1
|
Zhang H, Zheng X, Yan Z, Guo L, Zheng Y, Zhang D, Ma X. The causal relationship between 233 metabolites and coronary atherosclerosis: a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1439699. [PMID: 39726950 PMCID: PMC11669696 DOI: 10.3389/fcvm.2024.1439699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Objective To investigate the causal relationship between 233 newly reported metabolites and coronary atherosclerosis through Mendelian randomization analysis. Methods Five different methods were used to perform Mendelian randomization analysis on the 233 metabolites and coronary atherosclerosis, with inverse variance weighting as the primary result, supplemented by other methods. Results The analysis identified that certain metabolites increase the susceptibility risk of coronary atherosclerosis, including: Total fatty acids (OR = 1.40, 95% CI: 1.28-1.53, P < 0.001), Saturated fatty acids (OR = 1.44, 95% CI: 1.30-1.60, P < 0.001), Serum total triglyceride levels (OR = 1.33, 95% CI: 1.22-1.46, P < 0.001), Conjugated linoleic acid (OR = 1.16, 95% CI: 1.04-1.30, P = 0.007). Conversely, certain metabolites were found to reduce the occurrence of coronary atherosclerosis, such as: Cholesteryl esters to total lipids ratio in medium HDL (OR = 0.73, 95% CI: 0.67-0.78, P < 0.001), Cholesteryl esters to total lipids ratio in large HDL (OR = 0.64, 95% CI: 0.58-0.71, P < 0.001), Total cholesterol to total lipids ratio in medium HDL (OR = 0.71, 95% CI: 0.65-0.77, P < 0.001). Conclusion There is a close relationship between metabolites and the occurrence of coronary atherosclerosis. This study conducted Mendelian randomization analysis on the causal relationship between 233 metabolites and coronary atherosclerosis, providing potential new insights for the treatment of this disease.
Collapse
Affiliation(s)
- Hongwei Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Zheng
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zian Yan
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lijun Guo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Zheng
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawu Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Luo Z, Liu Y, Wang X, Fan F, Yang Z, Luo D. Exploring tryptophan metabolism: The transition from disturbed balance to diagnostic and therapeutic potential in metabolic diseases. Biochem Pharmacol 2024; 230:116554. [PMID: 39332693 DOI: 10.1016/j.bcp.2024.116554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The rapidly rising prevalence of metabolic diseases has turned them into an escalating global health concern. By producing or altering metabolic products, the gut microbiota plays a pivotal role in maintaining human health and influencing disease development. These metabolites originate from the host itself or the external environment. In the system of interactions between microbes and the host, tryptophan (Trp) plays a central role in metabolic processes. As the amino acid in the human body that must be obtained through dietary intake, it is crucial for various physiological functions. Trp can be metabolized in the gut into three main products: The gut microbiota regulates the transformation of 5-hydroxytryptamine (5-HT, serotonin), kynurenine (Kyn), and various indole derivatives. It has been revealed that a substantial correlation exists between alterations in Trp metabolism and the initiation and progression of metabolic disorders, including obesity, diabetes, non-alcoholic fatty liver disease, and atherosclerosis, but Trp metabolites have not been comprehensively reviewed in metabolic diseases. As such, this review summarizes and analyzes the latest research, emphasizing the importance of further studying Trp metabolism within the gut microbiota to understand and treat metabolic diseases. This carries potential significance for improving human health and may introduce new therapeutic strategies.
Collapse
Affiliation(s)
- Zhizhong Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Yuqing Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Xin Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Faxin Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Zhenzhen Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| |
Collapse
|
3
|
Spiering A, van Ommen A, Roeters van Lennep J, Appelman Y, Reue K, Onland-Moret N, den Ruijter H. Underrepresentation of women in cardiovascular disease clinical Trials-What's in a Name? IJC HEART & VASCULATURE 2024; 55:101547. [PMID: 39583981 PMCID: PMC11584672 DOI: 10.1016/j.ijcha.2024.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024]
Abstract
Background Cardiovascular disease is the leading cause of death in women worldwide. Yet, women are often underrepresented in cardiovascular clinical trials. Trial characteristics may influence the participation of women. For instance, trials are often entitled with an acronym, which might be perceived as gendered. We aimed to investigate if the perceived gender of the acronym and other trial characteristics affect the representation of female patients in cardiovascular trials. Methods We searched ClinicalTrials.gov for randomized controlled trials in cardiovascular disease named with an acronym. Cardiovascular patients (n = 148) scored the perceived gender of the acronym of 148 identified trials. Prevalence ratios (PR) were calculated with Poisson regression to link trial characteristics to representation of female patients in the trials. Results In 62 % of trials, female patients were underrepresented relative to the disease population. There was no improvement over time in proportion of trials with adequate representation. A third of acronyms was classified as gendered. The perceived gender did not affect representation of female patients (PR 1.01; 95% CI 0.95 - 1.08; P = 0.68). A woman as first and/or last author (PR 1.22; 95% CI 1.07 - 1.38; P = 0.002) and recruitment in an outpatient setting (PR 1.15; 95% CI 1.02 - 1.29; P = 0.01) were associated with a higher prevalence of adequate representation of female patients. Conclusions Representation of female patients in cardiovascular trials does not depend on the perceived gender of the trial acronym but is improved in trials under female leadership in out-patient settings. Our findings may direct efforts towards increasing representation of female patients in cardiovascular trials.
Collapse
Affiliation(s)
- A.E. Spiering
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, United States
| | - A.M.L.N. van Ommen
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Y. Appelman
- Department of Cardiology, Heart Center, Amsterdam UMC – Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - K. Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, United States
| | - N.C. Onland-Moret
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - H.M. den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
4
|
Luo Z, Yang L, Zhu T, Fan F, Wang X, Liu Y, Zhan H, Luo D, Guo J. Aucubin ameliorates atherosclerosis by modulating tryptophan metabolism and inhibiting endothelial-mesenchymal transitions via gut microbiota regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156122. [PMID: 39396405 DOI: 10.1016/j.phymed.2024.156122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The gut microbiota is believed to influence atherosclerosis (AS), and Aucubin (Au), a natural compound found in the traditional Chinese medicine Eucommia ulmoides Oliver, is being explored as a potential treatment for cardiovascular disease. Yet, the specific impact of Au on AS through the gut microbiota remains unclear. PURPOSE This study aimed to highlight the potential of Au in improving AS by influencing gut microbiota and investigating its potential mechanisms by which it and its metabolites of gut microbiota regulate lipid metabolism, inflammation and endothelial dysfunction. METHODS The impact of Au on AS in ApoE-/- mice was examined, followed by a fecal microbiota transplantation experiment to confirm the influence of Au on AS through gut microbiota. Subsequent analysis of fecal and serum samples using 16S rRNA gene sequencing and metabolomics revealed distinct features of gut microbiota and metabolites. Identified metabolites were then utilized in vivo experiments to investigate underlying mechanisms. RESULTS Au treatment effectively reduced dietary-induced dyslipidemia and endothelial dysfunction in a dose-dependent manner in atherosclerotic mice. It also improved vascular plaque accumulation and inflammation, increased aortic valve fibrous cap thickness, and decreased necrotic core and collagen fiber area. Subsequently, we observed a substantial increase in indole-3-acrylic acid (IAA), a microbe-derived metabolite, in cecal contents and serum, along with a significant rise in Lactobacillus abundance responsible for IAA production. Our findings demonstrated that IAA played a crucial role in alleviating AS. Furthermore, we discovered that IAA activated the Aryl hydrocarbon receptor (AhR) and suppressed the TGF-β/Smad pathway, potentially ameliorating endothelial-mesenchymal transitions in atherosclerotic mice. CONCLUSION These findings suggested that Au's anti-atherosclerotic effects were primarily due to elevated Lactobacillus-derived IAA, thereby potentially contributing to alleviating AS.
Collapse
Affiliation(s)
- Zhizhong Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Ling Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Tianxin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Faxin Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Xin Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yuqing Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Huixia Zhan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Wang D, Li Q, Xie C. The role and mechanism of protein post‑translational modification in vascular calcification (Review). Exp Ther Med 2024; 28:419. [PMID: 39301258 PMCID: PMC11411399 DOI: 10.3892/etm.2024.12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Vascular calcification is closely associated with morbidity and mortality in patients with chronic kidney disease, atherosclerosis and diabetes. In the past few decades, vascular calcification has been studied extensively and the findings have shown that the mechanism of vascular calcification is not merely a consequence of a high-phosphorus and high-calcium environment but also an active process characterized by abnormal calcium phosphate deposition on blood vessel walls that involves various molecular mechanisms. Recent advances in bioinformatics approaches have led to increasing recognition that aberrant post-translational modifications (PTMs) play important roles in vascular calcification. This review presents the latest progress in clarifying the roles of PTMs, such as ubiquitination, acetylation, carbamylation and glycosylation, as well as signaling pathways, such as the Wnt/β-catenin pathway, in vascular calcification.
Collapse
Affiliation(s)
- Dongyan Wang
- Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225100, P.R. China
| | - Qin Li
- Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225100, P.R. China
| | - Caidie Xie
- Department of Nephrology, Nanjing Second Hospital, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210037, P.R. China
| |
Collapse
|
6
|
Mitsis A, Khattab E, Christodoulou E, Myrianthopoulos K, Myrianthefs M, Tzikas S, Ziakas A, Fragakis N, Kassimis G. From Cells to Plaques: The Molecular Pathways of Coronary Artery Calcification and Disease. J Clin Med 2024; 13:6352. [PMID: 39518492 PMCID: PMC11545949 DOI: 10.3390/jcm13216352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Coronary artery calcification (CAC) is a hallmark of atherosclerosis and a critical factor in the development and progression of coronary artery disease (CAD). This review aims to address the complex pathophysiological mechanisms underlying CAC and its relationship with CAD. We examine the cellular and molecular processes that drive the formation of calcified plaques, highlighting the roles of inflammation, lipid accumulation, and smooth muscle cell proliferation. Additionally, we explore the genetic and environmental factors that contribute to the heterogeneity in CAC and CAD presentation among individuals. Understanding these intricate mechanisms is essential for developing targeted therapeutic strategies and improving diagnostic accuracy. By integrating current research findings, this review provides a comprehensive overview of the pathways linking CAC to CAD, offering insights into potential interventions to mitigate the burden of these interrelated conditions.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Elina Khattab
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Evi Christodoulou
- Cardiology Department, Limassol General Hospital, State Health Services Organization, Limassol 3304, Cyprus;
| | - Kimon Myrianthopoulos
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| |
Collapse
|
7
|
Li L, Shao J, Tong C, Gao W, Pan P, Qi C, Gao C, Zhang Y, Zhu Y, Chen C. Non-tuberculous mycobacteria enhance the tryptophan-kynurenine pathway to induce immunosuppression and facilitate pulmonary colonization. Front Cell Infect Microbiol 2024; 14:1455605. [PMID: 39497924 PMCID: PMC11532197 DOI: 10.3389/fcimb.2024.1455605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
The increasing prevalence of non-tuberculous mycobacterium (NTM) infections alongside tuberculosis (TB) underscores a pressing public health challenge. Yet, the mechanisms governing their infection within the lung remain poorly understood. Here, we integrate metagenomic sequencing, metabolomic sequencing, machine learning classifiers, SparCC, and MetOrigin methods to profile bronchoalveolar lavage fluid (BALF) samples from NTM/TB patients. Our aim is to unravel the intricate interplay between lung microbial communities and NTM/Mycobacterium tuberculosis infections. Our investigation reveals a discernible reduction in the compositional diversity of the lung microbiota and a diminished degree of mutual interaction concomitant with NTM/TB infections. Notably, NTM patients exhibit a distinct microbial community characterized by marked specialization and notable enrichment of Pseudomonas aeruginosa and Staphylococcus aureus, driving pronounced niche specialization for NTM infection. Simultaneously, these microbial shifts significantly disrupt tryptophan metabolism in NTM infection, leading to an elevation of kynurenine. Mycobacterium intracellulare, Mycobacterium paraintracellulare, Mycobacterium abscessus, and Pseudomonas aeruginosa have been implicated in the metabolic pathways associated with the conversion of indole to tryptophan via tryptophan synthase within NTM patients. Additionally, indoleamine-2,3-dioxygenase converts tryptophan into kynurenine, fostering an immunosuppressive milieu during NTM infection. This strategic modulation supports microbial persistence, enabling evasion from immune surveillance and perpetuating a protracted state of NTM infection. The elucidation of these nuanced microbial and metabolic dynamics provides a profound understanding of the intricate processes underlying NTM and TB infections, offering potential avenues for therapeutic intervention and management.
Collapse
Affiliation(s)
- Longjie Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jiaofang Shao
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Chunran Tong
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Weiwei Gao
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pan Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chen Qi
- Department of Cardiothoracic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chenxi Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Ying Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Cheng Chen
- Department of Infectious Disease, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Wang B, Xu W, Mei Z, Yang W, Meng X, An G. Association between serum Klotho levels and estimated pulse wave velocity in postmenopausal women: a cross-sectional study of NHANES 2007-2016. Front Endocrinol (Lausanne) 2024; 15:1471548. [PMID: 39329104 PMCID: PMC11424431 DOI: 10.3389/fendo.2024.1471548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Background Postmenopausal women are at an increased risk of arterial stiffness, which can be assessed using estimated pulse wave velocity (ePWV). This study aimed to investigate the relationship between serum klotho levels and ePWV in postmenopausal women. Methods This cross-sectional study used data from postmenopausal women who participated in the National Health and Nutrition Examination Survey (NHANES) between 2007 and 2016. Participants were divided into two groups based on the presence of hypertension. Weighted multivariate linear regression was used to analyze the relationship between serum Klotho levels and ePWV in each group. Restricted cubic spline models with multivariable adjustments were employed to examine nonlinear associations within each group. Results Our analysis included 4,468 postmenopausal women from the NHANES database, with 1,671 in the non-hypertensive group and 2,797 in the hypertensive group. In all regression models, serum Klotho (ln-transformed) levels were significantly and independently negatively correlated with ePWV in the non-hypertensive group. After fully adjusting for confounders, a 1-unit increase in ln(Klotho) was associated with a 0.13 m/s decrease in ePWV (β = -0.13, 95% CI -0.23 to -0.03; p = 0.008). Additionally, in the fully adjusted model, participants in the highest quartile of ln(Klotho) had an ePWV value 0.14 m/s lower than those in the lowest quartile (p for trend = 0.017; 95% CI -0.23 to -0.05; p = 0.002). This negative correlation was consistent across subgroups and was particularly significant among women aged < 60 years, nonsmokers, and non-Hispanic Black women. However, no association was observed between serum Klotho levels and ePWV in the hypertensive group. Conclusion Hypertension may affect the relationship between serum Klotho level and ePWV in postmenopausal women. Increased serum Klotho levels may reduce arterial stiffness in postmenopausal women. Further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Baiqiang Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenqu Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zeyuan Mei
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Yang
- Department of Cardiology, People's Hospital of Rizhao, Rizhao, China
| | - Xiao Meng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Guipeng An
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
9
|
Xie H, Yang N, Lu L, Sun X, Li J, Wang X, Guo H, Zhou L, Liu J, Wu H, Yu C, Zhang W, Lu L. Uremic Toxin Receptor AhR Facilitates Renal Senescence and Fibrosis via Suppressing Mitochondrial Biogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402066. [PMID: 38940381 PMCID: PMC11434102 DOI: 10.1002/advs.202402066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/02/2024] [Indexed: 06/29/2024]
Abstract
Retention of metabolic end-products in the bodily fluids of patients with chronic kidney disease (CKD) may lead to uremia. The uremic toxin indoxyl sulfate (IS), a tryptophan metabolite, is an endogenous ligand of aryl hydrocarbon receptor (AhR). It is clarified that the upregulation and activation of AhR by IS in tubular epithelial cells (TECs) promote renal senescence and fibrosis. Renal TEC-specific knockout of AhR attenuates renal senescence and fibrosis, as well as the suppression of PGC1α-mediated mitochondrial biogenesis in ischemia reperfusion (IR)- or IS-treated CKD mice kidneys. Overexpression of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) attenuates IS-induced cell senescence and extracellular matrix production in cultured TECs. Mechanistically, AhR is able to interact with PGC1α and promotes the ubiquitin degradation of PGC1α via its E3 ubiquitin ligase activity. In summary, the elevation and activation of AhR by the accumulated uremic toxins in the progression of CKD accelerate renal senescence and fibrosis by suppressing mitochondrial biogenesis via promoting ubiquitination and proteasomal degradation of PGC1α.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Ninghao Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dali University, Dali, Yunnan, 671013, China
| | - Xi'ang Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jingyao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hengjiang Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Limin Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, 201102, China
| |
Collapse
|
10
|
Zeng SY, Liu YF, Zeng ZL, Zhao ZB, Yan XL, Zheng J, Chen WH, Wang ZX, Xie H, Liu JH. Antibiotic-induced gut microbiota disruption promotes vascular calcification by reducing short-chain fatty acid acetate. Mol Med 2024; 30:130. [PMID: 39182021 PMCID: PMC11344439 DOI: 10.1186/s10020-024-00900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Vascular calcification is a common vascular lesion associated with high morbidity and mortality from cardiovascular events. Antibiotics can disrupt the gut microbiota (GM) and have been shown to exacerbate or attenuate several human diseases. However, whether antibiotic-induced GM disruption affects vascular calcification remains unclear. METHODS Antibiotic cocktail (ABX) treatment was utilized to test the potential effects of antibiotics on vascular calcification. The effects of antibiotics on GM and serum short-chain fatty acids (SCFAs) in vascular calcification mice were analyzed using 16 S rRNA gene sequencing and targeted metabolomics, respectively. Further, the effects of acetate, propionate and butyrate on vascular calcification were evaluated. Finally, the potential mechanism by which acetate inhibits osteogenic transformation of VSMCs was explored by proteomics. RESULTS ABX and vancomycin exacerbated vascular calcification. 16 S rRNA gene sequencing and targeted metabolomics analyses showed that ABX and vancomycin treatments resulted in decreased abundance of Bacteroidetes in the fecal microbiota of the mice and decreased serum levels of SCFAs. In addition, supplementation with acetate was found to reduce calcium salt deposition in the aorta of mice and inhibit osteogenic transformation in VSMCs. Finally, using proteomics, we found that the inhibition of osteogenic transformation of VSMCs by acetate may be related to glutathione metabolism and ubiquitin-mediated proteolysis. After adding the glutathione inhibitor Buthionine sulfoximine (BSO) and the ubiquitination inhibitor MG132, we found that the inhibitory effect of acetate on VSMC osteogenic differentiation was weakened by the intervention of BSO, but MG132 had no effect. CONCLUSION ABX exacerbates vascular calcification, possibly by depleting the abundance of Bacteroidetes and SCFAs in the intestine. Supplementation with acetate has the potential to alleviate vascular calcification, which may be an important target for future treatment of vascular calcification.
Collapse
Affiliation(s)
- Shi-Yu Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yi-Fu Liu
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Zhao-Lin Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhi-Bo Zhao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xi-Lin Yan
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jie Zheng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wen-Hang Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Hunan Diabetes Clinical Medical Research Center, Hengyang, 421001, Hunan, China.
| |
Collapse
|
11
|
Dai Y, Junho CVC, Schieren L, Wollenhaupt J, Sluimer JC, van der Vorst EPC, Noels H. Cellular metabolism changes in atherosclerosis and the impact of comorbidities. Front Cell Dev Biol 2024; 12:1446964. [PMID: 39188527 PMCID: PMC11345199 DOI: 10.3389/fcell.2024.1446964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD. Therefore, we briefly review disease pathogenesis and the principles of cell metabolic pathways, before detailing changes in cellular metabolism in the context of atherosclerosis and comorbidities. In the hypoxic, inflammatory and hyperlipidemic milieu of the atherosclerotic plaque riddled with oxidative stress, metabolism shifts to increase anaerobic glycolysis, the pentose-phosphate pathway and amino acid use. We elaborate on metabolic changes for macrophages, neutrophils, vascular endothelial cells, vascular smooth muscle cells and lymphocytes in the context of atherosclerosis and its co-morbidities hypertension, dyslipidemia, and diabetes. Since causal relationships of specific key genes in a metabolic pathway can be cell type-specific and comorbidity-dependent, the impact of cell-specific metabolic changes must be thoroughly explored in vivo, with a focus on also systemic effects. When cell-specific treatments become feasible, this information will be crucial for determining the best metabolic intervention to improve atherosclerosis and its interplay with co-morbidities.
Collapse
Affiliation(s)
- Yusang Dai
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Physical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Luisa Schieren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
12
|
Shen X, Wu S, Yan J, Yan H, Zhou S, Weng H, Yang S, Li W. Prognostic implications of thyroid hormones in acute aortic dissection: mediating roles of renal function and coagulation. Front Endocrinol (Lausanne) 2024; 15:1387845. [PMID: 39157680 PMCID: PMC11327079 DOI: 10.3389/fendo.2024.1387845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Background Thyroid hormones significantly influence cardiovascular pathophysiology, yet their prognostic role in acute aortic dissection (AAD) remains inadequately explored. This study assesses the prognostic value of thyroid hormone levels in AAD, focusing on the mediating roles of renal function and coagulation. Methods We included 964 AAD patients in this retrospective cohort study. Utilizing logistic regression, restricted cubic splines, and causal mediation analysis, we investigated the association between thyroid hormones and in-hospital mortality and major adverse cardiovascular events (MACEs). Results In AAD patients overall, an increase of one standard deviation in FT4 levels was associated with a 31.9% increased risk of MACEs (OR 1.319; 95% CI 1.098-1.584) and a 36.1% increase in in-hospital mortality (OR 1.361; 95% CI 1.095-1.690). Conversely, a higher FT3/FT4 ratio was correlated with a 20.2% reduction in risk of MACEs (OR 0.798; 95% CI 0.637-0.999). This correlation was statistically significant predominantly in Type A AAD, while it did not hold statistical significance in Type B AAD. Key renal and coagulation biomarkers, including blood urea nitrogen, creatinine, cystatin C, prothrombin time ratio, prothrombin time, and prothrombin time international normalized ratio, were identified as significant mediators in the interplay between thyroid hormones and MACEs. The FT3/FT4 ratio exerted its prognostic influence primarily through the mediation of renal functions and coagulation, while FT4 levels predominantly impacted outcomes via a partial mediation effect on coagulation. Conclusion FT4 levels and the FT3/FT4 ratio are crucial prognostic biomarkers in AAD patients. Renal function and coagulation mediate the association between the thyroid hormones and MACEs.
Collapse
Affiliation(s)
- Xuejun Shen
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Shiwan Wu
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jingyi Yan
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Hongle Yan
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Shuyi Zhou
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Huozhen Weng
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Shengli Yang
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weiping Li
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
13
|
Noels H, Jankowski V, Schunk SJ, Vanholder R, Kalim S, Jankowski J. Post-translational modifications in kidney diseases and associated cardiovascular risk. Nat Rev Nephrol 2024; 20:495-512. [PMID: 38664592 DOI: 10.1038/s41581-024-00837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 07/21/2024]
Abstract
Patients with chronic kidney disease (CKD) are at an increased cardiovascular risk compared with the general population, which is driven, at least in part, by mechanisms that are uniquely associated with kidney disease. In CKD, increased levels of oxidative stress and uraemic retention solutes, including urea and advanced glycation end products, enhance non-enzymatic post-translational modification events, such as protein oxidation, glycation, carbamylation and guanidinylation. Alterations in enzymatic post-translational modifications such as glycosylation, ubiquitination, acetylation and methylation are also detected in CKD. Post-translational modifications can alter the structure and function of proteins and lipoprotein particles, thereby affecting cellular processes. In CKD, evidence suggests that post-translationally modified proteins can contribute to inflammation, oxidative stress and fibrosis, and induce vascular damage or prothrombotic effects, which might contribute to CKD progression and/or increase cardiovascular risk in patients with CKD. Consequently, post-translational protein modifications prevalent in CKD might be useful as diagnostic biomarkers and indicators of disease activity that could be used to guide and evaluate therapeutic interventions, in addition to providing potential novel therapeutic targets.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan J Schunk
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University, Homburg/Saar, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital, Ghent, Belgium
- European Kidney Health Alliance (EKHA), Brussels, Belgium
| | - Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
14
|
Liu HH, Wei W, Wu FF, Cao L, Yang BJ, Fu JN, Li JX, Liang XY, Dong HY, Heng YY, Zhang PF. Sodium tanshinone IIA sulfonate protects vascular relaxation in ApoE-knockout mice by inhibiting the SYK-NLRP3 inflammasome-MMP2/9 pathway. BMC Cardiovasc Disord 2024; 24:354. [PMID: 38992615 PMCID: PMC11241843 DOI: 10.1186/s12872-024-03990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.
Collapse
Affiliation(s)
- Hai-Hua Liu
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China
| | - Wei Wei
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China.
- Department of Pharmacology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China.
- Department of Clinical Center Laboratory, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China.
| | - Fei-Fei Wu
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China
| | - Lu Cao
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China
| | - Bing-Jie Yang
- Department of Stomatology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Jia-Ning Fu
- Department of Stomatology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Jing-Xia Li
- Department of Anesthesia, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Xin-Yue Liang
- Department of Medical Imageology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Hao-Yu Dong
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China
| | - Yan-Yan Heng
- Department of Nephrology Heping Hospital, Changzhi Medical College, No.110, Yanan Road South, Changzhi, 046000, Shanxi, China
| | - Peng-Fei Zhang
- Department of Nephrology Heping Hospital, Changzhi Medical College, No.110, Yanan Road South, Changzhi, 046000, Shanxi, China
| |
Collapse
|
15
|
Sun X, Jia X, Tan Z, Fan D, Chen M, Cui N, Liu A, Liu D. Oral Nanoformulations in Cardiovascular Medicine: Advances in Atherosclerosis Treatment. Pharmaceuticals (Basel) 2024; 17:919. [PMID: 39065770 PMCID: PMC11279631 DOI: 10.3390/ph17070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerosis (AS) is the formation of atherosclerotic plaques on the walls of the arteries, causing them to narrow. If this occurs in the coronary arteries, the blood vessels may be completely blocked, resulting in myocardial infarction; if it occurs in the blood vessels of the brain, the blood vessels may be blocked, resulting in cerebral infarction, i.e., stroke. Studies have shown that the pathogenesis of atherosclerosis involves the processes of inflammation, lipid infiltration, oxidative stress, and endothelial damage, etc. SIRT, as a key factor regulating the molecular mechanisms of oxidative stress, inflammation, and aging, has an important impact on the pathogenesis of plaque formation, progression, and vulnerability. Statistics show that AS accounts for about 50 per cent of deaths in Western countries. Currently, oral medication is the mainstay of AS treatment, but its development is limited by side effects, low bioavailability and other unfavourable factors. In recent years, with the rapid development of nano-preparations, researchers have combined statins and natural product drugs within nanopreparations to improve their bioavailability. Based on this, this paper summarises the main pathogenesis of AS and also proposes new oral nanoformulations such as liposomes, nanoparticles, nanoemulsions, and nanocapsules to improve their application in the treatment of AS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aidong Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| |
Collapse
|
16
|
Hao QY, Zeng YH, Lin Y, Guo JB, Li SC, Yang PZ, Gao JW, Li ZH. Observational and genetic association of non-alcoholic fatty liver disease and calcific aortic valve disease. Front Endocrinol (Lausanne) 2024; 15:1421642. [PMID: 39045267 PMCID: PMC11263017 DOI: 10.3389/fendo.2024.1421642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) has emerged as a predominant driver of chronic liver disease globally and is associated with increased cardiovascular disease morbidity and mortality. However, the association between NAFLD and calcific aortic valve disease remains unclear. We aimed to prospectively investigate the association between NAFLD and incident aortic valve calcification (AVC), as well as its genetic relationship with incident calcific aortic valve stenosis (CAVS). Methods A post hoc analysis was conducted on 4226 participants from the Multi-Ethnic Study of Atherosclerosis (MESA) database. We employed the adjusted Cox models to assess the observational association between NAFLD and incident AVC. Additionally, we conducted two-sample Mendelian randomization (MR) analyses to investigate the genetic association between genetically predicted NAFLD and calcific aortic valve stenosis (CAVS), a severe form of CAVD. We repeated the MR analyses by excluding NAFLD susceptibility genes linked to impaired very low-density lipoprotein (VLDL) secretion. Results After adjustment for potential risk factors, participants with NAFLD had a hazard ratio of 1.58 (95% CI: 1.03-2.43) for incident AVC compared to those without NAFLD. After excluding genes associated with impaired VLDL secretion, the MR analyses consistently showed the significant associations between genetically predicted NAFLD and CAVS for 3 traits: chronic elevation of alanine aminotransferase (odds ratio = 1.13 [95% CI: 1.01-1.25]), imaging-based NAFLD (odds ratio = 2.81 [95% CI: 1.66-4.76]), and biopsy-confirmed NAFLD (odds ratio = 1.12 [95% CI: 1.01-1.24]). However, the association became non-significant when considering all NAFLD susceptibility genes. Conclusions NAFLD was independently associated with an elevated risk of incident AVC. Genetically predicted NAFLD was also associated with CAVS after excluding genetic variants related to impaired VLDL secretion.
Collapse
Affiliation(s)
- Qing-Yun Hao
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Hong Zeng
- Medical Apparatus and Equipment Deployment, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Lin
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Bin Guo
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shi-Chao Li
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ping-Zhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Wei Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Hua Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Lin YH, Lin MH, Shi CS, Lin YS, Lin CL, Yang YH, Liao YS, Chen MY, Tsai MH, Lin MS. The impact of fetuin-A on predicting aortic arch calcification: secondary analysis of a community-based survey. Front Cardiovasc Med 2024; 11:1415438. [PMID: 39040998 PMCID: PMC11260669 DOI: 10.3389/fcvm.2024.1415438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Atherosclerotic cardiovascular disease is associated with a high mortality rate due to vascular calcification. The role of fetuin-A in aortic arch calcification (AAC) is less well understood. Methods An analysis of secondary biomarkers was performed on 800 individuals from the biobank using the community database. AAC was defined by radiologists based on imaging. Multiple variables logical analysis was used for risk analysis. Results A total of 736 individual samples were collected based on age and gender. The average age is 65 ± 10 years, and half the population comprises men. In spite of similar body weight, renal function, and hepatic function, the AAC group had higher blood pressure and fetuin-A levels independently: systolic blood pressure (SBP) index ≥130 mmHg [adjusted odds ratio (aOR) 1.85, 95% confidence interval (CI) 1.34-2.57, p = 0.002] and fetuin-A (aOR 0.62, 95% CI 0.50-0.76, p < 0.001). Moreover, it is evident that AAC can be predicted more accurately when combined with SBP ≥130 mmHg and a low fetuin-A level (<358 μg/ml: aOR 5.39, 95% CI 3.21-9.08) compared with the reference. Conclusion Low fetuin-A levels are significantly correlated with AAC while there is an increased association between vascular calcification and coexisting hypertension.
Collapse
Affiliation(s)
- Yi-Hung Lin
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Meng-Hung Lin
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sheng Lin
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Liang Lin
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Yao-Hsu Yang
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-San Liao
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Mei-Yen Chen
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Nursing, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Horng Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin, Taiwan
| | - Ming-Shyan Lin
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
| |
Collapse
|
18
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
19
|
Tan M, Wang J, Chen Z, Xie X. Exploring global research trends in Chinese medicine for atherosclerosis: a bibliometric study 2012-2023. Front Cardiovasc Med 2024; 11:1400130. [PMID: 38952541 PMCID: PMC11216286 DOI: 10.3389/fcvm.2024.1400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024] Open
Abstract
Background While Traditional Chinese Medicine (TCM) boasts an extensive historical lineage and abundant clinical expertise in addressing atherosclerosis, this field is yet to be penetrated adequately by bibliometric studies. This study is envisaged to evaluate the contemporary scenario of TCM in conjunction with atherosclerosis over the preceding decade while also identifying forthcoming research trends and emerging topics via the lens of bibliometric analysis. Methods Literature pertaining to TCM and atherosclerosis, circulated between January 1, 2012 and November 14, 2023, was garnered for the purpose of this research. The examination embraced annual publications, primary countries/regions, engaged institutions and authors, scholarly journals, references, and keywords, utilizing analytical tools like Bibliometrix, CiteSpace, ScimagoGraphica, and VOSviewer present in the R package. Result This field boasts a total of 1,623 scholarly articles, the majority of which have been contributed by China in this field, with significant contributions stemming from the China Academy of Traditional Chinese Medicine and the Beijing University of Traditional Chinese Medicine. Moreover, this field has received financial support from both the National Natural Science Foundation of China and the National Key Basic Research Development Program. Wang Yong tops the list in terms of publication count, while Xu Hao's articles take the lead for the total number of citations, positioning them at the core of the authors' collaborative network. The Journal of Ethnopharmacology leads with the most publications and boasts the greatest total number of citations. Principal research foci within the intersection of Chinese Medicine and Atherosclerosis encompass disease characteristics and pathogenic mechanisms, theoretical underpinnings and syndrome-specific treatments in Chinese medicine, potentialities of herbal interventions, and modulation exerted by Chinese medicines on gut microbiota. Conclusion This analysis offers a sweeping survey of the contemporary condition, principal foci, and progressive trends in worldwide research related to Traditional Chinese Medicine (TCM) and atherosclerosis. It further delves into an in-depth dissection of prominent countries, research institutions, and scholars that have made noteworthy strides in this discipline. Additionally, the report analyzes the most cited articles, research developments, and hotspots in the field, providing a reference for future research directions for clinical researchers and practitioners.
Collapse
Affiliation(s)
- Moye Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jiuyuan Wang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhengxin Chen
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
20
|
Li X, Li Q, Wang L, Ding H, Wang Y, Liu Y, Gong T. The interaction between oral microbiota and gut microbiota in atherosclerosis. Front Cardiovasc Med 2024; 11:1406220. [PMID: 38932989 PMCID: PMC11199871 DOI: 10.3389/fcvm.2024.1406220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis (AS) is a complex disease caused by multiple pathological factors threatening human health-the pathogenesis is yet to be fully elucidated. In recent years, studies have exhibited that the onset of AS is closely involved with oral and gut microbiota, which may initiate or worsen atherosclerotic processes through several mechanisms. As for how the two microbiomes affect AS, existing mechanisms include invading plaque, producing active metabolites, releasing lipopolysaccharide (LPS), and inducing elevated levels of inflammatory mediators. Considering the possible profound connection between oral and gut microbiota, the effect of the interaction between the two microbiomes on the initiation and progression of AS has been investigated. Findings are oral microbiota can lead to gut dysbiosis, and exacerbate intestinal inflammation. Nevertheless, relevant research is not commendably refined and a concrete review is needed. Hence, in this review, we summarize the most recent mechanisms of the oral microbiota and gut microbiota on AS, illustrate an overview of the current clinical and epidemiological evidence to support the bidirectional connection between the two microbiomes and AS.
Collapse
Affiliation(s)
- Xinsi Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Qian Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Li Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Huifen Ding
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yizhong Wang
- Department of Research & Development, Zhejiang Charioteer Pharmaceutical Co., Ltd, Taizhou, China
| | - Yunfei Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Gong
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Kang T, Zhu L, Xue Y, Yang Q, Lei Q, Wang Q. Overexpression of olfactory receptor 78 ameliorates brain injury in cerebral ischaemia-reperfusion rats by activating Prkaca-mediated cAMP/PKA-MAPK pathway. J Cell Mol Med 2024; 28:e18366. [PMID: 38856956 PMCID: PMC11163950 DOI: 10.1111/jcmm.18366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Ischemic stroke is one of the main causes of disability and death. However, recanalization of occluded cerebral arteries is effective only within a very narrow time window. Therefore, it is particularly important to find neuroprotective biological targets for cerebral artery recanalization. Here, gene expression profiles of datasets GSE160500 and GSE97537 were downloaded from the GEO database, which were related to ischemic stroke in rats. Olfactory receptor 78 (Olfr78) was screened, and which highly associated with Calcium signalling pathway and MAPK pathway. Interacting protein of Olfr78, Prkaca, was predicted by STRING, and their interaction was validated by Co-IP analysis. Then, a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a neuronal cell model stimulated by oxygen-glucose deprivation/reoxygenation (OGD/R) were constructed, and the results showed that expression of Olfr78 and Prkaca was downregulated in MCAO rats and OGD/R-stimulated neurons. Overexpression of Olfr78 or Prkaca inhibited the secretion of inflammatory factors, Ca2+ overload, and OGD/R-induced neuronal apoptosis. Moreover, Overexpression of Prkaca increased protein levels of cAMP, PKA and phosphorylated p38 in OGD/R-stimulated neurons, while SB203580, a p38 inhibitor, treatment inhibited activation of the cAMP/PKA-MAPK pathway and counteracted the effect of Olfr78 overexpression on improvement of neuronal functions. Meanwhile, overexpression of Olfr78 or Prkaca markedly inhibited neuronal apoptosis and improved brain injury in MCAO/R rats. In conclusion, overexpression of Olfr78 inhibited Ca2+ overload and reduced neuronal apoptosis in MCAO/R rats by promoting Prkaca-mediated activation of the cAMP/PKA-MAPK pathway, thereby improving brain injury in cerebral ischaemia-reperfusion.
Collapse
Affiliation(s)
- Tao Kang
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Lijuan Zhu
- Department of AnesthesiaShaanxi Provincial People's HospitalXi'anChina
| | - Yanli Xue
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Qian Yang
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Qi Lei
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Qianqian Wang
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
22
|
Yang Y, Liu X, Liu X, Xie C, Shi J. The role of the kynurenine pathway in cardiovascular disease. Front Cardiovasc Med 2024; 11:1406856. [PMID: 38883986 PMCID: PMC11176437 DOI: 10.3389/fcvm.2024.1406856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
The kynurenine pathway (KP) serves as the primary route for tryptophan metabolism in most mammalian organisms, with its downstream metabolites actively involved in various physiological and pathological processes. Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) serve as the initial and pivotal enzymes of the KP, with IDO playing important and intricate roles in cardiovascular diseases. Multiple metabolites of KP have been observed to exhibit elevated concentrations in plasma across various cardiovascular diseases, such as atherosclerosis, hypertension, and acute myocardial infarction. Multiple studies have indicated that kynurenine (KYN) may serve as a potential biomarker for several adverse cardiovascular events. Furthermore, Kynurenine and its downstream metabolites have complex roles in inflammation, exhibiting both inhibitory and stimulatory effects on inflammatory responses under different conditions. In atherosclerosis, upregulation of IDO stimulates KYN production, mediating aromatic hydrocarbon receptor (AhR)-induced exacerbation of vascular inflammation and promotion of foam cell formation. Conversely, in arterial calcification, this mediation alleviates osteogenic differentiation of vascular smooth muscle cells. Additionally, in cardiac remodeling, KYN-mediated AhR activation exacerbates pathological left ventricular hypertrophy and fibrosis. Interventions targeting components of the KP, such as IDO inhibitors, 3-hydroxyanthranilic acid, and anthranilic acid, demonstrate cardiovascular protective effects. This review outlines the mechanistic roles of KP in coronary atherosclerosis, arterial calcification, and myocardial diseases, highlighting the potential diagnostic, prognostic, and therapeutic value of KP in cardiovascular diseases, thus providing novel insights for the development and application of related drugs in future research.
Collapse
Affiliation(s)
- Yuehang Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chiyang Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Xin Y, Zhang Z, Lv S, Xu S, Liu A, Li H, Li P, Han H, Liu Y. Elucidating VSMC phenotypic transition mechanisms to bridge insights into cardiovascular disease implications. Front Cardiovasc Med 2024; 11:1400780. [PMID: 38803664 PMCID: PMC11128571 DOI: 10.3389/fcvm.2024.1400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, despite advances in understanding cardiovascular health. Significant barriers still exist in effectively preventing and managing these diseases. Vascular smooth muscle cells (VSMCs) are crucial for maintaining vascular integrity and can switch between contractile and synthetic functions in response to stimuli such as hypoxia and inflammation. These transformations play a pivotal role in the progression of cardiovascular diseases, facilitating vascular modifications and disease advancement. This article synthesizes the current understanding of the mechanisms and signaling pathways regulating VSMC phenotypic transitions, highlighting their potential as therapeutic targets in cardiovascular disease interventions.
Collapse
Affiliation(s)
- Yuning Xin
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zipei Zhang
- Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Shan Lv
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shan Xu
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Aidong Liu
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Li
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Pengfei Li
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Huize Han
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghui Liu
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
24
|
Liu Y, Kong Y, Yan Y, Hui P. Explore the value of carotid ultrasound radiomics nomogram in predicting ischemic stroke risk in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1357580. [PMID: 38706699 PMCID: PMC11066235 DOI: 10.3389/fendo.2024.1357580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background and objective Type 2 Diabetes Mellitus (T2DM) with insulin resistance (IR) is prone to damage the vascular endothelial, leading to the formation of vulnerable carotid plaques and increasing ischemic stroke (IS) risk. The purpose of this study is to develop a nomogram model based on carotid ultrasound radiomics for predicting IS risk in T2DM patients. Methods 198 T2DM patients were enrolled and separated into study and control groups based on IS history. After manually delineating carotid plaque region of interest (ROI) from images, radiomics features were identified and selected using the least absolute shrinkage and selection operator (LASSO) regression to calculate the radiomics score (RS). A combinatorial logistic machine learning model and nomograms were created using RS and clinical features like the triglyceride-glucose index. The three models were assessed using area under curve (AUC) and decision curve analysis (DCA). Results Patients were divided into the training set and the testing set by the ratio of 0.7. 4 radiomics features were selected. RS and clinical variables were all statically significant in the training set and were used to create a combination model and a prediction nomogram. The combination model (radiomics + clinical nomogram) had the largest AUC in both the training set and the testing set (0.898 and 0.857), and DCA analysis showed that it had a higher overall net benefit compared to the other models. Conclusions This study created a carotid ultrasound radiomics machine-learning-based IS risk nomogram for T2DM patients with carotid plaques. Its diagnostic performance and clinical prediction capabilities enable accurate, convenient, and customized medical care.
Collapse
Affiliation(s)
| | | | | | - Pinjing Hui
- Department of Stroke Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
25
|
Watanabe R, Saito Y, Tokimasa S, Takaoka H, Kitahara H, Yamanouchi M, Kobayashi Y. Diagnostic Ability of Manual Calcification Length Assessment on Non-Electrocardiographically Gated Computed Tomography for Estimating the Presence of Coronary Artery Disease. J Clin Med 2024; 13:2255. [PMID: 38673528 PMCID: PMC11051080 DOI: 10.3390/jcm13082255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Coronary artery calcification score (CACS) on electrocardiography (ECG)-gated computed tomography (CT) is used for risk stratification of atherosclerotic cardiovascular disease, which requires dedicated analytic software. In this study, we evaluated the diagnostic ability of manual calcification length assessment on non-ECG-gated CT for epicardial coronary artery disease (CAD). Methods: A total of 100 patients undergoing both non-ECG-gated plain CT scans with a slice interval of 1.25 mm and invasive coronary angiography were retrospectively included. We manually measured the length of the longest calcified lesions of coronary arteries on each branch. The relationship between the number of coronary arteries with the length of coronary calcium > 5, 10, or 15 mm and the presence of epicardial CAD on invasive angiography was evaluated. Standard CACS was also evaluated using established software. Results: Of 100 patients, 49 (49.0%) had significant epicardial CAD on angiography. The median standard CACS was 346 [7, 1965]. In both manual calcium assessment and standard CACS, the increase in calcium burden was progressively associated with the presence of epicardial CAD on angiography. The receiver operating characteristic curve analysis showed similar diagnostic abilities of the two diagnostic methods. The best cut-off values for CAD were 2, 1, and 1 for the number of vessels with calcium > 5, 10, and 15 mm, respectively. Overall, the diagnostic ability of manual calcium assessment was similar to that of standard CACS > 400. Conclusions: Manual assessment of coronary calcium length on non-ECG-gated plain CT provided similar diagnostic ability for the presence of significant epicardial CAD on invasive angiography, as compared to standard CACS.
Collapse
Affiliation(s)
- Ryota Watanabe
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan; (R.W.); (H.T.); (H.K.); (Y.K.)
- Department of Cardiology, Chiba Rosai Hospital, Ichihara 290-0003, Chiba, Japan; (S.T.); (M.Y.)
| | - Yuichi Saito
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan; (R.W.); (H.T.); (H.K.); (Y.K.)
| | - Satoshi Tokimasa
- Department of Cardiology, Chiba Rosai Hospital, Ichihara 290-0003, Chiba, Japan; (S.T.); (M.Y.)
| | - Hiroyuki Takaoka
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan; (R.W.); (H.T.); (H.K.); (Y.K.)
| | - Hideki Kitahara
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan; (R.W.); (H.T.); (H.K.); (Y.K.)
| | - Masato Yamanouchi
- Department of Cardiology, Chiba Rosai Hospital, Ichihara 290-0003, Chiba, Japan; (S.T.); (M.Y.)
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan; (R.W.); (H.T.); (H.K.); (Y.K.)
| |
Collapse
|
26
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
27
|
Ye X, Zhang G, Han C, Wang P, Lu J, Zhang M. The association between Chinese visceral adiposity index and cardiometabolic multimorbidity among Chinese middle-aged and older adults: a national cohort study. Front Endocrinol (Lausanne) 2024; 15:1381949. [PMID: 38601202 PMCID: PMC11004471 DOI: 10.3389/fendo.2024.1381949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Objective This study aimed to explore the association between the Chinese visceral adiposity index (CVAI) and cardiometabolic multimorbidity in middle-aged and older Chinese adults. Methods The data used in this study were obtained from a national cohort, the China Health and Retirement Longitudinal Study (CHARLS, 2011-2018 wave). The CVAI was measured using previously validated biomarker estimation formulas, which included sex, age, body mass index, waist circumference, triglycerides, and high-density lipoprotein cholesterol. The presence of two or more of these cardiometabolic diseases (diabetes, heart disease, and stroke) is considered as cardiometabolic multimorbidity. We used Cox proportional hazard regression models to examine the association between CVAI and cardiometabolic multimorbidity, adjusting for a set of covariates. Hazard ratios (HRs) and 95% confidence intervals (CIs) were used to show the strength of the associations. We also conducted a subgroup analysis between age and sex, as well as two sensitivity analyses. Receiver operator characteristic curves (ROC) were used to test the predictive capabilities and cutoff value of the CVAI for cardiometabolic multimorbidity. Results A total of 9028 participants were included in the final analysis, with a mean age of 59.3 years (standard deviation: 9.3) and women accounting for 53.7% of the sample population. In the fully-adjusted model, compared with participants in the Q1 of CVAI, the Q3 (HR = 2.203, 95% CI = 1.039 - 3.774) and Q4 of CVAI (HR = 3.547, 95% CI = 2.100 - 5.992) were associated with an increased risk of cardiometabolic multimorbidity. There was no evidence of an interaction between the CVAI quartiles and sex or age in association with cardiometabolic multimorbidity (P >0.05). The results of both sensitivity analyses suggested that the association between CVAI and cardiometabolic multimorbidity was robust. In addition, the area under ROC and ideal cutoff value for CVAI prediction of cardiometabolic multimorbidity were 0.685 (95% CI = 0.649-0.722) and 121.388. Conclusion The CVAI is a valid biomarker with good predictive capability for cardiometabolic multimorbidity and can be used by primary healthcare organizations in the future for early warning, prevention, and intervention with regard to cardiometabolic multimorbidity.
Collapse
Affiliation(s)
- Xiaomei Ye
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Guangru Zhang
- Department of General Practice, Community Health Service Center Xiayang Street, Shanghai, China
| | - Chenyu Han
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ping Wang
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jiaping Lu
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Min Zhang
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
28
|
Li Y, Jie W, Qi Y, Mo M, Lian Y, Yin L, Huang H. Inhibition of RIPK1 alleviating vascular smooth muscle cells osteogenic transdifferentiation via Runx2. iScience 2024; 27:108766. [PMID: 38318355 PMCID: PMC10839642 DOI: 10.1016/j.isci.2023.108766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 12/18/2023] [Indexed: 02/07/2024] Open
Abstract
Vascular calcification (VC) is recognized as a crucial risk factor for cardiovascular diseases. Our previous report revealed that the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) plays a role in this process. However, the underlying molecular mechanisms remain elusive. Notably, receptor-interacting protein kinase 1 (RIPK1) has been implicated in the development of cardiovascular diseases, yet its role and mechanisms in VC remain unexplored. To address this gap, we established models using chronic kidney disease mice and calcifying VSMCs to investigate the impact of RIPK1 on VC. Subsequently, a RIPK1-specific inhibitor (NEC-1) was applied in both in vitro and in vivo models. Our findings indicate significant activation of RIPK1 in calcified human arterial tissue, as well as in animal and cellular models. RIPK1 activation promotes the osteogenic transdifferentiation of VSMCs. Treatment with the NEC-1 substantially reduced VC. These results demonstrate that RIPK1 is a target for preventing VC.
Collapse
Affiliation(s)
- Yue Li
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Wei Jie
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yanli Qi
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Mingxing Mo
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yaxin Lian
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Li Yin
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Hui Huang
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
29
|
Wang HL, Narisawa M, Wu P, Meng X, Cheng XW. The many roles of cathepsins in restenosis. Heliyon 2024; 10:e24720. [PMID: 38333869 PMCID: PMC10850908 DOI: 10.1016/j.heliyon.2024.e24720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Drug-eluting stents (DES) and dual antiplatelet regimens have significantly improved the clinical management of ischemic heart disease; however, the drugs loaded with DES in clinical practice are mostly paclitaxel or rapamycin derivatives, which target symptoms of post implantation proliferation and inflammation, leading to delayed re-endothelialization and neo-atherosclerosis. Along with the treatments already in place, there is a need for novel strategies to lessen the negative clinical outcomes of DES delays as well as a need for greater understanding of their pathobiological mechanisms. This review concentrates on the function of cathepsins (Cats) in the inflammatory response and granulation tissue formation that follow Cat-induced damage to the vasculature scaffold, as well as the functions of Cats in intimal hyperplasia, which is characterized by the migration and proliferation of smooth muscle cells, and endothelial denudation, re-endothelialization, and/or neo-endothelialization. Additionally, Cats can alter essential neointima formation and immune response inside scaffolds, and if Cats are properly controlled in vivo, they may improve scaffold biocompatibility. This unique profile of functions could lead to an original concept for a cathepsin-based coronary intervention treatment as an adjunct to stent placement.
Collapse
Affiliation(s)
- Hai Long Wang
- Department of Adult Intensive Care Unit, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4668550, Japan
| | - Pan Wu
- Department of Adult Intensive Care Unit, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiangkun Meng
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, PR China
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, PR China
| |
Collapse
|
30
|
Huang A, Xu T, Lu X, Ma L, Ma H, Yu Y, Yao L. Shh-Gli2-Runx2 inhibits vascular calcification. Nephrol Dial Transplant 2024; 39:305-316. [PMID: 37451818 DOI: 10.1093/ndt/gfad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND In patients with chronic kidney disease (CKD), vascular calcification (VC) is common and is associated with a higher risk of all-cause mortality. Shh, one ligand for Hedgehog (Hh) signaling, participates in osteogenesis and several cardiovascular diseases. However, it remains unclear whether Shh is implicated in the development of VC. METHODS Inorganic phosphorus 2.6 mM was used to induce vascular smooth muscle cells (VSMCs) calcification. Mice were fed with adenine diet supplement with 1.2% phosphorus to induce VC. RESULTS Shh was decreased in VSMCs exposed to inorganic phosphorus, calcified arteries in mice fed with an adenine diet, as well as radial arteries from patients with CKD presenting VC. Overexpression of Shh inhibited VSMCs ostosteoblastic differentiation and calcification, whereas its silencing accelerated these processes. Likewise, mice treated with smoothened agonist (SAG; Hh signaling agonist) showed alleviated VC, and mice treated with cyclopamine (CPN; Hh signaling antagonist) exhibited severe VC. Additionally, overexpression of Gli2 significantly reversed the pro-calcification effect of Shh silencing on VSMCs, suggesting that Shh inhibited VC via Gli2. Mechanistically, Gli2 interacted with Runx2 and promoted its ubiquitin proteasomal degradation, therefore protecting against VC. Of interest, the pro-degradation effect of Gli2 on Runx2 was independent of Smurf1 and Cullin4B. CONCLUSIONS Our study provided deeper insight to the pathogenesis of VC, and Shh might be a novel potential target for VC treatment.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaomei Lu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ling Ma
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Haiying Ma
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Shenyang Engineering Technology R&D Center of Cell Therapy Co. Ltd, Shenyang, China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Li X, Liu A, Xie C, Chen Y, Zeng K, Xie C, Zhang Z, Luo P, Huang H. The transcription factor GATA6 accelerates vascular smooth muscle cell senescence-related arterial calcification by counteracting the role of anti-aging factor SIRT6 and impeding DNA damage repair. Kidney Int 2024; 105:115-131. [PMID: 37914087 DOI: 10.1016/j.kint.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Arterial calcification is a hallmark of vascular pathology in the elderly and in individuals with chronic kidney disease (CKD). Vascular smooth muscle cells (VSMCs), after attaining a senescent phenotype, are implicated in the calcifying process. However, the underlying mechanism remains to be elucidated. Here, we reveal an aberrant upregulation of transcriptional factor GATA6 in the calcified aortas of humans, mice with CKD and mice subjected to vitamin D3 injection. Knockdown of GATA6, via recombinant adeno-associated virus carrying GATA6 shRNA, inhibited the development of arterial calcification in mice with CKD. Further gain- and loss-of function experiments in vitro verified the contribution of GATA6 in osteogenic differentiation of VSMCs. Samples of human aorta exhibited a positive relationship between age and GATA6 expression and GATA6 was also elevated in the aortas of old as compared to young mice. Calcified aortas displayed senescent features with VSMCs undergoing premature senescence, blunted by GATA6 downregulation. Notably, abnormal induction of GATA6 in senescent and calcified aortas was rescued in Sirtuin 6 (SIRT6)-transgenic mice, a well-established longevity mouse model. Suppression of GATA6 accounted for the favorable effect of SIRT6 on VSMCs senescence prevention. Mechanistically, SIRT6 inhibited the transcription of GATA6 by deacetylation and increased degradation of transcription factor Nkx2.5. Moreover, GATA6 was induced by DNA damage stress during arterial calcification and subsequently impeded the Ataxia-telangiectasia mutated (ATM)-mediated DNA damage repair process, leading to accelerated VSMCs senescence and osteogenic differentiation. Thus, GATA6 is a novel regulator in VSMCs senescence. Our findings provide novel insight in arterial calcification and a potential new target for intervention.
Collapse
Affiliation(s)
- Xiaoxue Li
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Aiting Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Chen Xie
- Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yanlian Chen
- Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Kuan Zeng
- Department of Cardiac Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changming Xie
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Zhengzhipeng Zhang
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
32
|
Russo MA, Garaci E, Frustaci A, Fini M, Costantini C, Oikonomou V, Nunzi E, Puccetti P, Romani L. Host-microbe tryptophan partitioning in cardiovascular diseases. Pharmacol Res 2023; 198:106994. [PMID: 37972721 DOI: 10.1016/j.phrs.2023.106994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The functional interdependencies between the molecular components of a biological process demand for a network medicine platform that integrates systems biology and network science, to explore the interactions among biological components in health and disease. Access to large-scale omics datasets (genomics, transcriptomics, proteomics, metabolomics, metagenomics, phenomics, etc.) has significantly advanced our opportunity along this direction. Studies utilizing these techniques have begun to provide us with a deeper understanding of how the interaction between the intestinal microbes and their host affects the cardiovascular system in health and disease. Within the framework of a multiomics network approach, we highlight here how tryptophan metabolism may orchestrate the host-microbes interaction in cardiovascular diseases and the implications for precision medicine and therapeutics, including nutritional interventions.
Collapse
Affiliation(s)
- Matteo Antonio Russo
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Enrico Garaci
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Andrea Frustaci
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Massimo Fini
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Vasileios Oikonomou
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Luigina Romani
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy; Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy.
| |
Collapse
|
33
|
Liu A, Chen Z, Li X, Xie C, Chen Y, Su X, Chen Y, Zhang M, Chen J, Yang T, Shen J, Huang H. C5a-C5aR1 induces endoplasmic reticulum stress to accelerate vascular calcification via PERK-eIF2α-ATF4-CREB3L1 pathway. Cardiovasc Res 2023; 119:2563-2578. [PMID: 37603848 DOI: 10.1093/cvr/cvad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 08/23/2023] Open
Abstract
AIMS Vascular calcification (VC) predicts the morbidity and mortality in cardiovascular diseases. Vascular smooth muscle cells (VSMCs) osteogenic transdifferentiation is the crucial pathological basis for VC. To date, the molecular pathogenesis is still largely unclear. Notably, C5a-C5aR1 contributes to the development of cardiovascular diseases, and its closely related to physiological bone mineralization which is similar to VSMCs osteogenic transdifferentiation. However, the role and underlying mechanisms of C5a-C5aR1 in VC remain unexplored. METHODS AND RESULTS A cross-sectional clinical study was utilized to examine the association between C5a and VC. Chronic kidney diseases mice and calcifying VSMCs models were established to investigate the effect of C5a-C5aR1 in VC, evaluated by changes in calcium deposition and osteogenic markers. The cross-sectional study identified that high level of C5a was associated with increased risk of VC. C5a dose-responsively accelerated VSMCs osteogenic transdifferentiation accompanying with increased the expression of C5aR1. Meanwhile, the antagonists of C5aR1, PMX 53, reduced calcium deposition, and osteogenic transdifferentiation both in vivo and in vitro. Mechanistically, C5a-C5aR1 induced endoplasmic reticulum (ER) stress and then activated PERK-eIF2α-ATF4 pathway to accelerated VSMCs osteogenic transdifferentiation. In addition, cAMP-response element-binding protein 3-like 1 (CREB3L1) was a key downstream mediator of PERK-eIF2α-ATF4 pathway which accelerated VSMCs osteogenic transdifferentiation by promoting the expression of COL1α1. CONCLUSIONS High level of C5a was associated with increased risk of VC, and it accelerated VC by activating the receptor C5aR1. PERK-eIF2α-ATF4-CREB3L1 pathway of ER stress was activated by C5a-C5aR1, hence promoting VSMCs osteogenic transdifferentiation. Targeting C5 or C5aR1 may be an appealing therapeutic target for VC.
Collapse
Affiliation(s)
- Aiting Liu
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shennan Middle Rd, Shenzhen, 518000, China
| | - Zhenwei Chen
- Department of Nephrology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Xiaoxue Li
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shennan Middle Rd, Shenzhen, 518000, China
| | - Chen Xie
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shennan Middle Rd, Shenzhen, 518000, China
| | - Yanlian Chen
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shennan Middle Rd, Shenzhen, 518000, China
| | - Xiaoyan Su
- Department of Nephropathy, Tungwah Hospital of Sun Yat-Sen University, Dongguan, 523000, China
| | - Ying Chen
- Department of Nephropathy, Tungwah Hospital of Sun Yat-Sen University, Dongguan, 523000, China
| | - Mengbi Zhang
- Department of Nephropathy, Tungwah Hospital of Sun Yat-Sen University, Dongguan, 523000, China
| | - Jie Chen
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Tiecheng Yang
- Department of Nephrology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
| | - Hui Huang
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shennan Middle Rd, Shenzhen, 518000, China
| |
Collapse
|
34
|
Yang S, Zeng Z, Yuan Q, Chen Q, Wang Z, Xie H, Liu J. Vascular calcification: from the perspective of crosstalk. MOLECULAR BIOMEDICINE 2023; 4:35. [PMID: 37851172 PMCID: PMC10584806 DOI: 10.1186/s43556-023-00146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Vascular calcification (VC) is highly correlated with cardiovascular disease morbidity and mortality, but anti-VC treatment remains an area to be tackled due to the ill-defined molecular mechanisms. Regardless of the type of VC, it does not depend on a single cell but involves multi-cells/organs to form a complex cellular communication network through the vascular microenvironment to participate in the occurrence and development of VC. Therefore, focusing only on the direct effect of pathological factors on vascular smooth muscle cells (VSMCs) tends to overlook the combined effect of other cells and VSMCs, including VSMCs-VSMCs, ECs-VMSCs, Macrophages-VSMCs, etc. Extracellular vesicles (EVs) are a collective term for tiny vesicles with a membrane structure that are actively secreted by cells, and almost all cells secrete EVs. EVs docked on the surface of receptor cells can directly mediate signal transduction or transfer their contents into the cell to elicit a functional response from the receptor cells. They have been proven to participate in the VC process and have also shown attractive therapeutic prospects. Based on the advantages of EVs and the ability to be detected in body fluids, they may become a novel therapeutic agent, drug delivery vehicle, diagnostic and prognostic biomarker, and potential therapeutic target in the future. This review focuses on the new insight into VC molecular mechanisms from the perspective of crosstalk, summarizes how multi-cells/organs interactions communicate via EVs to regulate VC and the emerging potential of EVs as therapeutic methods in VC. We also summarize preclinical experiments on crosstalk-based and the current state of clinical studies on VC-related measures.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Chen
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
35
|
Wang Y, Song J, Yu K, Nie D, Zhao C, Jiao L, Wang Z, Zhou L, Wang F, Yu Q, Zhang S, Wen Z, Wu J, Wang CY, Wang DW, Cheng J, Zhao C. Indoleamine 2,3-Dioxygenase 1 Deletion-Mediated Kynurenine Insufficiency Inhibits Pathological Cardiac Hypertrophy. Hypertension 2023; 80:2099-2111. [PMID: 37485661 DOI: 10.1161/hypertensionaha.122.20809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Aberrant amino acid metabolism is implicated in cardiac hypertrophy, while the involvement of tryptophan metabolism in pathological cardiac hypertrophy remains elusive. Herein, we aimed to investigate the effect and potential mechanism of IDO1 (indoleamine 2,3-dioxygenase) and its metabolite kynurenine (Kyn) on pathological cardiac hypertrophy. METHODS Transverse aortic constriction was performed to induce cardiac hypertrophy in IDO1-knockout (KO) mice and AAV9-cTNT-shIDO1 mice. Liquid chromatography-mass spectrometry was used to detect the metabolites of tryptophan-Kyn pathway. Chromatin immunoprecipitation assay and dual luciferase assay were used to validate the binding of protein and DNA. RESULTS IDO1 expression was upregulated in both human and murine hypertrophic myocardium, alongside with increased IDO1 activity and Kyn content in transverse aortic constriction-induced mice's hearts using liquid chromatography-mass spectrometry analysis. Myocardial remodeling and heart function were significantly improved in transverse aortic constriction-induced IDO1-KO mice, but were greatly exacerbated with subcutaneous Kyn administration. IDO1 inhibition or Kyn addition confirmed the alleviation or aggravation of hypertrophy in cardiomyocyte treated with isoprenaline, respectively. Mechanistically, IDO1 and metabolite Kyn contributed to pathological hypertrophy via the AhR (aryl hydrocarbon receptor)-GATA4 (GATA binding protein 4) axis. CONCLUSIONS This study demonstrated that IDO1 deficiency and consequent Kyn insufficiency can protect against pathological cardiac hypertrophy by decreasing GATA4 expression in an AhR-dependent manner.
Collapse
Affiliation(s)
- Yinhui Wang
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Jia Song
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.S.)
| | - Kun Yu
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Daan Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (D.N.)
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China (D.N.)
| | - Chengcheng Zhao
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Liping Jiao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China (L.J.)
| | - Ziyi Wang
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Ling Zhou
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Feng Wang
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Qilin Yu
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Q.Y., S.Z., C.-Y.W.)
| | - Shu Zhang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Q.Y., S.Z., C.-Y.W.)
| | - Zheng Wen
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Junfang Wu
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Cong-Yi Wang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Q.Y., S.Z., C.-Y.W.)
| | - Dao Wen Wang
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Jia Cheng
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Chunxia Zhao
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| |
Collapse
|
36
|
Kozhevnikova MV, Krivova AV, Korobkova EO, Ageev AA, Shestakova KM, Moskaleva NE, Appolonova SA, Privalova EV, Belenkov YN. Comparative analysis of tryptophan and downstream metabolites of the kynurenine and serotonin pathways in patients with arterial hypertension and coronary artery disease. KARDIOLOGIIA 2022; 62:40-48. [DOI: 10.18087/cardio.2022.11.n2283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022]
Abstract
Aim To compare serum concentrations of tryptophane (Trp) and its metabolites in subjects with no cardiovascular disease (CVD) and patients with СVD, including arterial hypertension (AH) and ischemic heart disease (IHD).Material and methods This study included 131 participants; 58 participants (11 of them with documented peripheral atherosclerosis) were included into the AH group, 46 participants were included into the IHD group, and 27 participants with no signs of CVD were included into the control group. Plasma concentrations of Trp and its metabolites were measured by high-performance liquid chromatography in combination with a triple quadrupole analyzer.Results Comparison of the three study groups revealed significant differences in concentrations of Trp (р=0.029), kynurenine (p<0.001), kynurenine/Trp ratio (p<0.001), quinolinic acid (р=0.007), kynurenic acid (р=0.003), serotonin (p<0.001), and 5‑hydroxyindoleacetic acid (5‑HIAA) (р=0.011). When the AH group was subdivided into subgroups without and with documented peripheral atherosclerosis, the intergroup differences remained for concentrations of kynurenine, kynurenine/Trp ratio, quinolinic acid, kynurenic acid, serotonin, and 5‑HIAA. Also, correlations were found between concentrations of Trp metabolites and laboratory and instrumental data, primarily inflammatory markers. Conclusion Analysis of serum concentrations of Trp and its metabolites in CVD patients showed increases in kynurenine, kynurenine/Trp ratio, quinolinic acid, kynurenic acid, and 5‑HIAA along with decreases in concentrations of Trp and serotonin in the groups of AH, AH with documented peripheral atherosclerosis, and IHD.
Collapse
Affiliation(s)
| | | | | | - A. A. Ageev
- Sechenov First Moscow State Medical University
| | | | | | | | | | | |
Collapse
|
37
|
Tan Y, Liu M, Li M, Chen Y, Ren M. Indoleamine 2, 3-dioxygenase 1 inhibitory compounds from natural sources. Front Pharmacol 2022; 13:1046818. [PMID: 36408235 PMCID: PMC9672321 DOI: 10.3389/fphar.2022.1046818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
L-tryptophan metabolism is involved in the regulation of many important physiological processes, such as, immune response, inflammation, and neuronal function. Indoleamine 2, 3-dioxygenase 1 (IDO1) is a key enzyme that catalyzes the first rate-limiting step of tryptophan conversion to kynurenine. Thus, inhibiting IDO1 may have therapeutic benefits for various diseases, such as, cancer, autoimmune disease, and depression. In the search for potent IDO1 inhibitors, natural quinones were the first reported IDO1 inhibitors with potent inhibitory activity. Subsequently, natural compounds with diverse structures have been found to have anti-IDO1 inhibitory activity. In this review, we provide a summary of these natural IDO1 inhibitors, which are classified as quinones, polyphenols, alkaloids and others. The overview of in vitro IDO1 inhibitory activity of natural compounds will help medicinal chemists to understand the mode of action and medical benefits of them. The scaffolds of these natural compounds can also be used for further optimization of potent IDO1 inhibitors.
Collapse
Affiliation(s)
- Ying Tan
- Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ming Li
- Office of Academic Affairs, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujuan Chen
- Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Ren
- United Front Work Department, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Meng Ren,
| |
Collapse
|
38
|
Affiliation(s)
- Gregory A Wyant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.A.W.).,Howard Hughes Medical Institute, Chevy Chase, MD (G.A.W.)
| | - Javid Moslehi
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco (J.M.)
| |
Collapse
|