMC10587590 DOI: 10.3389/fcvm.2023.1250073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
RNA-based therapies are currently used for immunisation against infections and to treat metabolic diseases. They can modulate gene expression in immune cells and hepatocytes, but their use in other cell types has been limited by an inability to selectively target specific tissues. Potential solutions to this targeting problem involve packaging therapeutic RNA molecules into delivery vehicles that are preferentially delivered to cells of interest. In this review, we consider why the kidney is a desirable target for RNA-based therapies in cardiovascular disease and discuss how such therapy could be delivered. Because the kidney plays a central role in maintaining cardiovascular homeostasis, many extant drugs used for preventing cardiovascular disease act predominantly on renal tubular cells. Moreover, kidney disease is a major independent risk factor for cardiovascular disease and a global health problem. Chronic kidney disease is projected to become the fifth leading cause of death by 2040, with around half of affected individuals dying from cardiovascular disease. The most promising strategies for delivering therapeutic RNA selectively to kidney cells make use of synthetic polymers and engineered extracellular vesicles to deliver an RNA cargo. Future research should focus on establishing the safety of these novel delivery platforms in humans, on developing palatable routes of administration and on prioritising the gene targets that are likely to have the biggest impact in cardiovascular disease.
Collapse
Affiliation(s)
- Trecia C. Palmer
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert W. Hunter
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Infirmary ofEdinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Corydon IJ, Fabian-Jessing BK, Jakobsen TS, Jørgensen AC, Jensen EG, Askou AL, Aagaard L, Corydon TJ. 25 years of maturation: A systematic review of RNAi in the clinic. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:469-482. [PMID: 37583575 PMCID: PMC10424002 DOI: 10.1016/j.omtn.2023.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The year 2023 marks the 25th anniversary of the discovery of RNAi. RNAi-based therapeutics enable sequence-specific gene knockdown by eliminating target RNA molecules through complementary base-pairing. A systematic review of published and ongoing clinical trials was performed. Web of Science, PubMed, and Embase were searched from January 1, 1998, to December 30, 2022 for clinical trials using RNAi. Following inclusion, data from the articles were extracted according to a predefined protocol. A total of 90 trials published in 81 articles were included. In addition, ongoing clinical trials were retrieved from ClinicalTrials.gov, resulting in the inclusion of 48 trials. We investigated how maturation of RNAi-based therapeutics and developments in delivery platforms, administration routes, and potential targets shape the current landscape of clinically applied RNAi. Notably, most contemporary clinical trials used either N-acetylgalactosamine delivery and subcutaneous administration or lipid nanoparticle delivery and intravenous administration. In conclusion, RNAi therapeutics have gained great momentum during the past decade, resulting in five approved therapeutics targeting the liver for treatment of severe diseases, and the trajectory depicted by the ongoing trials emphasizes that even more RNAi-based medicines also targeting extra-hepatic tissues are likely to be available in the years to come.
Collapse
Affiliation(s)
- Ida Juhl Corydon
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Bjørn Kristensen Fabian-Jessing
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, Aarhus N, Denmark
| | - Thomas Stax Jakobsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, Aarhus N, Denmark
| | | | - Emilie Grarup Jensen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Anne Louise Askou
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, Aarhus N, Denmark
| | - Lars Aagaard
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Thomas Juhl Corydon
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, Aarhus N, Denmark
| |
Collapse
|
31
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
32
|
Robinson CH, Iyengar A, Zappitelli M. Early recognition and prevention of acute kidney injury in hospitalised children. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:657-670. [PMID: 37453443 DOI: 10.1016/s2352-4642(23)00105-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 07/18/2023]
Abstract
Acute kidney injury is common in hospitalised children and is associated with poor patient outcomes. Once acute kidney injury occurs, effective therapies to improve patient outcomes or kidney recovery are scarce. Early identification of children at risk of acute kidney injury or at an early injury stage is essential to prevent progression and mitigate complications. Paediatric acute kidney injury is under-recognised by clinicians, which is a barrier to optimisation of inpatient care and follow-up. Acute kidney injury definitions rely on functional biomarkers (ie, serum creatinine and urine output) that are inadequate, since they do not account for biological variability, analytical issues, or physiological responses to volume depletion. Improved predictive tools and diagnostic biomarkers of kidney injury are needed for earlier detection. Novel strategies, including biomarker-guided care algorithms, machine-learning methods, and electronic alerts tied to clinical decision support tools, could improve paediatric acute kidney injury care. Clinical prediction models should be studied in different paediatric populations and acute kidney injury phenotypes. Research is needed to develop and test prevention strategies for acute kidney injury in hospitalised children, including care bundles and therapeutics.
Collapse
Affiliation(s)
- Cal H Robinson
- Division of Paediatric Nephrology, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, The University of Toronto, Toronto, ON, Canada
| | - Arpana Iyengar
- Department of Paediatric Nephrology, St John's National Academy of Health Sciences, Bangalore, India
| | - Michael Zappitelli
- Division of Paediatric Nephrology, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
33
|
van Till JO, Nojima H, Kameoka C, Hayashi C, Sakatani T, Washburn TB, Molitoris BA, Shaw AD, Engelman DT, Kellum JA. The Effects of Peroxisome Proliferator-Activated Receptor-Delta Modulator ASP1128 in Patients at Risk for Acute Kidney Injury Following Cardiac Surgery. Kidney Int Rep 2023; 8:1407-1416. [PMID: 37441472 PMCID: PMC10334402 DOI: 10.1016/j.ekir.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Peroxisome proliferator-activated receptor δ (PPARδ) plays a central role in modulating mitochondrial function in ischemia-reperfusion injury. The novel PPARδ modulator, ASP1128, was evaluated. Methods A randomized, double-blind, placebo-controlled, biomarker assignment-driven, multicenter study was performed in adult patients at risk for acute kidney injury (AKI) following cardiac surgery, examining efficacy and safety of a 3-day, once-daily intravenous dose of 100 mg ASP1128 versus placebo (1:1). AKI risk was based on clinical characteristics and postoperative urinary biomarker (TIMP2)•(IGFBP7). The primary end point was the proportion of patients with AKI based on serum creatinine within 72 hours postsurgery (AKI-SCr72h). Secondary endpoints included the composite end point of major adverse kidney events (MAKE: death, renal replacement therapy, and/or ≥25% reduction of estimated glomerular filtration rate [eGFR]) at days 30 and 90). Results A total of 150 patients were randomized and received study medication (81 placebo, 69 ASP1128). Rates of AKI-SCr72h were 21.0% and 24.6% in the placebo and ASP1128 arms, respectively (P = 0.595). Rates of moderate/severe AKI (stage 2/3 AKI-SCr and/or stage 3 AKI-urinary output criteria) within 72 hours postsurgery were 19.8% and 23.2%, respectively (P = 0.609). MAKE occurred within 30 days in 11.1% and 13.0% in the placebo and ASP1128 arms (P = 0.717), respectively; and within 90 days in 9.9% and 15.9% in the placebo and ASP1128 arms (P = 0.266), respectively. No safety issues were identified with ASP1128 treatment, but rates of postoperative atrial fibrillation were lower (11.6%) than in the placebo group (29.6%). Conclusion ASP1128 was safe and well-tolerated in patients at risk for AKI following cardiac surgery, but it did not show efficacy in renal endpoints.
Collapse
Affiliation(s)
| | - Hiroyuki Nojima
- Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | | | - Chieri Hayashi
- Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | | | | | - Bruce A. Molitoris
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew D. Shaw
- Department of Intensive Care and Resuscitation, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel T. Engelman
- Heart and Vascular Program, Baystate Health and University of Massachusetts Medical School-Baystate, Springfield, Massachusetts, USA
| | - John A. Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Kurakula H, Vaishnavi S, Sharif MY, Ellipilli S. Emergence of Small Interfering RNA-Based Gene Drugs for Various Diseases. ACS OMEGA 2023; 8:20234-20250. [PMID: 37323391 PMCID: PMC10268023 DOI: 10.1021/acsomega.3c01703] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
Small molecule, peptide, and protein-based drugs have been developed over decades to treat various diseases. The importance of gene therapy as an alternative to traditional drugs has increased after the discovery of gene-based drugs such as Gendicine for cancer and Neovasculgen for peripheral artery disease. Since then, the pharma sector is focusing on developing gene-based drugs for various diseases. After the discovery of the RNA interference (RNAi) mechanism, the development of siRNA-based gene therapy has been accelerated immensely. siRNA-based treatment for hereditary transthyretin-mediated amyloidosis (hATTR) using Onpattro and acute hepatic porphyria (AHP) by Givlaari and three more FDA-approved siRNA drugs has set up a milestone and further improved the confidence for the development of gene therapeutics for a spectrum of diseases. siRNA-based gene drugs have more advantages over other gene therapies and are under study to treat different types of diseases such as viral infections, cardiovascular diseases, cancer, and many more. However, there are a few bottlenecks to realizing the full potential of siRNA-based gene therapy. They include chemical instability, nontargeted biodistribution, undesirable innate immune responses, and off-target effects. This review provides a comprehensive view of siRNA-based gene drugs: challenges associated with siRNA delivery, their potential, and future prospects.
Collapse
Affiliation(s)
- Harshini Kurakula
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Swetha Vaishnavi
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Mohammed Yaseen Sharif
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Satheesh Ellipilli
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
35
|
Sanz AB, Sanchez-Niño MD, Ramos AM, Ortiz A. Regulated cell death pathways in kidney disease. Nat Rev Nephrol 2023; 19:281-299. [PMID: 36959481 PMCID: PMC10035496 DOI: 10.1038/s41581-023-00694-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/25/2023]
Abstract
Disorders of cell number that result from an imbalance between the death of parenchymal cells and the proliferation or recruitment of maladaptive cells contributes to the pathogenesis of kidney disease. Acute kidney injury can result from an acute loss of kidney epithelial cells. In chronic kidney disease, loss of kidney epithelial cells leads to glomerulosclerosis and tubular atrophy, whereas interstitial inflammation and fibrosis result from an excess of leukocytes and myofibroblasts. Other conditions, such as acquired cystic disease and kidney cancer, are characterized by excess numbers of cyst wall and malignant cells, respectively. Cell death modalities act to clear unwanted cells, but disproportionate responses can contribute to the detrimental loss of kidney cells. Indeed, pathways of regulated cell death - including apoptosis and necrosis - have emerged as central events in the pathogenesis of various kidney diseases that may be amenable to therapeutic intervention. Modes of regulated necrosis, such as ferroptosis, necroptosis and pyroptosis may cause kidney injury directly or through the recruitment of immune cells and stimulation of inflammatory responses. Importantly, multiple layers of interconnections exist between different modalities of regulated cell death, including shared triggers, molecular components and protective mechanisms.
Collapse
Affiliation(s)
- Ana B Sanz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrian M Ramos
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain.
- RICORS2040, Madrid, Spain.
- Departamento de Farmacología, Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
36
|
Qiu YQ, Zhuang LP, Wu PY, Zhong LY, Zhong XH, Chen B, Liu ZK, Luo HR, Yang LP. Effect of Dexmedetomidine on Postoperative Renal Function in Patients Undergoing Cardiac Valve Surgery Under Cardiopulmonary Bypass: A Randomized Clinical Trial. J Cardiothorac Vasc Anesth 2023:S1053-0770(23)00243-4. [PMID: 37179127 DOI: 10.1053/j.jvca.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE The effect of dexmedetomidine on postoperative renal function was investigated in patients undergoing cardiac valve surgery under cardiopulmonary bypass (CPB). DESIGN A randomized controlled trial. SETTING University teaching, grade A tertiary hospital. PARTICIPANTS A total of 70 patients scheduled to undergo cardiac valve replacement or valvuloplasty under CPB were eligible and randomly divided into groups D (n = 35) and C (n = 35) between January 2020 and March 2021. INTERVENTIONS Patients in group D were administered 0.6 μg/kg/h of dexmedetomidine intravenously from 10 minutes before anesthesia induction to 6 hours after surgery; normal saline was used instead of dexmedetomidine in group C. MEASUREMENTS AND MAIN RESULTS The primary outcome was the incidence of acute kidney injury (AKI). Acute kidney injury was defined according to the Kidney Disease Improving Global Outcomes (2012). It was 22.86% and 48.57% in groups D and C, respectively (p = 0.025). The secondary outcomes were intraoperative hemodynamics and various indices in serum. Ten minutes before CPB (T1), 10 minutes after CPB (T2), and 30 minutes after CPB (T3), mean arterial pressure in group D was lower than that in group C, with statistical significance (74.94 ± 8.52 v 81.89 ± 13.66 mmHg, p=0.013; 62.83 ± 11.27 v 71.86 ± 7.89 mmHg, p < 0.001; 72.26 ± 8.75 v 78.57 ± 8.83 mmHg, p = 0.004). At T1, the heart rate in group D was significantly lower than in group C (80.89 ± 14.04 v 95.54 ± 12.53 bpm, p=0.022). The tumor necrosis factor α, interleukin-6, C-reactive protein, and cystatin C levels in group D were lower than those in group C after the surgery (T4) and 24 hours after surgery (T5), with statistical significance. The duration of mechanical ventilation, intensive-care-unit stay time, and hospital stay time in group D were significantly shorter than in group C. The incidences of tachycardia, hypertension, nausea, and vomiting in group D were similar to those in group C. CONCLUSIONS Dexmedetomidine may be considered as a way to reduce the incidence and severity of postoperative AKI in patients undergoing cardiac valve surgery under cardiopulmonary bypass.
Collapse
Affiliation(s)
- Yong-Qiang Qiu
- Department of Anesthesiology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lv-Ping Zhuang
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University; Fuzhou, China
| | - Pei-Yuan Wu
- The Graduate School of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Li-Ying Zhong
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, China
| | - Xiao-Hui Zhong
- Key Laboratory of Sports Function Evaluation of General Administration of Sports of the People's Republic of China, School of PE and Sport Science, Fujian Normal University, Fuzhou, China
| | - Bin Chen
- Department of Colorectal Surgery, the First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Zhong-Kai Liu
- Sports Teaching and Research Department, Fujian Medical University, Fuzhou, China
| | - Hui-Rong Luo
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Li-Ping Yang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
37
|
Mazer CD, Siadati-Fini N, Boehm J, Wirth F, Myjavec A, Brown CD, Koyner JL, Boening A, Engelman DT, Larsson TE, Renfurm R, de Varennes B, Noiseux N, Thielmann M, Lamy A, Laflamme M, von Groote T, Ronco C, Zarbock A. Study protocol of a phase 2, randomised, placebo-controlled, double-blind, adaptive, parallel group clinical study to evaluate the efficacy and safety of recombinant alpha-1-microglobulin in subjects at high risk for acute kidney injury following open-chest cardiac surgery (AKITA trial). BMJ Open 2023; 13:e068363. [PMID: 37024249 PMCID: PMC10410810 DOI: 10.1136/bmjopen-2022-068363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/06/2023] [Indexed: 04/08/2023] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a common complication after cardiac surgery (CS) and is associated with adverse short-term and long-term outcomes. Alpha-1-microglobulin (A1M) is a circulating glycoprotein with antioxidant, heme binding and mitochondrial-protective mechanisms. RMC-035 is a modified, more soluble, variant of A1M and has been proposed as a novel targeted therapeutic protein to prevent CS-associated AKI (CS-AKI). RMC-035 was considered safe and generally well tolerated when evaluated in four clinical phase 1 studies. METHODS AND ANALYSIS This is a phase 2, randomised, double-blind, adaptive design, parallel group clinical study that evaluates RMC-035 compared with placebo in approximately 268 cardiac surgical patients at high risk for CS-AKI. RMC-035 is administered as an intravenous infusion. In total, five doses will be given. Dosing is based on presurgery estimated glomerular filtration rate (eGFR), and will be either 1.3 or 0.65 mg/kg.The primary study objective is to evaluate whether RMC-035 reduces the incidence of postoperative AKI, and key secondary objectives are to evaluate whether RMC-035 improves postoperative renal function compared with placebo. A blinded interim analysis with potential sample size reassessment is planned once 134 randomised subjects have completed dosing. An independent data monitoring committee will evaluate safety and efficacy data at prespecified intervals throughout the trial. The study is a global multicentre study at approximately 30 sites. ETHICS AND DISSEMINATION The trial was approved by the joint ethics committee of the physician chamber Westfalen-Lippe and the University of Münster (code '2021-778 f-A') and subsequently approved by the responsible ethics committees/relevant institutional review boards for the participating sites. The study is conducted in accordance with Good Clinical Practice, the Declaration of Helsinki and other applicable regulations. Results of this study will be published in a peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER NCT05126303.
Collapse
Affiliation(s)
- C David Mazer
- Department of Anesthesia, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, Physiology and Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | | | - Johannes Boehm
- Department of Cardiovascular Surgery, Technische Universität München, Munchen, Germany
- Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart Centre Munich, Munchen, Germany
| | - Felix Wirth
- Department of Cardiovascular Surgery, Technische Universität München, Munchen, Germany
- Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart Centre Munich, Munchen, Germany
| | - Andrej Myjavec
- Department of Cardiac Surgery, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Craig D Brown
- Department of Cardiac Surgery, New Brunswick Heart Centre, Saint John, New Brunswick, Canada
| | - Jay L Koyner
- Department of Medicine, Section of Nephrology, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Andreas Boening
- Department of Cardiovascular Surgery, Justus-Liebig-University, Giessen, Germany
| | - Daniel T Engelman
- Heart and Vascular Program, Baystate Medical Center, Springfield, Massachusetts, USA
| | | | - Ronny Renfurm
- Global Drug Development Unit Cardio-Renal-Metabolism, Novartis Pharma AG, Basel, Switzerland
| | - Benoit de Varennes
- Division of Cardiac Surgery, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Nicolas Noiseux
- Division of Cardiac Surgery, Universite de Montreal, Montreal, Québec, Canada
| | - Matthias Thielmann
- Department for Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University Duisburg-Essen, Essen, Germany
| | - Andre Lamy
- Department for Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University Duisburg-Essen, Essen, Germany
- Population Health Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Maxime Laflamme
- Institut universitaire de cardiologie et de pneumologie de Québec, University of Quebec, Quebec, Quebec, Canada
| | - Thilo von Groote
- Department of Anesthesiology, Intensive Care Medicine, University Hospital Münster, Munster, Germany
| | - Claudio Ronco
- International Renal Research Institute of Vicenza, San Bortolo Hospital of Vicenza, Vicenza, Italy
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care Medicine, University Hospital Münster, Munster, Germany
| |
Collapse
|
38
|
Devarajan P. Pathogenesis of intrinsic acute kidney injury. Curr Opin Pediatr 2023; 35:234-238. [PMID: 36482770 PMCID: PMC9992147 DOI: 10.1097/mop.0000000000001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the pathogenesis of intrinsic acute kidney injury (AKI), emphasizing recent advances that hold therapeutic promise. RECENT FINDINGS Enhanced endothelin and reduced endothelium-derived nitric oxide release in AKI can be blocked using endothelin receptor antagonists or nitric oxide supplementation. Vasodilatory agents such as theophylline and caffeine may prevent AKI. Free labile iron is a potent factor in the generation of reactive oxygen species and tubule damage in AKI. Apoptosis via induction of p53 is an important mechanism of cell death in AKI, which can be blocked using small interfering RNA. The AKI-driven reduction in nicotinamide adenine dinucleotide can be countered using oral supplements. Surviving tubule cells regenerate after AKI, by upregulating genes encoding growth factors, such as hepatocyte growth factor. Pro-angiogenic agents (statins and erythropoietin) that can mobilize endothelial progenitor cells after AKI are currently being tested. The inflammatory response in AKI, including activation of C5a, can be therapeutically targeted. Contemporary single cell profiling technologies have identified novel genes with altered expression, new signalling pathways and drug targets in AKI. SUMMARY Recent advances in the pathogenesis of intrinsic AKI have provided a better understanding of the clinical continuum and the rational deployment of promising therapeutics.
Collapse
Affiliation(s)
- Prasad Devarajan
- Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
39
|
Fopase R, Panda C, Rajendran AP, Uludag H, Pandey LM. Potential of siRNA in COVID-19 therapy: Emphasis on in silico design and nanoparticles based delivery. Front Bioeng Biotechnol 2023; 11:1112755. [PMID: 36814718 PMCID: PMC9939533 DOI: 10.3389/fbioe.2023.1112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Small interfering RNA (siRNA)-mediated mRNA degradation approach have imparted its eminence against several difficult-to-treat genetic disorders and other allied diseases. Viral outbreaks and resulting pandemics have repeatedly threatened public health and questioned human preparedness at the forefront of drug design and biomedical readiness. During the recent pandemic caused by the SARS-CoV-2, mRNA-based vaccination strategies have paved the way for a new era of RNA therapeutics. RNA Interference (RNAi) based approach using small interfering RNA may complement clinical management of the COVID-19. RNA Interference approach will primarily work by restricting the synthesis of the proteins required for viral replication, thereby hampering viral cellular entry and trafficking by targeting host as well as protein factors. Despite promising benefits, the stability of small interfering RNA in the physiological environment is of grave concern as well as site-directed targeted delivery and evasion of the immune system require immediate attention. In this regard, nanotechnology offers viable solutions for these challenges. The review highlights the potential of small interfering RNAs targeted toward specific regions of the viral genome and the features of nanoformulations necessary for the entrapment and delivery of small interfering RNAs. In silico design of small interfering RNA for different variants of SARS-CoV-2 has been discussed. Various nanoparticles as promising carriers of small interfering RNAs along with their salient properties, including surface functionalization, are summarized. This review will help tackle the real-world challenges encountered by the in vivo delivery of small interfering RNAs, ensuring a safe, stable, and readily available drug candidate for efficient management of SARS-CoV-2 in the future.
Collapse
Affiliation(s)
- Rushikesh Fopase
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Chinmaya Panda
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Amarnath P. Rajendran
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hasan Uludag
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lalit M. Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
40
|
Braunwald E. Short interfering RNA: a rapidly developing drug class. Eur Heart J 2022; 43:4772-4774. [PMID: 36004548 DOI: 10.1093/eurheartj/ehac461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Eugene Braunwald
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Hale Building for Transformative Medicine, Suite 7022, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Pickkers P, Murray PT, Ostermann M. New drugs for acute kidney injury. Intensive Care Med 2022; 48:1796-1798. [PMID: 35999470 PMCID: PMC9705447 DOI: 10.1007/s00134-022-06859-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Peter Pickkers
- Department Intensive Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Marlies Ostermann
- Department of Critical Care, King’s College London, Guy’s and St Thomas’ Hospital, London, UK
| |
Collapse
|
42
|
Lemoine S, Courbebaisse M. Petits ARN interférents : applications potentielles pour les néphrologues Small interfering RNA: potential applications for nephrologists. Nephrol Ther 2022; 18:6S1-6S6. [PMID: 36585119 DOI: 10.1016/s1769-7255(22)00646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Small interfering RNA (siRNAs) are double-stranded RNAs of around 20 base pairs in length that trigger RNAi machinery, which promotes degradation of a target mRNA avoiding protein translation. SiRNAs are liver-targeted, using tris N-acetylgalactosamine (GalNAc) as the targeting ligand. This discovery received the Nobel Prize for medicine and physiology in 2006 and lead to substantial therapeutic advances. Application field and development of these siRNA has been very fast. Indeed, patisiran has been released in 2018 for hereditary transthyretin amyloidosis. This first treatment showed the security and efficacy of such a product. Since, treatments have been developed for acute hepatic porphyria and primary hyperoxaluria. The current pipeline for new siRNA development is ambitious; clinical trial are ongoing in nephrology, as in the IgA nephropathy. Frequent diseases are also targeted such as hypertension or hypercholesterolemia. © 2022 Published by Elsevier Masson SAS on behalf of Société francophone de néphrologie, dialyse et transplantation.
Collapse
Affiliation(s)
- Sandrine Lemoine
- Service de néphrologie et d'exploration fonctionnelle rénale, centre de référence maladies rénales rares Néphrogones, Hospices civils de Lyon, université de Lyon, France.
| | - Marie Courbebaisse
- Service de physiologie, hôpital européen Georges-Pompidou, AP-HP, INSERM U1151, université de Paris, Paris, France
| |
Collapse
|
43
|
Tsai HC, Pietrobon V, Peng M, Wang S, Zhao L, Marincola FM, Cai Q. Current strategies employed in the manipulation of gene expression for clinical purposes. J Transl Med 2022; 20:535. [PMID: 36401279 PMCID: PMC9673226 DOI: 10.1186/s12967-022-03747-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abnormal gene expression level or expression of genes containing deleterious mutations are two of the main determinants which lead to genetic disease. To obtain a therapeutic effect and thus to cure genetic diseases, it is crucial to regulate the host's gene expression and restore it to physiological conditions. With this purpose, several molecular tools have been developed and are currently tested in clinical trials. Genome editing nucleases are a class of molecular tools routinely used in laboratories to rewire host's gene expression. Genome editing nucleases include different categories of enzymes: meganucleses (MNs), zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR associated protein (Cas) and transcription activator-like effector nuclease (TALENs). Transposable elements are also a category of molecular tools which includes different members, for example Sleeping Beauty (SB), PiggyBac (PB), Tol2 and TcBuster. Transposons have been used for genetic studies and can serve as gene delivery tools. Molecular tools to rewire host's gene expression also include episomes, which are divided into different categories depending on their molecular structure. Finally, RNA interference is commonly used to regulate gene expression through the administration of small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA molecules. In this review, we will describe the different molecular tools that can be used to regulate gene expression and discuss their potential for clinical applications. These molecular tools are delivered into the host's cells in the form of DNA, RNA or protein using vectors that can be grouped into physical or biochemical categories. In this review we will also illustrate the different types of payloads that can be used, and we will discuss recent developments in viral and non-viral vector technology.
Collapse
Affiliation(s)
| | | | - Maoyu Peng
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Suning Wang
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Lihong Zhao
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | | | - Qi Cai
- Kite Pharma Inc, Santa Monica, CA, 90404, USA.
| |
Collapse
|
44
|
Shah AM, Giacca M. Small non-coding RNA therapeutics for cardiovascular disease. Eur Heart J 2022; 43:4548-4561. [PMID: 36106499 PMCID: PMC9659475 DOI: 10.1093/eurheartj/ehac463] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 01/07/2023] Open
Abstract
Novel bio-therapeutic agents that harness the properties of small, non-coding nucleic acids hold great promise for clinical applications. These include antisense oligonucleotides that inhibit messenger RNAs, microRNAs (miRNAs), or long non-coding RNAs; positive effectors of the miRNA pathway (short interfering RNAs and miRNA mimics); or small RNAs that target proteins (i.e. aptamers). These new therapies also offer exciting opportunities for cardiovascular diseases and promise to move the field towards more precise approaches based on disease mechanisms. There have been substantial advances in developing chemical modifications to improve the in vivo pharmacological properties of antisense oligonucleotides and reduce their immunogenicity. Carrier methods (e.g. RNA conjugates, polymers, and lipoplexes) that enhance cellular uptake of RNA therapeutics and stability against degradation by intracellular nucleases are also transforming the field. A number of small non-coding RNA therapies for cardiovascular indications are now approved. Moreover, there is a large pipeline of therapies in clinical development and an even larger list of putative therapies emerging from pre-clinical studies. Progress in this area is reviewed herein along with the hurdles that need to be overcome to allow a broader clinical translation.
Collapse
Affiliation(s)
- Ajay M Shah
- King’s College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Mauro Giacca
- King’s College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
45
|
Shen K, Miao J, Gao Q, Ling X, Liang Y, Zhou Q, Song Q, Luo Y, Wu Q, Shen W, Wang X, Li X, Liu Y, Zhou S, Tang Y, Zhou L. Annexin A2 plays a key role in protecting against cisplatin-induced AKI through β-catenin/TFEB pathway. Cell Death Dis 2022; 8:430. [PMID: 36307397 PMCID: PMC9616836 DOI: 10.1038/s41420-022-01224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
AbstractAcute kidney injury (AKI) is in high prevalence in the world. However, the therapeutic strategies for AKI are still in mystery. Studies have shown to improve autophagy and lysosomal function could inhibit AKI. But their modulators need to be explored in detail. Annexin A2 (ANXA2) is a phospholipid-binding protein involving in organelle membrane integrity function, suggesting its important role in autophagy and lysosome homeostasis. It implicates ANXA2 potentially protects against AKI. However, this has not been elucidated. Herein, we found that ANXA2 is increased in renal tubules in cisplatin-induced AKI mice. Ectopic expression of ANXA2 improved lysosomal functions and enhanced autophagic flux, further protecting against renal tubular cell apoptosis and kidney injury. Conversely, knockdown of ANXA2 inhibited lysosomal function and autophagy, which aggravated the progression of AKI. Transcriptome sequencing revealed β-catenin signaling is highly responsible for this process. In vitro, we found ANXA2 induced β-catenin activation, further triggering T-cell factor-4 (TCF4)-induced transcription factor EB (TFEB). Furthermore, TFEB promoted lysosome biogenesis to enhance autophagic flux, resulting in the alleviation of AKI. Our new findings underline ANXA2 is a new therapeutic potential for AKI through modulating autophagy and lysosomal function. The underlying mechanism is associated with its inductive effects on β-catenin/TFEB pathway.
Collapse
|
46
|
Chen JJ, Lee TH, Kuo G, Huang YT, Chen PR, Chen SW, Yang HY, Hsu HH, Hsiao CC, Yang CH, Lee CC, Chen YC, Chang CH. Strategies for post-cardiac surgery acute kidney injury prevention: A network meta-analysis of randomized controlled trials. Front Cardiovasc Med 2022; 9:960581. [PMID: 36247436 PMCID: PMC9555275 DOI: 10.3389/fcvm.2022.960581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Objects Cardiac surgery is associated with acute kidney injury (AKI). However, the effects of various pharmacological and non-pharmacological strategies for AKI prevention have not been thoroughly investigated, and their effectiveness in preventing AKI-related adverse outcomes has not been systematically evaluated. Methods Studies from PubMed, Embase, and Medline and registered trials from published through December 2021 that evaluated strategies for preventing post-cardiac surgery AKI were identified. The effectiveness of these strategies was assessed through a network meta-analysis (NMA). The secondary outcomes were prevention of dialysis-requiring AKI, mortality, intensive care unit (ICU) length of stay (LOS), and hospital LOS. The interventions were ranked using the P-score method. Confidence in the results of the NMA was assessed using the Confidence in NMA (CINeMA) framework. Results A total of 161 trials (involving 46,619 participants) and 53 strategies were identified. Eight pharmacological strategies {natriuretic peptides [odds ratio (OR): 0.30, 95% confidence interval (CI): 0.19-0.47], nitroprusside [OR: 0.29, 95% CI: 0.12-0.68], fenoldopam [OR: 0.36, 95% CI: 0.17-0.76], tolvaptan [OR: 0.35, 95% CI: 0.14-0.90], N-acetyl cysteine with carvedilol [OR: 0.37, 95% CI: 0.16-0.85], dexmedetomidine [OR: 0.49, 95% CI: 0.32-0.76;], levosimendan [OR: 0.56, 95% CI: 0.37-0.84], and erythropoietin [OR: 0.62, 95% CI: 0.41-0.94]} and one non-pharmacological intervention (remote ischemic preconditioning, OR: 0.76, 95% CI: 0.63-0.92) were associated with a lower incidence of post-cardiac surgery AKI with moderate to low confidence. Among these nine strategies, five (fenoldopam, erythropoietin, natriuretic peptides, levosimendan, and remote ischemic preconditioning) were associated with a shorter ICU LOS, and two (natriuretic peptides [OR: 0.30, 95% CI: 0.15-0.60] and levosimendan [OR: 0.68, 95% CI: 0.49-0.95]) were associated with a lower incidence of dialysis-requiring AKI. Natriuretic peptides were also associated with a lower risk of mortality (OR: 0.50, 95% CI: 0.29-0.86). The results of a sensitivity analysis support the robustness and effectiveness of natriuretic peptides and dexmedetomidine. Conclusion Nine potentially effective strategies were identified. Natriuretic peptide therapy was the most effective pharmacological strategy, and remote ischemic preconditioning was the only effective non-pharmacological strategy. Preventive strategies might also help prevent AKI-related adverse outcomes. Additional studies are required to explore the optimal dosages and protocols for potentially effective AKI prevention strategies.
Collapse
Affiliation(s)
- Jia-Jin Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - George Kuo
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yen-Ta Huang
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Rung Chen
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shao-Wei Chen
- Department of Cardiothoracic and Vascular Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Chung Hsiao
- Department of Nephrology, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Chia-Hung Yang
- Department of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Chia Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Chang Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Hsiang Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
47
|
Abstract
The highly specific induction of RNA interference-mediated gene knockdown, based on the direct application of small interfering RNAs (siRNAs), opens novel avenues towards innovative therapies. Two decades after the discovery of the RNA interference mechanism, the first siRNA drugs received approval for clinical use by the US Food and Drug Administration and the European Medicines Agency between 2018 and 2022. These are mainly based on an siRNA conjugation with a targeting moiety for liver hepatocytes, N-acetylgalactosamine, and cover the treatment of acute hepatic porphyria, transthyretin-mediated amyloidosis, hypercholesterolemia, and primary hyperoxaluria type 1. Still, the development of siRNA therapeutics faces several challenges and issues, including the definition of optimal siRNAs in terms of target, sequence, and chemical modifications, siRNA delivery to its intended site of action, and the absence of unspecific off-target effects. Further siRNA drugs are in clinical studies, based on different delivery systems and covering a wide range of different pathologies including metabolic diseases, hematology, infectious diseases, oncology, ocular diseases, and others. This article reviews the knowledge on siRNA design and chemical modification, as well as issues related to siRNA delivery that may be addressed using different delivery systems. Details on the mode of action and clinical status of the various siRNA therapeutics are provided, before giving an outlook on issues regarding the future of siRNA drugs and on their potential as one emerging standard modality in pharmacotherapy. Notably, this may also cover otherwise un-druggable diseases, the definition of non-coding RNAs as targets, and novel concepts of personalized and combination treatment regimens.
Collapse
Affiliation(s)
- Maik Friedrich
- Faculty of Leipzig, Institute of Clinical Immunology, Max-Bürger-Forschungszentrum (MBFZ), University of Leipzig, Leipzig, Germany.,Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| |
Collapse
|
48
|
Barresi V, Musmeci C, Rinaldi A, Condorelli DF. Transcript-Targeted Therapy Based on RNA Interference and Antisense Oligonucleotides: Current Applications and Novel Molecular Targets. Int J Mol Sci 2022; 23:ijms23168875. [PMID: 36012138 PMCID: PMC9408055 DOI: 10.3390/ijms23168875] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/28/2022] Open
Abstract
The development of novel target therapies based on the use of RNA interference (RNAi) and antisense oligonucleotides (ASOs) is growing in an exponential way, challenging the chance for the treatment of the genetic diseases and cancer by hitting selectively targeted RNA in a sequence-dependent manner. Multiple opportunities are taking shape, able to remove defective protein by silencing RNA (e.g., Inclisiran targets mRNA of protein PCSK9, permitting a longer half-life of LDL receptors in heterozygous familial hypercholesteremia), by arresting mRNA translation (i.e., Fomivirsen that binds to UL123-RNA and blocks the translation into IE2 protein in CMV-retinitis), or by reactivating modified functional protein (e.g., Eteplirsen able to restore a functional shorter dystrophin by skipping the exon 51 in Duchenne muscular dystrophy) or a not very functional protein. In this last case, the use of ASOs permits modifying the expression of specific proteins by modulating splicing of specific pre-RNAs (e.g., Nusinersen acts on the splicing of exon 7 in SMN2 mRNA normally not expressed; it is used for spinal muscular atrophy) or by downregulation of transcript levels (e.g., Inotersen acts on the transthryretin mRNA to reduce its expression; it is prescribed for the treatment of hereditary transthyretin amyloidosis) in order to restore the biochemical/physiological condition and ameliorate quality of life. In the era of precision medicine, recently, an experimental splice-modulating antisense oligonucleotide, Milasen, was designed and used to treat an 8-year-old girl affected by a rare, fatal, progressive form of neurodegenerative disease leading to death during adolescence. In this review, we summarize the main transcriptional therapeutic drugs approved to date for the treatment of genetic diseases by principal regulatory government agencies and recent clinical trials aimed at the treatment of cancer. Their mechanism of action, chemical structure, administration, and biomedical performance are predominantly discussed.
Collapse
|
49
|
Targeted Nanocarrier Delivery of RNA Therapeutics to Control HIV Infection. Pharmaceutics 2022; 14:pharmaceutics14071352. [PMID: 35890248 PMCID: PMC9324444 DOI: 10.3390/pharmaceutics14071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Our understanding of HIV infection has greatly advanced since the discovery of the virus in 1983. Treatment options have improved the quality of life of people living with HIV/AIDS, turning it from a fatal disease into a chronic, manageable infection. Despite all this progress, a cure remains elusive. A major barrier to attaining an HIV cure is the presence of the latent viral reservoir, which is established early in infection and persists for the lifetime of the host, even during prolonged anti-viral therapy. Different cure strategies are currently being explored to eliminate or suppress this reservoir. Several studies have shown that a functional cure may be achieved by preventing infection and also inhibiting reactivation of the virus from the latent reservoir. Here, we briefly describe the main HIV cure strategies, focussing on the use of RNA therapeutics, including small interfering RNA (siRNA) to maintain HIV permanently in a state of super latency, and CRISPR gRNA to excise the latent reservoir. A challenge with progressing RNA therapeutics to the clinic is achieving effective delivery into the host cell. This review covers recent nanotechnological strategies for siRNA delivery using liposomes, N-acetylgalactosamine conjugation, inorganic nanoparticles and polymer-based nanocapsules. We further discuss the opportunities and challenges of those strategies for HIV treatment.
Collapse
|
50
|
Smoroda A, Douin D, Morabito J, Lyman M, Prin M, Ahlgren B, Young A, Christensen E, Abrams BA, Weitzel N, Clendenen N. Year in Review 2021: Noteworthy Literature in Cardiothoracic Anesthesia. Semin Cardiothorac Vasc Anesth 2022; 26:107-119. [PMID: 35579926 PMCID: PMC9588253 DOI: 10.1177/10892532221100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In 2021, progress in clinical science related to Cardiac Anesthesiology continued, but at a slower rate due to the ongoing pandemic and disruptions to clinical research. Most progress was incremental and addressed persistent questions related to our field. To identify articles for this review, we completed a structured review using our previously reported methods (1). Specifically, we used the search terms: "cardiac anesthesiology and outcomes" (n = 177), "cardiothoracic anesthesiology" (n = 34), "cardiac anesthesia," and "clinical outcomes" (n = 42) filtered on clinical trials and the year 2021 in PubMed. We also reviewed clinical trials from the most prominent clinical journals to identify additional studies for a narrative review. We then selected the most noteworthy publications for inclusion in this review and identified key themes.
Collapse
Affiliation(s)
- Aaron Smoroda
- University of Colorado School of Medicine, Aurora, CO, USA
| | - David Douin
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph Morabito
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew Lyman
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Meghan Prin
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bryan Ahlgren
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Young
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Benjamin A Abrams
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathaen Weitzel
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathan Clendenen
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|