1
|
Algül S, Schuldt M, Manders E, Jansen V, Schlossarek S, de Goeij-de Haas R, Henneman AA, Piersma SR, Jimenez CR, Michels M, Carrier L, Helmes M, van der Velden J, Kuster DWD. EGFR/IGF1R Signaling Modulates Relaxation in Hypertrophic Cardiomyopathy. Circ Res 2023; 133:387-399. [PMID: 37477020 DOI: 10.1161/circresaha.122.322133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Diastolic dysfunction is central to diseases such as heart failure with preserved ejection fraction and hypertrophic cardiomyopathy (HCM). However, therapies that improve cardiac relaxation are scarce, partly due to a limited understanding of modulators of cardiomyocyte relaxation. We hypothesized that cardiac relaxation is regulated by multiple unidentified proteins and that dysregulation of kinases contributes to impaired relaxation in patients with HCM. METHODS We optimized and increased the throughput of unloaded shortening measurements and screened a kinase inhibitor library in isolated adult cardiomyocytes from wild-type mice. One hundred fifty-seven kinase inhibitors were screened. To assess which kinases are dysregulated in patients with HCM and could contribute to impaired relaxation, we performed a tyrosine and global phosphoproteomics screen and integrative inferred kinase activity analysis using HCM patient myocardium. Identified hits from these 2 data sets were validated in cardiomyocytes from a homozygous MYBPC3c.2373insG HCM mouse model. RESULTS Screening of 157 kinase inhibitors in wild-type (N=33) cardiomyocytes (n=24 563) resulted in the identification of 17 positive inotropes and 21 positive lusitropes, almost all of them novel. The positive lusitropes formed 3 clusters: cell cycle, EGFR (epidermal growth factor receptor)/IGF1R (insulin-like growth factor 1 receptor), and a small Akt (α-serine/threonine protein kinase) signaling cluster. By performing phosphoproteomic profiling of HCM patient myocardium (N=24 HCM and N=8 donors), we demonstrated increased activation of 6 of 8 proteins from the EGFR/IGFR1 cluster in HCM. We validated compounds from this cluster in mouse HCM (N=12) cardiomyocytes (n=2023). Three compounds from this cluster were able to improve relaxation in HCM cardiomyocytes. CONCLUSIONS We showed the feasibility of screening for functional modulators of cardiomyocyte relaxation and contraction, parameters that we observed to be modulated by kinases involved in EGFR/IGF1R, Akt, cell cycle signaling, and FoxO (forkhead box class O) signaling, respectively. Integrating the screening data with phosphoproteomics analysis in HCM patient tissue indicated that inhibition of EGFR/IGF1R signaling is a promising target for treating impaired relaxation in HCM.
Collapse
Affiliation(s)
- Sila Algül
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Maike Schuldt
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Emmy Manders
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
- CytoCypher BV, Wageningen, the Netherlands (E.M., M.H.)
| | - Valentijn Jansen
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.)
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany (S.S., L.C.)
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Alex A Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Michelle Michels
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, the Netherlands (M.M.)
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.)
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany (S.S., L.C.)
| | - Michiel Helmes
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
- CytoCypher BV, Wageningen, the Netherlands (E.M., M.H.)
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| |
Collapse
|
2
|
Singh M, Anvekar P, Baraskar B, Pallipamu N, Gadam S, Cherukuri ASS, Damani DN, Kulkarni K, Arunachalam SP. Prospective of Pancreatic Cancer Diagnosis Using Cardiac Sensing. J Imaging 2023; 9:149. [PMID: 37623681 PMCID: PMC10455647 DOI: 10.3390/jimaging9080149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Pancreatic carcinoma (Ca Pancreas) is the third leading cause of cancer-related deaths in the world. The malignancies of the pancreas can be diagnosed with the help of various imaging modalities. An endoscopic ultrasound with a tissue biopsy is so far considered to be the gold standard in terms of the detection of Ca Pancreas, especially for lesions <2 mm. However, other methods, like computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI), are also conventionally used. Moreover, newer techniques, like proteomics, radiomics, metabolomics, and artificial intelligence (AI), are slowly being introduced for diagnosing pancreatic cancer. Regardless, it is still a challenge to diagnose pancreatic carcinoma non-invasively at an early stage due to its delayed presentation. Similarly, this also makes it difficult to demonstrate an association between Ca Pancreas and other vital organs of the body, such as the heart. A number of studies have proven a correlation between the heart and pancreatic cancer. The tumor of the pancreas affects the heart at the physiological, as well as the molecular, level. An overexpression of the SMAD4 gene; a disruption in biomolecules, such as IGF, MAPK, and ApoE; and increased CA19-9 markers are a few of the many factors that are noted to affect cardiovascular systems with pancreatic malignancies. A comprehensive review of this correlation will aid researchers in conducting studies to help establish a definite relation between the two organs and discover ways to use it for the early detection of Ca Pancreas.
Collapse
Affiliation(s)
- Mansunderbir Singh
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
| | - Priyanka Anvekar
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA;
| | - Bhavana Baraskar
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
| | - Namratha Pallipamu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
| | - Srikanth Gadam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
| | - Akhila Sai Sree Cherukuri
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Microwave Engineering and Imaging Laboratory (MEIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Devanshi N. Damani
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Internal Medicine, Texas Tech University Health Science Center, El Paso, TX 79995, USA
| | - Kanchan Kulkarni
- Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, U1045, 33000 Bordeaux, France;
- IHU Liryc, Heart Rhythm Disease Institute, Fondation Bordeaux Université, 33600 Bordeaux, France
| | - Shivaram P. Arunachalam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Microwave Engineering and Imaging Laboratory (MEIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Akhtar MM, Cammann VL, Templin C, Ghadri JR, Lüscher TF. Takotsubo syndrome: getting closer to its causes. Cardiovasc Res 2023:7161872. [PMID: 37183265 DOI: 10.1093/cvr/cvad053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 05/16/2023] Open
Abstract
Takotsubo syndrome (TTS) accounts for between 1 and 4% of cases presenting clinically as an acute coronary syndrome. It typically presents as a transient cardiac phenotype of left ventricular dysfunction with spontaneous recovery. More dramatic presentations may include cardiogenic shock or cardiac arrest. Despite progress in the understanding of the condition since its first description in 1990, considerable questions remain into understanding underlying pathomechanisms. In this review article, we describe the current published data on potential underlying mechanisms associated with the onset of TTS including sympathetic nervous system over-stimulation, structural and functional alterations in the central nervous system, catecholamine secretion, alterations in the balance and distribution of adrenergic receptors, the additive impact of hormones including oestrogen, epicardial coronary or microvascular spasm, endothelial dysfunction, and genetics as potentially contributing to the cascade of events leading to the onset. These pathomechanisms provide suggestions for novel potential therapeutic strategies in patients with TTS including the role of cognitive behavioural therapy, beta-blockers, and endothelin-A antagonists. The underlying mechanism of TTS remains elusive. In reality, physical or emotional stressors likely trigger through the amygdala and hippocampus a central neurohumoral activation with the local and systemic secretion of excess catecholamine and other neurohormones, which exert its effect on the myocardium through a metabolic switch, altered cellular signalling, and endothelial dysfunction. These complex pathways exert a regional activation in the myocardium through the altered distribution of adrenoceptors and density of autonomic innervation as a protective mechanism from myocardial apoptosis. More research is needed to understand how these different complex mechanisms interact with each other to bring on the TTS phenotype.
Collapse
Affiliation(s)
- Mohammed Majid Akhtar
- Royal Brompton and Harefield Hospitals, Imperial College and King's College, London SW3 6NP, UK
| | - Victoria L Cammann
- University Heart Center, Department of Cardiology, University Hospital Zürich, Zürich 8091, Switzerland
| | - Christian Templin
- University Heart Center, Department of Cardiology, University Hospital Zürich, Zürich 8091, Switzerland
| | - Jelena R Ghadri
- University Heart Center, Department of Cardiology, University Hospital Zürich, Zürich 8091, Switzerland
| | - Thomas F Lüscher
- Royal Brompton and Harefield Hospitals, Imperial College and King's College, London SW3 6NP, UK
- Center for Molecular Cardiology, University of Zürich, Zürich 8952, Switzerland
| |
Collapse
|
4
|
Ng ML, Ang X, Yap KY, Ng JJ, Goh ECH, Khoo BBJ, Richards AM, Drum CL. Novel Oxidative Stress Biomarkers with Risk Prognosis Values in Heart Failure. Biomedicines 2023; 11:biomedicines11030917. [PMID: 36979896 PMCID: PMC10046491 DOI: 10.3390/biomedicines11030917] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023] Open
Abstract
Oxidative stress (OS) is mediated by reactive oxygen species (ROS), which in cardiovascular and other disease states, damage DNA, lipids, proteins, other cellular and extra-cellular components. OS is both initiated by, and triggers inflammation, cardiomyocyte apoptosis, matrix remodeling, myocardial fibrosis, and neurohumoral activation. These have been linked to the development of heart failure (HF). Circulating biomarkers generated by OS offer potential utility in patient management and therapeutic targeting. Novel OS-related biomarkers such as NADPH oxidases (sNox2-dp, Nrf2), advanced glycation end-products (AGE), and myeloperoxidase (MPO), are signaling molecules reflecting pathobiological changes in HF. This review aims to evaluate current OS-related biomarkers and their associations with clinical outcomes and to highlight those with greatest promise in diagnosis, risk stratification and therapeutic targeting in HF.
Collapse
Affiliation(s)
- Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Xu Ang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kwan Yi Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Jun Jie Ng
- Vascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Eugene Chen Howe Goh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Benjamin Bing Jie Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Arthur Mark Richards
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, NUHCS, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Chester Lee Drum
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, NUHCS, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Correspondence:
| |
Collapse
|
5
|
Nie Y, Zhang Y, Li Z, Wan M, Li D. Injection of YiQiFuMai powder protects against heart failure via inhibiting p38 and ERK1/2 MAPKs activation. PHARMACEUTICAL BIOLOGY 2022; 60:570-578. [PMID: 35244521 PMCID: PMC8903779 DOI: 10.1080/13880209.2022.2038207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 05/24/2023]
Abstract
CONTEXT Injection of YiQiFuMai (YQFM) powder, a modern Chinese plant-derived medical preparation, has a therapeutic effect in heart failure (HF). However, its therapeutic mechanism remains largely unknown. OBJECTIVE To investigate the molecular mechanisms of YQFM in HF. MATERIALS AND METHODS Kinase inhibition profiling assays with 2 mg/mL YQFM were performed against a series of 408 kinases. In addition, the effects of kinase inhibition were validated in cardiomyocyte cell line H9c2. In vivo, HF with reduced ejection fraction (HFrEF) was induced by permanent left anterior descending (LAD) coronary artery ligation for 6 weeks in male Sprague-Dawley rats. Then, HFrEF mice were treated with 0.46 g/kg YQFM or placebo once a day for 2 weeks. Echocardiography, immunohistochemistry, histological staining and Western blotting analysis were performed to assess the myocardial damage and molecular mechanisms. RESULTS Kinase inhibition profiling analysis demonstrated that mitogen-activated protein kinases (MAPKs) mediated the signalling cascades of YQFM during HF therapy. Meanwhile, p38 and extracellular signal-regulated kinases (ERK1/2) were inhibited after YQFM treatment in H9c2 cells. In rats, the control group had lower left ventricular ejection fraction (LVEF) at 37 ± 1.7% compared with the YQFM group at 54 ± 1.1% (p < 0.0001). Cardiac fibrosis levels in control group rats were significantly higher than YQFM group (30.5 ± 3.0 vs. 14.1 ± 1.0, p < 0.0001). CONCLUSIONS Our collective in vitro and in vivo experiments demonstrated that YQFM improves left ventricular (LV) function and inhibits fibrosis in HFrEF rats by inhibiting MAPK signalling pathways.
Collapse
Affiliation(s)
- Yongwei Nie
- School of Medicine, Nankai University, Tianjin, China
| | - Yanxin Zhang
- Tianjin Tasly Pride Pharmaceutical Co., Ltd., Tianjin, China
- Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections, Tianjin, China
| | - Zhi Li
- Tianjin Tasly Pride Pharmaceutical Co., Ltd., Tianjin, China
- Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections, Tianjin, China
| | - Meixu Wan
- Tianjin Tasly Pride Pharmaceutical Co., Ltd., Tianjin, China
- Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections, Tianjin, China
| | - Dekun Li
- Tianjin Tasly Pride Pharmaceutical Co., Ltd., Tianjin, China
- Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections, Tianjin, China
| |
Collapse
|
6
|
Walejko JM, Christopher BA, Crown SB, Zhang GF, Pickar-Oliver A, Yoneshiro T, Foster MW, Page S, van Vliet S, Ilkayeva O, Muehlbauer MJ, Carson MW, Brozinick JT, Hammond CD, Gimeno RE, Moseley MA, Kajimura S, Gersbach CA, Newgard CB, White PJ, McGarrah RW. Branched-chain α-ketoacids are preferentially reaminated and activate protein synthesis in the heart. Nat Commun 2021; 12:1680. [PMID: 33723250 PMCID: PMC7960706 DOI: 10.1038/s41467-021-21962-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Branched-chain amino acids (BCAA) and their cognate α-ketoacids (BCKA) are elevated in an array of cardiometabolic diseases. Here we demonstrate that the major metabolic fate of uniformly-13C-labeled α-ketoisovalerate ([U-13C]KIV) in the heart is reamination to valine. Activation of cardiac branched-chain α-ketoacid dehydrogenase (BCKDH) by treatment with the BCKDH kinase inhibitor, BT2, does not impede the strong flux of [U-13C]KIV to valine. Sequestration of BCAA and BCKA away from mitochondrial oxidation is likely due to low levels of expression of the mitochondrial BCAA transporter SLC25A44 in the heart, as its overexpression significantly lowers accumulation of [13C]-labeled valine from [U-13C]KIV. Finally, exposure of perfused hearts to levels of BCKA found in obese rats increases phosphorylation of the translational repressor 4E-BP1 as well as multiple proteins in the MEK-ERK pathway, leading to a doubling of total protein synthesis. These data suggest that elevated BCKA levels found in obesity may contribute to pathologic cardiac hypertrophy via chronic activation of protein synthesis. Systemic modulation of branched-chain keto acid (BCKA) metabolism alters cardiac health. Here, the authors define the major fates of BCKA in the heart and demonstrate that acute exposure to BCKA levels found in obesity activates cardiac protein synthesis and markedly alters the heart phosphoproteome.
Collapse
Affiliation(s)
- Jacquelyn M Walejko
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Bridgette A Christopher
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Scott B Crown
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC, USA.,Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA
| | - Adrian Pickar-Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | | | - Matthew W Foster
- Duke Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC, USA
| | - Stephani Page
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Stephan van Vliet
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC, USA.,Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.,Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA
| | | | | | | | | | - M Arthur Moseley
- Duke Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC, USA
| | | | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC, USA.,Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Phillip J White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA. .,Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC, USA. .,Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA. .,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | - Robert W McGarrah
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA. .,Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA. .,Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
7
|
p38 MAPK Pathway in the Heart: New Insights in Health and Disease. Int J Mol Sci 2020; 21:ijms21197412. [PMID: 33049962 PMCID: PMC7582802 DOI: 10.3390/ijms21197412] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The p38 mitogen-activated kinase (MAPK) family controls cell adaptation to stress stimuli. p38 function has been studied in depth in relation to cardiac development and function. The first isoform demonstrated to play an important role in cardiac development was p38α; however, all p38 family members are now known to collaborate in different aspects of cardiomyocyte differentiation and growth. p38 family members have been proposed to have protective and deleterious actions in the stressed myocardium, with the outcome of their action in part dependent on the model system under study and the identity of the activated p38 family member. Most studies to date have been performed with inhibitors that are not isoform-specific, and, consequently, knowledge remains very limited about how the different p38s control cardiac physiology and respond to cardiac stress. In this review, we summarize the current understanding of the role of the p38 pathway in cardiac physiology and discuss recent advances in the field.
Collapse
|
8
|
McLean BA, Patel VB, Zhabyeyev P, Chen X, Basu R, Wang F, Shah S, Vanhaesebroeck B, Oudit GY. PI3Kα Pathway Inhibition With Doxorubicin Treatment Results in Distinct Biventricular Atrophy and Remodeling With Right Ventricular Dysfunction. J Am Heart Assoc 2020; 8:e010961. [PMID: 31039672 PMCID: PMC6512135 DOI: 10.1161/jaha.118.010961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Cancer therapies inhibiting PI3Kα (phosphoinositide 3‐kinase‐α)–dependent growth factor signaling, including trastuzumab inhibition of HER2 (Human Epidermal Growth Factor Receptor 2), can cause adverse effects on the heart. Direct inhibition of PI3Kα is now in clinical trials, but the effects of PI3Kα pathway inhibition on heart atrophy, remodeling, and function in the context of cancer therapy are not well understood. Method and Results Pharmacological PI3Kα inhibition and heart‐specific genetic deletion of p110α, the catalytic subunit of PI3Kα, was characterized in conjunction with anthracycline (doxorubicin) treatment in female murine models. Biventricular changes in heart morphological characteristics and function were analyzed, with molecular characterization of signaling pathways. Both PI3Kα inhibition and anthracycline therapy promoted heart atrophy and a combined effect of distinct right ventricular dilation, dysfunction, and cardiomyocyte remodeling in the absence of pulmonary arterial hypertension. Congruent findings of right ventricular dilation and dysfunction were seen with pharmacological and genetic suppression of PI3Kα signaling when combined with doxorubicin treatment. Increased p38 mitogen‐activated protein kinase activation was mechanistically linked to heart atrophy and correlated with right ventricular dysfunction in explanted failing human hearts. Conclusions The PI3Kα pathway promotes heart atrophy in mice. The right ventricle is specifically at risk for dilation and dysfunction in the setting of PI3K inhibition in conjunction with chemotherapy. Inhibition of p38 mitogen‐activated protein kinase is a proposed therapeutic target to minimize this mode of cardiotoxicity.
Collapse
Affiliation(s)
- Brent A McLean
- 1 Department of Physiology University of Alberta Edmonton Canada.,2 Mazankowski Alberta Heart Institute Edmonton Canada
| | - Vaibhav B Patel
- 2 Mazankowski Alberta Heart Institute Edmonton Canada.,3 Division of Cardiology Department of Medicine University of Alberta Edmonton Alberta Canada
| | - Pavel Zhabyeyev
- 2 Mazankowski Alberta Heart Institute Edmonton Canada.,3 Division of Cardiology Department of Medicine University of Alberta Edmonton Alberta Canada
| | - Xueyi Chen
- 2 Mazankowski Alberta Heart Institute Edmonton Canada.,3 Division of Cardiology Department of Medicine University of Alberta Edmonton Alberta Canada
| | - Ratnadeep Basu
- 2 Mazankowski Alberta Heart Institute Edmonton Canada.,3 Division of Cardiology Department of Medicine University of Alberta Edmonton Alberta Canada
| | - Faqi Wang
- 2 Mazankowski Alberta Heart Institute Edmonton Canada.,3 Division of Cardiology Department of Medicine University of Alberta Edmonton Alberta Canada
| | - Saumya Shah
- 2 Mazankowski Alberta Heart Institute Edmonton Canada.,3 Division of Cardiology Department of Medicine University of Alberta Edmonton Alberta Canada
| | - Bart Vanhaesebroeck
- 4 University College London Cancer Institute University College London England
| | - Gavin Y Oudit
- 1 Department of Physiology University of Alberta Edmonton Canada.,2 Mazankowski Alberta Heart Institute Edmonton Canada.,3 Division of Cardiology Department of Medicine University of Alberta Edmonton Alberta Canada
| |
Collapse
|
9
|
Neumann J, Hofmann B, Gergs U. On inotropic effects of UTP in the human heart. Heliyon 2019; 5:e02197. [PMID: 31406941 PMCID: PMC6684494 DOI: 10.1016/j.heliyon.2019.e02197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/07/2019] [Accepted: 07/29/2019] [Indexed: 02/03/2023] Open
Abstract
Uridine 5'-triphosphate (UTP) exerts a positive inotropic effect (PIE) in isolated electrically driven isolated right atrial trabeculae carneae from patients undergoing heart surgery. This review discusses some aspects of the current knowledge on the putative receptor(s) involved and the potential biochemical transduction steps leading to the PIE.
Collapse
Affiliation(s)
- J Neumann
- Institute for Pharmacology and Toxicology, Germany
| | - B Hofmann
- Cardiac Surgery, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06097, Halle (Saale), Germany
| | - U Gergs
- Institute for Pharmacology and Toxicology, Germany
| |
Collapse
|
10
|
Habibian J, Ferguson BS. The Crosstalk between Acetylation and Phosphorylation: Emerging New Roles for HDAC Inhibitors in the Heart. Int J Mol Sci 2018; 20:E102. [PMID: 30597863 PMCID: PMC6337125 DOI: 10.3390/ijms20010102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 12/22/2022] Open
Abstract
Approximately five million United States (U.S.) adults are diagnosed with heart failure (HF), with eight million U.S. adults projected to suffer from HF by 2030. With five-year mortality rates following HF diagnosis approximating 50%, novel therapeutic treatments are needed for HF patients. Pre-clinical animal models of HF have highlighted histone deacetylase (HDAC) inhibitors as efficacious therapeutics that can stop and potentially reverse cardiac remodeling and dysfunction linked with HF development. HDACs remove acetyl groups from nucleosomal histones, altering DNA-histone protein electrostatic interactions in the regulation of gene expression. However, HDACs also remove acetyl groups from non-histone proteins in various tissues. Changes in histone and non-histone protein acetylation plays a key role in protein structure and function that can alter other post translational modifications (PTMs), including protein phosphorylation. Protein phosphorylation is a well described PTM that is important for cardiac signal transduction, protein activity and gene expression, yet the functional role for acetylation-phosphorylation cross-talk in the myocardium remains less clear. This review will focus on the regulation and function for acetylation-phosphorylation cross-talk in the heart, with a focus on the role for HDACs and HDAC inhibitors as regulators of acetyl-phosphorylation cross-talk in the control of cardiac function.
Collapse
Affiliation(s)
- Justine Habibian
- Cellular and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
11
|
Gergs U, Rothkirch D, Hofmann B, Treede H, Robaye B, Simm A, Müller CE, Neumann J. Mechanism underlying the contractile activity of UTP in the mammalian heart. Eur J Pharmacol 2018; 830:47-58. [PMID: 29673908 DOI: 10.1016/j.ejphar.2018.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022]
Abstract
We previously reported that uridine 5'-triphosphate (UTP), a pyrimidine nucleoside triphosphate produced a concentration- and time-dependent increase in the contraction force in isolated right atrial preparations from patients undergoing cardiac bypass surgery due to angina pectoris. The stimulation of the force of contraction was sustained rather than transient. In the present study, we tried to elucidate the underlying receptor and signal transduction for this effect of UTP. Therefore, we measured the effect of UTP on force of contraction, phosphorylation of p38 and ERK1/2, in human atrial preparations, atrial preparations from genetically modified mice, cardiomyocytes from adult mice and cardiomyocytes from neonatal rats. UTP exerted a positive inotropic effect in isolated electrically driven left atrial preparations from wild-type (WT) mice and P2Y2-, P2Y4- and P2Y6-receptor knockout mice. Therefore, we concluded that these P2Y receptors did not mediate the inotropic effects of UTP in atrial preparations from mice. However, UTP (like ATP) increased the phosphorylation states of p38 and ERK1/2 in neonatal rat cardiomyocytes, adult mouse cardiomyocytes and human atrial tissue in vitro. U0126, a MEK 1/2- signal cascade inhibitor, attenuated this phosphorylation and the positive inotropic effects of UTP in murine and human atrial preparations. We suggest that presently unknown receptors mediate the positive inotropic effect of UTP in murine and human atria. We hypothesize that UTP stimulates inotropy via p38 or ERK1/2 phosphorylation. We speculate that UTP may be a valuable target in the development of new drugs aimed at treating human systolic heart failure.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Daniel Rothkirch
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Britt Hofmann
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Hendrik Treede
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Bernard Robaye
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Andreas Simm
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany.
| |
Collapse
|
12
|
The reduced myofilament responsiveness to calcium contributes to the negative force-frequency relationship in rat cardiomyocytes: role of reactive oxygen species and p-38 map kinase. Pflugers Arch 2017; 469:1663-1673. [DOI: 10.1007/s00424-017-2058-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023]
|
13
|
Apelin Compared With Dobutamine Exerts Cardioprotection and Extends Survival in a Rat Model of Endotoxin-Induced Myocardial Dysfunction. Crit Care Med 2017; 45:e391-e398. [PMID: 27571457 DOI: 10.1097/ccm.0000000000002097] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Dobutamine is the currently recommended β-adrenergic inotropic drug for supporting sepsis-induced myocardial dysfunction when cardiac output index remains low after preload correction. Better and safer therapies are nonetheless mandatory because responsiveness to dobutamine is limited with numerous side effects. Apelin-13 is a powerful inotropic candidate that could be considered as an alternative noncatecholaminergic support in the setting of inflammatory cardiovascular dysfunction. DESIGN Interventional controlled experimental animal study. SETTING Tertiary care university-based research institute. SUBJECTS One hundred ninety-eight adult male rats. INTERVENTIONS Using a rat model of "systemic inflammation-induced cardiac dysfunction" induced by intraperitoneal lipopolysaccharide injection (10 mg/kg), hemodynamic efficacy, cardioprotection, and biomechanics were assessed under IV osmotic pump infusions of apelin-13 (0.25 μg/kg/min) or dobutamine (7.5 μg/kg/min). MEASUREMENTS AND MAIN RESULTS In this model and in both in vivo and ex vivo studies, apelin-13 compared with dobutamine provoked distinctive effects on cardiac function: 1) optimized cardiac energy-dependent workload with improved cardiac index and lower vascular resistance, 2) upgraded hearts' apelinergic responsiveness, and 3) consecutive downstream advantages, including increased urine output, enhanced plasma volume, reduced weight loss, and substantially improved overall outcomes. In vitro studies confirmed that these apelin-13-driven processes encompassed a significant and rapid reduction in systemic cytokine release with dampening of myocardial inflammation, injury, and apoptosis and resolution of associated molecular pathways. CONCLUSIONS In this inflammatory cardiovascular dysfunction, apelin-13 infusion delivers distinct and optimized hemodynamic support (including positive fluid balance), along with cardioprotective effects, modulation of circulatory inflammation and extended survival.
Collapse
|
14
|
Yu J, Wang S, Yu J, Liu C, Xu F, Wang S, Yi Y, Yin Y. Structure-based rational design of self-inhibitory peptides to disrupt the intermolecular interaction between the troponin subunits C and I in neuropathic pain. Bioorg Chem 2017; 73:10-15. [PMID: 28525735 DOI: 10.1016/j.bioorg.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/08/2017] [Accepted: 05/01/2017] [Indexed: 11/26/2022]
Abstract
The troponin (Tn) is a ternary complex consisting of three subunits TnC, TnI and TnT; molecular disruption of the Tn complex has been recognized as an attractive strategy against neuropathic pain. Here, a self-inhibitory peptide is stripped from the switch region of TnI interaction interface with TnC, which is considered as a lead molecular entity and then used to generate potential peptide disruptors of TnC-TnI interaction based on a rational molecular design protocol. The region is a helical peptide segment capped by N- and C-terminal disorders. Molecular dynamics simulation and binding free energy analysis suggests that the switch peptide can interact with TnC in a structurally and energetically independent manner. Terminal truncation of the peptide results in a number of potent TnC binders with considerably simplified structure and moderately decreased activity relative to the native switch. We also employ fluorescence polarization assays to substantiate the computational findings; it is found that the rationally designed peptides exhibit moderate or high affinity to TnC with dissociation constants KD at micromolar level.
Collapse
Affiliation(s)
- Junmin Yu
- Department of Pain Management, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shilei Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Junjie Yu
- Chinese Traditional Patent Medicine Dispensary, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Chuansheng Liu
- Department of Pain Management, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Fenghe Xu
- Department of Pain Management, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shijie Wang
- Department of Pain Management, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yusheng Yi
- Department of Pain Management, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yanwei Yin
- Department of Pain Management, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
15
|
Overhagen S, Blumensatt M, Fahlbusch P, Herzfeld de Wiza D, Müller H, Maxhera B, Akhyari P, Ouwens DM. Soluble CD14 inhibits contractile function and insulin action in primary adult rat cardiomyocytes. Biochim Biophys Acta Mol Basis Dis 2017; 1863:365-374. [DOI: 10.1016/j.bbadis.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022]
|
16
|
Singh R. Model Predicts That MKP1 and TAB1 Regulate p38α Nuclear Pulse and Its Basal Activity through Positive and Negative Feedback Loops in Response to IL-1. PLoS One 2016; 11:e0157572. [PMID: 27314954 PMCID: PMC4912083 DOI: 10.1371/journal.pone.0157572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/01/2016] [Indexed: 01/20/2023] Open
Abstract
Interleukin-1 mediates inflammation and stress response through nuclear activity of p38α. Although IL-1 receptor is not degraded, p38α activation is transient. IL-1 also causes cell migration and EMT by modulating cell-cell junctions. Although molecules involved in p38 activation are known, mechanism of the transient nuclear response and its basal activity remains unknown. By mathematical modeling of IL1/p38 signaling network, we show that IL-1 induces robust p38α activation both in the nucleus and in the cytoplasm/membrane. While nuclear response consists of an acute phase, membrane response resembles a step change. Following stimulation, p38α activity returns to a basal level in absence of receptor degradation. While nuclear pulse is controlled by MKP1 through a negative feedback to pp38, its basal activity is controlled by both TAB1 and MKP1 through a positive feedback loop. Our model provides insight into the mechanism of p38α activation, reason for its transient nuclear response, and explanation of the basal activity of MKK3/6 and p38α, which has been experimentally observed by other groups.
Collapse
Affiliation(s)
- Raghvendra Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
- * E-mail:
| |
Collapse
|
17
|
Bayar N, Çekin AH, Arslan Ş, Çağırcı G, Küçükseymen S, Çay S, Harmandar FA, Yeşil B. Assessment of Aortic Elasticity in Patients with Celiac Disease. Korean Circ J 2016; 46:239-45. [PMID: 27014355 PMCID: PMC4805569 DOI: 10.4070/kcj.2016.46.2.239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/05/2015] [Accepted: 08/19/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Celiac disease (CD) is a chronic autoimmune disorder induced by dietary gluten intake by individuals who are genetically sensitive. Many studies report an increased risk of cardiovascular diseases in such patients. The aim of this study is to assess aortic elasticity properties in patients with CD that may be associated with an increased risk of cardiovascular disease. SUBJECTS AND METHODS Eighty-one patients diagnosed with CD by antibody test and biopsy and 63 healthy volunteers were included in this prospective study. Electrocardiographic and echocardiographic examinations were performed. RESULTS The CD group did not have any differences in the conventional echocardiographic parameters compared to the healthy individuals. However, patients in the CD group had an increased aortic stiffness beta index (4.3±2.3 vs. 3.6±1.6, p=0.010), increased pressure strain elastic modulus (33.6±17.0 kPa vs. 28.5±16.7 kPa, p=0.037), decreased aortic distensibility (7.0±3.0×10(-6) cm(2)/dyn vs. 8.2±3.6×10(-6) cm(2)/dyn, p=0.037), and similar aortic strain (17.9±7.7 vs. 16.0±5.5, p=0.070) compared to the control group. Patients with CD were found to have an elevated neutrophil/lymphocyte ratio compared to the control group (2.54±0.63 vs. 2.24±0.63, p=0.012). However, gluten-free diet and neutrophil/lymphocyte ratio were not found to be associated with aortic elasticity. CONCLUSION Patients with CD had increased aortic stiffness and decreased aortic distensibility. Gluten-free diet enabled the patients with CD to have a reduction in the inflammatory parameters whereas the absence of a significant difference in the elastic properties of the aorta may suggest that the risk of cardiovascular disease persists in this patient group despite a gluten-free diet.
Collapse
Affiliation(s)
- Nermin Bayar
- Cardiology Department, Antalya Education and Research Hospital, Antalya, Turkey
| | - Ayhan Hilmi Çekin
- Gastroenterology Department, Antalya Education and Research Hospital, Antalya, Turkey
| | - Şakir Arslan
- Cardiology Department, Antalya Education and Research Hospital, Antalya, Turkey
| | - Göksel Çağırcı
- Cardiology Department, Antalya Education and Research Hospital, Antalya, Turkey
| | - Selçuk Küçükseymen
- Cardiology Department, Antalya Education and Research Hospital, Antalya, Turkey
| | - Serkan Çay
- Cardiology Department, Yüksek İhtisas Education and Research Hospital, Ankara, Turkey
| | - Ferda Akbay Harmandar
- Gastroenterology Department, Antalya Education and Research Hospital, Antalya, Turkey
| | - Bayram Yeşil
- Internal Medicine Department, Antalya Education and Research Hospital, Antalya, Turkey
| |
Collapse
|
18
|
Arabacilar P, Marber M. The case for inhibiting p38 mitogen-activated protein kinase in heart failure. Front Pharmacol 2015; 6:102. [PMID: 26029107 PMCID: PMC4428223 DOI: 10.3389/fphar.2015.00102] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/24/2015] [Indexed: 11/30/2022] Open
Abstract
This minireview discusses the evidence that the inhibition of p38 mitogen-activated protein kinases (p38 MAPKs) maybe of therapeutic value in heart failure. Most previous experimental studies, as well as past and ongoing clinical trials, have focussed on the role of p38 MAPKs in myocardial infarction and acute coronary syndromes. There is now growing evidence that these kinases are activated within the myocardium of the failing human heart and in the heart and blood vessels of animal models of heart failure. Furthermore, from a philosophical viewpoint the chronic activation of the adaptive stress pathways that lead to the activation of p38 MAPKs in heart failure is analogous to the chronic activation of the sympathetic, renin-aldosterone-angiotensin and neprilysin systems. These have provided some of the most effective therapies for heart failure. This minireview questions whether similar and synergistic advantages would follow the inhibition of p38 MAPKs.
Collapse
Affiliation(s)
- Pelin Arabacilar
- Cardiovascular Division, Department of Cardiology, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital London, UK
| | - Michael Marber
- Cardiovascular Division, Department of Cardiology, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital London, UK
| |
Collapse
|
19
|
Land S, Niederer SA, Louch WE, Røe ÅT, Aronsen JM, Stuckey DJ, Sikkel MB, Tranter MH, Lyon AR, Harding SE, Smith NP. Computational modeling of Takotsubo cardiomyopathy: effect of spatially varying β-adrenergic stimulation in the rat left ventricle. Am J Physiol Heart Circ Physiol 2014; 307:H1487-96. [PMID: 25239804 PMCID: PMC4233305 DOI: 10.1152/ajpheart.00443.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In Takotsubo cardiomyopathy, the left ventricle shows apical ballooning combined with basal hypercontractility. Both clinical observations in humans and recent experimental work on isolated rat ventricular myocytes suggest the dominant mechanisms of this syndrome are related to acute catecholamine overload. However, relating observed differences in single cells to the capacity of such alterations to result in the extreme changes in ventricular shape seen in Takotsubo syndrome is difficult. By using a computational model of the rat left ventricle, we investigate which mechanisms can give rise to the typical shape of the ventricle observed in this syndrome. Three potential dominant mechanisms related to effects of β-adrenergic stimulation were considered: apical-basal variation of calcium transients due to differences in L-type and sarco(endo)plasmic reticulum Ca2+-ATPase activation, apical-basal variation of calcium sensitivity due to differences in troponin I phosphorylation, and apical-basal variation in maximal active tension due to, e.g., the negative inotropic effects of p38 MAPK. Furthermore, we investigated the interaction of these spatial variations in the presence of a failing Frank-Starling mechanism. We conclude that a large portion of the apex needs to be affected by severe changes in calcium regulation or contractile function to result in apical ballooning, and smooth linear variation from apex to base is unlikely to result in the typical ventricular shape observed in this syndrome. A failing Frank-Starling mechanism significantly increases apical ballooning at end systole and may be an important additional factor underpinning Takotsubo syndrome.
Collapse
Affiliation(s)
- Sander Land
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Steven A Niederer
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Åsmund T Røe
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Daniel J Stuckey
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Markus B Sikkel
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Matthew H Tranter
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alexander R Lyon
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; National Insitute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom; and
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; National Insitute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom; and
| | - Nicolas P Smith
- Department of Biomedical Engineering, King's College London, London, United Kingdom; Faculty of Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Henning RJ, Sanberg P, Jimenez E. Human cord blood stem cell paracrine factors activate the survival protein kinase Akt and inhibit death protein kinases JNK and p38 in injured cardiomyocytes. Cytotherapy 2014; 16:1158-68. [DOI: 10.1016/j.jcyt.2014.01.415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/06/2014] [Accepted: 01/30/2014] [Indexed: 01/08/2023]
|
21
|
Roles of MAPKAPK-2 and HSP27 in the reduction of renal ischemia-reperfusion injury by ischemic postconditioning in rats. Int Urol Nephrol 2014; 46:1455-64. [PMID: 24927932 DOI: 10.1007/s11255-014-0748-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Ischemic postconditioning is a procedure during which intermittent reperfusions are performed in the early phase of reperfusion to protect organs from ischemia/reperfusion injury. And in this study, we mainly investigated the injury-alleviative role of mitogen-activated protein kinase-activating protein kinase-2 (MAPKAPK-2) and heat shock protein 27 (HSP27) in renal ischemic reperfusion injury during the procedure of ischemic postconditioning. METHODS Sprague-Dawley rats were randomly divided into four groups. The injury models were prepared by clipping the left renal pedicle of rats after ligating the right renal pedicle for 60 min. In the ischemic postconditioning group, sequential reperfusions were done for 10 s and another ischemia for 10 s for six cycles after kidney ischemia for 60 min. In addition, the specific inhibitor SB203580 was injected through caudal vein before ischemia. Serum creatinine, blood urea nitrogen and the expression of HSP27 and MAPKAPK-2 were detected 1, 3, 6 and 24 h later after reperfusion. Furthermore, phosphorylation of HSP27 and MAPKAPK-2 protein contents, histological changes and apoptosis were compared 24 h later after reperfusion. RESULTS Our data showed that ischemic postconditioning attenuated the renal dysfunction and cell apoptosis induced by I/R and increased phosphorylation of MAPKAPK-2 and HSP27. The results indicated that ischemic postconditioning decreased apoptosis and improved renal function. CONCLUSIONS Taken together, it is suggested that the renal protective effect may be related to the levels of HSP27 and MAPKAPK-2 activation.
Collapse
|
22
|
Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 2014; 144:202-25. [PMID: 24924700 DOI: 10.1016/j.pharmthera.2014.05.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and crosstalk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK crosstalk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| | - Bryan Agostini
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| |
Collapse
|
23
|
Therapeutic potential of p38 MAP kinase inhibition in the management of cardiovascular disease. Am J Cardiovasc Drugs 2014; 14:155-65. [PMID: 24504769 DOI: 10.1007/s40256-014-0063-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
p38 mitogen-activated protein kinases (p38 MAPKs) are key signalling molecules that regulate cellular behavior in response to environmental stresses. They regulate pro-inflammatory cytokines and therefore p38 MAPKs are implicated in the pathogenesis of many inflammatory-driven conditions, including atherosclerosis. Therapeutic inhibition of p38 MAPKs to attenuate inflammation has been the focus of comprehensive research in the last 2 decades, following the discovery of p38α as the molecular target of pyrindinyl imidazole compounds, which suppress the cytokines tumor necrosis factor-α and interleukin-1. The potential of p38 MAPK inhibitors was initially explored within archetypal inflammatory conditions such as rheumatoid arthritis and Crohn's disease, but early studies demonstrated poor clinical efficacy and unacceptable side effects. Subsequent clinical trials evaluating different p38 MAPK inhibitor compounds in disease models such as chronic obstructive pulmonary disease (COPD) and atherosclerosis have shown potential clinical efficacy. This review aims to provide succinct background information regarding the p38 MAPK signaling pathway, a focus of p38 MAPKs in disease, and a brief summary of relevant pre-clinical studies. An update of human clinical trial experience encompassing a clinically orientated approach, dedicated to cardiovascular disease follows. It provides a current perspective of the therapeutic potential of p38 MAPK inhibitors in the cardiovascular domain, including safety, tolerability, and pharmacokinetics.
Collapse
|
24
|
Apelin increases cardiac contractility via protein kinase Cε- and extracellular signal-regulated kinase-dependent mechanisms. PLoS One 2014; 9:e93473. [PMID: 24695532 PMCID: PMC3973555 DOI: 10.1371/journal.pone.0093473] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/06/2014] [Indexed: 01/05/2023] Open
Abstract
Background Apelin, the endogenous ligand for the G protein-coupled apelin receptor, is an important regulator of the cardiovascular homoeostasis. We previously demonstrated that apelin is one of the most potent endogenous stimulators of cardiac contractility; however, its underlying signaling mechanisms remain largely elusive. In this study we characterized the contribution of protein kinase C (PKC), extracellular signal-regulated kinase 1/2 (ERK1/2) and myosin light chain kinase (MLCK) to the positive inotropic effect of apelin. Methods and Results In isolated perfused rat hearts, apelin increased contractility in association with activation of prosurvival kinases PKC and ERK1/2. Apelin induced a transient increase in the translocation of PKCε, but not PKCα, from the cytosol to the particulate fraction, and a sustained increase in the phosphorylation of ERK1/2 in the left ventricle. Suppression of ERK1/2 activation diminished the apelin-induced increase in contractility. Although pharmacological inhibition of PKC attenuated the inotropic response to apelin, it had no effect on ERK1/2 phosphorylation. Moreover, the apelin-induced positive inotropic effect was significantly decreased by inhibition of MLCK, a kinase that increases myofilament Ca2+ sensitivity. Conclusions Apelin increases cardiac contractility through parallel and independent activation of PKCε and ERK1/2 signaling in the adult rat heart. Additionally MLCK activation represents a downstream mechanism in apelin signaling. Our data suggest that, in addition to their role in cytoprotection, modest activation of PKCε and ERK1/2 signaling improve contractile function, therefore these pathways represent attractive possible targets in the treatment of heart failure.
Collapse
|
25
|
Bösch F, Thomas M, Kogler P, Oberhuber R, Sucher R, Aigner F, Semsroth S, Wiedemann D, Yamashita K, Troppmair J, Kotsch K, Pratschke J, Öllinger R. Bilirubin rinse of the graft ameliorates ischemia reperfusion injury in heart transplantation. Transpl Int 2014; 27:504-13. [PMID: 24471451 DOI: 10.1111/tri.12278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/20/2013] [Accepted: 01/23/2014] [Indexed: 02/06/2023]
Abstract
Ischemia and reperfusion contribute to substantial organ damage in transplantation. Clinically feasible measures for the prevention thereof are scarce. We tested whether rinsing rodent hearts with the antioxidant bilirubin ameliorates ischemia reperfusion injury (IRI). Left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (LVDevP), rate per pressure product (RPP), coronary flow, maximum (+dP/dt) and minimum (-dP/dt) rate of contraction were analyzed in Lewis rat hearts rinsed with bilirubin prior to reperfusion on a Langendorff apparatus after 12 h of cold ischemia. In vivo, isogenic C57Bl/6 mouse hearts rinsed with bilirubin were transplanted after 12 h of cold ischemia. Cardiac function and apoptosis were assessed 24 h after reperfusion. Heart lysates recovered 15 min after reperfusion were probed for the total and the phosphorylated forms of extracellular signal-related protein kinases (ERK), JNK, p38-MAPK, and Akt. In isolated perfused hearts, bilirubin rinse resulted in significantly lower LVEDP and improved LVDevP, RPP, coronary flow, +dP/dt and -dP/dt. In vivo, after reperfusion, all mitogen-activated protein kinases (MAPKs) were suppressed significantly by bilirubin pretreatment. Bilirubin rinse improved cardiac scores (3.4 ± 0.5 vs. 2.0 ± 1.0 in controls, P < 0.05) and significantly suppressed apoptosis. Ex vivo administration of bilirubin to heart grafts prior reperfusion ameliorates IRI and provides a simple and effective tool to ameliorate outcome in heart transplantation.
Collapse
Affiliation(s)
- Florian Bösch
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria; Department of Surgery, Ludwig-Maximilians University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cao R, Bai Y, Xu R, Ye P. Homocysteine is associated with plasma high-sensitivity cardiac troponin T levels in a community-dwelling population. Clin Interv Aging 2014; 9:79-84. [PMID: 24403825 PMCID: PMC3883595 DOI: 10.2147/cia.s56054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objectives Homocysteine (HCY) is associated with an increased risk for cardiovascular disease, possibly leading to myocardial damage. Cardiac troponin T (TnT), a marker of cardiomyocyte injury, can be detected by high-sensitivity TnT (hsTnT) assay. The current study investigated the relationship between plasma HCY and hsTnT levels in a community-based population. Methods We related plasma levels of hsTnT to HCY levels in 1,497 participants (mean age, 62.4 years; 629 men, 868 women) from a community-based population in Beijing, People’s Republic of China. Results In multiple logistic regression models, serum HCY was associated with a higher likelihood of detectable hsTnT (odds ratio 1.5; 95% confidence interval 1.07–2.10; P=0.018). A subsequent subgroup analysis found that in subjects aged 65 years and older, the association between hsTnT levels and HCY levels was strengthened. The association between hsTnT and HCY was not present in the younger subgroup (<65 years old). Conclusion Levels of serum HCY are associated with hsTnT levels in the elderly, indicating a relationship between HCY and subclinical myocardial damage.
Collapse
Affiliation(s)
- Ruihua Cao
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yongyi Bai
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Ruyi Xu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Ping Ye
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
27
|
Kaikkonen L, Magga J, Ronkainen VP, Koivisto E, Perjes Á, Chuprun JK, Vinge LE, Kilpiö T, Aro J, Ulvila J, Alakoski T, Bibb JA, Szokodi I, Koch WJ, Ruskoaho H, Kerkelä R. p38α regulates SERCA2a function. J Mol Cell Cardiol 2013; 67:86-93. [PMID: 24361238 DOI: 10.1016/j.yjmcc.2013.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/27/2013] [Accepted: 12/09/2013] [Indexed: 12/15/2022]
Abstract
cAMP-dependent protein kinase (PKA) regulates the L-type calcium channel, the ryanodine receptor, and phospholamban (PLB) thereby increasing inotropy. Cardiac contractility is also regulated by p38 MAPK, which is a negative regulator of cardiac contractile function. The aim of this study was to identify the mechanism mediating the positive inotropic effect of p38 inhibition. Isolated adult and neonatal cardiomyocytes and perfused rat hearts were utilized to investigate the molecular mechanisms regulated by p38. PLB phosphorylation was enhanced in cardiomyocytes by chemical p38 inhibition, by overexpression of dominant negative p38α and by p38α RNAi, but not with dominant negative p38β. Treatment of cardiomyocytes with dominant negative p38α significantly decreased Ca(2+)-transient decay time indicating enhanced sarco/endoplasmic reticulum Ca(2+)-ATPase function and increased cardiomyocyte contractility. Analysis of signaling mechanisms involved showed that inhibition of p38 decreased the activity of protein phosphatase 2A, which renders protein phosphatase inhibitor-1 phosphorylated and thereby inhibits PP1. In conclusion, inhibition of p38α enhances PLB phosphorylation and diastolic Ca(2+) uptake. Our findings provide evidence for novel mechanism regulating cardiac contractility upon p38 inhibition.
Collapse
Affiliation(s)
- Leena Kaikkonen
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | - Johanna Magga
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | | | - Elina Koivisto
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | - Ábel Perjes
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | - J Kurt Chuprun
- Temple University School of Medicine, MERB 9th floor, 3500 N Broad St., Philadelphia, PA 19140, USA
| | - Leif Erik Vinge
- Research Institute of Internal Medicine, Sognsvannsveien 20, 0027 Oslo, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0027 Oslo, Norway; Center for Heart Failure Research, University of Oslo, Norway
| | - Teemu Kilpiö
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | - Jani Aro
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | - Johanna Ulvila
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | - Tarja Alakoski
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | - James A Bibb
- Department of Psychiatry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Istvan Szokodi
- Heart Institute, Medical School, University of Pécs, 13 Ifjúság St., 7624 Pécs Hungary
| | - Walter J Koch
- Temple University School of Medicine, MERB 9th floor, 3500 N Broad St., Philadelphia, PA 19140, USA
| | - Heikki Ruskoaho
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland; Dept. of Pharmacology and Toxicology, Faculty of Pharmacy; University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Risto Kerkelä
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland.
| |
Collapse
|
28
|
Inhibition of p38 MAPK During Ischemia, But Not Reperfusion, Effectively Attenuates Fatal Arrhythmia in Ischemia/Reperfusion Heart. J Cardiovasc Pharmacol 2013; 61:133-41. [DOI: 10.1097/fjc.0b013e318279b7b1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Denise Martin E, De Nicola GF, Marber MS. New therapeutic targets in cardiology: p38 alpha mitogen-activated protein kinase for ischemic heart disease. Circulation 2012; 126:357-68. [PMID: 22801653 DOI: 10.1161/circulationaha.111.071886] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Eva Denise Martin
- King's College London British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital Campus, United Kingdom
| | | | | |
Collapse
|
30
|
Auger-Messier M, Accornero F, Goonasekera SA, Bueno OF, Lorenz JN, van Berlo JH, Willette RN, Molkentin JD. Unrestrained p38 MAPK activation in Dusp1/4 double-null mice induces cardiomyopathy. Circ Res 2012; 112:48-56. [PMID: 22993413 DOI: 10.1161/circresaha.112.272963] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Mitogen-activated protein kinases (MAPKs) are activated in the heart by disease-inducing and stress-inducing stimuli, where they participate in hypertrophy, remodeling, contractility, and heart failure. A family of dual-specificity phosphatases (DUSPs) directly inactivates each of the MAPK terminal effectors, potentially serving a cardioprotective role. OBJECTIVE To determine the role of DUSP1 and DUSP4 in regulating p38 MAPK function in the heart and the effect on disease. METHODS AND RESULTS Here, we generated mice and mouse embryonic fibroblasts lacking both Dusp1 and Dusp4 genes. Although single nulls showed no molecular effects, combined disruption of Dusp1/4 promoted unrestrained p38 MAPK activity in both mouse embryonic fibroblasts and the heart, with no change in the phosphorylation of c-Jun N-terminal kinases or extracellular signal-regulated kinases at baseline or with stress stimulation. Single disruption of either Dusp1 or Dusp4 did not result in cardiac pathology, although Dusp1/4 double-null mice exhibited cardiomyopathy and increased mortality with aging. Pharmacological inhibition of p38 MAPK with SB731445 ameliorated cardiomyopathy in Dusp1/4 double-null mice, indicating that DUSP1/4 function primarily through p38 MAPK in affecting disease. At the cellular level, unrestrained p38 MAPK activity diminished cardiac contractility and Ca2+ handling, which was acutely reversed with a p38 inhibitory compound. Poor function in Dusp1/4 double-null mice also was partially rescued by phospholamban deletion. CONCLUSIONS Our data demonstrate that Dusp1 and Dusp4 are cardioprotective genes that play a critical role in the heart by dampening p38 MAPK signaling that would otherwise reduce contractility and induce cardiomyopathy.
Collapse
Affiliation(s)
- Mannix Auger-Messier
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cho H, Barth AS, Tomaselli GF. Basic science of cardiac resynchronization therapy: molecular and electrophysiological mechanisms. Circ Arrhythm Electrophysiol 2012; 5:594-603. [PMID: 22715238 DOI: 10.1161/circep.111.962746] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.
| | | | | |
Collapse
|
32
|
Bupha-Intr T, Haizlip KM, Janssen PML. Role of endothelin in the induction of cardiac hypertrophy in vitro. PLoS One 2012; 7:e43179. [PMID: 22912821 PMCID: PMC3422284 DOI: 10.1371/journal.pone.0043179] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 07/18/2012] [Indexed: 11/19/2022] Open
Abstract
Endothelin (ET-1) is a peptide hormone mediating a wide variety of biological processes and is associated with development of cardiac dysfunction. Generally, ET-1 is regarded as a molecular marker released only in correlation with the observation of a hypertrophic response or in conjunction with other hypertrophic stress. Although the cardiac hypertrophic effect of ET-1 is demonstrated, inotropic properties of cardiac muscle during chronic ET-1-induced hypertrophy remain largely unclear. Through the use of a novel in vitro multicellular culture system, changes in contractile force and kinetics of rabbit cardiac trabeculae in response to 1 nM ET-1 for 24 hours can be observed. Compared to the initial force at t = 0 hours, ET-1 treated muscles showed a ~2.5 fold increase in developed force after 24 hours without any effect on time to peak contraction or time to 90% relaxation. ET-1 increased muscle diameter by 12.5 ± 3.2% from the initial size, due to increased cell width compared to non-ET-1 treated muscles. Using specific signaling antagonists, inhibition of NCX, CaMKII, MAPKK, and IP3 could attenuate the effect of ET-1 on increased developed force. However, among these inhibitions only IP3 receptor blocker could not prevent the increase muscle size by ET-1. Interestingly, though calcineurin-NFAT inhibition could not suppress the effect of ET-1 on force development, it did prevent muscle hypertrophy. These findings suggest that ET-1 provokes both inotropic and hypertrophic activations on myocardium in which both activations share the same signaling pathway through MAPK and CaMKII in associated with NCX activity.
Collapse
Affiliation(s)
- Tepmanas Bupha-Intr
- Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Kaylan M. Haizlip
- Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
33
|
Paur H, Wright PT, Sikkel MB, Tranter MH, Mansfield C, O'Gara P, Stuckey DJ, Nikolaev VO, Diakonov I, Pannell L, Gong H, Sun H, Peters NS, Petrou M, Zheng Z, Gorelik J, Lyon AR, Harding SE. High levels of circulating epinephrine trigger apical cardiodepression in a β2-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation 2012; 126:697-706. [PMID: 22732314 DOI: 10.1161/circulationaha.112.111591] [Citation(s) in RCA: 576] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Takotsubo cardiomyopathy is an acute heart failure syndrome characterized by myocardial hypocontractility from the mid left ventricle to the apex. It is precipitated by extreme stress and can be triggered by intravenous catecholamine administration, particularly epinephrine. Despite its grave presentation, Takotsubo cardiomyopathy is rapidly reversible, with generally good prognosis. We hypothesized that this represents switching of epinephrine signaling through the pleiotropic β(2)-adrenergic receptor (β(2)AR) from canonical stimulatory G-protein-activated cardiostimulant to inhibitory G-protein-activated cardiodepressant pathways. METHODS AND RESULTS We describe an in vivo rat model in which a high intravenous epinephrine, but not norepinephrine, bolus produces the characteristic reversible apical depression of myocardial contraction coupled with basal hypercontractility. The effect is prevented via G(i) inactivation by pertussis toxin pretreatment. β(2)AR number and functional responses were greater in isolated apical cardiomyocytes than in basal cardiomyocytes, which confirmed the higher apical sensitivity and response to circulating epinephrine. In vitro studies demonstrated high-dose epinephrine can induce direct cardiomyocyte cardiodepression and cardioprotection in a β(2)AR-Gi-dependent manner. Preventing epinephrine-G(i) effects increased mortality in the Takotsubo model, whereas β-blockers that activate β(2)AR-G(i) exacerbated the epinephrine-dependent negative inotropic effects without further deaths. In contrast, levosimendan rescued the acute cardiac dysfunction without increased mortality. CONCLUSIONS We suggest that biased agonism of epinephrine for β(2)AR-G(s) at low concentrations and for G(i) at high concentrations underpins the acute apical cardiodepression observed in Takotsubo cardiomyopathy, with an apical-basal gradient in β(2)ARs explaining the differential regional responses. We suggest this epinephrine-specific β(2)AR-G(i) signaling may have evolved as a cardioprotective strategy to limit catecholamine-induced myocardial toxicity during acute stress.
Collapse
Affiliation(s)
- Helen Paur
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Peter T Wright
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Markus B Sikkel
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Matthew H Tranter
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Catherine Mansfield
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Peter O'Gara
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Daniel J Stuckey
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Viacheslav O Nikolaev
- Emmy Noether Group of the DFG, Dept of Cardiology and Pneumology, Georg August Univ medical Ctr, Göttingn Germany
| | - Ivan Diakonov
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Laura Pannell
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | | | - Hong Sun
- Physiology Dept, Xuzhou Medical College, Xuzhou, China
| | - Nicholas S Peters
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Mario Petrou
- Cardiovasular Biomedical Rsrch Unit, Royal Brompton Hosp, London, United Kingdom
| | | | - Julia Gorelik
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Alexander R Lyon
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom.,Cardiovasular Biomedical Rsrch Unit, Royal Brompton Hosp, London, United Kingdom
| | - Sian E Harding
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| |
Collapse
|
34
|
Role of Mitogen-Activated Protein Kinases in Myocardial Ischemia-Reperfusion Injury during Heart Transplantation. J Transplant 2012; 2012:928954. [PMID: 22530110 PMCID: PMC3316985 DOI: 10.1155/2012/928954] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/09/2011] [Accepted: 12/23/2011] [Indexed: 12/13/2022] Open
Abstract
In solid organ transplantation, ischemia/reperfusion (IR) injury during organ procurement, storage and reperfusion is an unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated protein kinase (MAPK) signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK), extracellular signal- regulated kinase-1/2 (ERK1/2), p38 MAPK, and big MAPK-1 (BMK1/ERK5). Here, we review the role of MAPK activation during myocardial IR injury as it occurs during heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases, but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new storage solutions, and gentle reperfusion.
Collapse
|
35
|
Wang X, Cui L, Joseph J, Jiang B, Pimental D, Handy DE, Liao R, Loscalzo J. Homocysteine induces cardiomyocyte dysfunction and apoptosis through p38 MAPK-mediated increase in oxidant stress. J Mol Cell Cardiol 2011; 52:753-60. [PMID: 22227328 DOI: 10.1016/j.yjmcc.2011.12.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/13/2011] [Accepted: 12/20/2011] [Indexed: 12/31/2022]
Abstract
Elevated plasma homocysteine (Hcy) is a risk factor for cardiovascular disease. While Hcy has been shown to promote endothelial dysfunction by decreasing the bioavailability of nitric oxide and increasing oxidative stress in the vasculature, the effects of Hcy on cardiomyocytes remain less understood. In this study we explored the effects of hyperhomocysteinemia (HHcy) on myocardial function ex vivo and examined the direct effects of Hcy on cardiomyocyte function and survival in vitro. Studies with isolated hearts from wild type and HHcy mice (heterozygous cystathionine-beta synthase deficient mice) demonstrated that HHcy mouse hearts had more severely impaired cardiac relaxation and contractile function and increased cell death following ischemia reperfusion (I/R). In isolated cultured adult rat ventricular myocytes, exposure to Hcy for 24 h impaired cardiomyocyte contractility in a concentration-dependent manner, and promoted apoptosis as revealed by terminal dUTP nick-end labeling and cleaved caspase-3 immunoblotting. These effects were associated with activation of p38 MAPK, decreased expression of thioredoxin (TRX) protein, and increased production of reactive oxygen species (ROS). Inhibition of p38 MAPK by the selective inhibitor SB203580 (5 μM) prevented all of these Hcy-induced changes. Furthermore, adenovirus-mediated overexpression of TRX in cardiomyocytes significantly attenuated Hcy-induced ROS generation, apoptosis, and impairment of myocyte contractility. Thus, Hcy may increase the risk for CVD not only by causing endothelial dysfunction, but also by directly exerting detrimental effects on cardiomyocytes.
Collapse
Affiliation(s)
- Xu Wang
- Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Vainio L, Perjes A, Ryti N, Magga J, Alakoski T, Serpi R, Kaikkonen L, Piuhola J, Szokodi I, Ruskoaho H, Kerkelä R. Neuronostatin, a novel peptide encoded by somatostatin gene, regulates cardiac contractile function and cardiomyocyte survival. J Biol Chem 2011; 287:4572-80. [PMID: 22170057 DOI: 10.1074/jbc.m111.289215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronostatin, a recently discovered peptide encoded by somatostatin gene, is involved in regulation of neuronal function, blood pressure, food intake, and drinking behavior. However, the biological effects of neuronostatin on cardiac myocytes are not known, and the intracellular signaling mechanisms induced by neuronostatin remain unidentified. We analyzed the effect of neuronostatin in isolated perfused rat hearts and in cultured primary cardiomyocytes. Neuronostatin infusion alone had no effect on left ventricular (LV) contractile function or on isoprenaline- or preload-induced increase in cardiac contractility. However, infusion of neuronostatin significantly decreased the positive inotropic response to endothelin-1 (ET-1). This was associated with an increase in phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK). Treatment of both neonatal and adult cardiomyocytes with neuronostatin resulted in reduced cardiomyocyte viability. Inhibition of JNK further increased the neuronostatin-induced cell death. We conclude that neuronostatin regulates cardiac contractile function and cardiomyocyte survival. Receptors for neuronostatin need to be identified to further characterize the biological functions of the peptide.
Collapse
Affiliation(s)
- Laura Vainio
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Xu Q, Dalic A, Fang L, Kiriazis H, Ritchie RH, Sim K, Gao XM, Drummond G, Sarwar M, Zhang YY, Dart AM, Du XJ. Myocardial oxidative stress contributes to transgenic β₂-adrenoceptor activation-induced cardiomyopathy and heart failure. Br J Pharmacol 2011; 162:1012-28. [PMID: 20955367 DOI: 10.1111/j.1476-5381.2010.01043.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE While maintaining cardiac performance, chronic β-adrenoceptor activation eventually exacerbates the progression of cardiac remodelling and failure. We examined the adverse signalling pathways mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and reactive oxygen species (ROS) after chronic β₂-adrenoceptor activation. EXPERIMENTAL APPROACH Mice with transgenic β₂-adrenoceptor overexpression (β₂-TG) and non-transgenic littermates were either untreated or treated with an antioxidant (N-acetylcysteine, NAC) or NADPH oxidase inhibitors (apocynin, diphenyliodonium). Levels of ROS, phosphorylated p38 mitogen-activated protein kinase (MAPK), pro-inflammatory cytokines and collagen content in the left ventricle (LV) and LV function were measured and compared. KEY RESULTS β₂-TG mice showed increased ROS production, phosphorylation of p38 MAPK and heat shock protein 27 (HSP27), expression of pro-inflammatory cytokines and collagen, and progressive ventricular dysfunction. β₂-adrenoceptor stimulation similarly increased ROS production and phosphorylation of p38 MAPK and HSP27 in cultured cardiomyocytes. Treatment with apocynin, diphenyliodonium or NAC reduced phosphorylation of p38 MAPK and HSP27 in both cultured cardiomyocytes and the LV of β₂-TG mice. NAC treatment (500 mg·kg⁻¹ ·day⁻¹) for 2 weeks eliminated the up-regulated expression of pro-inflammatory cytokines and collagen in the LV of β₂-TG mice. Chronic NAC treatment to β₂-TG mice from 7 to 10 months of age largely prevented progression of ventricular dilatation, preserved contractile function (fractional shortening 37 ± 5% vs. 25 ± 3%, ejection fraction 52 ± 5% vs. 32 ± 4%, both P < 0.05), reduced cardiac fibrosis and suppressed matrix metalloproteinase activity. CONCLUSION AND IMPLICATIONS β₂-adrenoceptor stimulation provoked NADPH oxidase-derived ROS production in the heart. Elevated ROS activated p38 MAPK and contributed significantly to cardiac inflammation, remodelling and failure.
Collapse
Affiliation(s)
- Q Xu
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Clements RT, Feng J, Cordeiro B, Bianchi C, Sellke FW. p38 MAPK-dependent small HSP27 and αB-crystallin phosphorylation in regulation of myocardial function following cardioplegic arrest. Am J Physiol Heart Circ Physiol 2011; 300:H1669-77. [PMID: 21357508 DOI: 10.1152/ajpheart.00272.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We previously demonstrated that myocardial p38 mitogen-activated protein kinase (MAPK) and heat shock protein 27 (HSP27) are phosphorylated following cardioplegic arrest in patients undergoing cardiac surgery and correlate with reduced cardiac function. The following studies were performed to determine whether inhibition of p38 MAPK and/or overexpression of nonphosphorylatable HSP27 improves cardiac function following cardioplegic arrest. Langendorff-perfused isolated rat hearts were subjected to 2 h of intermittent cold cardioplegia followed by 30 min of reperfusion. Hearts were treated with (CP+SB) or without (CP) the p38 MAPK inhibitor SB-203580 (5 μM) supplied in the cardioplegia. Sham-treated hearts served as controls. In separate experiments, isolated rat ventricular myocytes infected with either green fluorescent protein (GFP) or a nonphosphorylatable HSP27 mutant (3A-HSP27) were subjected to 3 h of cold hypoxic cardioplegia and simulated reperfusion (CP) followed by video microscopy and length change measurements. Baseline parameters of cardiac function were similar between groups [left ventricular developed pressure (LVDP), 119 ± 4.9 mmHg; positive and negative first derivatives of LV pressure (± dP/dt), 3,139 ± 245 and 2, 314 ± 110 mmHg/s]. CP resulted in reduced cardiac function (LVDP, 72.2 ± 5.8 mmHg; ± dP/dt, 2,076 ± 231 and -1,317 ± 156 mmHg/s) compared with baseline. Treatment with 5 μM SB-203580 significantly improved CP-induced cardiac function (LVDP, 101.9 ± 0 mmHg; ± dP/dt, 2,836 ± 163 and -2,108 ± 120 mmHg/s; P = 0.03, 0.01, and 0.04, CP+SB vs. CP). Inhibition of p38 MAPK significantly lowered CP-induced p38 MAPK, HSP27, and αB-crystallin (cryAB) phosphorylation. In vitro CP decreased myocyte length changes from 10.3 ± 1.5% (GFP) to 5.7 ± 0.8% (GFP+CP). Infection with 3A-HSP27 completely rescued CP-induced decreased myocyte contraction (11.1 ± 1.0%). However, infection with 3A-HSP27 did not block the endogenous HSP27 response. We conclude that inhibition of p38 MAPK and subsequent HSP27 and cryAB phosphorylation and/or overexpression of nonphosphorylatable HSP27 significantly improves cardiac performance following cardioplegic arrest. Modulation of HSP27 phosphorylation may improve myocardial stunning following cardiac surgery.
Collapse
Affiliation(s)
- Richard T Clements
- Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA.
| | | | | | | | | |
Collapse
|
39
|
de las Fuentes L, de Simone G, Arnett DK, Dávila-Román VG. Molecular determinants of the cardiometabolic phenotype. Endocr Metab Immune Disord Drug Targets 2011; 10:109-23. [PMID: 20384572 DOI: 10.2174/187153010791213119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/04/2010] [Indexed: 12/25/2022]
Abstract
The metabolic syndrome represents a clustering of risk factors that has been shown to predict adverse cardiovascular outcomes. Although the precise mechanisms contributing to the cardiometabolic syndrome (CMS) remain poorly defined, accumulating evidence identifies two intersecting candidate pathways responsible for inflammation and energy homeostasis in the pathophysiology that underlie cardiometabolic traits. Although currently no pharmacologic interventions specifically target CMS, future drug development efforts should attempt to capitalize on molecular nodes at the intersections of these pathways in the CMS.
Collapse
Affiliation(s)
- Lisa de las Fuentes
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
40
|
Kerkelä R, Ilves M, Pikkarainen S, Tokola H, Ronkainen VP, Majalahti T, Leppäluoto J, Vuolteenaho O, Ruskoaho H. Key roles of endothelin-1 and p38 MAPK in the regulation of atrial stretch response. Am J Physiol Regul Integr Comp Physiol 2010; 300:R140-9. [PMID: 21084678 DOI: 10.1152/ajpregu.00853.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms regulating stretch response in the left ventricle are investigated in detail but not well understood in atrial myocardium. Hypertrophic growth of atrial myocardium contributes to the pathogenesis of atrial fibrillation. In this study, we sought to elucidate mechanisms of stretch-induced activation of key signaling pathways and hypertrophy-associated genes in rat atria. Stretching of isolated atria induced a rapid increase in phosphorylation of p38 MAPK and ERK and induced a p38 MAPK-dependent increase in DNA binding activity of transcription factors Elk-1 and GATA-4. Inhibition of the ERK pathway had no effect on the cardiac transcription factors studied. Stretch-induced increase in atrial contractile function was substantially enhanced by inhibition of p38 MAPK. p38 MAPK also regulated stretch-induced increase in c-fos, β-myosin heavy chain, B-type natriuretic peptide mRNA levels, and atrial natriuretic peptide secretion in isolated atria. Various autocrine/paracrine factors are known to mediate the stretch response in the left ventricle. Stretching of isolated atria resulted in a robust increase in endothelin-1 (ET-1) mRNA levels, while apelin and adrenomedullin signaling cascades were downregulated. Administration of mixed ET(A/B) receptor antagonist bosentan attenuated the stretch-induced activation of GATA-4 in isolated atria, whereas ANG II receptor type-1 antagonist CV-11974 had no effect. Moreover, analysis of RNA from intact atrial and ventricular myocardium revealed significantly higher mRNA levels of ET(A) receptor and ET converting enzyme-1 in atrial compared with ventricular myocardium. In conclusion, our findings identify the local ET-1 system and p38 MAPK as key regulators of load-induced hypertrophic response in isolated rat atria.
Collapse
Affiliation(s)
- Risto Kerkelä
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Heusch P, Canton M, Aker S, van de Sand A, Konietzka I, Rassaf T, Menazza S, Brodde OE, Di Lisa F, Heusch G, Schulz R. The contribution of reactive oxygen species and p38 mitogen-activated protein kinase to myofilament oxidation and progression of heart failure in rabbits. Br J Pharmacol 2010; 160:1408-16. [PMID: 20590631 DOI: 10.1111/j.1476-5381.2010.00793.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The formation of reactive oxygen species (ROS) is increased in heart failure (HF). However, the causal and mechanistic relationship of ROS formation with contractile dysfunction is not clear in detail. Therefore, ROS formation, myofibrillar protein oxidation and p38 MAP kinase activation were related to contractile function in failing rabbit hearts. EXPERIMENTAL APPROACH AND KEY RESULTS Three weeks of rapid left ventricular (LV) pacing reduced LV shortening fraction (SF, echocardiography) from 32 +/- 1% to 13 +/- 1%. ROS formation, as assessed by dihydroethidine staining, increased by 36 +/- 8% and was associated with increased tropomyosin oxidation, as reflected by dimer formation (dimer to monomer ratio increased 2.28 +/- 0.66-fold in HF vs. sham, P < 0.05). Apoptosis (TdT-mediated dUTP nick end labelling staining) increased more than 12-fold after 3 weeks of pacing when a significant increase in the phosphorylation of p38 MAP kinase and HSP27 was detected (Western blotting). Vitamins C and E abolished the increases in ROS formation and tropomyosin oxidation along with an improvement of LVSF (19 +/- 1%, P < 0.05 vs. untreated HF) and prevention of apoptosis, but without modifying p38 MAP kinase activation. Inhibition of p38 MAP kinase by SB281832 counteracted ROS formation, tropomyosin oxidation and contractile failure, without affecting apoptosis. CONCLUSIONS AND IMPLICATIONS Thus, p38 MAP kinase activation appears to be upstream rather than downstream of ROS, which impacts on LV function through myofibrillar oxidation. p38 MAP kinase inhibition is a potential target to prevent or treat HF.
Collapse
Affiliation(s)
- P Heusch
- Institute of Pathophysiology, University of Essen Medical School, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 2010; 90:1507-46. [PMID: 20959622 PMCID: PMC3808831 DOI: 10.1152/physrev.00054.2009] [Citation(s) in RCA: 554] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.
Collapse
Affiliation(s)
- Beth A Rose
- Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, Molecular Biology, Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
43
|
Moïse N, Dingar D, Mamarbachi AM, Villeneuve LR, Farhat N, Gaestel M, Khairallah M, Allen BG. Characterization of a novel MK3 splice variant from murine ventricular myocardium. Cell Signal 2010; 22:1502-12. [PMID: 20570725 PMCID: PMC5300773 DOI: 10.1016/j.cellsig.2010.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 05/14/2010] [Accepted: 05/29/2010] [Indexed: 11/30/2022]
Abstract
p38 MAP kinase (MAPK) isoforms alpha, beta, and gamma, are expressed in the heart. p38alpha appears pro-apoptotic whereas p38beta is pro-hypertrophic. The mechanisms mediating these divergent effects are unknown; hence elucidating the downstream signaling of p38 should further our understanding. Downstream effectors include MAPK-activated protein kinase (MK)-3, which is expressed in many tissues including skeletal muscles and heart. We cloned full-length MK3 (MK3.1, 384 aa) and a novel splice variant (MK3.2, 266 aa) from murine heart. For MK3.2, skipping of exons 8 and 9 resulted in a frame-shift in translation of the first 85 base pairs of exon 10 followed by an in-frame stop codon. Of 3 putative phosphorylation sites for p38 MAPK, only Thr-203 remained functional in MK3.2. In addition, MK3.2 lacked nuclear localization and export signals. Quantitative real-time PCR confirmed the presence of these mRNA species in heart and skeletal muscle; however, the relative abundance of MK3.2 differed. Furthermore, whereas total MK3 mRNA was increased, the relative abundance of MK3.2 mRNA decreased in MK2(-/-) mice. Immunoblotting revealed 2 bands of MK3 immunoreactivity in ventricular lysates. Ectopically expressed MK3.1 localized to the nucleus whereas MK3.2 was distributed throughout the cell; however, whereas MK3.1 translocated to the cytoplasm in response to osmotic stress, MK3.2 was degraded. The p38alpha/beta inhibitor SB203580 prevented the degradation of MK3.2. Furthermore, replacing Thr-203 with alanine prevented the loss of MK3.2 following osmotic stress, as did pretreatment with the proteosome inhibitor MG132. In vitro, GST-MK3.1 was strongly phosphorylated by p38alpha and p38beta, but a poor substrate for p38delta and p38gamma. GST-MK3.2 was poorly phosphorylated by p38alpha and p38beta and not phosphorylated by p38delta and p38gamma. Hence, differential regulation of MKs may, in part, explain diverse downstream effects mediated by p38 signaling.
Collapse
Affiliation(s)
- Nadège Moïse
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
- Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Dharmendra Dingar
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
- Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Aida M. Mamarbachi
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Louis R. Villeneuve
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Nada Farhat
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Maya Khairallah
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
- Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | - Bruce G. Allen
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
- Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3G 1Y6
| |
Collapse
|
44
|
Yeh CC, Li H, Malhotra D, Turcato S, Nicholas S, Tu R, Zhu BQ, Cha J, Swigart PM, Myagmar BE, Baker AJ, Simpson PC, Mann MJ. Distinctive ERK and p38 signaling in remote and infarcted myocardium during post-MI remodeling in the mouse. J Cell Biochem 2010; 109:1185-91. [PMID: 20186881 DOI: 10.1002/jcb.22498] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Global activation of MAP kinases has been reported in both human and experimental heart failure. Chronic remodeling of the surviving ventricular wall after myocardial infarction (MI) involves both myocyte loss and fibrosis; we hypothesized that this cardiomyopathy involves differential shifts in pro- and anti-apoptotic MAP kinase signaling in cardiac myocyte (CM) and non-myocyte. Cardiomyopathy after coronary artery ligation in mice was characterized by echocardiography, ex vivo Langendorff preparation, histologic analysis and measurements of apoptosis. Phosphorylation (activation) of signaling molecules was analyzed by Western blot, ELISA and immunohistochemistry. Post-MI remodeling involved dramatic changes in the phosphorylation of both stress-activated MAP (SAP) kinase p38 as well as ERK, a known mediator of cell survival, but not of SAP kinase JNK or the anti-apoptotic mediator of PI3K, Akt. Phosphorylation of p38 rose early after MI in the infarct, whereas a more gradual rise in the remote myocardium accompanied a rise in apoptosis in that region. In both areas, ERK phosphorylation was lowest early after MI and rose steadily thereafter, though infarct phosphorylation was consistently higher. Immunostaining of p-ERK localized to fibrotic areas populated primarily by non-myocytes, whereas staining of p38 phosphorylation was stronger in areas of progressive CM apoptosis. Relative segregation of CMs and non-myocytes in different regions of the post-MI myocardium revealed signaling patterns that imply cell type-specific changes in pro- and anti-apoptotic MAP kinase signaling. Prevention of myocyte loss and of LV remodeling after MI may therefore require cell type-specific manipulation of p38 and ERK activation.
Collapse
Affiliation(s)
- Che-Chung Yeh
- Division of Cardiothoracic Surgery, University of California, San Francisco VA Medical Center, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fenton RA, Shea LG, Doddi C, Dobson JG. Myocardial adenosine A(1)-receptor-mediated adenoprotection involves phospholipase C, PKC-epsilon, and p38 MAPK, but not HSP27. Am J Physiol Heart Circ Physiol 2010; 298:H1671-8. [PMID: 20363896 DOI: 10.1152/ajpheart.01028.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine via an adenosine A(1) receptor (A(1)R) is a negative feedback inhibitor of adrenergic stimulation in the heart, protecting it from toxic effects of overstimulation. Stimulation of the A(1)R results in the activation of G(i) protein, release of free Gbetagamma-subunits, and activation/translocation of PKC-epsilon to the receptor for activated C kinase 2 protein at the Z-line of the cardiomyocyte sarcomere. Using an anti-Gbetagamma peptide, we investigated the role of these subunits in the A(1)R stimulation of phospholipase C (PLC), with the premise that the resulting diacylglycerol provides for the activation of PKC-epsilon. Inositol 1,4,5-triphosphate release was an index of PLC activity. Chlorocyclopentyl adenosine (CCPA), an A(1)R agonist, increased inositol 1,4,5-triphosphate production by 273% in mouse heart homogenates, an effect absent in A(1)R knockout hearts and inhibited by anti-Gbetagamma peptide. In a second study, p38 MAPK and heat shock protein 27 (HSP27), found by others to be associated with the loss of myocardial contractile function, were postulated to play a role in the actions of A(1)R. Isoproterenol, a beta-adrenergic receptor agonist, increased the Ca(2+) transient and sarcomere shortening magnitudes by 36 and 49%, respectively. In the rat cardiomyocyte, CCPA significantly reduced these increases, an action blocked by the p38 MAPK inhibitor SB-203580. While CCPA significantly increased the phosphorylation of HSP27, this action was inhibited by isoproterenol. These data indicate that the activation of PKC-epsilon by A(1)R results from the activation of PLC via free Gbetagamma-subunits released upon A(1)R-induced dissociation of G(i)alphabetagamma. Attenuation of beta-adrenergic-induced contractile function by A(1)R may involve the activation of p38 MAPK, but not HSP27.
Collapse
Affiliation(s)
- Richard A Fenton
- Dept. of Physiology, Univ. of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA.
| | | | | | | |
Collapse
|
46
|
Streicher JM, Ren S, Herschman H, Wang Y. MAPK-activated protein kinase-2 in cardiac hypertrophy and cyclooxygenase-2 regulation in heart. Circ Res 2010; 106:1434-43. [PMID: 20339119 DOI: 10.1161/circresaha.109.213199] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Activation of p38 mitogen-activated protein kinase (MAPK) has a significant impact on cardiac gene expression, contractility, extracellular matrix remodeling, and inflammatory response in heart. The p38 kinase pathway also has a controversial role in cardiac hypertrophy. MAPK-activated protein kinase-2 (MK2) is a well-established p38 downstream kinase, yet its contribution to p38-mediated pathological response in heart has not been investigated. OBJECTIVE We examined the specific contribution of MK2 to the pathological remodeling induced by p38. METHODS AND RESULTS We used a cardiomyocyte specific and inducible transgenic approach to determine the functional and molecular impact of acute activation of the p38 pathway in heart in either a MK2 wild-type or a MK2-null background. p38 activation in wild-type mice led to a rapid onset of lethal cardiomyopathy associated with cardiomyocyte hypertrophy, interstitial fibrosis, and contractile dysfunction. Inactivation of MK2 partially but significantly reduced cardiomyocyte hypertrophy, improved contractile performance, and prevented early lethality. MK2 inactivation had no effect on the mRNA levels of hypertrophic marker genes or the proinflammatory gene cyclooxygenase (COX)-2. However, MK2 had a major role in COX-2 protein synthesis without affecting the mRNA level or protein stability. CONCLUSIONS p38 activity in adult myocytes can contribute to pathological hypertrophy and remodeling in adult heart and that MK2 is an important downstream molecule responsible for specific features of p38-induced cardiac pathology.
Collapse
Affiliation(s)
- John M Streicher
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA 91301, USA
| | | | | | | |
Collapse
|
47
|
Ota A, Zhang J, Ping P, Han J, Wang Y. Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte. Circ Res 2010; 106:1404-12. [PMID: 20299663 DOI: 10.1161/circresaha.109.213769] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE p38 is an important stress activated protein kinase involved in gene regulation, proliferation, differentiation, and cell death regulation in heart. p38 kinase activity can be induced through canonical pathway via upstream kinases or by noncanonical autophosphorylation. The intracellular p38 kinase activity is tightly regulated and maintained at low level under basal condition. The underlying regulatory mechanism for canonical p38 kinase activation is well-studied, but the regulation of noncanonical p38 autophosphorylation remains poorly understood. OBJECTIVE We investigated the molecular basis for the regulation of noncanonical p38 autophosphorylation and its potential functional impact in cardiomyocytes. METHODS AND RESULTS Using both proteomic and biochemical tools, we established that heat shock protein (Hsp)90-Cdc37 chaperones are part of the p38alpha signaling complex in mammalian cells both in vitro and in vivo. The Hsp90-Cdc37 chaperone complex interacts with p38 via direct binding between p38 and Cdc37. Cdc37 expression is both sufficient and necessary to suppress noncanonical p38 activation via autophosphorylation at either basal state or under TAB1 (TAK1 binding protein-1) induction. In contrast, Cdc37 expression has no impact on p38 activation by canonical upstream kinase MKK3 or oxidative stress. Furthermore, Hsp90 inhibition results in p38 activation via autophosphorylation, and p38 activity contribute to apoptotic cell death induced by Hsp90 inhibition. CONCLUSION Our study has revealed a so far uncharacterized function of Hsp90-Cdc37 as an endogenous regulator of noncanonical p38 activity.
Collapse
Affiliation(s)
- Asuka Ota
- Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
48
|
Kim JH. Myocardial Protection of Contractile Function After Global Ischemia by Compound K in the Isolated Heart. J Ginseng Res 2009. [DOI: 10.5142/jgr.2009.33.4.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Abstract
Oxysterols are biologically active molecules that result from the oxidation of cholesterol. Several oxysterols are found in macrophages and macrophage-derived 'foam cells' in atherosclerotic tissue. Lipophilic oxysterols penetrate cell membranes and, therefore, their concentrations can reach harmful levels in endothelial and smooth muscle cells located in close proximity to the atherosclerotic plaques or inflammatory zones. New findings suggest that the effects of oxysterols on cardiomyocytes can lead to cell hypertrophy and death. This may make oxysterols one of the major factors precipitating morbidity in atherosclerosis-induced cardiac diseases and inflammation-induced heart complications. The pathological actions of oxysterols on muscle cells were shown to depend on dysfunctional Ca(2+) signaling; however, the mechanisms of the effects remain to be elucidated. Understanding the effects of oxysterols could lead to therapies that modulate malfunction of cardiomyocytes. This review discusses the experimental findings and the relevance of oxysterols to heart failure, and suggests strategies for important future investigations.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA.
| | | |
Collapse
|
50
|
Cross HR, Li M, Petrich BG, Murphy E, Wang Y, Steenbergen C. Effect of p38 MAP kinases on contractility and ischemic injury in intact heart. ACTA PHYSIOLOGICA HUNGARICA 2009; 96:307-23. [PMID: 19706373 PMCID: PMC3137881 DOI: 10.1556/aphysiol.96.2009.3.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The p38 MAP kinases are stress-activated MAP kinases whose induction is often associated with the onset of heart failure. This study investigated the role of p38 MAP kinase isoforms in the regulation of myocardial contractility and ischemia/reperfusion injury using mice with cardiac-specific expression of kinase dead (dominant negative) mutants of p38alpha (p38alphadn) or p38beta (p38betadn). Hearts were subjected to 20 min ischemia and 40 min reperfusion. Immunofluorescence staining for p38alphadn and p38betadn protein was performed on neonatal cardiomyocytes infected with adenovirus expressing flag-tagged p38alphadn and p38betadn protein. Basal contractile function was increased in both p38alphadn and p38betadn hearts compared to WT. Ischemic injury was increased in p38betadn vs. WT hearts, as indicated by lower posti-schemic recoveries of contractile function and ATP. However, despite a similar increase in contractility, ischemic injury was not increased in p38alphadn vs. WT hearts. Immunohistological analysis of cardiomyocytes with comparable levels of protein overexpression show that p38alphadn and p38betadn proteins were co-localized with sarcomeric alpha-actinin, however, p38alphadn was detected in the nucleus while p38betadn was exclusively detected in the cytosol. In summary, attenuated p38 activity led to increased myocardial contractility; specific isoforms of p38 and their sub-cellular localization may have different roles in modulating ischemic injury.
Collapse
Affiliation(s)
- H R Cross
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|