1
|
Jiang H, Shen Z, Zhuang J, Lu C, Qu Y, Xu C, Yang S, Tian X. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front Immunol 2024; 14:1335936. [PMID: 38288116 PMCID: PMC10822972 DOI: 10.3389/fimmu.2023.1335936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
The glomerular filtration barrier, comprising the inner layer of capillary fenestrated endothelial cells, outermost podocytes, and the glomerular basement membrane between them, plays a pivotal role in kidney function. Podocytes, terminally differentiated epithelial cells, are challenging to regenerate once injured. They are essential for maintaining the integrity of the glomerular filtration barrier. Damage to podocytes, resulting from intrinsic or extrinsic factors, leads to proteinuria in the early stages and eventually progresses to chronic kidney disease (CKD). Immune-mediated podocyte injury is a primary pathogenic mechanism in proteinuric glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, and lupus nephritis with podocyte involvement. An extensive body of evidence indicates that podocytes not only contribute significantly to the maintenance of the glomerular filtration barrier and serve as targets of immune responses but also exhibit immune cell-like characteristics, participating in both innate and adaptive immunity. They play a pivotal role in mediating glomerular injury and represent potential therapeutic targets for CKD. This review aims to systematically elucidate the mechanisms of podocyte immune injury in various podocyte lesions and provide an overview of recent advances in podocyte immunotherapy. It offers valuable insights for a deeper understanding of the role of podocytes in proteinuric glomerular diseases, and the identification of new therapeutic targets, and has significant implications for the future clinical diagnosis and treatment of podocyte-related disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhirang Shen
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Division of Nephrology, Department of Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Qu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Cao W, Yang Z, Liu X, Ren S, Su H, Yang B, Liu Y, Wilcox CS, Hou FF. A kidney-brain neural circuit drives progressive kidney damage and heart failure. Signal Transduct Target Ther 2023; 8:184. [PMID: 37169751 PMCID: PMC10175540 DOI: 10.1038/s41392-023-01402-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 05/13/2023] Open
Abstract
Chronic kidney disease (CKD) and heart failure (HF) are highly prevalent, aggravate each other, and account for substantial mortality. However, the mechanisms underlying cardiorenal interaction and the role of kidney afferent nerves and their precise central pathway remain limited. Here, we combined virus tracing techniques with optogenetic techniques to map a polysynaptic central pathway linking kidney afferent nerves to subfornical organ (SFO) and thereby to paraventricular nucleus (PVN) and rostral ventrolateral medulla that modulates sympathetic outflow. This kidney-brain neural circuit was overactivated in mouse models of CKD or HF and subsequently enhanced the sympathetic discharge to both the kidney and the heart in each model. Interruption of the pathway by kidney deafferentation, selective deletion of angiotensin II type 1a receptor (AT1a) in SFO, or optogenetic silence of the kidney-SFO or SFO-PVN projection decreased the sympathetic discharge and lessened structural damage and dysfunction of both kidney and heart in models of CKD and HF. Thus, kidney afferent nerves activate a kidney-brain neural circuit in CKD and HF that drives the sympathetic nervous system to accelerate disease progression in both organs. These results demonstrate the crucial role of kidney afferent nerves and their central connections in engaging cardiorenal interactions under both physiological and disease conditions. This suggests novel therapies for CKD or HF targeting this kidney-brain neural circuit.
Collapse
Affiliation(s)
- Wei Cao
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, PR China
| | - Zhichen Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, PR China
| | - Xiaoting Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, PR China
| | - Siqiang Ren
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence; Key Laboratory of Mental Health of the Ministry of Education; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China
| | - Huanjuan Su
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, PR China
| | - Bihui Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, PR China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, PR China
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension, Georgetown University Medical Central, Washington, DC, USA
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, PR China.
| |
Collapse
|
3
|
NODA M, MATSUDA T. Central regulation of body fluid homeostasis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:283-324. [PMID: 35908954 PMCID: PMC9363595 DOI: 10.2183/pjab.98.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135-145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve "body fluid homeostasis" or "Na homeostasis", the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.
Collapse
Affiliation(s)
- Masaharu NODA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- Correspondence should be addressed to: Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan (e-mail: )
| | - Takashi MATSUDA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
4
|
Marahrens B, Schulze A, Wysocki J, Lin MH, Ye M, Kanwar YS, Bader M, Velez JCQ, Miner JH, Batlle D. Knockout of aminopeptidase A in mice causes functional alterations and morphological glomerular basement membrane changes in the kidneys. Kidney Int 2020; 99:900-913. [PMID: 33316280 DOI: 10.1016/j.kint.2020.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/28/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Aminopeptidase A is one of the most potent enzymes within the renin-angiotensin system in terms of angiotensin II degradation. Here, we examined whether there is a kidney phenotype and any compensatory changes in other renin angiotensin system enzymes involved in the metabolism of angiotensin II associated with aminopeptidase A deficiency. Kidneys harvested from aminopeptidase A knockout mice were examined by light and electron microscopy, immunohistochemistry and immunofluorescence. Kidney angiotensin II levels and the ability of renin angiotensin system enzymes in the glomerulus to degrade angiotensin II ex vivo, their activities, protein and mRNA levels in kidney lysates were evaluated. Knockout mice had increased blood pressure and mild glomerular mesangial expansion without significant albuminuria. By electron microscopy, knockout mice exhibited a mild increase of the mesangial matrix, moderate thickening of the glomerular basement membrane but a striking appearance of knob-like structures. These knobs were seen in both male and female mice and persisted after the treatment of hypertension. In isolated glomeruli from knockout mice, the level of angiotensin II was more than three-fold higher as compared to wild type control mice. In kidney lysates from knockout mice angiotensin converting enzyme activity, protein and mRNA levels were markedly decreased possibly as a compensatory mechanism to reduce angiotensin II formation. Thus, our findings support a role for aminopeptidase A in the maintenance of glomerular structure and intra-kidney homeostasis of angiotensin peptides.
Collapse
Affiliation(s)
- Benedikt Marahrens
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University/Feinberg School of Medicine, Chicago, Illinois, USA; Charité University Medicine Berlin, Berlin, Germany
| | - Arndt Schulze
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University/Feinberg School of Medicine, Chicago, Illinois, USA; Charité University Medicine Berlin, Berlin, Germany
| | - Jan Wysocki
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University/Feinberg School of Medicine, Chicago, Illinois, USA
| | - Meei-Hua Lin
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Minghao Ye
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University/Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University/Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael Bader
- Charité University Medicine Berlin, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Juan Carlos Q Velez
- Department of Nephrology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University/Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
5
|
Zhang C, Gong Y, Li N, Liu X, Zhang Y, Ye F, Guo Q, Zheng J. Long noncoding RNA Kcnq1ot1 promotes sC5b-9-induced podocyte pyroptosis by inhibiting miR-486a-3p and upregulating NLRP3. Am J Physiol Cell Physiol 2020; 320:C355-C364. [PMID: 33296289 DOI: 10.1152/ajpcell.00403.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Podocytes are epithelial cells adhering glomerular capillaries, which regulate the integrity of glomerular filtration barrier. Irreversible podocyte injury induces glomerular inflammation and causes chronic renal diseases. Kcnq1ot1, a long noncoding RNA, participates in the pathogenesis of diabetic retinopathy and cardiomyopathy. However, its function in podocyte injury is elusive. Pyroptosis of murine podocyte MPC5 was triggered by sublytic complement C5b-9 (sC5b-9) for subsequent in vitro functional and mechanistic investigation. Gain/loss-of-function analysis was conducted to examine the functional role of Kcnq1ot1 in podocyte pyroptosis. Meanwhile, the molecular mechanism of Kcnq1ot1's effect on podocyte injury was explored by identifying downstream molecules and their intermediate interactions. Kcnq1ot1 was upregulated in sC5b-9-induced podocytes, and silencing Kcnq1ot1 could inhibit sC5b-9's effect on podocyte pyroptosis. We also identified the interaction between Kcnq1ot1 and miR-486a-3p, through which Kcnq1ot1 mediated miR-486a-3p inhibition by sC5b-9. Furthermore, miR-486a-3p reduced the transcriptional activity of NLRP3, while the overexpression of NLRP3 enhanced sC5b-9's effect on podocyte pyroptosis through activating NLRP3 inflammasome. sC5b-9 induces pyroptosis in podocytes through modulating the Kcnq1ot1/miR-486a-3p/NLRP3 regulatory axis, and these uncovered key molecules might facilitate podocyte-targeted treatment for renal inflammatory diseases.
Collapse
Affiliation(s)
- Chunjian Zhang
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Yimeng Gong
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Na Li
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Xiaoyan Liu
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Yunzhu Zhang
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Fangze Ye
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Qiang Guo
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Jiaxin Zheng
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Binz-Lotter J, Jüngst C, Rinschen MM, Koehler S, Zentis P, Schauss A, Schermer B, Benzing T, Hackl MJ. Injured Podocytes Are Sensitized to Angiotensin II-Induced Calcium Signaling. J Am Soc Nephrol 2020; 31:532-542. [PMID: 31924670 DOI: 10.1681/asn.2019020109] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 12/01/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Inhibition of angiotensin II (AngII) signaling, a therapeutic mainstay of glomerular kidney diseases, is thought to act primarily through regulating glomerular blood flow and reducing filtration pressure. Although extravascular actions of AngII have been suggested, a direct effect of AngII on podocytes has not been demonstrated in vivo. METHODS To study the effects of AngII on podocyte calcium levels in vivo, we used intravital microscopy of the kidney in mice expressing the calcium indicator protein GCaMP3. RESULTS In healthy animals, podocytes displayed limited responsiveness to AngII stimulation. In contrast, in animals subjected to either adriamycin-induced acute chemical injury or genetic deletion of the podocin-encoding gene Nphs2, the consequent podocyte damage and proteinuria rendered the cells responsive to AngII and resulted in AngII-induced calcium transients in significantly more podocytes. The angiotensin type 1 receptor blocker losartan could fully inhibit this response. Also, responsiveness to AngII was at least partly mediated through the transient receptor potential channel 6, which has been implicated in podocyte calcium handling. Interestingly, loss of a single Nphs2 allele also increased podocytes' responsiveness to AngII signaling. This direct effect of AngII on injured podocytes results in increased calcium transients, which can further aggravate the underlying kidney disease. CONCLUSIONS Our discovery that podocytes become sensitized to AngII-induced calcium signaling upon injury might explain results from large, randomized, controlled trials in which improved renal outcomes occur only in the subgroup of patients with proteinuria, indicating podocyte damage. Our findings also emphasize the need to treat every patient with a glomerular disease with either an angiotensin-converting enzyme inhibitor or an angiotensin type 1 receptor blocker.
Collapse
Affiliation(s)
- Julia Binz-Lotter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; and
| | - Christian Jüngst
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; and
| | - Sybille Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; and
| | - Peter Zentis
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; and.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; and.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Matthias J Hackl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; and
| |
Collapse
|
7
|
Inoue K, Tian X, Velazquez H, Soda K, Wang Z, Pedigo CE, Wang Y, Cross E, Groener M, Shin JW, Li W, Hassan H, Yamamoto K, Mundel P, Ishibe S. Inhibition of Endocytosis of Clathrin-Mediated Angiotensin II Receptor Type 1 in Podocytes Augments Glomerular Injury. J Am Soc Nephrol 2019; 30:2307-2320. [PMID: 31511362 PMCID: PMC6900791 DOI: 10.1681/asn.2019010053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inhibition of the renin-angiotensin system remains a cornerstone in reducing proteinuria and progression of kidney failure, effects believed to be the result of reduction in BP and glomerular hyperfiltration. However, studies have yielded conflicting results on whether podocyte-specific angiotensin II (AngII) signaling directly induces podocyte injury. Previous research has found that after AngII stimulation, β-arrestin-bound angiotensin II receptor type 1 (AT1R) is internalized in a clathrin- and dynamin-dependent manner, and that Dynamin1 and Dynamin2 double-knockout mice exhibit impaired clathrin-mediated endocytosis. METHODS We used podocyte-specific Dyn double-knockout mice to examine AngII-stimulated AT1R internalization and signaling in primary podocytes and controls. We also examined the in vivo effect of AngII in these double-knockout mice through renin-angiotensin system blockers and through deletion of Agtr1a (which encodes the predominant AT1R isoform expressed in kidney, AT1aR). We tested calcium influx, Rac1 activation, and lamellipodial extension in control and primary podocytes of Dnm double-knockout mice treated with AngII. RESULTS We confirmed augmented AngII-stimulated AT1R signaling in primary Dnm double-knockout podocytes resulting from arrest of clathrin-coated pit turnover. Genetic ablation of podocyte Agtr1a in Dnm double-knockout mice demonstrated improved albuminuria and kidney function compared with the double-knockout mice. Isolation of podocytes from Dnm double-knockout mice revealed abnormal membrane dynamics, with increased Rac1 activation and lamellipodial extension, which was attenuated in Dnm double-knockout podocytes lacking AT1aR. CONCLUSIONS Our results indicate that inhibiting aberrant podocyte-associated AT1aR signaling pathways has a protective effect in maintaining the integrity of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Kazunori Inoue
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Heino Velazquez
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Keita Soda
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Zhen Wang
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Christopher E Pedigo
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Ying Wang
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Elizabeth Cross
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Marwin Groener
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jee-Won Shin
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Wei Li
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Hossam Hassan
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Koichi Yamamoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and
| | - Peter Mundel
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shuta Ishibe
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut;
| |
Collapse
|
8
|
Safari T, Shahraki MR, Miri S, Mirakzehi Bakhshani N, Niazi AA, Komeili GR, Bagheri H. The effect of angiotensin 1-7 and losartan on renal ischemic/reperfusion injury in male rats. Res Pharm Sci 2019; 14:441-447. [PMID: 31798661 PMCID: PMC6827188 DOI: 10.4103/1735-5362.268205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ischemia/reperfusion (I/R) is a major cause of acute kidney injury. Several studies have shown that renin angiotensin (Ang) system and activation of Ang II type 1 receptor (AT1) are involved in various forms of kidney diseases. Likewise, Ang 1-7 as a physiologic antagonist of AT1 and losartan could possibly protect the kidney against I/R damage. Therefore, we investigated renal injury by administering the drugs before and after I/R. Fifty-four male Wistar rats were randomly assigned to five groups as follows. 1, Sham operated; 2, saline group (as a control group); 3, losartan group; 4, Ang 1-7group; and 5, Ang 1-7 + losartan simultaneously. It should be noted that groups 2-5 consisted of two separate I/R-induced subgroups both receiving medication where the first groups received the treatment 15 min before induction of I/R while the medications were given to the second groups immediately after induction of I/R. Twenty four h after I/R, blood samples were collected, and then levels of serum urea nitrogen (BUN), creatinine (Cr), nitrite, malondialdehyde (MDA), lactate dehydrogenase (LDH) and total antioxidant capacity (TAC) were measured. Likewise, nitrite, MDA and TAC were measured in the homogenized kidney tissues. After the induction of I/R, the BUN, Cr, LDH, and kidney tissue damage score increased. Administration of Ang 1-7 alone or simultaneously with losartan decreased the levels of aforementioned factors. Also, kidney MDA and nitrate levels significantly increased after I/R induction (P < 0.05). According to the results of this study, it can be claimed that the effect of losartan in the presence of Mas receptor is statistically significant and kidney damage dramatically decreases.
Collapse
Affiliation(s)
- Tahereh Safari
- School of Medicine, Department of Physiology, Zahedan University of Medical Sciences, Zahedan, I.R. Iran
| | - Mohamad Reza Shahraki
- School of Medicine, Department of Physiology, Zahedan University of Medical Sciences, Zahedan, I.R. Iran
| | - Saideh Miri
- School of Medicine, Department of Physiology, Zahedan University of Medical Sciences, Zahedan, I.R. Iran
| | - Nasime Mirakzehi Bakhshani
- School of Medicine, Department of Physiology, Zahedan University of Medical Sciences, Zahedan, I.R. Iran
| | - Abbass Ali Niazi
- School of Medicine, Department of Pathology, Zahedan University of Medical Sciences, Zahedan, I.R. Iran
| | - Gholam Reza Komeili
- School of Medicine, Department of Physiology, Zahedan University of Medical Sciences, Zahedan, I.R. Iran
| | - Hossain Bagheri
- School of Medicine, Department of Medical English, Zahedan University of Medical Sciences, I.R. Iran
| |
Collapse
|
9
|
Aoki S, Saito-Hakoda A, Yoshikawa T, Shimizu K, Kisu K, Suzuki S, Takagi K, Mizumoto S, Yamada S, van Kuppevelt TH, Yokoyama A, Matsusaka T, Sato H, Ito S, Sugawara A. The reduction of heparan sulphate in the glomerular basement membrane does not augment urinary albumin excretion. Nephrol Dial Transplant 2018; 33:26-33. [PMID: 28992095 DOI: 10.1093/ndt/gfx218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 04/23/2017] [Indexed: 01/12/2023] Open
Abstract
Background Heparan sulphate proteoglycan (HSPG) is present in the glomerular basement membrane (GBM) and is thought to play a major role in the glomerular charge barrier. Reductions and structural alterations of HSPG are observed in different types of kidney diseases accompanied by proteinuria. However, their causal relations remain unknown. Methods We generated podocyte-specific exostosin-like 3 gene (Extl3) knockout mice (Extl3KO) using a Cre-loxP recombination approach. A reduction of HSPG was expected in the GBM of these mice, because EXTL3 is involved in its synthesis. Mice were separated into three groups, according to the loads on the glomeruli: a high-protein diet group, a high-protein and high-sodium diet group and a hyperglycaemic group induced by streptozotocin treatment in addition to maintenance on a high-protein and high-sodium diet. The urinary albumin:creatinine ratio was measured at 7, 11, 15 and 19 weeks of age. Renal histology was also investigated. Results Podocyte-specific expression of Cre recombinase was detected by immunohistochemistry. Moreover, immunofluorescent staining demonstrated a significant reduction of HSPG in the GBM. Electron microscopy showed irregularities in the GBM and effacement of the foot processes in Extl3KO. The values of the urinary albumin:creatinine ratio were within the range of microalbuminuria in all groups and did not significantly differ between the control mice and Extl3KO. Conclusions The reduction of HSPG in the GBM did not augment urinary albumin excretion. HSPG's anionic charge appears to contribute little to the glomerular charge barrier.
Collapse
Affiliation(s)
- Satoshi Aoki
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akiko Saito-Hakoda
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kyoko Shimizu
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kiyomi Kisu
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Susumu Suzuki
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijyo University, Nagoya, Aichi, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijyo University, Nagoya, Aichi, Japan
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Taiji Matsusaka
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroshi Sato
- Department of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Miyagi, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
10
|
Koizumi M, Niimura F, Fukagawa M, Matsusaka T. Adipocytes do not significantly contribute to plasma angiotensinogen. J Renin Angiotensin Aldosterone Syst 2018; 17:1470320316672348. [PMID: 28952396 PMCID: PMC5843855 DOI: 10.1177/1470320316672348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recently, it has been reported that 25% of plasma angiotensinogen (Agt) is derived from fat. Meanwhile, liver-specific Agt knockout (KO) mice have markedly low plasma Agt, which may be due to reduced fat mass. To study the contribution of the fat to plasma Agt, we tested whether increasing fat mass can elevate plasma Agt and blood pressure in liver-Agt KO mice. Epididymal fat mass in liver-Agt KO mice fed a high-fat diet (HFD) was 4.1-fold larger than that in liver-Agt KO mice on a normal-fat diet (NFD). The liver-Agt KO mice on NFD were hypotensive with low levels of plasma Agt (on average, 0.11 vs 2.38 μg/ml). HFD slightly increased plasma Agt (0.17 μg/ml) without increase in blood pressure. To further increase fat mass, liver-Agt KO mice were fed HFD and simultaneously supplemented with low-dose angiotensin II and compared with control mice. Fat mass was comparable between the two groups. However, liver-Agt KO mice had uniformly low plasma Agt (0.09 vs 2.07 μg/ml) and systolic blood pressure (78±12 vs 111±6 mm Hg). In conclusion, adipocyte-derived Agt has essentially no contribution to the plasma concentration and no impact on blood pressure compared to liver-derived Agt.
Collapse
Affiliation(s)
- Masahiro Koizumi
- 1 Department of Internal Medicine, Tokai University School of Medicine, Japan
| | - Fumio Niimura
- 2 Department of Pediatrics, Tokai University School of Medicine, Japan
| | - Masafumi Fukagawa
- 1 Department of Internal Medicine, Tokai University School of Medicine, Japan
| | - Taiji Matsusaka
- 3 Institute of Medical Sciences, Tokai University, Japan.,4 Department of Molecular Sciences, Tokai University School of Medicine, Japan
| |
Collapse
|
11
|
Lal MA, Patrakka J. Understanding Podocyte Biology to Develop Novel Kidney Therapeutics. Front Endocrinol (Lausanne) 2018; 9:409. [PMID: 30083135 PMCID: PMC6065143 DOI: 10.3389/fendo.2018.00409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/02/2018] [Indexed: 11/13/2022] Open
Abstract
Over the past two decades it has become increasing clear that injury and loss of podocytes is an early and common clinical observation presented in many forms of glomerulopathy and chronic kidney disease. Identification of disease-causing monogenic mutations in numerous podocyte-expressed genes as well as studies conducted using preclinical animal models have shown that the podocyte plays a central role in establishing kidney dysfunction. In this review, we summarize current knowledge regarding the potential for podocyte-targeted therapies and give our view on how a deeper understanding of the molecular makeup of the podocyte will enable future therapeutic interventions. Specifically, we recount some of the currently described podocentric strategies for therapy and summarize the status and evolution of various model systems used to facilitate our understanding of the molecular and functional underpinnings of podocyte biology.
Collapse
Affiliation(s)
- Mark A. Lal
- Bioscience, Cardiovascular, Renal and Metabolism, Innovative Medicines Biotech Unit, AstraZeneca, Gothenburg, Sweden
- *Correspondence: Mark A. Lal
| | - Jaakko Patrakka
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Center, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Jaakko Patrakka
| |
Collapse
|
12
|
Kwon SH, Woollard JR, Saad A, Garovic VD, Zand L, Jordan KL, Textor SC, Lerman LO. Elevated urinary podocyte-derived extracellular microvesicles in renovascular hypertensive patients. Nephrol Dial Transplant 2017; 32:800-807. [PMID: 27190371 PMCID: PMC5837786 DOI: 10.1093/ndt/gfw077] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/09/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND An increased number of podocyte-derived extracellular vesicles (pEVs) may reflect podocyte injury in renal disease. Elevated glomerular pressure and other insults may injure podocytes, yet it remains unclear whether the numbers of pEVs are altered in hypertensive patients. We tested the hypothesis that urinary pEV levels would be elevated in patients with renovascular hypertension (RVH) compared with essential hypertension (EH) or healthy volunteers (HVs). METHODS We prospectively enrolled patients with EH ( n = 30) or RVH ( n = 31) to study renal blood flow (RBF) and cortical perfusion using multidetector computed tomography under controlled condition (regulated sodium intake and renin-angiotensin blockade). After isolation from urine samples, pEVs (nephrin and podocalyxin positive) were characterized by flow cytometry. Fourteen RVH patients were studied again 3 months after stenting or continued medical therapy. HVs ( n = 15) served as controls. RESULTS The fraction of pEV among urinary EVs was elevated in RVH compared with HVs and EH (11.4 ± 6.4, 6.8 ± 3.4 and 6.3 ± 3.7%, respectively; P < 0.001) and remained unchanged after 3 additional months of therapy and after controlling for clinical parameters. However, eGFR- and age-adjusted pEV levels did not correlate with any clinical or renal parameters. CONCLUSIONS In hypertensive patients under controlled conditions, urinary pEV levels are elevated in patients with RVH and low eGFR compared with patients with EH and relatively preserved renal function. These pEVs may reflect podocyte injury secondary to kidney damage, and their levels might represent a novel therapeutic target.
Collapse
Affiliation(s)
- Soon Hyo Kwon
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Division of Nephrology, Soonchunhyang University Hospital, Seoul, Korea
| | - John R. Woollard
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ahmed Saad
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Vesna D. Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ladan Zand
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kyra L. Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Stephen C. Textor
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Matsuda T, Hiyama TY, Niimura F, Matsusaka T, Fukamizu A, Kobayashi K, Kobayashi K, Noda M. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat Neurosci 2016; 20:230-241. [PMID: 27991901 DOI: 10.1038/nn.4463] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022]
Abstract
Body fluid conditions are continuously monitored in the brain to regulate thirst and salt-appetite sensations. Angiotensin II drives both thirst and salt appetite; however, the neural mechanisms underlying selective water- and/or salt-intake behaviors remain unknown. Using optogenetics, we show that thirst and salt appetite are driven by distinct groups of angiotensin II receptor type 1a-positive excitatory neurons in the subfornical organ. Neurons projecting to the organum vasculosum lamina terminalis control water intake, while those projecting to the ventral part of the bed nucleus of the stria terminalis control salt intake. Thirst-driving neurons are suppressed under sodium-depleted conditions through cholecystokinin-mediated activation of GABAergic neurons. In contrast, the salt appetite-driving neurons were suppressed under dehydrated conditions through activation of another population of GABAergic neurons by Nax signals. These distinct mechanisms in the subfornical organ may underlie the selective intakes of water and/or salt and may contribute to body fluid homeostasis.
Collapse
Affiliation(s)
- Takashi Matsuda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, Japan.,School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Takeshi Y Hiyama
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, Japan.,School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Fumio Niimura
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Taiji Matsusaka
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, Japan.,School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
14
|
Yamazaki M, Fukusumi Y, Kayaba M, Kitazawa Y, Takamura S, Narita I, Kawachi H. Possible role for glomerular-derived angiotensinogen in nephrotic syndrome. J Renin Angiotensin Aldosterone Syst 2016; 17:17/4/1470320316681223. [PMID: 27932705 PMCID: PMC5843942 DOI: 10.1177/1470320316681223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/28/2016] [Indexed: 01/13/2023] Open
Abstract
Background and objective: Renin–angiotensin system (RAS) inhibitors reduce glomerular injury and proteinuria, indicating that angiotensin II (Ang II) is involved in glomerular diseases. Although the local RAS is reported to play an essential role in maintaining local tissue functions, the role of the local RAS in regulating glomerular function is not well evaluated. In this study, we analyzed the glomerular expression of RAS components in nephrotic models and the effect of Ang II receptor blockers (ARB) on the expression of angiotensinogen (AGT). Methods: The levels of glomerular expression of RAS components were analyzed in two nephrotic models: anti-nephrin antibody-induced nephropathy and PAN nephropathy, a mimic of human minimal change nephrotic syndrome. The effect of the ARB irbesartan on the expression of AGT in the nephrotic model was analyzed. Results: Glomerular expression of AGT and the receptors for Ang II was clearly increased in the nephrotic models, while the expression levels of renin, ACE and ACE2 were decreased. ARB treatment suppressed the increase of glomerular expression of AGT in the nephrotic model. Conclusion: It is conceivable that the promoted local RAS action participated in the glomerular dysfunction, and that ARB treatment ameliorated slit diaphragm injury by inhibiting the positive feedback loop of the activated local Ang II action.
Collapse
Affiliation(s)
- Mihoko Yamazaki
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Japan.,Department of Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Yoshiyasu Fukusumi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Mutsumi Kayaba
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Yukina Kitazawa
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Sayuri Takamura
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Ichiei Narita
- Department of Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Hiroshi Kawachi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Japan
| |
Collapse
|
15
|
Wang S, Chen C, Su K, Zha D, Liang W, Hillebrands JL, Goor HV, Ding G. Angiotensin II induces reorganization of the actin cytoskeleton and myosin light-chain phosphorylation in podocytes through rho/ROCK-signaling pathway. Ren Fail 2015; 38:268-75. [PMID: 26652313 DOI: 10.3109/0886022x.2015.1117896] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIMS In the present study, we have evaluated the effect of angiotensin II (Ang II) on actin cytoskeleton reorganization and myosin light-chain (MLC) phosphorylation in podocytes to demonstrate whether the Rho/Rho-associated coiled kinase (ROCK) pathway is involved podocyte injury. METHODS Eighteen male Sprague-Dawley rats were divided into three groups and treated with Ang II, saline or telmisartan. Morphological changes were studied at 28 days after treatment. Immunohistochemistry and Western blotting were used to determine the renal expression of p-MLC and ROCK2. Cultured podocytes were treated with Ang II (10(-7 )M) with or without Rho-kinase inhibitor (Y27632, 10(-6 )M) for variable time periods. F-actin was visualized with fluorescein isothiocyanate (FITC)-conjugated phalloidin or tetraethyl rhodamine isothiocyanate (TRITC)-conjugated phalloidin. p-MLC expression was evaluated by immunofluorescence and Western blot. The activation of Rho/ROCK was evaluated by Western blot. RESULTS The expression of p-MLC in glomeruli increased significantly in rats treated with Ang II when compared to the control rats as shown by Western blot (p < 0.05). In cultured podocytes, Rho A and ROCK2 increased after incubation with Ang II. Ang II increased the expression of ROCK2, which was accompanied with altered morphology, redistribution of actin and increased phosphorylation of MLC. The distribution of actin changed to a large extent, although overall quantitative differences were not observed. Addition of Y-27632 to podocytes treated with Ang II could ameliorate F-actin cytoskeleton remodeling and the increment in p-MLC expression. CONCLUSION Ang II-induced podocyte cytoskeleton protein expression changing through the RhoA/ROCK2 p-MLC/F-actin pathway.
Collapse
Affiliation(s)
- Siyuan Wang
- a Department of Nephrology , Renmin Hospital of Wuhan University , Wuhan , Hubei , China.,b Department of General , Tongji Medical College, Huazhong University of Science & Technology, The Central Hospital of Wuhan , Wuhan , Hubei , China
| | - Cheng Chen
- a Department of Nephrology , Renmin Hospital of Wuhan University , Wuhan , Hubei , China.,c Department of Pathology and Medical Biology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Ke Su
- a Department of Nephrology , Renmin Hospital of Wuhan University , Wuhan , Hubei , China
| | - Dongqing Zha
- a Department of Nephrology , Renmin Hospital of Wuhan University , Wuhan , Hubei , China
| | - Wei Liang
- a Department of Nephrology , Renmin Hospital of Wuhan University , Wuhan , Hubei , China
| | - J L Hillebrands
- c Department of Pathology and Medical Biology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Harry van Goor
- c Department of Pathology and Medical Biology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Guohua Ding
- a Department of Nephrology , Renmin Hospital of Wuhan University , Wuhan , Hubei , China
| |
Collapse
|
16
|
Motonishi S, Nangaku M, Wada T, Ishimoto Y, Ohse T, Matsusaka T, Kubota N, Shimizu A, Kadowaki T, Tobe K, Inagi R. Sirtuin1 Maintains Actin Cytoskeleton by Deacetylation of Cortactin in Injured Podocytes. J Am Soc Nephrol 2014; 26:1939-59. [PMID: 25424328 DOI: 10.1681/asn.2014030289] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/03/2014] [Indexed: 12/30/2022] Open
Abstract
Recent studies have highlighted the renoprotective effect of sirtuin1 (SIRT1), a deacetylase that contributes to cellular regulation. However, the pathophysiologic role of SIRT1 in podocytes remains unclear. Here, we investigated the function of SIRT1 in podocytes. We first established podocyte-specific Sirt1 knockout (SIRT1(pod-/-)) mice. We then induced glomerular disease by nephrotoxic serum injection. The increase in urinary albumin excretion and BUN and the severity of glomerular injury were all significantly greater in SIRT1(pod-/-) mice than in wild-type mice. Western blot analysis and immunofluorescence showed a significant decrease in podocyte-specific proteins in SIRT1(pod-/-) mice, and electron microscopy showed marked exacerbation of podocyte injury, including actin cytoskeleton derangement in SIRT1(pod-/-) mice compared with wild-type mice. Protamine sulfate-induced podocyte injury was also exacerbated by podocyte-specific SIRT1 deficiency. In vitro, actin cytoskeleton derangement in H2O2-treated podocytes became prominent when the cells were pretreated with SIRT1 inhibitors. Conversely, this H2O2-induced derangement was ameliorated by SIRT1 activation. Furthermore, SIRT1 activation deacetylated the actin-binding and -polymerizing protein cortactin in the nucleus and facilitated deacetylated cortactin localization in the cytoplasm. Cortactin knockdown or inhibition of the nuclear export of cortactin induced actin cytoskeleton derangement and dissociation of cortactin from F-actin, suggesting the necessity of cytoplasmic cortactin for maintenance of the actin cytoskeleton. Taken together, these findings indicate that SIRT1 protects podocytes and prevents glomerular injury by deacetylating cortactin and thereby, maintaining actin cytoskeleton integrity.
Collapse
Affiliation(s)
| | | | | | - Yu Ishimoto
- Divisions of Nephrology and Endocrinology and
| | | | - Taiji Matsusaka
- Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan; and
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kazuyuki Tobe
- The First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Reiko Inagi
- Divisions of Nephrology and Endocrinology and CKD Pathophysiology and
| |
Collapse
|
17
|
Jefferson JA, Shankland SJ. The pathogenesis of focal segmental glomerulosclerosis. Adv Chronic Kidney Dis 2014; 21:408-16. [PMID: 25168829 DOI: 10.1053/j.ackd.2014.05.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/30/2014] [Indexed: 01/13/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histologic pattern of injury on kidney biopsy that can arise from a diverse range of causes and mechanisms. Although primary and secondary forms are described based on the underlying cause, there are many common factors that underlie the development of this segmental injury. In this review, we will describe the currently accepted model for the pathogenesis of classic FSGS and review the data supporting this model. Although the podocyte is considered the major target of injury in FSGS, we will also highlight the contributions of other resident glomerular cells in the development of FSGS.
Collapse
|
18
|
Arif E, Rathore YS, Kumari B, Ashish F, Wong HN, Holzman LB, Nihalani D. Slit diaphragm protein Neph1 and its signaling: a novel therapeutic target for protection of podocytes against glomerular injury. J Biol Chem 2014; 289:9502-18. [PMID: 24554715 DOI: 10.1074/jbc.m113.505743] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Podocytes are specialized epithelial cells that are critical components of the glomerular filtration barrier, and their dysfunction leads to proteinuria and renal failure. Therefore, preserving podocyte function is therapeutically significant. In this study, we identified Neph1 signaling as a therapeutic target that upon inhibition prevented podocyte damage from a glomerular injury-inducing agent puromycin aminonucleoside (PAN). To specifically inhibit Neph1 signaling, we used a protein transduction approach, where the cytoplasmic domain of Neph1 (Neph1CD) tagged with a protein transduction domain trans-activator of transcription was transduced in cultured podocytes prior to treatment with PAN. The PAN-induced Neph1 phosphorylation was significantly reduced in Neph1CD-transduced cells; in addition, these cells were resistant to PAN-induced cytoskeletal damage. The biochemical analysis using subfractionation studies showed that unlike control cells Neph1 was retained in the lipid raft fractions in the transduced cells following treatment with PAN, indicating that transduction of Neph1CD in podocytes prevented PAN-induced mislocalization of Neph1. In accordance, the immunofluorescence analysis further suggested that Neph1CD-transduced cells had increased ability to retain endogenous Neph1 at the membrane in response to PAN-induced injury. Similar results were obtained when angiotensin was used as an injury-inducing agent. Consistent with these observations, maintaining high levels of Neph1 at the membrane using a podocyte cell line overexpressing chimeric Neph1 increased the ability of podocytes to resist PAN-induced injury and PAN-induced albumin leakage. Using a zebrafish in vivo PAN and adriamycin injury models, we further demonstrated the ability of transduced Neph1CD to preserve glomerular function. Collectively, these results support the conclusion that inhibiting Neph1 signaling is therapeutically significant in preventing podocyte damage from glomerular injury.
Collapse
Affiliation(s)
- Ehtesham Arif
- From the Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | | | | | | | | | | | | |
Collapse
|
19
|
Miyazaki Y, Shimizu A, Pastan I, Taguchi K, Naganuma E, Suzuki T, Hosoya T, Yokoo T, Saito A, Miyata T, Yamamoto M, Matsusaka T. Keap1 inhibition attenuates glomerulosclerosis. Nephrol Dial Transplant 2014; 29:783-91. [PMID: 24523358 DOI: 10.1093/ndt/gfu002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND NFE2-related factor 2 (Nrf2) is a master regulatory transcription factor for antioxidant genes. Inhibition of its adaptor protein, Kelch-like ECH-associated protein 1 (Keap1), activates Nrf2. Podocyte injury triggers the progressive deterioration of glomerular damage toward glomerulosclerosis. We examined whether modulation of the Keap1-Nrf2 system has an impact on this process. METHODS Nrf2 null-mutant (KO) and Keap1 hypomorphic knockdown (KD) mice were crossed with NEP25 mice, in which podocyte-specific injury can be induced by an immunotoxin. RESULTS Thiobarbituric acid reactive substances, 8-hydroxydeoxyguanosine and phosphorylated JNK were increased in the injured NEP25 kidney. Real-time PCR revealed that Keap1 KD upregulated Nrf2 target genes, including Gclc, Gclm, Gstp1, Gstp2 and Nqo1 in the glomerulus. However, podocyte injury did not upregulate these genes in Keap1 wild-type mice, nor did it further increase the expression of those genes in Keap1 KD mice. Three weeks after the induction of podocyte injury, glomerulosclerosis was considerably more attenuated in Keap1 KD mice than in control mice (median sclerosis index, 0.27 versus 3.03, on a 0-4 scale). Keap1 KD mice also showed considerably preserved nephrin staining (median index, 6.76 versus 0.91, on a 0-8 scale) and decreased glomeruli containing desmin-positive injured podocytes (median percentage, 24.5% versus 85.8%), along with a decrease in mRNAs for Fn1, Tgfb1, Col4a4 and Col1a2. CONCLUSIONS Thus, podocyte injury cannot effectively activate Nrf2, but Nrf2 activation by Keap1 knockdown attenuates glomerulosclerosis. These results indicate that the Nrf2-Keap1 system is a promising drug target for the treatment of chronic kidney diseases.
Collapse
Affiliation(s)
- Yoichi Miyazaki
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Silveira KD, Barroso LC, Vieira AT, Cisalpino D, Lima CX, Bader M, Arantes RME, dos Santos RAS, Simões-e-Silva AC, Teixeira MM. Beneficial effects of the activation of the angiotensin-(1-7) MAS receptor in a murine model of adriamycin-induced nephropathy. PLoS One 2013; 8:e66082. [PMID: 23762470 PMCID: PMC3676359 DOI: 10.1371/journal.pone.0066082] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 05/06/2013] [Indexed: 12/16/2022] Open
Abstract
Angiotensin-(1–7) [Ang-(1–7)] is a biologically active heptapeptide that may counterbalance the physiological actions of angiotensin II (Ang II) within the renin-angiotensin system (RAS). Here, we evaluated whether activation of the Mas receptor with the oral agonist, AVE 0991, would have renoprotective effects in a model of adriamycin (ADR)-induced nephropathy. We also evaluated whether the Mas receptor contributed for the protective effects of treatment with AT1 receptor blockers. ADR (10 mg/kg) induced significant renal injury and dysfunction that was maximal at day 14 after injection. Treatment with the Mas receptor agonist AVE 0991 improved renal function parameters, reduced urinary protein loss and attenuated histological changes. Renoprotection was associated with reduction in urinary levels of TGF-β. Similar renoprotection was observed after treatment with the AT1 receptor antagonist, Losartan. AT1 and Mas receptor mRNA levels dropped after ADR administration and treatment with losartan reestablished the expression of Mas receptor and increased the expression of ACE2. ADR-induced nephropathy was similar in wild type (Mas+/+) and Mas knockout (Mas−/−) mice, suggesting there was no endogenous role for Mas receptor activation. However, treatment with Losartan was able to reduce renal injury only in Mas+/+, but not in Mas−/− mice. Therefore, these findings suggest that exogenous activation of the Mas receptor protects from ADR-induced nephropathy and contributes to the beneficial effects of AT1 receptor blockade. Medications which target specifically the ACE2/Ang-(1–7)/Mas axis may offer new therapeutic opportunities to treat human nephropathies.
Collapse
Affiliation(s)
- Kátia Daniela Silveira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lívia Corrêa Barroso
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Angélica Thomáz Vieira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Cisalpino
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cristiano Xavier Lima
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Pediatria da Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicin, Berlin Buch, Germany
| | - Rosa Maria Esteves Arantes
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ana Cristina Simões-e-Silva
- Departamento de Pediatria da Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (ACSS); (MMT)
| | - Mauro Martins Teixeira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Pediatria da Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (ACSS); (MMT)
| |
Collapse
|
21
|
Wennmann DO, Hsu HH, Pavenstädt H. The renin-angiotensin-aldosterone system in podocytes. Semin Nephrol 2013; 32:377-84. [PMID: 22958492 DOI: 10.1016/j.semnephrol.2012.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays a critical role in kidney function and its inhibition reduces proteinuria and preserves kidney function in patients with chronic kidney disease. Recent studies have shown that podocytes generate many components of the RAAS and they express receptors of RAAS, including angiotensin II, mineralocorticoid, and prorenin receptors. Crucial functions of podocytes, such as contraction, apoptosis, autophagocytosis, and cytoskeletal organization, have been shown to be regulated by the angiotensin II type 1 receptors. An activation of the glomerular RAAS and protection from podocyte injury by RAAS inhibitors have been shown in many glomerular diseases. Exploring the interaction between the local RAAS and the signaling involved in RAAS activation in podocytes will lead to new therapeutic strategies of podocyte protection.
Collapse
Affiliation(s)
- Dirk Oliver Wennmann
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | | | | |
Collapse
|
22
|
Matsusaka T, Niimura F, Shimizu A, Pastan I, Saito A, Kobori H, Nishiyama A, Ichikawa I. Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol 2012; 23:1181-9. [PMID: 22518004 DOI: 10.1681/asn.2011121159] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Angiotensin II content in the kidney is much higher than in the plasma, and it increases more in kidney diseases through an uncertain mechanism. Because the kidney abundantly expresses angiotensinogen mRNA, transcriptional dysregulation of angiotensinogen within the kidney is one potential cause of increased renal angiotensin II in the setting of disease. Here, we observed that kidney-specific angiotensinogen knockout mice had levels of renal angiotensinogen protein and angiotensin II that were similar to those levels of control mice. In contrast, liver-specific knockout of angiotensinogen nearly abolished plasma and renal angiotensinogen protein and renal tissue angiotensin II. Immunohistochemical analysis in mosaic proximal tubules of megalin knockout mice revealed that angiotensinogen protein was incorporated selectively in megalin-intact cells of the proximal tubule, indicating that the proximal tubule reabsorbs filtered angiotensinogen through megalin. Disruption of the filtration barrier in a transgenic mouse model of podocyte-selective injury increased renal angiotensin II content and markedly increased both tubular and urinary angiotensinogen protein without an increase in renal renin activity, supporting the dependency of renal angiotensin II generation on filtered angiotensinogen. Taken together, these data suggest that liver-derived angiotensinogen is the primary source of renal angiotensinogen protein and angiotensin II. Furthermore, an abnormal increase in the permeability of the glomerular capillary wall to angiotensinogen, which characterizes proteinuric kidney diseases, enhances the synthesis of renal angiotensin II.
Collapse
Affiliation(s)
- Taiji Matsusaka
- Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Shimizu A, Zhong J, Miyazaki Y, Hosoya T, Ichikawa I, Matsusaka T. ARB protects podocytes from HIV-1 nephropathy independently of podocyte AT1. Nephrol Dial Transplant 2012; 27:3169-75. [PMID: 22422866 DOI: 10.1093/ndt/gfs033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Angiotensin I-converting enzyme inhibitors and angiotensin receptor blockers protect podocytes more effectively than other anti-hypertensive drugs. Transgenic rats overexpressing angiotensin II Type 1 (AT1) receptor selectively in podocytes have been shown to develop glomerulosclerosis. The prevailing hypothesis is that angiotensin II has a capacity of directly acting on the AT1 receptor of podocytes to induce injury. We therefore investigated the mechanism of reno-protective effect of AT1 receptor in a mouse model of HIV-1 nephropathy. METHODS We generated transgenic mice carrying the HIV-1 gene (control/HIV-1) or both HIV-1 gene and podocyte-selectively nullified AT1 gene (AT1KO/HIV-1). In these mice, we measured urinary protein or albumin excretion and performed histological analysis. RESULTS At 8 months of age, AT1KO/HIV-1 (n = 13) and control/HIV-1 (n = 15) mice were statistically indistinguishable with respect to urinary albumin/creatinine ratio (median 2.5 versus 9.1 mg/mg), glomerulosclerosis (median 0.63 versus 0.45 on 0-4 scale) and downregulation of nephrin (median 6.90 versus 7.02 on 0-8 scale). In contrast to the observed lack of effect of podocyte-specific AT1KO, systemic AT1 inhibition with AT1 blocker (ARB) significantly attenuated proteinuria and glomerulosclerosis in HIV-1 mice. CONCLUSION These results indicate that the protective effect of ARB is mediated through its receptors on cells other than podocytes, such as efferent arteriolar smooth muscle cells.
Collapse
Affiliation(s)
- Akihiro Shimizu
- Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Takagi N, Tanizawa T, Kon V, Fogo AB, Ichikawa I, Ma J. Mineralocorticoid Receptor Blocker Protects against Podocyte-Dependent Glomerulosclerosis. NEPHRON EXTRA 2012; 2:17-26. [PMID: 22479265 PMCID: PMC3318935 DOI: 10.1159/000334961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background We previously showed that angiotensin type 1 receptor (AT1) blocker (ARB) attenuates glomerular injury in Nphs1-hCD25 (NEP25) transgenic mice, a model of selective podocyte injury. However, subsequent studies in NEP25 mice with podocyte-specific deficiency of AT1 revealed that the protective effects of ARB are not through the podocyte AT1, thereby raising the possibility that the protective effects of ARB involve mineralocorticoids. Methods NEP25 mice were treated with the mineralocorticoid receptor blocker (MRB) spironolactone (25 mg/kg/day, n = 10), the ARB losartan (250 mg/kg/day, n = 11), both (ARB+MRB, n = 8) or vehicle (Vehicle, n = 9) from day −7 to day 9 of induction of podocyte injury. Results Although MRB did not reduce systolic blood pressure or proteinuria, addition of MRB to ARB significantly attenuated glomerulosclerosis (glomerulosclerosis index: ARB+MRB 1.67 ± 0.19 vs. MRB 2.01 ± 0.29, ARB 2.35 ± 0.19, and Vehicle 2.25 ± 0.26, p < 0.05) and preserved the number of WT1-positive podocytes (ARB+MRB 152.5 ± 9.7 vs. MRB 117.2 ± 9.0 or ARB 113.6 ± 7.4, and ARB+MRB vs. Vehicle 97.5 ± 4.0 per glomerulus; p < 0.05). Conclusion These data suggest that, while MRB does not attenuate proteinuria caused by podocyte-specific injury, it provides protective effects against glomerulosclerosis that is independent of systemic blood pressure.
Collapse
Affiliation(s)
- Nobuaki Takagi
- Division of Nephrology, Department of Pediatrics, Vanderbilt University, Nashville, Tenn., USA
| | | | | | | | | | | |
Collapse
|
25
|
Yamamoto S, Yancey PG, Zuo Y, Ma LJ, Kaseda R, Fogo AB, Ichikawa I, Linton MF, Fazio S, Kon V. Macrophage polarization by angiotensin II-type 1 receptor aggravates renal injury-acceleration of atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31:2856-64. [PMID: 21979434 DOI: 10.1161/atvbaha.111.237198] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Angiotensin II is a major determinant of atherosclerosis. Although macrophages are the most abundant cells in atherosclerotic plaques and express angiotensin II type 1 receptor (AT1), the pathophysiologic role of macrophage AT1 in atherogenesis remains uncertain. We examined the contribution of macrophage AT1 to accelerated atherosclerosis in an angiotensin II-responsive setting induced by uninephrectomy (UNx). METHODS AND RESULTS AT1(-/-) or AT1(+/+) marrow from apolipoprotein E deficient (apoE(-/-)) mice was transplanted into recipient apoE(-/-) mice with subsequent UNx or sham operation: apoE(-/-)/AT1(+/+)→apoE(-/-)+sham; apoE(-/-)/AT1(+/+) →apoE(-/-)+UNx; apoE(-/-)/AT1(-/-)→apoE(-/-)+sham; apoE(-/-)/AT1(-/-)→apoE(-/-)+UNx. No differences in body weight, blood pressure, lipid profile, and serum creatinine were observed between the 2 UNx groups. ApoE(-/-)/AT1(+/+) →apoE(-/-)+UNx had significantly more atherosclerosis (16907±21473 versus 116071±8180 μm(2), P<0.05). By contrast, loss of macrophage AT1 which reduced local AT1 expression, prevented any effect of UNx on atherosclerosis (77174±9947 versus 75714±11333 μm(2), P=NS). Although UNx did not affect total macrophage content in the atheroma, lesions in apoE(-/-)/AT1(-/-)→apoE(-/-)+UNx had fewer classically activated macrophage phenotype (M1) and more alternatively activated phenotype (M2). Further, UNx did not affect plaque necrosis or apoptosis in apoE(-/-)/AT1(-/-)→apoE(-/-) whereas it significantly increased both (by 2- and 6-fold, respectively) in apoE(-/-)/AT1(+/+) →apoE(-/-) mice. Instead, apoE(-/-)/AT1(-/-)→apoE(-/-) had 5-fold-increase in macrophage-associated apoptotic bodies, indicating enhanced efferocytosis. In vitro studies confirmed blunted susceptibility to apoptosis, especially in M2 macrophages, and a more efficient phagocytic function of AT1(-/-) macrophages versus AT1(+/+). CONCLUSIONS AT1 receptor of bone marrow-derived macrophages worsens the extent and complexity of renal injury-induced atherosclerosis by shifting the macrophage phenotype to more M1 and less M2 through mechanisms that include increased apoptosis and impaired efferocytosis.
Collapse
Affiliation(s)
- Suguru Yamamoto
- Department of Pediatrics, Vanderbilt University Medical Center, 1161 21st Avenue South, C-4204 Medical Center North, Nashville, TN 37232-2584, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Angiotensin II-dependent persistent podocyte loss from destabilized glomeruli causes progression of end stage kidney disease. Kidney Int 2011; 81:40-55. [PMID: 21937979 DOI: 10.1038/ki.2011.306] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Podocyte depletion is a major mechanism driving glomerulosclerosis. Progression is the process by which progressive glomerulosclerosis leads to end stage kidney disease (ESKD). In order to determine mechanisms contributing to persistent podocyte loss, we used a human diphtheria toxin transgenic rat model. After initial diphtheria toxin-induced podocyte injury (over 30% loss in 4 weeks), glomeruli became destabilized, resulting in continued autonomous podocyte loss causing global podocyte depletion (ESKD) by 13 weeks. This was monitored by urine mRNA analysis and by quantitating podocytes in glomeruli. Similar patterns of podocyte depletion were found in the puromycin aminonucleoside and 5/6 nephrectomy rat models of progressive end-stage disease. Angiotensin II blockade (combined enalapril and losartan) restabilized the glomeruli, and prevented continuous podocyte loss and progression to ESKD. Discontinuing angiotensin II blockade resulted in recurrent glomerular destabilization, podocyte loss, and progression to ESKD. Reduction in blood pressure alone did not reduce proteinuria or prevent podocyte loss from destabilized glomeruli. The protective effect of angiotensin II blockade was entirely accounted for by reduced podocyte loss. Thus, an initiating event resulting in a critical degree of podocyte depletion can destabilize glomeruli and initiate a superimposed angiotensin II-dependent podocyte loss process that accelerates progression resulting in eventual global podocyte depletion and ESKD. These events can be monitored noninvasively in real-time through urine mRNA assays.
Collapse
|
27
|
Jefferson JA, Alpers CE, Shankland SJ. Podocyte biology for the bedside. Am J Kidney Dis 2011; 58:835-45. [PMID: 21715071 DOI: 10.1053/j.ajkd.2011.03.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 03/03/2011] [Indexed: 12/14/2022]
Abstract
The explosion of podocyte biology during the last decade has radically altered our views on the pathophysiologic process of proteinuria, glomerular disease, and progressive kidney disease. In this review, we highlight some of these landmark findings, but focus on recent advances in the field and implications for translating this biology into therapy for podocyte diseases.
Collapse
Affiliation(s)
- J Ashley Jefferson
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
28
|
Matsusaka T, Kobayashi K, Kon V, Pastan I, Fogo AB, Ichikawa I. Glomerular sclerosis is prevented during urinary tract obstruction due to podocyte protection. Am J Physiol Renal Physiol 2010; 300:F792-800. [PMID: 21177778 DOI: 10.1152/ajprenal.00570.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urine outflow obstruction activates a variety of profibrotic factors, including the intrarenal renin-angiotensin system. However, the obstruction also nullifies the transmural hydraulic pressure difference across the glomerular capillary wall, an established inducer of glomerulosclerosis. In the present study, we investigated whether, and by what mechanism, urine outflow obstruction affects the process of progressive glomerulosclerosis. For this purpose, we tested the effect of unilateral ureteral obstruction (UUO) of 7 days duration in two distinct mouse models of glomerulosclerosis. In the human immunodeficiency virus (HIV) nephropathy model, where HIV-1 genes are selectively expressed in podocytes and develop progressive podocyte damage and glomerulosclerosis, UUO protected against sclerosis with preservation of podocytes morphologically and immunohistochemically. In contrast, the nonobstructed contralateral kidneys of these mice, as well as sham-operated HIV-1 mouse kidneys, developed severe podocyte injury and glomerulosclerosis. The protection against glomerulosclerosis imparted by ureteral obstruction was also documented in the NEP25 model of podocyte injury, in which a single injection of immunotoxin, LMB2, triggers selective podocyte injury followed by glomerulosclerosis, both of which were protected by UUO. Notably, intervention with an angiotensin II type 1 receptor antagonist provided only a partial protective effect in each of the models. These results demonstrate that urine outflow obstruction protects the glomerulus from progressive sclerosis. The results further reveal that this protection occurs at a very early stage of the pathologic process, namely, damage of podocytes.
Collapse
Affiliation(s)
- Taiji Matsusaka
- Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Barton M. Therapeutic potential of endothelin receptor antagonists for chronic proteinuric renal disease in humans. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1203-13. [PMID: 20359530 DOI: 10.1016/j.bbadis.2010.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 11/26/2022]
Abstract
Diabetes and arterial hypertension continue to be the main causes of chronic renal failure in 2010, with a rising prevalence in part due to the worldwide obesity epidemic. Proteinuria is a main feature of chronic renal disease and mediated by defects in the glomerular filtration barrier and is as a good predictor of cardiovascular events. Indeed, chronic renal disease due to glomerulosclerosis is one of the important risk factors for the development of coronary artery disease and stroke. Glomerulosclerosis develops in response to inflammatory activation and increased growth factor production. Preclinical and first preliminary clinical studies provide strong evidence that endogenous endothelin-1 (ET-1), a 21-amino-acid peptide with strong growth-promoting and vasoconstricting properties, plays a central role in the pathogenesis of proteinuria and glomerulosclerosis via activation of its ET(A) subtype receptor involving podocyte injury. These studies have not only shown that endothelin participates in the disease processes of hypertension and glomerulosclerosis but also that features of chronic renal disease such as proteinuria and glomerulosclerosis are reversible processes. Remarkably, the protective effects of endothelin receptors antagonists (ERAs) are present even on top of concomitant treatments with inhibitors of the renin-angiotensin system. This review discusses current evidence for a role of endothelin for proteinuric renal disease and podocyte injury in diabetes and arterial hypertension and reviews the current status of endothelin receptor antagonists as a potential new treatment option in renal medicine.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, LTK Y 44 G 22, Winterthurer Strasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|