1
|
de Paula Facioli T, Vieira Philbois S, Augusto Aguilar B, Catarine Veiga A, Celso Dutra de Souza H. Combined effects of angiotensin receptor blocker use and physical training in hypertensive men. Clin Exp Hypertens 2022; 44:372-381. [PMID: 35343339 DOI: 10.1080/10641963.2022.2055763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Pharmacological (angiotensin II receptor type 1 receptor blocker use) and non-pharmacological treatment (physical aerobic exercise) are important strategies to reduces blood pressure and control arterial hypertension; however, only few clinical studies have evaluated their combined effects on autonomic cardiovascular control. Therefore, we investigated the effect of a combination intervention that involved losartan administration and physical aerobic training on autonomic cardiovascular control. METHODS Thirty-two men (aged 40 to 60 years) were assigned into two groups: normotensive group, without any pharmacological treatment (NG, N = 16), or hypertensive group, with losartan administration (HG, N = 16). They underwent a physical aerobic training for 16 weeks, thrice a week. Hemodynamic parameters, heart rate variability (HRV), blood pressure variability, and spontaneous baroreflex sensitivity (BRS) were measured before and after training. RESULTS Before training, both the groups showed similar values of hemodynamic parameters. However, the HG showed decreased BRS and HRV, characterized by reduction in sympathetic (p = .02) and vagal (p < .001) modulation. After training, the NG exhibited decreased heart rate (HR) at rest (p < .001), whereas the HG showed decreased HR at rest (p < .001) and blood pressure (BP) (p = .001). The HG showed decreased sympathetic modulation (p = .02) and increased BRS (p < .001) and vagal modulation (p < .001), but HRV (p < .001) and BRS gain (p < .001) remained significantly lower when compared to the NG. CONCLUSIONS Physical aerobic training was essential to improve the BRS and HRV cardiac autonomic modulation in the HG. However, it was not sufficient to normalize the analyzed autonomic parameters.
Collapse
Affiliation(s)
- Tábata de Paula Facioli
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Stella Vieira Philbois
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Bruno Augusto Aguilar
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ana Catarine Veiga
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Hugo Celso Dutra de Souza
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Becari C, Durand MT, Guimaraes AO, Lataro RM, Prado CM, de Oliveira M, Candido SCO, Pais P, Ribeiro MS, Bader M, Pesquero JB, Salgado MCO, Salgado HC. Elastase-2, a Tissue Alternative Pathway for Angiotensin II Generation, Plays a Role in Circulatory Sympathovagal Balance in Mice. Front Physiol 2017; 8:170. [PMID: 28386233 PMCID: PMC5363176 DOI: 10.3389/fphys.2017.00170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 03/07/2017] [Indexed: 12/26/2022] Open
Abstract
In vitro and ex vivo experiments indicate that elastase-2 (ELA-2), a chymotrypsin-serine protease elastase family member 2A, is an alternative pathway for angiotensin II (Ang II) generation. However, the role played by ELA-2 in vivo is unclear. We examined ELA-2 knockout (ELA-2KO) mice compared to wild-type (WT) mice and determined whether ELA-2 played a role in hemodynamics [arterial pressure (AP) and heart rate (HR)], cardiocirculatory sympathovagal balance and baroreflex sensitivity. The variability of systolic arterial pressure (SAP) and pulse interval (PI) for evaluating autonomic modulation was examined for time and frequency domains (spectral analysis), whereas a symbolic analysis was also used to evaluate PI variability. In addition, baroreflex sensitivity was examined using the sequence method. Cardiac function was evaluated echocardiographically under anesthesia. The AP was normal whereas the HR was reduced in ELA-2KO mice (425 ± 17 vs. 512 ± 13 bpm from WT). SAP variability and baroreflex sensitivity were similar in both strains. The LF power from the PI spectrum (33.6 ± 5 vs. 51.8 ± 4.8 nu from WT) and the LF/HF ratio (0.60 ± 0.1 vs. 1.45 ± 0.3 from WT) were reduced, whereas the HF power was increased (66.4 ± 5 vs. 48.2 ± 4.8 nu from WT) in ELA-2KO mice, indicating a shift toward parasympathetic modulation of HR. Echocardiographic examination showed normal fractional shortening and an ejection fraction in ELA-2KO mice; however, the cardiac output, stroke volume, and ventricular size were reduced. These findings provide the first evidence that ELA-2 acts on the sympathovagal balance of the heart, as expressed by the reduced sympathetic modulation of HR in ELA-2KO mice.
Collapse
Affiliation(s)
- Christiane Becari
- Department of Physiology, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil; Department of Cardiovascular Diseases, Mayo ClinicRochester, MN, USA
| | - Marina T Durand
- Department of Physiology, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil; Department of Medicine, University of Ribeirão PretoRibeirão Preto, Brazil
| | - Alessander O Guimaraes
- Max Delbruck Center for Molecular MedicineBerlin, Germany; Department of Biophysics, Federal University of São PauloSão Paulo, Brazil
| | - Renata M Lataro
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Cibele M Prado
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Mauro de Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Sarai C O Candido
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Paloma Pais
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Mauricio S Ribeiro
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Michael Bader
- Max Delbruck Center for Molecular MedicineBerlin, Germany; Berlin Institute of Health, Charité-University Medicine BerlinBerlin, Germany; German Center for Cardiovascular Research, Partner Site BerlinBerlin, Germany
| | - Joao B Pesquero
- Department of Biophysics, Federal University of São Paulo São Paulo, Brazil
| | - Maria C O Salgado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Müller-Ribeiro FC, Wanner SP, Santos WHM, Malheiros-Lima MR, Fonseca IAT, Coimbra CC, Pires W. Changes in systolic arterial pressure variability are associated with the decreased aerobic performance of rats subjected to physical exercise in the heat. J Therm Biol 2016; 63:31-40. [PMID: 28010813 DOI: 10.1016/j.jtherbio.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Enhanced cardiovascular strain is one of the factors that explains degraded aerobic capacity in hot environments. The cardiovascular system is regulated by the autonomic nervous system, whose activity can be indirectly evaluated by analyzing heart rate variability (HRV) and systolic arterial pressure (SAP) variability. However, no study has addressed whether HRV or SAP variability can predict aerobic performance during a single bout of exercise. Therefore, this study aimed to investigate whether there is an association between cardiovascular variability and performance in rats subjected to treadmill running at two ambient temperatures. In addition, this study investigated whether the heat-induced changes in cardiovascular variability and reductions in performance are associated with each other. Male Wistar rats were implanted with a catheter into their carotid artery for pulsatile blood pressure recordings. After recovery from surgery, the animals were subjected to incremental-speed exercise until they were fatigued under temperate (25°C) and hot (35°C) conditions. Impaired performance and exaggerated cardiovascular responses were observed in the hot relative to the temperate environment. Significant and negative correlations between most of the SAP variability components (standard deviation, variance, very low frequency [VLF], and low frequency [LF]) at the earlier stages of exercise and total exercise time were observed in both environmental conditions. Furthermore, the heat-induced changes in the sympathetic components of SAP variability (VLF and LF) were associated with heat-induced impairments in performance. Overall, the results indicate that SAP variability at the beginning of exercise predicts the acute performance of rats. Our findings also suggest that heat impairments in aerobic performance are associated with changes in cardiovascular autonomic control.
Collapse
Affiliation(s)
- Flávia C Müller-Ribeiro
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samuel P Wanner
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Weslley H M Santos
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milene R Malheiros-Lima
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ivana A T Fonseca
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cândido C Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Washington Pires
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Physical Education, Institute of Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, MG, Brazil.
| |
Collapse
|
4
|
Costa-Ferreira W, Vieira JO, Almeida J, Gomes-de-Souza L, Crestani CC. Involvement of Type 1 Angiontensin II Receptor (AT1) in Cardiovascular Changes Induced by Chronic Emotional Stress: Comparison between Homotypic and Heterotypic Stressors. Front Pharmacol 2016; 7:262. [PMID: 27588004 PMCID: PMC4988975 DOI: 10.3389/fphar.2016.00262] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/04/2016] [Indexed: 01/26/2023] Open
Abstract
Consistent evidence has shown an important role of emotional stress in pathogenesis of cardiovascular diseases. Additionally, studies in animal models have demonstrated that daily exposure to different stressor (heterotypic stressor) evokes more severe changes than those resulting from repeated exposure to the same aversive stimulus (homotypic stressor), possibly due to the habituation process upon repeated exposure to the same stressor. Despite these pieces of evidence, the mechanisms involved in the stress-evoked cardiovascular dysfunction are poorly understood. Therefore, the present study investigated the involvement of angiotensin II (Ang II) acting on the type 1 Ang II receptor (AT1) in the cardiovascular dysfunctions evoked by both homotypic and heterotypic chronic emotional stresses in rats. For this purpose, we compared the effect of the chronic treatment with the AT1 receptor antagonist losartan (30 mg/kg/day, p.o.) on the cardiovascular and autonomic changes evoked by the heterotypic stressor chronic variable stress (CVS) and the homotypic stressor repeated restraint stress (RRS). RRS increased the sympathetic tone to the heart and decreased the cardiac parasympathetic activity, whereas CVS decreased the cardiac parasympathetic activity. Additionally, both stressors impaired the baroreflex function. Alterations in the autonomic activity and the baroreflex impairment were inhibited by losartan treatment. Additionally, CVS reduced the body weight and increased the circulating corticosterone; however, these effects were not affected by losartan. In conclusion, these findings indicate the involvement of angiotensin II/AT1 receptors in the autonomic changes evoked by both homotypic and heterotypic chronic stressors. Moreover, the present results provide evidence that the increase in the circulating corticosterone and body weight reduction evoked by heterotypic stressors are independent of AT1 receptors.
Collapse
Affiliation(s)
- Willian Costa-Ferreira
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Jonas O Vieira
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Jeferson Almeida
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Lucas Gomes-de-Souza
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Carlos C Crestani
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| |
Collapse
|
5
|
Early Training-Induced Reduction of Angiotensinogen in Autonomic Areas-The Main Effect of Exercise on Brain Renin-Angiotensin System in Hypertensive Rats. PLoS One 2015; 10:e0137395. [PMID: 26372108 PMCID: PMC4570767 DOI: 10.1371/journal.pone.0137395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/17/2015] [Indexed: 02/03/2023] Open
Abstract
Background Exercise training (T) blunts functional deficits and renin-angiotensin system (RAS) hyperactivity in hypertensive individuals. There is no information on T-induced temporal changes of brain RAS. We evaluate now the simultaneous effects of T on functional responses and time course changes in the expression/activity of brain RAS components in autonomic cardiovascular-controlling areas. Methods and Results Spontaneously hypertensive rats (SHR) and age-matched normotensive controls (WKY) were trained for 0, 1, 2, 4, 8 and 12 weeks. Sedentary (S) groups served as time-controls. After arterial pressure (AP) and heart rate (HR) recordings at rest, fresh and fixed brains were harvested for qPCR and immunofluorescence assays. SHR-S vs. WKY-S exhibited higher mean AP (MAP) and HR, increased pressure variability and sympathetic activity, elevated AT1 receptor (AT1) expression in nucleus tractus solitarii (NTS) and higher Mas receptor expression in the rostroventrolateral medulla (RVLM). In SHR, T promptly (T2 on) reduced sympathetic variability to heart/vessels and largely decreased angiotensinogen expression in the paraventricular hypothalamic nucleus (PVN) and NTS, with a late RVLM reduction (T4). AT1 expression was only reduced at T12 (PVN and NTS) with transient, not maintained Mas receptor changes in PVN and RVLM. These responses were accompanied by baseline MAP and HR reduction in the SHR-T (from T4 on). In the SHR group, PVN angiotensinogen expression correlated positively with sympathetic activity, resting MAP and HR. In WKY-T, a precocious (T2-T12) RVLM AT1 decrease preceded the appearance of resting bradycardia (from T8 on). Conclusions Early and maintained reduction of angiotensinogen content in autonomic areas of the SHR is the most prominent effect of training on brain RAS. Down-regulation of PVN RAS expression is an essential factor to drive cardiovascular benefits in SHR-T, while resting bradycardia in WKY-T is correlated to RVLM AT1 reduction.
Collapse
|
6
|
Campos LA, Pereira VL, Muralikrishna A, Albarwani S, Brás S, Gouveia S. Mathematical biomarkers for the autonomic regulation of cardiovascular system. Front Physiol 2013; 4:279. [PMID: 24109456 PMCID: PMC3791874 DOI: 10.3389/fphys.2013.00279] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/17/2013] [Indexed: 01/29/2023] Open
Abstract
Heart rate and blood pressure are the most important vital signs in diagnosing disease. Both heart rate and blood pressure are characterized by a high degree of short term variability from moment to moment, medium term over the normal day and night as well as in the very long term over months to years. The study of new mathematical algorithms to evaluate the variability of these cardiovascular parameters has a high potential in the development of new methods for early detection of cardiovascular disease, to establish differential diagnosis with possible therapeutic consequences. The autonomic nervous system is a major player in the general adaptive reaction to stress and disease. The quantitative prediction of the autonomic interactions in multiple control loops pathways of cardiovascular system is directly applicable to clinical situations. Exploration of new multimodal analytical techniques for the variability of cardiovascular system may detect new approaches for deterministic parameter identification. A multimodal analysis of cardiovascular signals can be studied by evaluating their amplitudes, phases, time domain patterns, and sensitivity to imposed stimuli, i.e., drugs blocking the autonomic system. The causal effects, gains, and dynamic relationships may be studied through dynamical fuzzy logic models, such as the discrete-time model and discrete-event model. We expect an increase in accuracy of modeling and a better estimation of the heart rate and blood pressure time series, which could be of benefit for intelligent patient monitoring. We foresee that identifying quantitative mathematical biomarkers for autonomic nervous system will allow individual therapy adjustments to aim at the most favorable sympathetic-parasympathetic balance.
Collapse
Affiliation(s)
- Luciana A Campos
- Center of Innovation, Technology and Education-(CITE), Camilo Castelo Branco University (UNICASTELO) Sao Jose dos Campos, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Wang L, Hou L, Li H, Chen J, Kelly TN, Jaquish CE, Rao DC, Hixson JE, Hu D, Chen CS, Gu CC, Chen S, Lu X, Whelton PK, He J, Lu F, Huang J, Liu DP, Gu D. Genetic variants in the renin-angiotensin system and blood pressure reactions to the cold pressor test. J Hypertens 2010; 28:2422-8. [PMID: 20811292 PMCID: PMC3029492 DOI: 10.1097/hjh.0b013e32833ea74e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The purpose of this study was to examine the association between genetic variants in the renin-angiotensin system and blood pressure (BP) responses to the cold pressor test (CPT). METHODS The CPT was conducted among 1998 Han Chinese participants. BP measurements were obtained before and after the CPT using a standard sphygmomanometer according to a standard protocol. The association between SNP genotypes and BP responses to the CPT was assessed using a mixed linear model. RESULTS Of 68 SNPs genotyped in six renin-angiotensin system genes, two were strongly associated with DBP responses to CPT (P ≤ 0.001; false discovery rate q value < 0.05): rs2006765 and rs943580 in the angiotensinogen (AGT) gene. Compared to C allele carriers of rs2006765, the TT homozygotes had a significantly decreased DBP response to the CPT. For participants with the TT genotype, percentage DBP responses were 5.68% (4.25-7.10%), compared to corresponding responses of 9.17% (8.66-9.68%) among participants with the CC+CT genotype. In addition, SNP rs4681443 of the angiotensin type 1 receptor (AGTR1) gene was significantly associated with percentage SBP responses to CPT (P ≤ 0.001; q-value <0.05). CONCLUSION Briefly, our study identified variants in the AGT and AGTR1 genes that may influence BP responses to CPT in the Han Chinese population. These results show that genetic variants in the renin-angiotensin system play an important role in BP responses to CPT and, therefore, in predicting future hypertension.
Collapse
Affiliation(s)
- Laiyuan Wang
- Department of Evidence Based Medicine and Division of Population Genetics, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese National Human Genome Center at Beijing
| | - Liping Hou
- Department of Evidence Based Medicine and Division of Population Genetics, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongfan Li
- Department of Evidence Based Medicine and Division of Population Genetics, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Tanika N. Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
| | - Cashell E. Jaquish
- National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD
| | - Dabeeru C. Rao
- Washington University in St. Louis School of Medicine, St. Louis, MO
| | | | - Dongsheng Hu
- Zhengzhou University School of Public Health, Zhengzhou, Henan, China
| | - Chung-Shiuan Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
| | - C. Charles Gu
- Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Shufeng Chen
- Department of Evidence Based Medicine and Division of Population Genetics, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangfeng Lu
- Department of Evidence Based Medicine and Division of Population Genetics, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Fanghong Lu
- Shandong Academy of Medical Sciences, Shandong, China
| | - Jianfeng Huang
- Department of Evidence Based Medicine and Division of Population Genetics, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - De-Pei Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongfeng Gu
- Department of Evidence Based Medicine and Division of Population Genetics, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
8
|
Effects of Ramipril on Endothelial Function and the Expression of Proinflammatory Cytokines and Adhesion Molecules in Young Normotensive Subjects With Successfully Repaired Coarctation of Aorta. J Am Coll Cardiol 2008; 51:742-9. [DOI: 10.1016/j.jacc.2007.10.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/16/2007] [Accepted: 10/22/2007] [Indexed: 01/04/2023]
|
9
|
Asai T, Kushiro T, Fujita H, Kanmatsuse K. Different effects on inhibition of cardiac hypertrophy in spontaneously hypertensive rats by monotherapy and combination therapy of adrenergic receptor antagonists and/or the angiotensin II type 1 receptor blocker under comparable blood pressure reduction. Hypertens Res 2005; 28:79-87. [PMID: 15969258 DOI: 10.1291/hypres.28.79] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To confirm that alpha1, beta adrenoceptor antagonists and angiotensin II type 1 receptor blockers (ARBs) have different abilities to attenuate progressive cardiac hypertrophy despite their comparable lowering of blood pressure, we compared the effect of these agents alone or in combination on hypertensive cardiac hypertrophy. Eight-week-old spontaneously hypertensive rats (SHR) were divided into 7 groups. Single administration of doxazosin, atenolol, or losartan, or half-dose combinations of these drugs were given orally for 6 weeks. The control group did not receive any drugs. The heart weight-to-body weight ratio (HW/BW), left ventricular mass index (LVMI), plasma brain natriuretic peptide (BNP) and left ventricular BNP mRNA expression were measured after 6-week administration. Blood pressure did not differ among the drug-treated groups, all of which showed lower blood pressure than the control group. The HW/BW and LVMI of the drug-treated groups, except the doxazosin group, were lower than in the control group. Moreover, the LVMI values of the groups receiving losartan were significantly lower than those in the groups without losartan (p < 0.05). Plasma BNP of the drug-treated groups was lower than that in the control group (p < 0.05). The left ventricular BNP mRNA expression of the drug-treated groups, except the doxazosin group, was lower than that in the control group. The atenolol group showed a higher level of BNP mRNA than the groups receiving losartan monotherapy or combination therapies (p < 0.05). In conclusion, the ARB had the strongest attenuating effect on the development of hypertensive cardiac hypertrophy, and the alpha1 and beta adrenergic receptor blockers were more effective in combination than as monotherapies in SHR.
Collapse
Affiliation(s)
- Takae Asai
- Division of Cardiovascular Medicine, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
10
|
Chen Y, Joaquim LF, Farah VM, Wichi RB, Fazan R, Salgado HC, Morris M. Cardiovascular autonomic control in mice lacking angiotensin AT1a receptors. Am J Physiol Regul Integr Comp Physiol 2004; 288:R1071-7. [PMID: 15576667 DOI: 10.1152/ajpregu.00231.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies examined the role of angiotensin (ANG) AT1a receptors in cardiovascular autonomic control by measuring arterial pressure (AP) and heart rate (HR) variability and the effect of autonomic blockade in mice lacking AT1a receptors (AT1a -/-). Using radiotelemetry in conscious AT1a +/+ and AT1a -/- mice, we determined 1) AP and pulse interval (PI) variability in time and frequency (spectral analysis) domains, 2) AP response to alpha(1)-adrenergic and ganglionic blockade, and 3) intrinsic HR after ganglionic blockade. Pulsatile AP was recorded (5 kHz) for measurement of AP and PI and respective variability. Steady-state AP responses to prazosin (1 microg/g ip) and hexamethonium (30 microg/g ip) were also measured. AP was lower in AT1a -/- vs. AT1a +/+, whereas HR was not changed. Prazosin and hexamethonium produced greater decreases in mean AP in AT1a -/- than in AT1a +/+. The blood pressure difference was marked after ganglionic blockade (change in mean AP of -44 +/- 10 vs. -18 +/- 2 mmHg, AT1a -/- vs. AT1a +/+ mice). Intrinsic HR was also lower in AT1a -/- mice (431 +/- 32 vs. 524 +/- 22 beats/min, AT1a -/- vs. AT1a +/+). Beat-by-beat series of systolic AP and PI were submitted to autoregressive spectral estimation with variability quantified in low-frequency (LF: 0.1-1 Hz) and high-frequency (HF: 1-5 Hz) ranges. AT1a -/- mice showed a reduction in systolic AP LF variability (4.3 +/- 0.8 vs. 9.8 +/- 1.3 mmHg(2)), with no change in HF (2.7 +/- 0.3 vs. 3.3 +/- 0.6 mmHg(2)). There was a reduction in PI variability of AT1a -/- in both LF (18.7 +/- 3.7 vs. 32.1 +/- 4.2 ms(2)) and HF (17.7 +/- 1.9 vs. 40.3 +/- 7.3 ms(2)) ranges. The association of lower AP and PI variability in AT1a -/- mice with enhanced AP response to alpha(1)-adrenergic and ganglionic blockade suggests that removal of the ANG AT1a receptor produces autonomic imbalance. This is seen as enhanced sympathetic drive to compensate for the lack of ANG signaling.
Collapse
Affiliation(s)
- Yanfang Chen
- Department of Pharmacology and Toxicology, Wright State University School of Medicine, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Michelini LC, Marcelo MC, Amico J, Morris M. Oxytocinergic regulation of cardiovascular function: studies in oxytocin-deficient mice. Am J Physiol Heart Circ Physiol 2003; 284:H2269-76. [PMID: 12531722 DOI: 10.1152/ajpheart.00774.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxytocin (OT) has been implicated in the cardiovascular responses to exercise, stress, and baroreflex adjustments. Studies were conducted to determine the effect of genetic manipulation of the OT gene on blood pressure (BP), heart rate (HR), and autonomic/baroreflex function. OT knockout (OTKO -/-) and control +/+ mice were prepared with chronic arterial catheters. OTKO -/- mice exhibited a mild hypotension (102 +/- 3 vs. 110 +/- 3 mmHg). Sympathetic and vagal tone were tested using beta(1)-adrenergic and cholinergic blockade (atenolol and atropine). Magnitude of sympathetic and vagal tone to the heart and periphery was not significantly different between groups. However, there was an upward shift of sympathetic tone to higher HR values in OTKO -/- mice. This displacement combined with unchanged basal HR led to larger responses to cholinergic blockade (+77 +/- 25 vs. +5 +/- 15 beats/min, OTKO -/- vs. control +/+ group). There was also an increase in baroreflex gain (-13.1 +/- 2.5 vs. -4.1 +/- 1.2 beats x min(-1) x mmHg(-1), OTKO -/- vs. control +/+ group) over a smaller BP range. Results show that OTKO -/- mice are characterized by 1) hypotension, suggesting that OT is involved in tonic BP maintenance; 2) enhanced baroreflex gain over a small BP range, suggesting that OT extends the functional range of arterial baroreceptor reflex; and 3) shift in autonomic balance, indicating that OT reduces the sympathetic reserve.
Collapse
Affiliation(s)
- Lisete C Michelini
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, Brazil
| | | | | | | |
Collapse
|