1
|
Zhang Y, de Ferranti SD, Moran AE. Genetic testing for familial hypercholesterolemia. Curr Opin Lipidol 2024; 35:93-100. [PMID: 38299384 PMCID: PMC10932851 DOI: 10.1097/mol.0000000000000925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
PURPOSE OF REVIEW Despite familial hypercholesterolemia (FH) being the most common genetic cause of cardiovascular disease (CVD), genetic testing is rarely utilized in the US. This review summarizes what is known about the clinical utility of genetic testing and its role in the diagnosis and screening of FH. RECENT FINDINGS The presence of an FH-causative variant is associated with a substantially higher risk of CVD, even when low-density lipoprotein cholesterol (LDL-C) levels are only modestly elevated. Genetic testing can facilitate the identification of FH cases who may be missed by clinical diagnostic criteria, improve risk stratification beyond LDL-C and family history, guide treatment decisions, and improve treatment initiation and adherence. Genetic testing can be incorporated into FH screening and diagnosis algorithms, including cascade, targeted, and universal screening. Integrating genetic testing into cascade screening can enhance the effectiveness of the process. Several models of universal FH screening with coordinated genetic and lipid testing are feasible and effective. SUMMARY More systematic integration of genetic testing into FH diagnosis and screening can significantly reduce the burden of this condition through early detection and treatment. Further pragmatic implementation studies are needed to determine how to more effectively and affordably integrate genetic testing into clinical lipid screening programs.
Collapse
Affiliation(s)
- Yiyi Zhang
- Division of General Medicine, Columbia University, New York, NY
| | - Sarah D. de Ferranti
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Andrew E. Moran
- Division of General Medicine, Columbia University, New York, NY
| |
Collapse
|
2
|
Zhang Y, Dron JS, Bellows BK, Khera AV, Liu J, Balte PP, Oelsner EC, Amr SS, Lebo MS, Nagy A, Peloso GM, Natarajan P, Rotter JI, Willer C, Boerwinkle E, Ballantyne CM, Lutsey PL, Fornage M, Lloyd-Jones DM, Hou L, Psaty BM, Bis JC, Floyd JS, Vasan RS, Heard-Costa NL, Carson AP, Hall ME, Rich SS, Guo X, Kazi DS, de Ferranti SD, Moran AE. Familial Hypercholesterolemia Variant and Cardiovascular Risk in Individuals With Elevated Cholesterol. JAMA Cardiol 2024; 9:263-271. [PMID: 38294787 PMCID: PMC10831623 DOI: 10.1001/jamacardio.2023.5366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024]
Abstract
Importance Familial hypercholesterolemia (FH) is a genetic disorder that often results in severely high low-density lipoprotein cholesterol (LDL-C) and high risk of premature coronary heart disease (CHD). However, the impact of FH variants on CHD risk among individuals with moderately elevated LDL-C is not well quantified. Objective To assess CHD risk associated with FH variants among individuals with moderately (130-189 mg/dL) and severely (≥190 mg/dL) elevated LDL-C and to quantify excess CHD deaths attributable to FH variants in US adults. Design, Setting, and Participants A total of 21 426 individuals without preexisting CHD from 6 US cohort studies (Atherosclerosis Risk in Communities study, Coronary Artery Risk Development in Young Adults study, Cardiovascular Health Study, Framingham Heart Study Offspring cohort, Jackson Heart Study, and Multi-Ethnic Study of Atherosclerosis) were included, 63 of whom had an FH variant. Data were collected from 1971 to 2018, and the median (IQR) follow-up was 18 (13-28) years. Data were analyzed from March to May 2023. Exposures LDL-C, cumulative past LDL-C, FH variant status. Main Outcomes and Measures Cox proportional hazards models estimated associations between FH variants and incident CHD. The Cardiovascular Disease Policy Model projected excess CHD deaths associated with FH variants in US adults. Results Of the 21 426 individuals without preexisting CHD (mean [SD] age 52.1 [15.5] years; 12 041 [56.2%] female), an FH variant was found in 22 individuals with moderately elevated LDL-C (0.3%) and in 33 individuals with severely elevated LDL-C (2.5%). The adjusted hazard ratios for incident CHD comparing those with and without FH variants were 2.9 (95% CI, 1.4-6.0) and 2.6 (95% CI, 1.4-4.9) among individuals with moderately and severely elevated LDL-C, respectively. The association between FH variants and CHD was slightly attenuated when further adjusting for baseline LDL-C level, whereas the association was no longer statistically significant after adjusting for cumulative past LDL-C exposure. Among US adults 20 years and older with no history of CHD and LDL-C 130 mg/dL or higher, more than 417 000 carry an FH variant and were projected to experience more than 12 000 excess CHD deaths in those with moderately elevated LDL-C and 15 000 in those with severely elevated LDL-C compared with individuals without an FH variant. Conclusions and Relevance In this pooled cohort study, the presence of FH variants was associated with a 2-fold higher CHD risk, even when LDL-C was only moderately elevated. The increased CHD risk appeared to be largely explained by the higher cumulative LDL-C exposure in individuals with an FH variant compared to those without. Further research is needed to assess the value of adding genetic testing to traditional phenotypic FH screening.
Collapse
Affiliation(s)
- Yiyi Zhang
- Division of General Medicine, Columbia University, New York, New York
| | - Jacqueline S. Dron
- Cardiovascular Disease Initiative, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | | | - Amit V. Khera
- Cardiovascular Disease Initiative, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Cardiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Junxiu Liu
- Department of Population Health Science and Policy, Icahn School of Medicine, Mount Sinai, New York, New York
| | - Pallavi P. Balte
- Division of General Medicine, Columbia University, New York, New York
| | | | - Sami Samir Amr
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Laboratory for Molecular Medicine, Personalized Medicine, Mass General Brigham, Cambridge, Massachusetts
| | - Matthew S. Lebo
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Laboratory for Molecular Medicine, Personalized Medicine, Mass General Brigham, Cambridge, Massachusetts
| | - Anna Nagy
- Laboratory for Molecular Medicine, Personalized Medicine, Mass General Brigham, Cambridge, Massachusetts
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Pradeep Natarajan
- Cardiovascular Disease Initiative, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Boston
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Cristen Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Human Genetics, University of Michigan, Ann Arbor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston
| | | | - Pamela L. Lutsey
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis
| | - Myriam Fornage
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston
| | | | - Lifang Hou
- Northwestern University, Chicago, Illinois
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
- Department of Health Systems and Population Health, University of Washington, Seattle
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
| | - James S. Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
| | - Ramachandran S. Vasan
- The Framingham Heart Study, Framingham, Massachusetts
- Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Nancy L. Heard-Costa
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - April P. Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson
| | - Michael E. Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Dhruv S. Kazi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Richard A. and Susan F. Smith Center for Outcomes Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sarah D. de Ferranti
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Andrew E. Moran
- Division of General Medicine, Columbia University, New York, New York
| |
Collapse
|
3
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 182] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
4
|
Shetty NS, Gaonkar M, Patel N, Knowles JW, Natarajan P, Arora G, Arora P. Trends of Lipid Concentrations, Awareness, Evaluation, and Treatment in Severe Dyslipidemia in US Adults. Mayo Clin Proc 2024; 99:271-282. [PMID: 38189687 PMCID: PMC10873035 DOI: 10.1016/j.mayocp.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE To evaluate the contemporary trends of lipid concentrations, cholesterol evaluation, hypercholesterolemia awareness, and statin use among individuals with severe dyslipidemia (low-density lipoprotein cholesterol [LDL-C] level ≥190 mg/dL) between 2011 and 2020. PATIENTS AND METHODS This serial cross-sectional analysis included nonpregnant adults ≥20 years of age from the National Health and Nutrition Examination Survey between 2011 and 2020. Age-adjusted weighted trends of LDL-C, triglycerides, cholesterol evaluation in the past 5 years, hypercholesterolemia awareness, and documented statin use among individuals with severe dyslipidemia were estimated. RESULTS Among 24,722 participants included, the prevalence of severe dyslipidemia was 5.4% (SE: 0.2%) which was stable across the study period (Ptrend=.78). Among individuals with severe dyslipidemia (mean age: 55.3 [SE: 0.7] years; 52.2% females; 68.8% non-Hispanic White), LDL-C (224.3 [SE: 4.2] mg/dL in 2011-2012 to 224.2 [SE: 4.6] mg/dL in 2017-2020; Ptrend =.83), and triglyceride (123.3 [SE: 1.1] mg/dL in 2011-2012 to 101.8 [SE: 1.1] mg/dL in 2017-2020; Ptrend=.13), levels remained stable from 2011 to 2020. The rates of cholesterol evaluation in the past 5 years (72.0% [SE: 5.7%] in 2011-2012 to 78.0% [SE: 4.8%] in 2017-2020; Ptrend=.91), hypercholesterolemia awareness (48.1% [SE: 5.5%] in 2011-2012 to 51.9% [SE: 5.8%] in 2017- 2020; Ptrend=.77), and documented statin use (34.7% [SE: 4.5%] in 2011-2012 to 33.4% [SE: 4.0%] in 2017-2020; Ptrend=.28) remained stagnant in individuals with severe dyslipidemia between 2011 and 2020. CONCLUSION Among individuals with severe dyslipidemia, cholesterol evaluation and hypercholesterolemia awareness rates were stable at ∼75% and ∼50% in the past decade. Only ∼34% of individuals with severe dyslipidemia took statins between 2011 and 2020, which likely contributed to the stable LDL-C levels noted across the study period. Further investigations into the determinants of statin use and adherence to statins are needed.
Collapse
Affiliation(s)
- Naman S Shetty
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mokshad Gaonkar
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nirav Patel
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Diabetes Research Center, Cardiovascular Institute and Prevention Research Center, Stanford, CA, USA
| | - Pradeep Natarajan
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Garima Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pankaj Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA; Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
5
|
Kong M, Pan Q, Cheng X, Li J, Gao Y, Tian X. Anthracycline‑induced delayed‑onset cardiac toxicity: A case report and literature review. Exp Ther Med 2023; 26:505. [PMID: 37822590 PMCID: PMC10562964 DOI: 10.3892/etm.2023.12204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/25/2023] [Indexed: 10/13/2023] Open
Abstract
Anthracyclic (ANT) drugs are widely used for patients with malignant tumors and can markedly prolong the disease-free survival rate of patients. As its clinical application becomes more common, information regarding serious cardiotoxicity as a result of ANT treatment is becoming understood. However, to the best of our knowledge, delayed-onset cardiotoxicity due to ANT use has not been studied sufficiently. The present report describes a 36-year-old male patient who presented to Guiqian International General Hospital (Guiyang, China) with a complaint of dyspnea in the last 10 days. Substantially elevated B-type natriuretic peptide levels and echocardiography showing enlargement of the entire heart, of the patient suggested that severe heart failure was the cause of his symptoms. However, the cause of this potential heart failure was not apparent until the patient was questioned about his cancer treatment history. Following consultation to evaluate the assessment of end-stage heart failure, currently only anti-heart failure treatment and symptomatic treatment can be provided. The present report describes this case and reviews the existing literature to provide a basis for the diagnosis and treatment of patients with delayed-onset heart failure following ANT treatment.
Collapse
Affiliation(s)
- Mowei Kong
- Department of Cardiology, Guiqian International General Hospital, Guiyang, Guizhou 550018, P.R. China
| | - Qiongxiang Pan
- Department of Cardiology, Guiqian International General Hospital, Guiyang, Guizhou 550018, P.R. China
| | - Xunmin Cheng
- Department of Cardiology, Guiqian International General Hospital, Guiyang, Guizhou 550018, P.R. China
| | - Jun Li
- Department of Cardiology, Guiqian International General Hospital, Guiyang, Guizhou 550018, P.R. China
| | - Yu Gao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xue Tian
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|