1
|
Xiao W, Long X, Chen J, Tan Y, Cheng X, Gong L, Qiu X, Ma T, Bai Y, Li C. Computed tomographic manifestations of celiac ganglia between hypertensive and non-hypertensive population. J Clin Hypertens (Greenwich) 2023; 25:853-860. [PMID: 37559357 PMCID: PMC10497025 DOI: 10.1111/jch.14706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023]
Abstract
The celiac ganglion (CG) is associated with the sympathetic nervous system (SNS) and plays an important role in the pathogenesis of hypertension. The characteristics of the CG in patients with hypertension remain unknown. The aim of our study was to explore the differences in celiac ganglia (CGs) characteristics between hypertensive and non-hypertensive populations using computed tomography (CT). CGs manifestations on multidetector row CT in 1003 patients with and without hypertension were retrospectively analyzed. The morphological characteristics and CT values of the left CGs were recorded. The CT values of the ipsilateral adrenal gland (AG) and crus of the diaphragm (CD) were also measured. The left CG was located between the left AG and CD, and most CGs were long strips. The frequency of visualization of the left CGs was higher in the hypertension group than in the non-hypertension group (p < .05). There were no significant differences in the maximum diameter, size, and shape ratio of the left CGs between the two groups (p > .05). Except for the left CG in the arterial phase, the CT values of the left CG and AG in the non-hypertensive group were higher than those in the hypertension group (p < .05). The venous phase enhancement of the left CG in the non-hypertension group was significantly higher than that in the hypertension group (p < .05). Our findings reveal that CGs have characteristic manifestations in the hypertensive population. As important targets of the SNS, CGs have the potential to regulate blood pressure.
Collapse
Affiliation(s)
- Wenkai Xiao
- Department of Geriatrics MedicineCenter of Coronary CirculationXiangya HospitalCentral South UniversityChangshaChina
| | - Xueying Long
- Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
| | - Junyu Chen
- Department of Geriatrics MedicineCenter of Coronary CirculationXiangya HospitalCentral South UniversityChangshaChina
| | - Yu Tan
- Department of Geriatrics MedicineCenter of Coronary CirculationXiangya HospitalCentral South UniversityChangshaChina
| | - Xunjie Cheng
- Department of Geriatrics MedicineCenter of Coronary CirculationXiangya HospitalCentral South UniversityChangshaChina
| | - Li Gong
- Department of Geriatrics MedicineCenter of Coronary CirculationXiangya HospitalCentral South UniversityChangshaChina
| | - Xueting Qiu
- Department of Geriatrics MedicineCenter of Coronary CirculationXiangya HospitalCentral South UniversityChangshaChina
| | - Tianqi Ma
- Department of Geriatrics MedicineCenter of Coronary CirculationXiangya HospitalCentral South UniversityChangshaChina
| | - Yongping Bai
- Department of Geriatrics MedicineCenter of Coronary CirculationXiangya HospitalCentral South UniversityChangshaChina
| | - Chuanchang Li
- Department of Geriatrics MedicineCenter of Coronary CirculationXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
2
|
Lee SH, Lee G, Seo JE, Hasan M, Kwon OS, Jung BH. Employing metabolomic approaches to determine the influence of age on experimental autoimmune encephalomyelitis (EAE). Mol Immunol 2021; 135:84-94. [PMID: 33873097 DOI: 10.1016/j.molimm.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 03/12/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
The immune system plays a critical role not only in homeostasis of the body but also in pathogenesis. Autoimmunity and dysregulation of the immune balance are closely related to age. To examine the influence of age on autoimmunity, the pathophysiological features of experimental autoimmune encephalomyelitis (EAE) induced at different ages were elucidated on the basis of plasma-level metabolic changes. In the present study, female 6 week-old (6 W) and 15 month-old (15 M) C57BL/6 mice were immunized for EAE induction. The plasma and tissue samples were collected to determine the phenotypic characteristics. The activity of NADPH oxidase in plasma and the IL-6 concentrations in the brain and spinal cord were higher in both EAE groups compared to those in the control groups as well as in the 15 M EAE (15 M-E) group compared to those in the 6 W EAE (6 W-E) group. The metabolomic profiles related to characteristics of EAE were characterized by the biosynthesis of unsaturated fatty acids and the metabolism of tryptophan, tyrosine and sphingolipid. The reduced availability of unsaturated fatty acids and perturbations in tryptophan metabolism were high risk factors for EAE development regardless of age. The changes in tyrosine metabolism and sphingolipid metabolites were more dramatic in the 15 M-E group. From these findings, it can be concluded that changes in unsaturated fatty acid and tryptophan metabolism contributed to the development of EAE, whereas changes in sphingolipid and tyrosine metabolism, which corresponded to age, were additional risk factors that influenced the incidence and severity of EAE.
Collapse
Affiliation(s)
- Soo Hyun Lee
- Department of Medical Records and Health Information Management, College of Nursing and Health, Kongju National University, 56 Kongjudaehakro, Kongju, Chungnam, 314-701, Republic of Korea
| | - Gakyung Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST-School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Ji-Eun Seo
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Mahbub Hasan
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Oh-Seung Kwon
- Division of Bio-Medical Science & Technology, KIST-School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea; Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Byung Hwa Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST-School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
3
|
Terzi A, Suter DM. The role of NADPH oxidases in neuronal development. Free Radic Biol Med 2020; 154:33-47. [PMID: 32370993 DOI: 10.1016/j.freeradbiomed.2020.04.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are critical for maintaining cellular homeostasis and function when produced in physiological ranges. Important sources of cellular ROS include NADPH oxidases (Nox), which are evolutionary conserved multi-subunit transmembrane proteins. Nox-mediated ROS regulate variety of biological processes including hormone synthesis, calcium signaling, cell migration, and immunity. ROS participate in intracellular signaling by introducing post-translational modifications to proteins and thereby altering their functions. The central nervous system (CNS) expresses different Nox isoforms during both development and adulthood. Here, we review the role of Nox-mediated ROS during CNS development. Specifically, we focus on how individual Nox isoforms contribute to signaling in neural stem cell maintenance and neuronal differentiation, as well as neurite outgrowth and guidance. We also discuss how ROS regulates the organization and dynamics of the actin cytoskeleton in the neuronal growth cone. Finally, we review recent evidence that Nox-derived ROS modulate axonal regeneration upon nervous system injury.
Collapse
Affiliation(s)
- Aslihan Terzi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Basu P, Hornung RS, Averitt DL, Maier C. Euphorbia bicolor ( Euphorbiaceae) Latex Extract Reduces Inflammatory Cytokines and Oxidative Stress in a Rat Model of Orofacial Pain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8594375. [PMID: 31612077 PMCID: PMC6757321 DOI: 10.1155/2019/8594375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/10/2019] [Indexed: 12/26/2022]
Abstract
Recent studies have reported that the transient receptor potential V1 ion channel (TRPV1), a pain generator on sensory neurons, is activated and potentiated by NADPH oxidase-generated reactive oxygen species (ROS). ROS are increased by advanced oxidation protein products (AOPPs), which activate NADPH oxidase by upregulating Nox4 expression. Our previous studies reported that Euphorbia bicolor (Euphorbiaceae) latex extract induced peripheral analgesia, partly via TRPV1, in hindpaw-inflamed male and female rats. The present study reports that E. bicolor latex extract also can evoke analgesia via reduction of oxidative stress biomarkers and proinflammatory cytokines/chemokines in a rat model of orofacial pain. Male and female rats were injected with complete Freund's adjuvant (CFA) into the left vibrissal pad to induce orofacial inflammation, and mechanical allodynia was measured by the von Frey method. Twenty-four hours later, rats received one injection of E. bicolor latex extract or vehicle into the inflamed vibrissal pad. Mechanical sensitivity was reassessed at 1, 6, 24, and/or 72 hours. Trigeminal ganglia and trunk blood were collected at each time point. In the trigeminal ganglia, ROS were quantified using 2',7'-dichlorodihydrofluorescein diacetate dye, Nox4 protein was quantified by Western blots, and cytokines/chemokines were quantified using a cytokine array. AOPPs were quantified in trunk blood using a spectrophotometric assay. E. bicolor latex extract significantly reduced orofacial mechanical allodynia in male and female rats at 24 and 72 hours, respectively. ROS, Nox4, and proinflammatory cytokines/chemokines were significantly reduced in the trigeminal ganglia, and plasma AOPP was significantly reduced in the trunk blood of extract-treated compared to vehicle-treated rats. In vitro assays indicate that E. bicolor latex extract possessed antioxidant activities by scavenging free radicals. Together our data indicate that the phytochemicals in E. bicolor latex may serve as novel therapeutics for treating oxidative stress-induced pain conditions.
Collapse
Affiliation(s)
- Paramita Basu
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| | | | - Dayna L. Averitt
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| | - Camelia Maier
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| |
Collapse
|
5
|
Developmental Axon Degeneration Requires TRPV1-Dependent Ca 2+ Influx. eNeuro 2019; 6:eN-NWR-0019-19. [PMID: 30838324 PMCID: PMC6399429 DOI: 10.1523/eneuro.0019-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Development of the nervous system relies on a balance between axon and dendrite growth and subsequent pruning and degeneration. The developmental degeneration of dorsal root ganglion (DRG) sensory axons has been well studied in part because it can be readily modeled by removing the trophic support by nerve growth factor (NGF) in vitro. We have recently reported that axonal fragmentation induced by NGF withdrawal is dependent on Ca2+, and here, we address the mechanism of Ca2+ entry required for developmental axon degeneration of mouse embryonic DRG neurons. Our results show that the transient receptor potential vanilloid family member 1 (TRPV1) cation channel plays a critical role mediating Ca2+ influx in DRG axons withdrawn from NGF. We further demonstrate that TRPV1 activation is dependent on reactive oxygen species (ROS) generation that is driven through protein kinase C (PKC) and NADPH oxidase (NOX)-dependent pathways that become active upon NGF withdrawal. These findings demonstrate novel mechanistic links between NGF deprivation, PKC activation, ROS generation, and TRPV1-dependent Ca2+ influx in sensory axon degeneration.
Collapse
|
6
|
Li MS, Adesina SE, Ellis CL, Gooch JL, Hoover RS, Williams CR. NADPH oxidase-2 mediates zinc deficiency-induced oxidative stress and kidney damage. Am J Physiol Cell Physiol 2016; 312:C47-C55. [PMID: 27806940 DOI: 10.1152/ajpcell.00208.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023]
Abstract
Zn2+ deficiency (ZnD) is comorbid with chronic kidney disease and worsens kidney complications. Oxidative stress is implicated in the detrimental effects of ZnD. However, the sources of oxidative stress continue to be identified. Since NADPH oxidases (Nox) are the primary enzymes that contribute to renal reactive oxygen species generation, this study's objective was to determine the role of these enzymes in ZnD-induced oxidative stress. We hypothesized that ZnD promotes NADPH oxidase upregulation, resulting in oxidative stress and kidney damage. To test this hypothesis, wild-type mice were pair-fed a ZnD or Zn2+-adequate diet. To further investigate the effects of Zn2+ bioavailability on NADPH oxidase regulation, mouse tubular epithelial cells were exposed to the Zn2+ chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) or vehicle followed by Zn2+ supplementation. We found that ZnD diet-fed mice develop microalbuminuria, electrolyte imbalance, and whole kidney hypertrophy. These markers of kidney damage are accompanied by elevated Nox2 expression and H2O2 levels. In mouse tubular epithelial cells, TPEN-induced ZnD stimulates H2O2 generation. In this in vitro model of ZnD, enhanced H2O2 generation is prevented by NADPH oxidase inhibition with diphenyleneiodonium. Specifically, TPEN promotes Nox2 expression and activation, which are reversed when intracellular Zn2+ levels are restored following Zn2+ supplementation. Finally, Nox2 knockdown by siRNA prevents TPEN-induced H2O2 generation and cellular hypertrophy in vitro. Together, these findings reveal that Nox2 is a Zn2+-regulated enzyme that mediates ZnD-induced oxidative stress and kidney hypertrophy. Understanding the specific mechanisms by which ZnD contributes to kidney damage may have an important impact on the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Mirandy S Li
- School of Medicine, Emory University, Atlanta, Georgia
| | - Sherry E Adesina
- School of Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Carla L Ellis
- School of Medicine, Emory University, Atlanta, Georgia
| | - Jennifer L Gooch
- School of Medicine, Emory University, Atlanta, Georgia.,Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine, Suwanee, Georgia; and.,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Robert S Hoover
- School of Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Clintoria R Williams
- School of Medicine, Emory University, Atlanta, Georgia; .,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| |
Collapse
|
7
|
Hasan M, Seo JE, Rahaman KA, Kang MJ, Jung BH, Kwon OS. Increased levels of brain serotonin correlated with MMP-9 activity and IL-4 levels resulted in severe experimental autoimmune encephalomyelitis (EAE) in obese mice. Neuroscience 2016; 319:168-82. [PMID: 26820599 DOI: 10.1016/j.neuroscience.2016.01.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/27/2022]
Abstract
The aim of this study was to investigate the role of monoamine neurotransmitters on the severity of experimental autoimmune encephalomyelitis (EAE) in obese mice. EAE was induced in mice with normal diets (ND-EAE) and obese mice with high-fat diets (HFD-EAE) through the immune response to myelin oligodendrocyte glycoprotein (MOG) (35-55). The levels of dopamine (DA), serotonin (5-HT) and their metabolites in different anatomical brain regions were measured by high-performance liquid chromatography. The plasma and tissue NADPH oxidase and matrix metalloproteinases (MMP)-9 activities were analyzed by fluorescence spectrophotometry. The cumulative disease index and disease peaks were significantly higher in HFD-EAE compared with those in ND-EAE. Significantly higher 5-HT levels and lower 5-HT turnovers 5-hydroxyindole acetic acid ((5-HIAA)/5-HT) were found in the brains of HFD-EAE mice compared with those found in the HFD-CON and ND-EAE mice brains. Moreover, increased DA levels were observed in the caudate nucleus of the HFD-EAE mice compared with the control and ND-EAE mice. The NADPH oxidase and MMP-9 activities in the plasma and tissues were significantly higher in both the ND-EAE and HFD-EAE groups than in their respective controls. The cytokine levels in the plasma, tissues, and cultured splenocytes were found to be significantly altered in EAE mice compared with control mice. Moreover, HFD-EAE mice exhibited significantly higher MMP-9 activity and lower IL-4 levels than ND-EAE mice and were significantly correlated with brain 5-HT levels. In conclusion, the increased 5-HT levels in the brain significantly correlated with MMP-9 activity and IL-4 levels play an important role in the exacerbation of disease severity in HFD-EAE mice.
Collapse
Affiliation(s)
- M Hasan
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - J-E Seo
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - K A Rahaman
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - M-J Kang
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - B-H Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - O-S Kwon
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
8
|
Lin CS, Lee SH, Huang HS, Chen YS, Ma MC. H2O2 generated by NADPH oxidase 4 contributes to transient receptor potential vanilloid 1 channel-mediated mechanosensation in the rat kidney. Am J Physiol Renal Physiol 2015; 309:F369-76. [PMID: 26136558 DOI: 10.1152/ajprenal.00462.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 06/17/2015] [Indexed: 11/22/2022] Open
Abstract
The presence of NADPH oxidase (Nox) in the kidney, especially Nox4, results in H2O2 production, which regulates Na(+) excretion and urine formation. Redox-sensitive transient receptor potential vanilloid 1 channels (TRPV1s) are distributed in mechanosensory fibers of the renal pelvis and monitor changes in intrapelvic pressure (IPP) during urine formation. The present study tested whether H2O2 derived from Nox4 affects TRPV1 function in renal sensory responses. Perfusion of H2O2 into the renal pelvis dose dependently increased afferent renal nerve activity and substance P (SP) release. These responses were attenuated by cotreatment with catalase or TRPV1 blockers. In single unit recordings, H2O2 activated afferent renal nerve activity in response to rising IPP but not high salt. Western blots revealed that Nox2 (gp91(phox)) and Nox4 are both present in the rat kidney, but Nox4 is abundant in the renal pelvis and originates from dorsal root ganglia. This distribution was associated with expression of the Nox4 regulators p22(phox) and polymerase δ-interacting protein 2. Coimmunoprecipitation experiments showed that IPP increases polymerase δ-interacting protein 2 association with Nox4 or p22(phox) in the renal pelvis. Interestingly, immunofluorescence labeling demonstrated that Nox4 colocalizes with TRPV1 in sensory fibers of the renal pelvis, indicating that H2O2 generated from Nox4 may affect TRPV1 activity. Stepwise increases in IPP and saline loading resulted in H2O2 and SP release, sensory activation, diuresis, and natriuresis. These effects, however, were remarkably attenuated by Nox inhibition. Overall, these results suggest that Nox4-positive fibers liberate H2O2 after mechanostimulation, thereby contributing to a renal sensory nerve-mediated diuretic/natriuretic response.
Collapse
Affiliation(s)
- Chian-Shiung Lin
- Department of Surgery, Liou-Ying Hospital, Chi-Mei Medical Center, Tainan Hsien, Taiwan
| | - Shang-Hsing Lee
- Department of Urology, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Ho-Shiang Huang
- Department of Urology, National Cheng Kung University, Tainan, Taiwan
| | - Yih-Sharng Chen
- Department of Cardiovascular Surgery, National Taiwan University Hospital, Taipei, Taiwan; and
| | - Ming-Chieh Ma
- School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|
9
|
Fletcher NM, Saed MG, Abuanzeh S, Abu-Soud HM, Al-Hendy A, Diamond MP, Saed GM. Nicotinamide adenine dinucleotide phosphate oxidase is differentially regulated in normal myometrium versus leiomyoma. Reprod Sci 2014; 21:1145-52. [PMID: 24520084 DOI: 10.1177/1933719114522552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Uterine fibroids are the most common benign tumor in women. The goal of this study was to investigate whether nicotinamide adenine dinucleotide phosphate oxidase (NOX), a major source of superoxide and subsequent oxidative stress, was differentially regulated in myometrium versus leiomyoma. Expression levels of NOXs1-5, dual oxidase (DUOX), DUOX2, NOX organizer (NOXO) 1, NOX activator 1, p47(phox), p67(phox), and p22(phox) were determined in cells treated with hypoxia by real-time reverse transcription-polymerase chain reaction, Western blot, and immunohistochemistry in tissues. Expression of NOX4 increased in fibroid compared to myometrial tissues and cells. The NOX2, DUOX1, and p67(phox) were higher while p22(phox) was lower in fibroid than that in myometrial cells. Hypoxia increased NOX4, DUOX1, and NOXO1 and decreased p22(phox) in myometrial and reduced DUOX1 in fibroid cells. The NOX1, NOX3, NOX5, and DUOX2 were undetectable. Fibroid cells are characterized by a unique NOX profile, which promotes a severe prooxidant state that may be responsible for their development. Targeting these subunits may be beneficial for future therapeutic interventions.
Collapse
Affiliation(s)
- Nicole M Fletcher
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Mohammed G Saed
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Suleiman Abuanzeh
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Meharry Medical College, Nashville, TN, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA, USA
| | - Ghassan M Saed
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
10
|
Effects of folic acid and polyethylene glycol coated quantum dots on toxicity and tissue uptake to precision-cut spleen slices of rats. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2013. [DOI: 10.1007/s40005-013-0082-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Hernandes MS, Britto LRG. NADPH oxidase and neurodegeneration. Curr Neuropharmacol 2013; 10:321-7. [PMID: 23730256 PMCID: PMC3520042 DOI: 10.2174/157015912804143540] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/22/2012] [Accepted: 08/08/2012] [Indexed: 12/21/2022] Open
Abstract
NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, focusing on Parkinson and Alzheimer diseases.
Collapse
Affiliation(s)
- Marina S Hernandes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas and Núcleo de Apoio à Pesquisa em Neurociência Aplicada, Universidade de São Paulo, SP, Brasil
| | | |
Collapse
|
12
|
Bruno RM, Daghini E, Ghiadoni L, Sudano I, Rugani I, Varanini M, Passino C, Emdin M, Taddei S. Effect of acute administration of vitamin C on muscle sympathetic activity, cardiac sympathovagal balance, and baroreflex sensitivity in hypertensive patients. Am J Clin Nutr 2012; 96:302-8. [PMID: 22695870 DOI: 10.3945/ajcn.112.035022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Essential hypertension is characterized by both increased oxidative stress and sympathetic traffic. Experimental studies have shown that reactive oxygen species can modulate autonomic activity. OBJECTIVE The aim of this study was to determine whether acute administration of the antioxidant vitamin C modifies sympathetic nerve activity in essential hypertension. DESIGN Thirty-two untreated patients with essential hypertension and 20 normotensive subjects received vitamin C (3 g intravenously in 5 min) or vehicle. Heart rate, noninvasive beat-to-beat blood pressure, and muscle sympathetic nerve activity (microneurography) were monitored at baseline and up to 20 min after the infusion. Spectral analysis of RR interval variability and spontaneous baroreflex sensitivity were also computed. RESULTS Vitamin C infusion significantly lowered blood pressure in hypertensive patients but not in normotensive subjects (maximal changes in systolic blood pressure: -4.9 ± 10.1 compared with -0.7 ± 4.0 mm Hg, respectively; P < 0.05). Moreover, muscle sympathetic nerve activity was significantly reduced after vitamin C infusion in hypertensive patients (from 53.3 ± 12.2 to 47.4 ± 11.5 bursts/100 heart beats; P < 0.01) but not in healthy subjects (from 42.0 ± 10.1 to 42.7 ± 11.8 bursts/100 heart beats; NS). On the contrary, in 16 hypertensive patients, sodium nitroprusside in equidepressor doses induced a significant increase in muscle sympathetic nerve activity compared with vitamin C (+10.0 ± 6.9 bursts/100 heart beats). Sympathovagal balance and spontaneous baroreflex sensitivity were restored during vitamin C infusion in hypertensive subjects. CONCLUSIONS These results indicate that acute administration of vitamin C is able to reduce cardiovascular adrenergic drive in hypertensive patients, which suggests that oxidative stress is involved in the regulation of sympathetic activity in essential hypertension.
Collapse
Affiliation(s)
- Rosa M Bruno
- Department of Internal Medicine, University Hospital of Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bruno RM, Ghiadoni L, Seravalle G, Dell'oro R, Taddei S, Grassi G. Sympathetic regulation of vascular function in health and disease. Front Physiol 2012; 3:284. [PMID: 22934037 PMCID: PMC3429057 DOI: 10.3389/fphys.2012.00284] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/29/2012] [Indexed: 01/16/2023] Open
Abstract
The sympathetic nervous system (SNS) is known to play a pivotal role in short- and long-term regulation of different functions of the cardiovascular system. In the past decades increasing evidence demonstrated that sympathetic neural control is involved not only in the vasomotor control of small resistance arteries but also in modulation of large artery function. Sympathetic activity and vascular function, both of which are key factors in the development and prognosis of cardiovascular events and disease, are linked at several levels. Evidence from experimental studies indicates that the SNS is critically influenced, at the central and also at the peripheral level, by the most relevant factors regulating vascular function, such as nitric oxide (NO), reactive oxygen species (ROS), endothelin (ET), the renin-angiotensin system. Additionally, there is indirect evidence of a reciprocal relationship between endothelial function and activity of the SNS. A number of cardiovascular risk factors and diseases are characterized both by increased sympathetic outflow and decreased endothelial function. In healthy subjects, muscle sympathetic nerve activity (MSNA) appears to be related to surrogate markers of endothelial function, and an acute increase in sympathetic activity has been associated with a decrease in endothelial function in healthy subjects. However, direct evidence of a cause-effect relationship from human studies is scanty. In humans large artery stiffness has been associated with increased sympathetic discharge, both in healthy subjects and in renal transplant recipients. Peripheral sympathetic discharge is also able to modulate wave reflection. On the other hand, large artery stiffness can interfere with autonomic regulation by impairing carotid baroreflex sensitivity.
Collapse
Affiliation(s)
- Rosa M Bruno
- Department of Internal Medicine University of Pisa, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Haque MM, Im HY, Seo JE, Hasan M, Woo K, Kwon OS. Acute toxicity and tissue distribution of CdSe/CdS-MPA quantum dots after repeated intraperitoneal injection to mice. J Appl Toxicol 2012; 33:940-50. [PMID: 22733552 DOI: 10.1002/jat.2775] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/12/2012] [Accepted: 04/12/2012] [Indexed: 11/11/2022]
Abstract
Quantum dots (QDs) are novel tools with multiple biological and medical applications because of their superior photoemission and photostability characteristics. However, leaching of toxic metals from QDs is of great concern. Therefore, for the successful application of QDs in bioscience, it is essential to understand their biological fate and toxicity. We investigated toxicological effects and tissue distribution of mercaptopropionic acid-conjugated cadmium selenide/cadmium sulfide (CdSe/CdS-MPA) QDs after repeated intraperitoneal injection into BALB/c mice. The mice were injected every 3 days with various doses of QDs (0, 5, 10 and 25 mg kg(-1) ). The subsequent effects of QDs on plasma levels of various biomarkers were evaluated at different time points (at 0, 1, 4, 7, 10, 13 and 15 days). Various tissue samples (spleen, liver, lung, kidneys, brain, heart and thymus) were collected for toxicity analysis, distribution testing, histopathological examination and inflammation assessment. No abnormal clinical signs or behaviors were recorded but the body weight of mice treated with 25 mg kg(-1) QDs was significantly decreased from day 7 compared with control mice. QDs were observed in the liver, spleen, lung and kidneys, but not in brain or heart. Significantly higher levels of lactate dehydrogenase and nicotinamide adenine dinucleotide phosphate oxidase were found in the plasma, liver and spleen. Histopathological examination did not show any tissue toxicity but the levels of interleukin-6, a pro-inflammatory marker, were increased in the plasma, liver and spleen. All of these findings provide insight into the observed toxicological effect levels and tissue-specific distribution of CdSe/CdS-MPA QDs.
Collapse
Affiliation(s)
- Md Mamunul Haque
- Toxicology Laboratory, Korea Institute of Science and Technology, Seoul, 136-791, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Evaluation of CdSe/CdS-PEG-FA quantum dots: distribution and observable-adverse-effect-level in mice after intravenous injection. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2012. [DOI: 10.1007/s40005-012-0026-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
In vitro screening of NADPH oxidase inhibitors and in vivo effects of L-leucinethiol on experimental autoimmune encephalomyelitis-induced mice. J Neurol Sci 2012; 318:36-44. [PMID: 22554692 DOI: 10.1016/j.jns.2012.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 11/22/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE), a Th1 polarized demyelinating disease of the central nervous system, shares many pathological and clinical similarities with multiple sclerosis (MS). The objectives of this study were i) to evaluate the suppressive effects of L-leucinethiol (LeuSH), a metalloprotease inhibitor on EAE-induced mice and ii) to study the effects of LeuSH on matrix metalloproteinase-9 (MMP-9), NADPH oxidase and cytokines (IFN-γ, IL-5 and IL-10) in tissues and plasma of EAE mice as a measure of potential markers associated with EAE disease. C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein (MOG35-55) peptide in complete Freund's adjuvant to induce EAE. A significant difference was observed in body weights and clinical signs of LeuSH (8 mg/kg) administered EAE-induced mice compared to control mice. The findings of this study include alterations in the enzymatic expression of MMP-9, NADPH oxidase and cytokine levels in the brain, spinal cord, spleen, thymus and plasma of inhibitor-treated EAE mice as well as EAE-induced mice. The enzyme activities of NADPH oxidase were inhibited by LeuSH. From these results, it can be considered that LeuSH acts as one of the antigen candidates in ameliorating the clinical symptoms of EAE disease in mice.
Collapse
|
17
|
Iyer A, Chan V, Brown L. The DOCA-Salt Hypertensive Rat as a Model of Cardiovascular Oxidative and Inflammatory Stress. Curr Cardiol Rev 2011; 6:291-7. [PMID: 22043205 PMCID: PMC3083810 DOI: 10.2174/157340310793566109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/03/2010] [Accepted: 09/15/2010] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress and inflammation are two sides of the same coin that are intricately combined to elicit a chronic pathophysiological stress state, especially as seen in cardiovascular remodelling. In this review, we argue that administration of deoxycorticosterone acetate (DOCA) and sodium chloride to uninephrectomised rats, defined as DOCA-salt hypertensive rats, provides a reliable animal model of oxidative and inflammatory stress in the cardiovascular system. The supporting evidence includes pathophysiological and biochemical changes together with pharmacological responses to synthetic and natural compounds that lower the concentrations of reactive free radical species and that curtail inflammatory responses in the cardiovascular system.
Collapse
Affiliation(s)
- Abishek Iyer
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | |
Collapse
|
18
|
Bombardi C, Cozzi B, Nenzi A, Mazzariol S, Grandis A. Distribution of Nitrergic Neurons in the Dorsal Root Ganglia of the Bottlenose Dolphin (Tursiops truncatus). Anat Rec (Hoboken) 2011; 294:1066-73. [DOI: 10.1002/ar.21394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/03/2011] [Accepted: 03/10/2011] [Indexed: 12/19/2022]
|
19
|
Kandagaddala LD, Kang MJ, Chung BC, Patterson TA, Kwon OS. Expression and activation of matrix metalloproteinase-9 and NADPH oxidase in tissues and plasma of experimental autoimmune encephalomyelitis in mice. ACTA ACUST UNITED AC 2010; 64:109-14. [PMID: 20810258 DOI: 10.1016/j.etp.2010.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/28/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model for multiple sclerosis (MS) that can be induced by immunization with myelin antigens such as myelin oligodendrocyte glycoprotein (MOG). The objective of this study was (i) to investigate how matrix metalloproteinase-9 (MMP-9) and NADPH oxidase enzymes are affected in the EAE mouse model and (ii) to know whether peripheral organs also express these enzymes in the EAE model. MOG(33-55) was administered subcutaneously on two sites over the back. Pertussis toxin was administered intraperitoneally immediately after MOG and again two days later. A significant difference was observed in body weights and clinical signs of EAE-induced mice. MMP-9 and NADPH oxidase enzymes were measured in central nervous system (CNS) tissues, peripheral tissues and plasma of EAE-induced mice. The primary findings include the distribution pattern of MMP-9 in CNS and peripheral tissues, and alterations in the enzymatic expression of MMP-9 and NADPH oxidase in the CNS tissues, spleen and plasma of EAE-induced mice. From these results, it can be considered that the spleen as well as the CNS can act as target organs in EAE disease, and plasma MMP-9 and NADPH oxidase may contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Lakshmi Devi Kandagaddala
- Toxicology Laboratory, Korea Institute of Science and Technology, Sungbuk-gu, Seoul 136-791, Republic of Korea
| | | | | | | | | |
Collapse
|
20
|
Zielonka J, Kalyanaraman B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 2010; 48:983-1001. [PMID: 20116425 PMCID: PMC3587154 DOI: 10.1016/j.freeradbiomed.2010.01.028] [Citation(s) in RCA: 393] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 12/15/2022]
Abstract
Hydroethidine (HE; or dihydroethidium) is the most popular fluorogenic probe used for detecting intracellular superoxide radical anion. The reaction between superoxide and HE generates a highly specific red fluorescent product, 2-hydroxyethidium (2-OH-E(+)). In biological systems, another red fluorescent product, ethidium, is also formed, usually at a much higher concentration than 2-OH-E(+). In this article, we review the methods to selectively detect the superoxide-specific product (2-OH-E(+)) and the factors affecting its levels in cellular and biological systems. The most important conclusion of this review is that it is nearly impossible to assess the intracellular levels of the superoxide-specific product, 2-OH-E(+), using confocal microscopy or other fluorescence-based microscopic assays and that it is essential to measure by HPLC the intracellular HE and other oxidation products of HE, in addition to 2-OH-E(+), to fully understand the origin of red fluorescence. The chemical reactivity of mitochondria-targeted hydroethidine (Mito-HE, MitoSOX red) with superoxide is similar to the reactivity of HE with superoxide, and therefore, all of the limitations attributed to the HE assay are applicable to Mito-HE (or MitoSOX) as well.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
21
|
Abstract
Oxidative stress has been implicated in the pathogenesis of neurologic and psychiatric diseases. The brain is particularly vulnerable to oxidative damage due to high oxygen consumption, low antioxidant defense, and an abundance of oxidation-sensitive lipids. Production of reactive oxygen species (ROS) by mitochondria is generally thought to be the main cause of oxidative stress. However, a role for ROS-generating NADPH oxidase NOX enzymes has recently emerged. Activation of the phagocyte NADPH oxidase NOX2 has been studied mainly in microglia, where it plays a role in inflammation, but may also contribute to neuronal death in pathologic conditions. However, NOX-dependent ROS production can be due to the expression of other NOX isoforms, which are detected not only in microglia, but also in astrocytes and neurons. The physiologic and pathophysiologic roles of such NOX enzymes are only partially understood. In this review, we summarize the present knowledge about NOX enzymes in the central nervous system and their involvement in neurologic and psychiatric diseases.
Collapse
Affiliation(s)
- Silvia Sorce
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva-4, Switzerland
| | | |
Collapse
|
22
|
Cao X, Demel SL, Quinn MT, Galligan JJ, Kreulen D. Localization of NADPH oxidase in sympathetic and sensory ganglion neurons and perivascular nerve fibers. Auton Neurosci 2009; 151:90-7. [PMID: 19716351 DOI: 10.1016/j.autneu.2009.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 06/08/2009] [Accepted: 07/10/2009] [Indexed: 11/30/2022]
Abstract
Superoxide anion (O(2)(-*)) production was previously reported to be increased in celiac ganglia (CG) during DOCA-salt hypertension, possibly via activation of the reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase. This suggested a role for neuronal NADPH oxidase in autonomic neurovascular control. However, the expression and localization of NADPH oxidase in the peripheral neurons are not fully known. The purpose of this study was to examine the subcellular localization of NADPH oxidase in sympathetic and sensory ganglion neurons and perivascular nerve fibers. In rat CG, p22(phox) and neuropeptide Y (NPY) were colocalized in all neurons. P22(phox) was also localized to dorsal root ganglia (DRG) neurons that contain calcitonin gene related peptide (CGRP). In mesenteric arteries, p22(phox) and p47(phox) were colocalized with NPY or CGRP in perivascular nerve terminals. A similar pattern of nerve terminal staining of p22(phox) and p47(phox) was also found in cultured CG neurons and nerve growth factor (NGF)-differentiated PC12 cells. These data demonstrate a previously uncharacterized localization of NADPH oxidase in perivascular nerve fibers. The presence of a O(2)(-*)-generating enzyme in close vicinity to the sites of neurotransmitter handling in the nerve fibers suggests the possibility of novel redox-mediated mechanisms in peripheral neurovascular control.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blood Vessels/innervation
- Blood Vessels/physiology
- Calcitonin Gene-Related Peptide/metabolism
- Ganglia, Sensory/cytology
- Ganglia, Sensory/enzymology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/enzymology
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/enzymology
- NADH, NADPH Oxidoreductases/metabolism
- NADPH Oxidase 1
- NADPH Oxidases/metabolism
- Nerve Fibers, Myelinated/enzymology
- Nerve Fibers, Myelinated/ultrastructure
- Neurons/cytology
- Neurons/enzymology
- Neuropeptide Y/metabolism
- Oxidation-Reduction
- PC12 Cells
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Regional Blood Flow/physiology
- Sensory Receptor Cells/cytology
- Sensory Receptor Cells/enzymology
- Superoxides/metabolism
- Sympathetic Fibers, Postganglionic/cytology
- Sympathetic Fibers, Postganglionic/enzymology
- Vasoconstriction/physiology
- Vasodilation/physiology
Collapse
Affiliation(s)
- Xian Cao
- The Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Loss of redox homeostasis and formation of excessive free radicals play an important role in the pathogenesis of kidney disease and hypertension. Free radicals such as reactive oxygen species (ROS) are necessary in physiologic processes. However, loss of redox homeostasis contributes to proinflammatory and profibrotic pathways in the kidney, which in turn lead to reduced vascular compliance and proteinuria. The kidney is susceptible to the influence of various extracellular and intracellular cues, including the renin-angiotensin-aldosterone system (RAAS), hyperglycemia, lipid peroxidation, inflammatory cytokines, and growth factors. Redox control of kidney function is a dynamic process with reversible pro- and anti-free radical processes. The imbalance of redox homeostasis within the kidney is integral in hypertension and the progression of kidney disease. An emerging paradigm exists for renal redox contribution to hypertension.
Collapse
Affiliation(s)
- Ravi Nistala
- University of Missouri-Columbia School of Medicine, Department of Internal Medicine, Columbia, Missouri 65212, USA.
| | | | | |
Collapse
|
24
|
Chapleau MW. The continuing saga of neuronal oxidative stress in hypertension: Nox, Nox who's there, and where? Hypertension 2007; 50:600-2. [PMID: 17698720 DOI: 10.1161/hypertensionaha.107.094201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|