1
|
Majid DSA, Prieto MC, Castillo A, Chamberlain C, Navar LG. Augmentation of Nitric Oxide Deficient Hypertension by High Salt Diet Is Associated With Reduced TNF-α Receptor Type 1 Expression in the Kidneys. Am J Hypertens 2024; 37:717-725. [PMID: 38780971 PMCID: PMC11322281 DOI: 10.1093/ajh/hpae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND High salt (HS) intake induces an augmented hypertensive response to nitric oxide (NO) inhibition, though it causes minimal changes in blood pressure (BP) in NO intact condition. The cause of such augmentation is not known. HS induces tumor necrosis factor-alpha (TNFα) production that causes natriuresis via activation of its receptor type 1 (TNFR1). We hypothesized that NO deficiency reduces renal TNFR1 activity, leading to enhanced sodium retention and hypertension. METHODS We examined the changes in renal TNFR1 protein expression (Immunohistochemistry analyses) after HS (4% NaCl) intake in wild-type mice (WT, C57BL6) treated with a NO synthase (NOS) inhibitor, nitro-l-arginine methyl ester (L-NAME; 0.05 mg/min/g; osmotic mini-pump), as well as in endothelial NOS knockout mice (eNOSKO) and compared the responses in WT mice with normal salt (NS; 0.3% NaCl) intake. BP was measured with tail-cuff plethysmography and 24-hour urine collections were made using metabolic cages. RESULTS HS alone did not alter mean BP in untreated mice (76 ± 3 to 77 ± 1 mm Hg) but induced an augmented response in L-NAME treated (106 ± 1 vs. 97 ± 2 mm Hg) and in eNOSKO (107 ± 2 vs. 89 ± 3 mm Hg) mice. The percentage area of TNFR1 expression in renal tissue was higher in WT + HS (4.1 + 0.5%) than in WT + NS mice (2.7 ± 0.6%). However, TNFR1 expression was significantly lower in L-NAME treated WT + NS (0.9 ± 0.1%) and in eNOSKO + NS (1.4 ± 0.2%) than in both WT + NS and WT + HS mice. CONCLUSIONS These data indicate that TNFR1 activity is downregulated in NO deficient conditions, which facilitates salt retention leading to augmented hypertension during HS intake.
Collapse
Affiliation(s)
- Dewan S A Majid
- Department of Physiology, Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Minolfa C Prieto
- Department of Physiology, Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Alexander Castillo
- Department of Physiology, Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Cameron Chamberlain
- Department of Physiology, Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Luis Gabriel Navar
- Department of Physiology, Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| |
Collapse
|
2
|
Padoan F, Guarnaroli M, Brugnara M, Piacentini G, Pietrobelli A, Pecoraro L. Role of Nutrients in Pediatric Non-Dialysis Chronic Kidney Disease: From Pathogenesis to Correct Supplementation. Biomedicines 2024; 12:911. [PMID: 38672265 PMCID: PMC11048674 DOI: 10.3390/biomedicines12040911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Nutrition management is fundamental for children with chronic kidney disease (CKD). Fluid balance and low-protein and low-sodium diets are the more stressed fields from a nutritional point of view. At the same time, the role of micronutrients is often underestimated. Starting from the causes that could lead to potential micronutrient deficiencies in these patients, this review considers all micronutrients that could be administered in CKD to improve the prognosis of this disease.
Collapse
Affiliation(s)
| | | | - Milena Brugnara
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy (A.P.)
| | | | | | | |
Collapse
|
3
|
Rossitto G, Bertoldi G, Rutkowski JM, Mitchell BM, Delles C. Sodium, Interstitium, Lymphatics and Hypertension-A Tale of Hydraulics. Hypertension 2024; 81:727-737. [PMID: 38385255 PMCID: PMC10954399 DOI: 10.1161/hypertensionaha.123.17942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Blood pressure is regulated by vascular resistance and intravascular volume. However, exchanges of electrolytes and water between intra and extracellular spaces and filtration of fluid and solutes in the capillary beds blur the separation between intravascular, interstitial and intracellular compartments. Contemporary paradigms of microvascular exchange posit filtration of fluids and solutes along the whole capillary bed and a prominent role of lymphatic vessels, rather than its venous end, for their reabsorption. In the last decade, these concepts have stimulated greater interest in and better understanding of the lymphatic system as one of the master regulators of interstitial volume homeostasis. Here, we describe the anatomy and function of the lymphatic system and focus on its plasticity in relation to the accumulation of interstitial sodium in hypertension. The pathophysiological relevance of the lymphatic system is exemplified in the kidneys, which are crucially involved in the control of blood pressure, but also hypertension-mediated cardiac damage. Preclinical modulation of the lymphatic reserve for tissue drainage has demonstrated promise, but has also generated conflicting results. A better understanding of the hydraulic element of hypertension and the role of lymphatics in maintaining fluid balance can open new approaches to prevent and treat hypertension and its consequences, such as heart failure.
Collapse
Affiliation(s)
- Giacomo Rossitto
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
- Emergency Medicine and Hypertension, DIMED; Università degli Studi di Padova, Italy
| | - Giovanni Bertoldi
- Emergency Medicine and Hypertension, DIMED; Università degli Studi di Padova, Italy
| | | | - Brett M. Mitchell
- Dept. of Medical Physiology, Texas A&M University School of Medicine, USA
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| |
Collapse
|
4
|
Thangaraj SS, Gunlund TSG, Stubbe J, Palarasah Y, Svenningsen P, Nielsen LH, Ovesen PG, Jensen BL. Effect of short-term changes in salt intake on plasma cytokines in women with healthy and hypertensive pregnancies. Pregnancy Hypertens 2024; 35:82-87. [PMID: 38301351 DOI: 10.1016/j.preghy.2024.01.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Salt (NaCl) promotes T-lymphocyte conversion to pro-inflammatory Th-17 cells in vitro. Interleukin (IL)-17A aggravates hypertension in preeclampsia (PE) models. OBJECTIVES It was hypothesized that 1) women with PE exhibit increased plasma IL-17A and related cytokines and 2) high dietary salt intake elevates circulating IL-17A in patients with PE compared to women with healthy pregnancy (HP) and non-pregnant (NonP) women. MAIN OUTCOME MEASURES Plasma concentration of cytokines IL-17A, IFN-γ, IL-10, TNF, IL-6, and IL-1β in samples from NonP women (n = 13), HP (n = 15), and women with PE (n = 7). STUDY DESIGN Biobanked samples from a randomized, double-blind, cross-over placebo-controlled dietary intervention study. Participants received a low sodium diet (50-60 mmol NaCl/24 h) for 10 days and were randomly assigned to ingest placebo tablets (low salt intake) or salt tablets (172 mmol NaCl/24 h, high salt intake) for 5 + 5 days. Plasma samples were drawn at baseline and after each diet. RESULTS While a high salt diet suppressed renin, angiotensin II, and aldosterone levels, it did not affect blood pressure or plasma cytokine concentrations in any group compared to low salt intake. Plasma TNF was significantly higher in PE than in HP and NonP at baseline and after a low salt diet. Plasma IL-6 was significantly higher in PE compared to HP at baseline and NonP at low salt. CONCLUSION Interleukin-17A and related T-cell and macrophage-cytokines are not sensitive to salt-intake in PE. Preeclampsia is associated with elevated levels of TNF and IL-6 macrophage-derived cytokines. Salt-sensitive changes in systemic IL-17A are less likely to explain hypertension in PE.
Collapse
Affiliation(s)
- Sai Sindhu Thangaraj
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark.
| | - Tina-Signe Gissel Gunlund
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Jane Stubbe
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Yaseelan Palarasah
- Dept. of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Per Svenningsen
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Lise Hald Nielsen
- Dept. of women's disease and births, Gødstrup Regional hospital, Aarhus University Hospital Skejby, Denmark
| | - Per Glud Ovesen
- Department of Gynecology and Obstetrics, Institute of Clinical Medicine, Aarhus University Hospital Skejby, Denmark
| | - Boye L Jensen
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
5
|
Bagordo D, Rossi GP, Delles C, Wiig H, Rossitto G. Tangram of Sodium and Fluid Balance. Hypertension 2024; 81:490-500. [PMID: 38084591 PMCID: PMC10863667 DOI: 10.1161/hypertensionaha.123.19569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Homeostasis of fluid and electrolytes is a tightly controlled physiological process. Failure of this process is a hallmark of hypertension, chronic kidney disease, heart failure, and other acute and chronic diseases. While the kidney remains the major player in the control of whole-body fluid and electrolyte homeostasis, recent discoveries point toward more peripheral mechanisms leading to sodium storage in tissues, such as skin and muscle, and a link between this sodium and a range of diseases, including the conditions above. In this review, we describe multiple facets of sodium and fluid balance from traditional concepts to novel discoveries. We examine the differences between acute disruption of sodium balance and the longer term adaptation in chronic disease, highlighting areas that cannot be explained by a kidney-centric model alone. The theoretical and methodological challenges of more recently proposed models are discussed. We acknowledge the different roles of extracellular and intracellular spaces and propose an integrated model that maintains fluid and electrolyte homeostasis and can be distilled into a few elemental players: the microvasculature, the interstitium, and tissue cells. Understanding their interplay will guide a more precise treatment of conditions characterized by sodium excess, for which primary aldosteronism is presented as a prototype.
Collapse
Affiliation(s)
- Domenico Bagordo
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
| | - Gian Paolo Rossi
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
| | - Christian Delles
- School of Cardiovascular & Metabolic Health, University of Glasgow, United Kingdom (G.R., C.D.)
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway (H.W.)
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
- School of Cardiovascular & Metabolic Health, University of Glasgow, United Kingdom (G.R., C.D.)
| |
Collapse
|
6
|
Titze JM. Lymph vessels, Na + and the teleological science of hypertension. Nat Rev Nephrol 2023; 19:692-693. [PMID: 37714934 DOI: 10.1038/s41581-023-00770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Affiliation(s)
- Jens M Titze
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Division of Nephrology, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Vlachovsky SG, Di Ciano LA, Oddo EM, Azurmendi PJ, Silberstein C, Ibarra FR. Role of Female Sex Hormones and Immune Response in Salt-Sensitive Hypertension Development: Evidence from Experimental Models. Curr Hypertens Rep 2023; 25:405-419. [PMID: 37676461 DOI: 10.1007/s11906-023-01257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/08/2023]
Abstract
PURPOSEOF REVIEW Female sex hormones have systemic effects unrelated to their reproductive function. We describe experiences of different research groups and our own, on aspects related to the importance of female sex hormones on blood pressure (BP) regulation and salt-sensitivity-mediated BP response and salt sensitivity without alterations in BP, as well as renal sodium handling and interactions with the immune system. RECENT FINDINGS Changes in sodium intake in normotensive premenopausal women cause more BP variations than in men. After menopause, women often develop arterial hypertension (HT) with a profile of sodium sensitivity. Besides, experimental results have shown that in adult rat models resembling the postmenopausal hormonal state induced by ovariectomy, controlling BP is not enough to avoid renal and other tissue infiltration with immune cells, which does not occur when sodium intake is low or normal. Therefore, excess sodium promotes an inflammatory state with the involvement of immune cells. The evidence of activation of adaptive immunity, besides changes in T cell subpopulations, includes changes in sodium transporters and receptors. More studies are needed to evaluate the particular sodium sensitivity of women and its meaning. Changes in lifestyle and sodium intake reduction are the main therapeutic steps. However, to face the actual burden of salt-sensitive HT in postmenopausal women and its associated inflammatory/immune changes, it seems reasonable to work on immune cell activity by considering the peripheral blood mononuclear cell phenotypes of molecules and transport proteins related to sodium handle, both to screen for and treat cell activation.
Collapse
Affiliation(s)
- Sandra G Vlachovsky
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Luis A Di Ciano
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
| | - Elisabet M Oddo
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Pablo J Azurmendi
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Claudia Silberstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Instituto de Fisiología y Biofísica B. Houssay (IFIBIO-Houssay), Laboratorio de Fisiología Renal, Paraguay 2155, piso 4, Buenos Aires, 1121, Argentina.
| | - Fernando R Ibarra
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina.
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Instituto de Fisiología y Biofísica B. Houssay (IFIBIO-Houssay), Laboratorio de Fisiología Renal, Paraguay 2155, piso 4, Buenos Aires, 1121, Argentina.
| |
Collapse
|
8
|
Chachaj A, Stanimirova I, Chabowski M, Gomułkiewicz A, Hodurek P, Glatzel-Plucińska N, Olbromski M, Piotrowska A, Kuzan A, Grzegrzółka J, Ratajczak-Wielgomas K, Nowak A, Szahidewicz-Krupska E, Wiśniewski J, Bromke MA, Podhorska-Okołów M, Gamian A, Janczak D, Dzięgiel P, Szuba A. Sodium accumulation in the skin is associated with higher density of skin lymphatic vessels in patients with arterial hypertension. Adv Med Sci 2023; 68:276-289. [PMID: 37639949 DOI: 10.1016/j.advms.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Recent studies, conducted mainly on the rodent model, have demonstrated that regulatory pathway in the skin provided by glycosaminoglycans, nuclear factor of activated T cells 5 (NFAT5), vascular endothelial growth factor C (VEGF-C) and process of lymphangiogenesis may play an important role in extrarenal regulation of sodium (Na+) balance, body water volume, and blood pressure. We aimed to investigate the concentrations and relations among the main factors of this pathway in human skin to confirm that this regulatory axis also exists in humans. PATIENTS AND METHODS Skin specimens from patients diagnosed with arterial hypertension and from control group were histologically and molecularly examined. RESULTS The primary hypertensive and control groups did not differ in Na+ concentrations in the skin. However, the patients with hypertension and higher skin Na+ concentration had significantly greater density of skin lymphatic vessels. Higher skin Na+concentration was associated with higher skin water content. In turn, skin water content correlated with factors associated with lymphangiogenesis, i.e. NFAT5, VEGF-C, and podoplanin (PDPN) mRNA expression in the skin. The strong mutual pairwise correlations of the expressions of NFAT5, VEGF-C, vascular endothelial growth factor D (VEGF-D) and PDPN mRNA were noted in the skin in all of the studied groups. CONCLUSIONS Our study confirms that skin interstitium and the lymphatic system may be important players in the pathophysiology of arterial hypertension in humans. Based on the results of our study and existing literature in this field, we propose the hypothetical model which might explain the phenomenon of salt-sensitivity.
Collapse
Affiliation(s)
- Angelika Chachaj
- Department of Angiology and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | | | - Mariusz Chabowski
- Department of Surgery, 4th Military Hospital in Wroclaw, Wroclaw, Poland; Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Gomułkiewicz
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Hodurek
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Glatzel-Plucińska
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Jędrzej Grzegrzółka
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Nowak
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Szahidewicz-Krupska
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Wiśniewski
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wroclaw, Poland
| | - Mariusz A Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Gamian
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Embryology and Morphology, Wroclaw Medical University, Wroclaw, Poland; Department of Physiotherapy, Wroclaw University, School of Physical Education, Wroclaw, Poland
| | - Andrzej Szuba
- Department of Angiology and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
9
|
Chattopadhyay A, Tully J, Shan J, Sheikh S, Ohliger M, Gordon JW, Mauro T, Abuabara K. Sodium in the skin: a summary of the physiology and a scoping review of disease associations. Clin Exp Dermatol 2023; 48:733-743. [PMID: 36970766 DOI: 10.1093/ced/llad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Indexed: 07/20/2023]
Abstract
A large and growing body of research suggests that the skin plays an important role in regulating total body sodium, challenging traditional models of sodium homeostasis that focused exclusively on blood pressure and the kidney. In addition, skin sodium may help to prevent water loss and facilitate macrophage-driven antimicrobial host defence, but may also trigger immune dysregulation via upregulation of proinflammatory markers and downregulation of anti-inflammatory processes. We performed a systematic search of PubMed for published literature on skin sodium and disease outcomes and found that skin sodium concentration is increased in patients with cardiometabolic conditions including hypertension, diabetes and end-stage renal disease; autoimmune conditions including multiple sclerosis and systemic sclerosis; and dermatological conditions including atopic dermatitis, psoriasis and lipoedema. Several patient characteristics are associated with increased skin sodium concentration including older age and male sex. Animal evidence suggests that increased salt intake results in higher skin sodium levels; however, there are conflicting results from small trials in humans. Additionally, limited data suggest that pharmaceuticals such as diuretics and sodium-glucose co-transporter-2 inhibitors approved for diabetes, as well as haemodialysis may reduce skin sodium levels. In summary, emerging research supports an important role for skin sodium in physiological processes related to osmoregulation and immunity. With the advent of new noninvasive magnetic resonance imaging measurement techniques and continued research on skin sodium, it may emerge as a marker of immune-mediated disease activity or a potential therapeutic target.
Collapse
Affiliation(s)
- Aheli Chattopadhyay
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Janell Tully
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Judy Shan
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Sidra Sheikh
- Kaiser Permanente, Department of Physical Medicine & Rehabilitation, Oakland, CA, USA
| | - Michael Ohliger
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Theodora Mauro
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Dermatology Service, Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Akbari A, McIntyre CW. Recent Advances in Sodium Magnetic Resonance Imaging and Its Future Role in Kidney Disease. J Clin Med 2023; 12:4381. [PMID: 37445416 PMCID: PMC10342976 DOI: 10.3390/jcm12134381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Sodium imbalance is a hallmark of chronic kidney disease (CKD). Excess tissue sodium in CKD is associated with hypertension, inflammation, and cardiorenal disease. Sodium magnetic resonance imaging (23Na MRI) has been increasingly utilized in CKD clinical trials especially in the past few years. These studies have demonstrated the association of excess sodium tissue accumulation with declining renal function across whole CKD spectrum (early- to end-stage), biomarkers of systemic inflammation, and cardiovascular dysfunction. In this article, we review recent advances of 23Na MRI in CKD and discuss its future role with a focus on the skin, the heart, and the kidney itself.
Collapse
Affiliation(s)
- Alireza Akbari
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada;
- Lilibeth Caberto Kidney Clinic Research Unit, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Christopher W. McIntyre
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada;
- Lilibeth Caberto Kidney Clinic Research Unit, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Departments of Medicine, Pediatrics and Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
11
|
Masenga SK, Kirabo A. Hypertensive heart disease: risk factors, complications and mechanisms. Front Cardiovasc Med 2023; 10:1205475. [PMID: 37342440 PMCID: PMC10277698 DOI: 10.3389/fcvm.2023.1205475] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Hypertensive heart disease constitutes functional and structural dysfunction and pathogenesis occurring primarily in the left ventricle, the left atrium and the coronary arteries due to chronic uncontrolled hypertension. Hypertensive heart disease is underreported and the mechanisms underlying its correlates and complications are not well elaborated. In this review, we summarize the current understanding of hypertensive heart disease, we discuss in detail the mechanisms associated with development and complications of hypertensive heart disease especially left ventricular hypertrophy, atrial fibrillation, heart failure and coronary artery disease. We also briefly highlight the role of dietary salt, immunity and genetic predisposition in hypertensive heart disease pathogenesis.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Cam-Pus, Livingstone, Zambia
- School of Medicine, University of Zambia, Lusaka, Zambia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| |
Collapse
|
12
|
Tang H, Xu C, Zhang P, Luo T, Huang Y, Yang X. A profile of SGLT-2 inhibitors in hyponatremia: The evidence to date. Eur J Pharm Sci 2023; 184:106415. [PMID: 36870579 DOI: 10.1016/j.ejps.2023.106415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Hyponatremia is the most common electrolyte disorder in clinical practice, which may lead to life-threatening complications. Several lines of evidence suggest that hyponatremia is associated not only with significant increases in length of stay, cost, and financial burden, but also with increased morbidity and mortality. Hyponatremia is also considered to be a negative prognostic factor in patients with heart failure and cancer. Although multiple therapeutic methods are available for treating hyponatremia, most have some limitations, such as poor compliance, rapid correction of serum Na+, other negative side effects and high cost. Given these limitations, identifying novel therapies for hyponatremia is essential. Recent clinical studies have shown that SGLT-2 inhibitors (SGLT 2i) significantly increased serum Na+ levels and were well tolerated by patients who underwent this treatment. Therefore, oral administration of SGLT 2i appears to be an effective treatment for hyponatremia. This article will briefly review the etiology of hyponatremia and integrated control of sodium within the kidney, current therapies for hyponatremia, potential mechanisms and efficacy of SGLT 2i for hyponatremia, and the benefits in cardiovascular, cancer, and kidney disease by regulating sodium and water balance.
Collapse
Affiliation(s)
- Hui Tang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Changjing Xu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Piao Zhang
- Department of Pharmacy, Ya 'an People's Hospital, Ya 'an, Sichuan 646000, China
| | - Taimin Luo
- Department of pharmacy, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610000, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
13
|
Olde Engberink RHG, van Oosten PJ, Weber T, Tabury K, Baatout S, Siew K, Walsh SB, Valenti G, Chouker A, Boutouyrie P, Heer M, Jordan J, Goswami N. The kidney, volume homeostasis and osmoregulation in space: current perspective and knowledge gaps. NPJ Microgravity 2023; 9:29. [PMID: 37005397 PMCID: PMC10067832 DOI: 10.1038/s41526-023-00268-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Although we have sent humans into space for more than 50 years crucial questions regarding kidney physiology, volume regulation and osmoregulation remain unanswered. The complex interactions between the renin-angiotensin-aldosterone system, the sympathetic nervous system, osmoregulatory responses, glomerular function, tubular function, and environmental factors such as sodium and water intake, motion sickness and ambient temperature make it difficult to establish the exact effect of microgravity and the subsequent fluid shifts and muscle mass loss on these parameters. Unfortunately, not all responses to actual microgravity can be reproduced with head-down tilt bed rest studies, which complicates research on Earth. Better understanding of the effects of microgravity on kidney function, volume regulation and osmoregulation are needed with the advent of long-term deep space missions and planetary surface explorations during which orthostatic intolerance complaints or kidney stone formation can be life-threatening for astronauts. Galactic cosmic radiation may be a new threat to kidney function. In this review, we summarise and highlight the current understandings of the effects of microgravity on kidney function, volume regulation and osmoregulation and discuss knowledge gaps that future studies should address.
Collapse
Affiliation(s)
- Rik H G Olde Engberink
- Amsterdam UMC location University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.
| | - Paula J van Oosten
- Amsterdam UMC location University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Tobias Weber
- Space Medicine Team, European Astronaut Centre (EAC), Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Keith Siew
- London Tubular Centre, UCL Department of Renal Medicine, University College London, London, UK
| | - Stephen B Walsh
- London Tubular Centre, UCL Department of Renal Medicine, University College London, London, UK
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Alexander Chouker
- Laboratory of Translational Research Stress and Immunity, Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University (LUM), Munich, Germany
| | - Pierre Boutouyrie
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Service de Pharmacologie, DMU CARTE, AP-HP, Hôpital Européen Georges Pompidou, FR-75015, Paris, France
| | - Martina Heer
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Institute of Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR) and University of Cologne, Cologne, Germany
| | - Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Division of Physiology, Otto Löwi Research Center of Vascular Biology, Inflammation, and Immunity, Medical University of Graz, Graz, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
14
|
The role of the osmosensitive transcription factor NFAT5 in corneal edema resorption after injury. Exp Mol Med 2023; 55:565-573. [PMID: 36869067 PMCID: PMC10073147 DOI: 10.1038/s12276-023-00954-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 03/05/2023] Open
Abstract
The osmosensitive transcription factor nuclear factor of activated T cells 5 (NFAT5; or tonicity-responsive enhancer binding protein; TonEBP) plays a key role in macrophage-driven regulation of cutaneous salt and water balance. In the immune-privileged and transparent cornea, disturbances in fluid balance and pathological edema result in corneal transparency loss, which is one of the main causes of blindness worldwide. The role of NFAT5 in the cornea has not yet been investigated. We analyzed the expression and function of NFAT5 in naive corneas and in an established mouse model of perforating corneal injury (PCI), which causes acute corneal edema and transparency loss. In uninjured corneas, NFAT5 was mainly expressed in corneal fibroblasts. In contrast, after PCI, NFAT5 expression was highly upregulated in recruited corneal macrophages. NFAT5 deficiency did not alter corneal thickness in steady state; however, loss of NFAT5 led to accelerated resorption of corneal edema after PCI. Mechanistically, we found that myeloid cell-derived NFAT5 is crucial for controlling corneal edema, as edema resorption after PCI was significantly enhanced in mice with conditional loss of NFAT5 in the myeloid cell lineage, presumably due to increased pinocytosis of corneal macrophages. Collectively, we uncovered a suppressive role for NFAT5 in corneal edema resorption, thereby identifying a novel therapeutic target to combat edema-induced corneal blindness.
Collapse
|
15
|
Martin K, Toussaint ND, Tan SJ, Hewitson TD. Skin regulation of salt and blood pressure and potential clinical implications. Hypertens Res 2023; 46:408-416. [PMID: 36434290 DOI: 10.1038/s41440-022-01096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Sodium chloride, as salt, gives rise to hypertension. Nevertheless, individual susceptibility to the ramifications of sodium chloride is heterogeneous. The conventional nephron-centric regulation of sodium with neurohormonal inputs and responses is now expanded to include an intricate extrarenal pathway including the endothelium, skin, lymphatics, and immune cells. An overabundance of sodium is buffered and regulated by the skin interstitium. Excess sodium passes through (and damages) the vascular endothelium and can be dynamically stored in the skin, modulated by skin immune cells and lymphatics. This excess interstitially stored sodium is implicated in hypertension, cardiovascular dysfunction, metabolic disruption, and inflammatory dysregulation. This extrarenal pathway of regulating sodium represents a novel target for better blood pressure management, rebalancing disturbed inflammation, and hence addressing cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Kylie Martin
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia. .,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia.
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Timothy D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Thowsen IM, Reikvam T, Skogstrand T, Samuelsson AM, Müller DN, Tenstad O, Alitalo K, Karlsen T, Wiig H. Genetic Engineering of Lymphangiogenesis in Skin Does Not Affect Blood Pressure in Mouse Models of Salt-Sensitive Hypertension. Hypertension 2022; 79:2451-2462. [DOI: 10.1161/hypertensionaha.122.19777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background:
Recent studies have indicated that sodium storage is influenced by macrophages that secrete VEGF-C (vascular endothelial growth factor) during salt stress thus stimulating lymphangiogenesis, thereby acting as a buffer against increased blood pressure (BP). We aimed to explore the role of dermal lymphatics in BP and sodium homeostasis. Our hypothesis was that mice with reduced dermal lymphatic vessels were more prone to develop salt-sensitive hypertension, and that mice with hyperplastic vessels were protected.
Methods:
Mice with either hypoplastic (Chy), absent (K14-VEGFR3 [vascular endothelial growth factor receptor 3]-Ig), or hyperplastic (K14-VEGF-C) dermal lymphatic vessels and littermate controls were given high-salt diet (4% NaCl in the chow), deoxycorticosterone acetate (DOCA)-salt diet and 1% saline to drink or nitric oxide blocker diet L-N
G
-nitro arginine methyl ester (followed by high salt diet). BP was measured by telemetric recording, and tissue sodium content by ion chromatography.
Results:
In contrast to previous studies, high salt diet did not induce an increase in BP or sodium storage in any of the mouse strains investigated. DOCA-salt, on the other hand, gave an increase in BP in Chy and K14-VEGFR3-Ig not different from their corresponding WT controls. DOCA induced salt storage in skin and muscle, but to the same extent in mice with dysfunctional lymphatic vessels and WT controls. Lymph flow as assessed by tracer washout was not affected by the diet in any of the mouse strains.
Conclusions:
Our results suggest that dermal lymphatic vessels are not involved in salt storage or blood pressure regulation in these mouse models of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Irene Matre Thowsen
- Department of Biomedicine, University of Bergen, Norway (I.M.T., T.R., T.S., A.-M.S., O.T., T.K., H.W.)
| | - Tore Reikvam
- Department of Biomedicine, University of Bergen, Norway (I.M.T., T.R., T.S., A.-M.S., O.T., T.K., H.W.)
| | - Trude Skogstrand
- Department of Biomedicine, University of Bergen, Norway (I.M.T., T.R., T.S., A.-M.S., O.T., T.K., H.W.)
| | - Anne-Maj Samuelsson
- Department of Biomedicine, University of Bergen, Norway (I.M.T., T.R., T.S., A.-M.S., O.T., T.K., H.W.)
- Department of Medicine, Haukeland University Hospital, Bergen, Norway (A.-M.S.)
| | - Dominik N. Müller
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany (D.N.M.)
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Norway (I.M.T., T.R., T.S., A.-M.S., O.T., T.K., H.W.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Finland (K.A.)
| | - Tine Karlsen
- Department of Biomedicine, University of Bergen, Norway (I.M.T., T.R., T.S., A.-M.S., O.T., T.K., H.W.)
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway (I.M.T., T.R., T.S., A.-M.S., O.T., T.K., H.W.)
| |
Collapse
|
17
|
Ertuglu LA, Kirabo A. Dendritic Cell Epithelial Sodium Channel in Inflammation, Salt-Sensitive Hypertension, and Kidney Damage. KIDNEY360 2022; 3:1620-1629. [PMID: 36245645 PMCID: PMC9528365 DOI: 10.34067/kid.0001272022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/27/2022]
Abstract
Salt-sensitive hypertension is a major risk factor for cardiovascular morbidity and mortality. The pathophysiologic mechanisms leading to different individual BP responses to changes in dietary salt remain elusive. Research in the last two decades revealed that the immune system plays a critical role in the development of hypertension and related end organ damage. Moreover, sodium accumulates nonosmotically in human tissue, including the skin and muscle, shifting the dogma on body sodium balance and its regulation. Emerging evidence suggests that high concentrations of extracellular sodium can directly trigger an inflammatory response in antigen-presenting cells (APCs), leading to hypertension and vascular and renal injury. Importantly, sodium entry into APCs is mediated by the epithelial sodium channel (ENaC). Although the role of the ENaC in renal regulation of sodium excretion and BP is well established, these new findings imply that the ENaC may also exert BP modulatory effects in extrarenal tissue through an immune-dependent pathway. In this review, we discuss the recent advances in our understanding of the pathophysiology of salt-sensitive hypertension with a particular focus on the roles of APCs and the extrarenal ENaC.
Collapse
|
18
|
Wilting J, Becker J. The lymphatic vascular system: much more than just a sewer. Cell Biosci 2022; 12:157. [PMID: 36109802 PMCID: PMC9476376 DOI: 10.1186/s13578-022-00898-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Almost 400 years after the (re)discovery of the lymphatic vascular system (LVS) by Gaspare Aselli (Asellius G. De lactibus, sive lacteis venis, quarto vasorum mesaraicorum genere, novo invento Gasparis Asellii Cremo. Dissertatio. (MDCXXIIX), Milan; 1628.), structure, function, development and evolution of this so-called 'second' vascular system are still enigmatic. Interest in the LVS was low because it was (and is) hardly visible, and its diseases are not as life-threatening as those of the blood vascular system. It is not uncommon for patients with lymphedema to be told that yes, they can live with it. Usually, the functions of the LVS are discussed in terms of fluid homeostasis, uptake of chylomicrons from the gut, and immune cell circulation. However, the broad molecular equipment of lymphatic endothelial cells suggests that they possess many more functions, which are also reflected in the pathophysiology of the system. With some specific exceptions, lymphatics develop in all organs. Although basic structure and function are the same regardless their position in the body wall or the internal organs, there are important site-specific characteristics. We discuss common structure and function of lymphatics; and point to important functions for hyaluronan turn-over, salt balance, coagulation, extracellular matrix production, adipose tissue development and potential appetite regulation, and the influence of hypoxia on the regulation of these functions. Differences with respect to the embryonic origin and molecular equipment between somatic and splanchnic lymphatics are discussed with a side-view on the phylogeny of the LVS. The functions of the lymphatic vasculature are much broader than generally thought, and lymphatic research will have many interesting and surprising aspects to offer in the future.
Collapse
Affiliation(s)
- Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany.
| | - Jürgen Becker
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Li X, Alu A, Wei Y, Wei X, Luo M. The modulatory effect of high salt on immune cells and related diseases. Cell Prolif 2022; 55:e13250. [PMID: 35747936 PMCID: PMC9436908 DOI: 10.1111/cpr.13250] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The adverse effect of excessive salt intake has been recognized in decades. Researchers have mainly focused on the association between salt intake and hypertension. However, studies in recent years have proposed the existence of extra-renal sodium storage and provided insight into the immunomodulatory function of sodium. OBJECTIVES In this review, we discuss the modulatory effects of high salt on various innate and adaptive immune cells and immune-regulated diseases. METHODS We identified papers through electronic searches of PubMed database from inception to March 2022. RESULTS An increasing body of evidence has demonstrated that high salt can modulate the differentiation, activation and function of multiple immune cells. Furthermore, a high-salt diet can increase tissue sodium concentrations and influence the immune responses in microenvironments, thereby affecting the development of immune-regulated diseases, including hypertension, multiple sclerosis, cancer and infections. These findings provide a novel mechanism for the pathology of certain diseases and indicate that salt might serve as a target or potential therapeutic agent in different disease contexts. CONCLUSION High salt has a profound impact on the differentiation, activation and function of multiple immune cells. Additionally, an HSD can modulate the development of various immune-regulated diseases.
Collapse
Affiliation(s)
- Xian Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Alsouqi A, Deger SM, Sahinoz M, Mambungu C, Clagett AR, Bian A, Guide A, Stewart TG, Pike M, Robinson‐Cohen C, Crescenzi R, Madhur MS, Harrison DG, Ikizler TA. Tissue Sodium in Patients With Early Stage Hypertension: A Randomized Controlled Trial. J Am Heart Assoc 2022; 11:e022723. [PMID: 35435017 PMCID: PMC9238458 DOI: 10.1161/jaha.121.022723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background Sodium (Na+) stored in skin and muscle tissue is associated with essential hypertension. Sodium magnetic resonance imaging is a validated method of quantifying tissue stores of Na+. In this study, we evaluated tissue Na+ in patients with elevated blood pressure or stage I hypertension in response to diuretic therapy or low Na+ diet. Methods and Results In a double‐blinded, placebo‐controlled trial, patients with systolic blood pressure 120 to 139 mm Hg were randomized to low sodium diet (<2 g of sodium), chlorthalidone, spironolactone, or placebo for 8 weeks. Muscle and skin Na+ using sodium magnetic resonance imaging and pulse wave velocity were assessed at the beginning and end of the study. Ninety‐eight patients were enrolled to undergo baseline measurements and 54 completed randomization. Median baseline muscle and skin Na+ in 98 patients were 16.4 mmol/L (14.9, 18.9) and 13.1 mmol/L (11.1, 16.1), respectively. After 8 weeks, muscle Na+ increased in the diet and chlorthalidone arms compared with placebo. Skin sodium was decreased only in the diet arm compared with placebo. These associations remained significant after adjustment for age, sex, body mass index, systolic blood pressure, and urinary sodium. No changes were observed in pulse wave velocity among the different groups when compared with placebo. Conclusions Diuretic therapy for 8 weeks did not decrease muscle or skin sodium or improve pulse wave velocity in patients with elevated blood pressure or stage I hypertension. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02236520.
Collapse
Affiliation(s)
- Aseel Alsouqi
- Now with Division of Hematology and Oncology Department of Medicine University of Pittsburgh Medical Center Pittsburgh PA
- Department of Medicine Vanderbilt University Medical Center Nashville TN
| | - Serpil Muge Deger
- Division of Nephrology Department of Medicine Dokuz Eylul University Izmir Turkey
| | - Melis Sahinoz
- Department of Medicine Vanderbilt University Medical Center Nashville TN
| | - Cindy Mambungu
- Division of Nephrology and Hypertension Department of Medicine Vanderbilt University Medical Center Nashville TN
| | - Adrienne R. Clagett
- Division of Nephrology and Hypertension Department of Medicine Vanderbilt University Medical Center Nashville TN
| | - Aihua Bian
- Department of Biostatistics Vanderbilt University Medical Center Nashville TN
| | - Andrew Guide
- Department of Biostatistics Vanderbilt University Medical Center Nashville TN
| | - Thomas G. Stewart
- Department of Biostatistics Vanderbilt University Medical Center Nashville TN
| | - Mindy Pike
- Division of Epidemiology Department of Medicine Vanderbilt University Nashville TN
| | - Cassianne Robinson‐Cohen
- Division of Nephrology and Hypertension Department of Medicine Vanderbilt University Medical Center Nashville TN
| | - Rachelle Crescenzi
- Department of Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville TN
| | - Meena S. Madhur
- Division of Clinical Pharmacology Department of Medicine Vanderbilt University Medical Center Nashville TN
- Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center Nashville TN
| | - David G. Harrison
- Division of Clinical Pharmacology Department of Medicine Vanderbilt University Medical Center Nashville TN
| | - Talat Alp Ikizler
- Division of Nephrology and Hypertension Department of Medicine Vanderbilt University Medical Center Nashville TN
| |
Collapse
|
21
|
Stock JM, Chelimsky G, Edwards DG, Farquhar WB. Dietary sodium and health: How much is too much for those with orthostatic disorders? Auton Neurosci 2022; 238:102947. [PMID: 35131651 PMCID: PMC9296699 DOI: 10.1016/j.autneu.2022.102947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/09/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
High dietary salt (NaCl) increases blood pressure (BP) and can adversely impact multiple target organs including the vasculature, heart, kidneys, brain, autonomic nervous system, skin, eyes, and bone. However, patients with orthostatic disorders are told to increase their NaCl intake to help alleviate symptoms. While there is evidence to support the short-term benefits of increasing NaCl intake in these patients, there are few studies assessing the benefits and side effects of long-term high dietary NaCl. The evidence reviewed suggests that high NaCl can adversely impact multiple target organs, often independent of BP. However, few of these studies have been performed in patients with orthostatic disorders. We conclude that the recommendation to increase dietary NaCl in patients with orthostatic disorders should be done with care, keeping in mind the adverse impact on dietary NaCl in people without orthostatic disorders. Modest, rather than robust, increases in NaCl intake may be sufficient to alleviate symptoms but also minimize any long-term negative effects.
Collapse
Affiliation(s)
- Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Gisela Chelimsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America.
| |
Collapse
|
22
|
Markó L, Dörr A, Linz P, van den Meiracker AH, Garrelds IM, Kuehne T, Dechend R, Danser AHJ, Flörcken A, Müller DN. Effect of Sunitinib Treatment on Skin Sodium Accumulation in Patients With Renal Cancer: a Pilot Study. Hypertension 2022; 79:e103-e105. [PMID: 35189705 DOI: 10.1161/hypertensionaha.122.19079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lajos Markó
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., R.D., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (L.M., D.M.N.).,Berlin Institute of Health (BIH), Germany (L.M., R.D., D.N.M.).,Charité - Universitätsmedizin Berlin, Germany (L.M., R.D., D.N.M.)
| | - Anne Dörr
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Campus Virchow-Klinikum, Berlin (A.D., A.F.)
| | - Peter Linz
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Germany. (P.L.).,Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Germany. (P.L.)
| | - Anton H van den Meiracker
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (A.H.v.d.M., I.M.G., A.H.J.D.)
| | - Ingrid M Garrelds
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (A.H.v.d.M., I.M.G., A.H.J.D.)
| | - Titus Kuehne
- Institute for Cardiovascular Computer-assisted Medicine, Charité - Universitätsmedizin Berlin, Germany (T.K.).,German Heart Center Berlin, Germany (T.K.)
| | - Ralf Dechend
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., R.D., D.N.M.).,Berlin Institute of Health (BIH), Germany (L.M., R.D., D.N.M.).,Charité - Universitätsmedizin Berlin, Germany (L.M., R.D., D.N.M.).,Helios Clinic Berlin-Buch, Germany (R.D.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (A.H.v.d.M., I.M.G., A.H.J.D.)
| | - Anne Flörcken
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Tumor Immunology, Campus Virchow-Klinikum, Berlin (A.D., A.F.).,German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.F.)
| | - Dominik N Müller
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., R.D., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (L.M., D.M.N.).,Berlin Institute of Health (BIH), Germany (L.M., R.D., D.N.M.).,Charité - Universitätsmedizin Berlin, Germany (L.M., R.D., D.N.M.)
| |
Collapse
|
23
|
Labban M, Itani MM, Maaliki D, Nasreddine L, Itani HA. The Sweet and Salty Dietary Face of Hypertension and Cardiovascular Disease in Lebanon. Front Physiol 2022; 12:802132. [PMID: 35153813 PMCID: PMC8835350 DOI: 10.3389/fphys.2021.802132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
According to the World Health Organization (WHO), an estimated 1.28 billion adults aged 30–79 years worldwide have hypertension; and every year, hypertension takes 7.6 million lives. High intakes of salt and sugar (mainly fructose from added sugars) have been linked to the etiology of hypertension, and this may be particularly true for countries undergoing the nutrition transition, such as Lebanon. Salt-induced hypertension and fructose-induced hypertension are manifested in different mechanisms, including Inflammation, aldosterone-mineralocorticoid receptor pathway, aldosterone independent mineralocorticoid receptor pathway, renin-angiotensin system (RAS), sympathetic nervous system (SNS) activity, and genetic mechanisms. This review describes the evolution of hypertension and cardiovascular diseases (CVDs) in Lebanon and aims to elucidate potential mechanisms where salt and fructose work together to induce hypertension. These mechanisms increase salt absorption, decrease salt excretion, induce endogenous fructose production, activate fructose-insulin-salt interaction, and trigger oxidative stress, thus leading to hypertension. The review also provides an up-to-date appraisal of current intake levels of salt and fructose in Lebanon and their main food contributors. It identifies ongoing salt and sugar intake reduction strategies in Lebanon while acknowledging the country’s limited scope of regulation and legislation. Finally, the review concludes with proposed public health strategies and suggestions for future research, which can reduce the intake levels of salt and fructose levels and contribute to curbing the CVD epidemic in the country.
Collapse
Affiliation(s)
| | - Maha M Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Lara Nasreddine
- Vascular Medicine Program, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Hana A Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Vascular Medicine Program, American University of Beirut Medical Center, Beirut, Lebanon.,Adjunct Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
24
|
Šilhavý J, Mlejnek P, Šimáková M, Liška F, Kubovčiak J, Sticová E, Pravenec M. Sodium Accumulation and Blood Capillary Rarefaction in the Skin Predispose Spontaneously Hypertensive Rats to Salt Sensitive Hypertension. Biomedicines 2022; 10:biomedicines10020376. [PMID: 35203585 PMCID: PMC8962406 DOI: 10.3390/biomedicines10020376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Recent studies in humans and rats suggested that increased Na+ storage in the skin without parallel water retention may predispose to salt-sensitive hypertension. In the current studies, we compared tissue Na+ storage in salt sensitive spontaneously hypertensive rats (SHR) versus salt resistant normotensive Brown Norway (BN-Lx) rats. After salt loading (10 days drinking 1% NaCl solution), the SHR showed significant parallel increase in Na+-to-water as well as (Na++K+)-to-water ratios suggesting increased storage of osmotically inactive Na+ in the skin while no significant changes in skin electrolyte concentrations were observed in BN-Lx rats. SHR rats after salt treatment exhibited a nonsignificant decrease in skin blood capillary number (rarefaction) while BN-Lx rats showed significantly increased skin blood capillary density. Analysis of dermal gene expression profiles in BN-Lx rats after salt treatment showed significant up-regulation of genes involved in angiogenesis and proliferation of endothelial cells contrary to the SHR. Since the skin harbors most of the body’s resistance vessels it is possible that blood capillary rarefaction may lead to increased peripheral resistance and salt sensitivity in the SHR.
Collapse
Affiliation(s)
- Jan Šilhavý
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (M.Š.); (F.L.); (M.P.)
- Correspondence:
| | - Petr Mlejnek
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (M.Š.); (F.L.); (M.P.)
| | - Miroslava Šimáková
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (M.Š.); (F.L.); (M.P.)
| | - František Liška
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (M.Š.); (F.L.); (M.P.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, General University Hospital, 12800 Prague, Czech Republic
| | - Jan Kubovčiak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Eva Sticová
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
- Department of Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (M.Š.); (F.L.); (M.P.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, General University Hospital, 12800 Prague, Czech Republic
| |
Collapse
|
25
|
Balan Y, Packirisamy RM, Mohanraj PS. High dietary salt intake activates inflammatory cascades via Th17 immune cells: impact on health and diseases. Arch Med Sci 2022; 18:459-465. [PMID: 35316907 PMCID: PMC8924833 DOI: 10.5114/aoms.2020.96344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/13/2020] [Indexed: 02/02/2023] Open
Abstract
The incidence of immune-mediated inflammatory diseases (IMIDs) is on the rise. A high salt content in the diet was found to play a crucial role in mediating IMIDs. It was demonstrated that increased salt concentration favors the differentiation of CD4+ cells to pathogenic Th17 cells, which predispose to several inflammatory diseases by modulating the immunological milieu. In auto-immune diseases increased salt concentration causes stable induction of Th17 cells. In cancer, increased salt concentration triggers chronic inflammation and increases vascular endothelial growth factor levels. Salt-mediated proliferation of Th17 cells has been found to reduce nitric oxide production in the endothelial cells, leading to hypertension. Increased salt concentration was found to alter the intestinal flora, which favors local inflammation. This review attempts to explain the role of high salt concentration and its molecular pathways in causing IMIDs.
Collapse
Affiliation(s)
- Yuvaraj Balan
- Pondicherry Institute of Medical Sciences, Kalapet, Puducherry, India
| | | | - P S Mohanraj
- All India Institute of Medical Sciences, Gorakhpur, India
| |
Collapse
|
26
|
Jhee JH, Park HC, Choi HY. Skin Sodium and Blood Pressure Regulation. Electrolyte Blood Press 2022; 20:1-9. [DOI: 10.5049/ebp.2022.20.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jong Hyun Jhee
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeong Cheon Park
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoon Young Choi
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Ertuglu LA, Elijovich F, Laffer CL, Kirabo A. Salt-Sensitivity of Blood Pressure and Insulin Resistance. Front Physiol 2021; 12:793924. [PMID: 34966295 PMCID: PMC8711096 DOI: 10.3389/fphys.2021.793924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality that is seen in both hypertensive and normotensive populations. Insulin resistance (IR) strongly correlates with SSBP and affects nearly 50% of salt sensitive people. While the precise mechanism by which IR and SSBP relate remains elusive, several common pathways are involved in the genesis of both processes, including vascular dysfunction and immune activation. Vascular dysfunction associated with insulin resistance is characterized by loss of nitric oxide (NO)-mediated vasodilation and heightened endothelin-1 induced vasoconstriction, as well as capillary rarefaction. It manifests with increased blood pressure (BP) in salt sensitive murine models. Another common denominator in the pathogenesis of insulin resistance, hypertension, and salt sensitivity (SS) is immune activation involving pro-inflammatory cytokines like tumor necrosis factor (TNF)-α, IL-1β, and IL-6. In the last decade, a new understanding of interstitial sodium storage in tissues such as skin and muscle has revolutionized traditional concepts of body sodium handling and pathogenesis of SS. We have shown that interstitial Na+ can trigger a T cell mediated inflammatory response through formation of isolevuglandin protein adducts in antigen presenting cells (APCs), and that this response is implicated in salt sensitive hypertension. The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that modulates both insulin sensitivity and BP. PPARγ agonists increase insulin sensitivity and ameliorate salt sensitivity, whereas deficiency of PPARγ results in severe insulin resistance and hypertension. These findings suggest that PPARγ plays a role in the common pathogenesis of insulin sensitivity and salt sensitivity, perhaps via effects on the immune system and vascular function. The goal of this review is to discuss those mechanisms that may play a role in both SSBP and in insulin resistance.
Collapse
Affiliation(s)
- Lale A Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
28
|
Kannenkeril D, Jung S, Harazny J, Striepe K, Ott C, Dahlmann A, Kopp C, Schiffer M, Linz P, Nagel AM, Uder M, Schmieder RE. Tissue sodium content correlates with hypertrophic vascular remodeling in type 2 diabetes. J Diabetes Complications 2021; 35:108055. [PMID: 34620556 DOI: 10.1016/j.jdiacomp.2021.108055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/16/2021] [Accepted: 09/25/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Prospective studies describe a linkage between increased sodium intake and higher incidence of cardiovascular organ damage and end points. We analyzed whether tissue sodium content in the skin and muscles correlate with vascular hypertrophic remodeling, a risk factor for cardiovascular disease. METHODS In patients with type 2 diabetes we assessed tissue sodium content and vascular structural parameters of the retinal arterioles. The structural parameters of retinal arterioles assessed by Scanning Laser Doppler Flowmetry were vessel (VD) and lumen diameter (LD), wall thickness (WT), wall-to-lumen ratio (WLR) and wall cross sectional area (WCSA). Tissue sodium content was measured with a 3.0 T clinical 23Sodium-Magnetic Resonance Imaging (23Na-MRI) system. RESULTS In patients with type 2 diabetes (N = 52) we observed a significant correlation between muscle sodium content and VD (p = 0.005), WT (p = 0.003), WCSA (p = 0.002) and WLR (p = 0.013). With respect to skin sodium content a significant correlation has been found with VD (p = 0.042), WT (p = 0.023) and WCSA (p = 0.019). Further analysis demonstrated that tissue sodium content of skin and muscle is a significant determinant of hypertrophic vascular remodeling independent of age, gender, diuretic use and 24-hour ambulatory BP. CONCLUSION With the 23Na-MRI technology we could demonstrate that high tissue sodium content is independently linked to hypertrophic vascular remodeling in type 2 diabetes. TRIAL REGISTRATION Trial registration number: NCT02383238 Date of registration: March 9, 2015.
Collapse
Affiliation(s)
- Dennis Kannenkeril
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Susanne Jung
- Department of Cardiology, University Hospital Erlangen, Erlangen, Germany
| | - Joanna Harazny
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany; Department of Human Physiology and Pathophysiology, University of Warmia and Mazury, Olsztyn, Poland
| | - Kristina Striepe
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Christian Ott
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Anke Dahlmann
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Kopp
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Peter Linz
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Roland E Schmieder
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
29
|
Borrelli S, De Nicola L, De Gregorio I, Polese L, Pennino L, Elefante C, Carbone A, Rappa T, Minutolo R, Garofalo C. Volume-Independent Sodium Toxicity in Peritoneal Dialysis: New Insights from Bench to Bed. Int J Mol Sci 2021; 22:ijms222312804. [PMID: 34884617 PMCID: PMC8657906 DOI: 10.3390/ijms222312804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Sodium overload is common in end-stage kidney disease (ESKD) and is associated with increased cardiovascular mortality that is traditionally considered a result of extracellular volume expansion. Recently, sodium storage was detected by Na23 magnetic resonance imaging in the interstitial tissue of the skin and other tissues. This amount of sodium is osmotically active, regulated by immune cells and the lymphatic system, escapes renal control, and, more importantly, is associated with salt-sensitive hypertension. In chronic kidney disease, the interstitial sodium storage increases as the glomerular filtration rate declines and is related to cardiovascular damage, regardless of the fluid overload. This sodium accumulation in the interstitial tissues becomes more significant in ESKD, especially in older and African American patients. The possible negative effects of interstitial sodium are still under study, though a higher sodium intake might induce abnormal structural and functional changes in the peritoneal wall. Interestingly, sodium stored in the interstial tissue is not unmodifiable, since it is removable by dialysis. Nevertheless, the sodium removal by peritoneal dialysis (PD) remains challenging, and new PD solutions are desirable. In this narrative review, we carried out an update on the pathophysiological mechanisms of volume-independent sodium toxicity and possible future strategies to improve sodium removal by PD.
Collapse
|
30
|
Donahue PMC, Crescenzi R, Petersen KJ, Garza M, Patel N, Lee C, Chen SC, Donahue MJ. Physical Therapy in Women with Early Stage Lipedema: Potential Impact of Multimodal Manual Therapy, Compression, Exercise, and Education Interventions. Lymphat Res Biol 2021; 20:382-390. [PMID: 34748408 PMCID: PMC9422785 DOI: 10.1089/lrb.2021.0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Lipedema is a distinct adipose disorder from obesity necessitating awareness as well as different management approaches to address pain and optimize quality of life (QoL). The purpose of this proof-of-principle study is to evaluate the therapeutic potential of physical therapy interventions in women with lipedema. Methods and Results: Participants with Stage 1-2 lipedema and early Stage 0-1 lymphedema (n = 5, age = 38.4 ± 13.4 years, body mass index = 27.2 ± 4.3 kg/m2) underwent nine visits of physical therapy in 6 weeks for management of symptoms impacting functional mobility and QoL. Pre- and post-therapy, participants were scanned with 3 Tesla sodium and water magnetic resonance imaging (MRI), underwent biophysical measurements, and completed questionnaires measuring function and QoL (patient-specific functional scale, PSFS, and RAND-36). Pain was measured at each visit using the 0-10 visual analog scale (VAS). Treatment effect was calculated for all study variables. The primary symptomatology measures of pain and function revealed clinically significant post-treatment improvements and large treatment effects (Cohen's d for pain VAS = -2.5 and PSFS = 4.4). The primary sodium MRI measures, leg skin sodium, and subcutaneous adipose tissue (SAT) sodium, reduced following treatment and revealed large treatment effects (Cohen's d for skin sodium = -1.2 and SAT sodium = -0.9). Conclusions: This proof-of-principle study provides support that persons with lipedema can benefit from physical therapy to manage characteristic symptoms of leg pain and improve QoL. Objective MRI measurement of reduced tissue sodium in the skin and SAT regions indicates reduced inflammation in the treated limbs. Further research is warranted to optimize the conservative therapy approach in lipedema, a condition for which curative and disease-modifying treatments are unavailable.
Collapse
Affiliation(s)
- Paula M C Donahue
- Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Dayani Center for Health and Wellness, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rachelle Crescenzi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kalen J Petersen
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maria Garza
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Niral Patel
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Chelsea Lee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
31
|
Koch J, Hijmans RS, Ossa Builes M, Dam WA, Pol RA, Bakker SJL, Pas HH, Franssen CFM, van den Born J. Direct Evidence of Endothelial Dysfunction and Glycocalyx Loss in Dermal Biopsies of Patients With Chronic Kidney Disease and Their Association With Markers of Volume Overload. Front Cell Dev Biol 2021; 9:733015. [PMID: 34621749 PMCID: PMC8491614 DOI: 10.3389/fcell.2021.733015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/30/2021] [Indexed: 02/04/2023] Open
Abstract
Cardiovascular morbidity is a major problem in patients with chronic kidney disease (CKD) and endothelial dysfunction (ED) is involved in its development. The luminal side of the vascular endothelium is covered by a protective endothelial glycocalyx (eGC) and indirect evidence indicates eGC loss in CKD patients. We aimed to investigate potential eGC loss and ED in skin biopsies of CKD patients and their association with inflammation and volume overload. During living kidney transplantation procedure, abdominal skin biopsies were taken from 11 patients with chronic kidney disease stage 5 of whom 4 were treated with hemodialysis and 7 did not receive dialysis treatment. Nine healthy kidney donors served as controls. Biopsies were stained and quantified for the eGC marker Ulex europaeus agglutinin-1 (UEA1) and the endothelial markers vascular endothelial growth factor-2 (VEGFR2) and von Willebrand factor (vWF) after double staining and normalization for the pan-endothelial marker cluster of differentiation 31. We also studied associations between quantified log-transformed dermal endothelial markers and plasma markers of inflammation and hydration status. Compared to healthy subjects, there was severe loss of the eGC marker UEA1 (P < 0.01) while VEGFR2 was increased in CKD patients, especially in those on dialysis (P = 0.01). For vWF, results were comparable between CKD patients and controls. Skin water content was identical in the three groups, which excluded dermal edema as an underlying cause in patients with CKD. The dermal eGC/ED markers UEA1, VEGFR2, and vWF all associated with plasma levels of NT-proBNP and sodium (all R2 > 0.29 and P < 0.01), except for vWF that only associated with plasma NT-proBNP. This study is the first to show direct histopathological evidence of dermal glycocalyx loss and ED in patients with CKD. In line with previous research, our results show that ED associates with markers of volume overload arguing for strict volume control in CKD patients.
Collapse
Affiliation(s)
- Josephine Koch
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ryanne S Hijmans
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Manuela Ossa Builes
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wendy A Dam
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert A Pol
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hendri H Pas
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Casper F M Franssen
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacob van den Born
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
32
|
Donnan MD, Kenig-Kozlovsky Y, Quaggin SE. The lymphatics in kidney health and disease. Nat Rev Nephrol 2021; 17:655-675. [PMID: 34158633 DOI: 10.1038/s41581-021-00438-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The mammalian vascular system consists of two networks: the blood vascular system and the lymphatic vascular system. Throughout the body, the lymphatic system contributes to homeostatic mechanisms by draining extravasated interstitial fluid and facilitating the trafficking and activation of immune cells. In the kidney, lymphatic vessels exist mainly in the kidney cortex. In the medulla, the ascending vasa recta represent a hybrid lymphatic-like vessel that performs lymphatic-like roles in interstitial fluid reabsorption. Although the lymphatic network is mainly derived from the venous system, evidence supports the existence of lymphatic beds that are of non-venous origin. Following their development and maturation, lymphatic vessel density remains relatively stable; however, these vessels undergo dynamic functional changes to meet tissue demands. Additionally, new lymphatic growth, or lymphangiogenesis, can be induced by pathological conditions such as tissue injury, interstitial fluid overload, hyperglycaemia and inflammation. Lymphangiogenesis is also associated with conditions such as polycystic kidney disease, hypertension, ultrafiltration failure and transplant rejection. Although lymphangiogenesis has protective functions in clearing accumulated fluid and immune cells, the kidney lymphatics may also propagate an inflammatory feedback loop, exacerbating inflammation and fibrosis. Greater understanding of lymphatic biology, including the developmental origin and function of the lymphatics and their response to pathogenic stimuli, may aid the development of new therapeutic agents that target the lymphatic system.
Collapse
Affiliation(s)
- Michael D Donnan
- Feinberg Cardiovascular & Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Susan E Quaggin
- Feinberg Cardiovascular & Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
33
|
Reduction of Tissue Na + Accumulation After Renal Transplantation. Kidney Int Rep 2021; 6:2338-2347. [PMID: 34514195 PMCID: PMC8418983 DOI: 10.1016/j.ekir.2021.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction Chronic kidney disease (CKD) engenders salt-sensitive hypertension. Whether or not tissue Na+ accumulation is increased in CKD patients remains uncertain. How tissue Na+ is affected after renal transplantation has not been assessed. Methods We measured tissue Na+ amount in 31 CKD patients (stage 5) and prospectively evaluated tissue Na+ content at 3 and 6 months, following living-donor kidney transplantation. Additionally, pre- and post-transplantation data were compared to 31 age- and sex-matched control subjects. 23Na-magnetic resonance imaging (23Na-MRI) was used to quantify muscle and skin Na+ of the lower leg and water distribution was assessed by bioimpedance spectroscopy. Results Compared to control subjects, CKD patients showed increased muscle (20.7 ± 5.0 vs. 15.5 ± 1.8 arbitrary units [a.u.], P < 0.001) and skin Na+ content (21.4 ± 7.7 vs. 15.0 ± 2.3 a.u., P < 0.001), whereas plasma Na+ concentration did not differ between groups. Restoration of kidney function by successful renal transplantation was accompanied by mobilization of tissue Na+ from muscle (20.7 ± 5.0 vs. 16.8 ± 2.8 a.u., P < 0.001) and skin tissue (21.4 ± 7.7 vs. 16.8 ± 5.2 a.u., P < 0.001). The reduction of tissue Na+ after transplantation was associated with improved renal function, normalization of blood pressure as well as an increase in lymphatic growth-factor concentration (vascular endothelial growth factor C [VEGF-C] 4.5 ± 1.8 vs. 6.7 ± 2.7 ng/ml, P < 0.01). Conclusions Tissue Na+ accumulation in predialysis patients with CKD was almost completely reversed to the level of healthy controls after successful kidney transplantation.
Collapse
|
34
|
Martin K, Tan SJ, Toussaint ND. Magnetic resonance imaging determination of tissue sodium in patients with chronic kidney disease. Nephrology (Carlton) 2021; 27:117-125. [PMID: 34510658 DOI: 10.1111/nep.13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Excess sodium is a major modifiable contributor to hypertension and cardiovascular risk. Knowledge of sodium storage and metabolism has derived mainly from indirect measurements of dietary sodium intake and urinary sodium excretion, however both attempt to measure body sodium and fluid in a two-compartment model of intracellular and extracellular spaces. Our understanding of total body sodium has recently included a storage pool in tissues. In the last two decades, sodium-23 magnetic resonance imaging (23 Na MRI) has allowed dynamic quantification of tissue sodium in vivo. Tissue sodium is independently associated with cardiovascular dysfunction and inflammation. This review explores (i) The revolution of our understanding of sodium physiology, (ii) The development and potential clinical adoption of 23 Na MRI to provide improved measurement of total body sodium in CKD and (iii) How we can better understand mechanistic and clinical implications of tissue sodium in hypertension, cardiovascular disease and immune dysregulation, especially in the CKD population.
Collapse
Affiliation(s)
- Kylie Martin
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
35
|
Maifeld A, Wild J, Karlsen TV, Rakova N, Wistorf E, Linz P, Jung R, Birukov A, Gimenez-Rivera VA, Wilck N, Bartolomaeus T, Dechend R, Kleinewietfeld M, Forslund SK, Krause A, Kokolakis G, Philipp S, Clausen BE, Brand A, Waisman A, Kurschus FC, Wegner J, Schultheis M, Luft FC, Boschmann M, Kelm M, Wiig H, Kuehne T, Müller DN, Karbach S, Markó L. Skin Sodium Accumulates in Psoriasis and Reflects Disease Severity. J Invest Dermatol 2021; 142:166-178.e8. [PMID: 34237339 DOI: 10.1016/j.jid.2021.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Sodium can accumulate in the skin at concentrations exceeding serum levels. A high sodium environment can lead to pathogenic T helper 17 cell expansion. Psoriasis is a chronic inflammatory skin disease in which IL-17‒producing T helper 17 cells play a crucial role. In an observational study, we measured skin sodium content in patients with psoriasis and in age-matched healthy controls by Sodium-23 magnetic resonance imaging. Patients with PASI > 5 showed significantly higher sodium and water content in the skin but not in other tissues than those with lower PASI or healthy controls. Skin sodium concentrations measured by Sodium-23 spectroscopy or by atomic absorption spectrometry in ashed-skin biopsies verified the findings with Sodium-23 magnetic resonance imaging. In vitro T helper 17 cell differentiation of naive CD4+ cells from patients with psoriasis markedly induced IL-17A expression under increased sodium chloride concentrations. The imiquimod-induced psoriasis mouse model replicated the human findings. Extracellular tracer Chromium-51-EDTA measurements in imiquimod- and sham-treated skin showed similar extracellular volumes, rendering excessive water of intracellular origin. Chronic genetic IL-17A‒driven psoriasis mouse models underlined the role of IL-17A in dermal sodium accumulation and inflammation. Our data describe skin sodium as a pathophysiological feature of psoriasis, which could open new avenues for its treatment.
Collapse
Affiliation(s)
- András Maifeld
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Wild
- Center of Cardiology - Cardiology I, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tine V Karlsen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Natalia Rakova
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Elisa Wistorf
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Peter Linz
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Rebecca Jung
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany; Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anna Birukov
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Nicola Wilck
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Theda Bartolomaeus
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Helios Clinic Berlin-Buch, Berlin, Germany
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University Campus Diepenbeek, Hasselt, Belgium
| | - Sofia K Forslund
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Krause
- Medical Centre for Rheumatology and Clinical Immunology, Immanuel Krankenhaus Berlin, Berlin, Germany
| | - Georgios Kokolakis
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Philipp
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Björn E Clausen
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Brand
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ari Waisman
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Florian C Kurschus
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joanna Wegner
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Schultheis
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael Boschmann
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Kelm
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Congenital Heart Disease, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Titus Kuehne
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Congenital Heart Disease, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Berlin, Germany
| | - Susanne Karbach
- Center of Cardiology - Cardiology I, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lajos Markó
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
36
|
Jobin K, Müller DN, Jantsch J, Kurts C. Sodium and its manifold impact on our immune system. Trends Immunol 2021; 42:469-479. [PMID: 33962888 DOI: 10.1016/j.it.2021.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
The Western diet is rich in salt, and a high salt diet (HSD) is suspected to be a risk factor for cardiovascular diseases. It is now widely accepted that an experimental HSD can stimulate components of the immune system, potentially exacerbating certain autoimmune diseases, or alternatively, improving defenses against certain infections, such as cutaneous leishmaniasis. However, recent findings show that an experimental HSD may also aggravate other infections (e.g., pyelonephritis or systemic listeriosis). Here, we discuss the modulatory effects of a HSD on the microbiota, metabolic signaling, hormonal responses, local sodium concentrations, and their effects on various immune cell types in different tissues. We describe how these factors are integrated, resulting either in immune stimulation or suppression in various tissues and disease settings.
Collapse
Affiliation(s)
- Katarzyna Jobin
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Würzburg Institute of Systems Immunology, Max-Planck Research Group, University of Würzburg, Würzburg, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, and Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany.
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.
| |
Collapse
|
37
|
Kovarik JJ, Morisawa N, Wild J, Marton A, Takase‐Minegishi K, Minegishi S, Daub S, Sands JM, Klein JD, Bailey JL, Kovalik J, Rauh M, Karbach S, Hilgers KF, Luft F, Nishiyama A, Nakano D, Kitada K, Titze J. Adaptive physiological water conservation explains hypertension and muscle catabolism in experimental chronic renal failure. Acta Physiol (Oxf) 2021; 232:e13629. [PMID: 33590667 PMCID: PMC8244025 DOI: 10.1111/apha.13629] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
Aim We have reported earlier that a high salt intake triggered an aestivation‐like natriuretic‐ureotelic body water conservation response that lowered muscle mass and increased blood pressure. Here, we tested the hypothesis that a similar adaptive water conservation response occurs in experimental chronic renal failure. Methods In four subsequent experiments in Sprague Dawley rats, we used surgical 5/6 renal mass reduction (5/6 Nx) to induce chronic renal failure. We studied solute and water excretion in 24‐hour metabolic cage experiments, chronic blood pressure by radiotelemetry, chronic metabolic adjustment in liver and skeletal muscle by metabolomics and selected enzyme activity measurements, body Na+, K+ and water by dry ashing, and acute transepidermal water loss in conjunction with skin blood flow and intra‐arterial blood pressure. Results 5/6 Nx rats were polyuric, because their kidneys could not sufficiently concentrate the urine. Physiological adaptation to this renal water loss included mobilization of nitrogen and energy from muscle for organic osmolyte production, elevated norepinephrine and copeptin levels with reduced skin blood flow, which by means of compensation reduced their transepidermal water loss. This complex physiologic‐metabolic adjustment across multiple organs allowed the rats to stabilize their body water content despite persisting renal water loss, albeit at the expense of hypertension and catabolic mobilization of muscle protein. Conclusion Physiological adaptation to body water loss, termed aestivation, is an evolutionary conserved survival strategy and an under‐studied research area in medical physiology, which besides hypertension and muscle mass loss in chronic renal failure may explain many otherwise unexplainable phenomena in medicine.
Collapse
Affiliation(s)
- Johannes J. Kovarik
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- Clinical Division of Nephrology and Dialysis Department of Internal Medicine III Medical University of Vienna Vienna Austria
| | - Norihiko Morisawa
- Department of Pharmacology Faculty of Medicine Kagawa University Kagawa Japan
| | - Johannes Wild
- Division for Cardiology 1 Centre for Cardiology Johannes Gutenberg‐University Mainz Mainz Germany
| | - Adriana Marton
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
| | - Kaoru Takase‐Minegishi
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- Department of Stem Cell and Immune Regulation Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Shintaro Minegishi
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Steffen Daub
- Division for Cardiology 1 Centre for Cardiology Johannes Gutenberg‐University Mainz Mainz Germany
| | - Jeff M. Sands
- Renal Division Department of Medicine Emory University Atlanta GA USA
| | - Janet D. Klein
- Renal Division Department of Medicine Emory University Atlanta GA USA
| | - James L. Bailey
- Renal Division Department of Medicine Emory University Atlanta GA USA
| | - Jean‐Paul Kovalik
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
| | - Manfred Rauh
- Division of Paediatrics Research Laboratory Erlangen Germany
| | - Susanne Karbach
- Division for Cardiology 1 Centre for Cardiology Johannes Gutenberg‐University Mainz Mainz Germany
| | - Karl F. Hilgers
- Division of Nephrology and Hypertension University Clinic Erlangen Erlangen Germany
| | - Friedrich Luft
- Experimental and Clinical Research Center Max Delbrück Center for Molecular Medicine Berlin Germany
| | - Akira Nishiyama
- Department of Pharmacology Faculty of Medicine Kagawa University Kagawa Japan
| | - Daisuke Nakano
- Department of Pharmacology Faculty of Medicine Kagawa University Kagawa Japan
| | - Kento Kitada
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- JSPS Overseas Research Fellow Japan Society for the Promotion of Science Tokyo Japan
| | - Jens Titze
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- Division of Nephrology and Hypertension University Clinic Erlangen Erlangen Germany
- Division of Nephrology Duke University School of Medicine Durham NC USA
| |
Collapse
|
38
|
Wenstedt EFE, van Croonenburg TJ, van den Born BJH, Van den Bossche J, Hooijmans CR, Vogt L. The effect of macrophage-targeted interventions on blood pressure - a systematic review and meta-analysis of preclinical studies. Transl Res 2021; 230:123-138. [PMID: 33166696 DOI: 10.1016/j.trsl.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023]
Abstract
An increasing body of evidence shows a role for macrophages and monocytes (as their precursors) in hypertension, but with conflicting results with regard to whether they are protective or harmful. Therefore, we systematically reviewed the effect of macrophage interventions on blood pressure in animal models, to explore which factors determine the blood pressure increasing vs. decreasing effect. A search in PubMED and EMBASE yielded 9620 records, 26 of which were included. Eighteen studies (involving 22 different experiments (k = 22)) performed macrophage depletion, whereas 12 studies specifically deleted certain macrophage proteins. The blood pressure effects of macrophage depletion were highly various and directed toward both directions, as expected, which could not be reduced to differences in animal species or methods of hypertension induction. Prespecified subgroup analysis did reveal a potential role for the route in which the macrophage-depleting agent is being administrated (intraperitoneal vs intravenous subgroup difference of P = 0.07 (k = 22), or P < 0.001 in studies achieving considerable (ie, >50%) depletion (k = 18)). Along with findings from specific macrophage protein deletion studies-showing that deletion of one single macrophage protein (like TonEBP, endothelin-B, EP4, NOX-2 and the angiotensin II type 1 receptor) can alter blood pressure responses to hypertensive stimuli-the indication that each route has its specific depletion pattern regarding targeted tissues and macrophage phenotypes suggests a determinative role for these features. These hypothesis-generating results encourage more detailed depletion characterization of each technique by direct experimental comparisons, providing a chance to obtain more knowledge on which macrophages are beneficial versus detrimental in hypertension development.
Collapse
Affiliation(s)
- Eliane F E Wenstedt
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Thirza J van Croonenburg
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Bert-Jan H van den Born
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jan Van den Bossche
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Carlijn R Hooijmans
- Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Liffert Vogt
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Gupta DK, Crescenzi R, Aday AW. Unpreserved Lymphatic Reserve in Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol 2021; 76:2830-2833. [PMID: 33303071 DOI: 10.1016/j.jacc.2020.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Deepak K Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Rachelle Crescenzi
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aaron W Aday
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
40
|
Wenstedt EFE, Oppelaar JJ, Besseling S, Rorije NMG, Olde Engberink RHG, Oosterhof A, van Kuppevelt TH, van den Born BJH, Aten J, Vogt L. Distinct osmoregulatory responses to sodium loading in patients with altered glycosaminoglycan structure: a randomized cross-over trial. J Transl Med 2021; 19:38. [PMID: 33472641 PMCID: PMC7816310 DOI: 10.1186/s12967-021-02700-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/06/2021] [Indexed: 01/21/2023] Open
Abstract
Background By binding to negatively charged polysaccharides called glycosaminoglycans, sodium can be stored in the body—particularly in the skin—without concurrent water retention. Concordantly, individuals with changed glycosaminoglycan structure (e.g. type 1 diabetes (DM1) and hereditary multiple exostosis (HME) patients) may have altered sodium and water homeostasis. Methods We investigated responses to acute (30-min infusion) and chronic (1-week diet) sodium loading in 8 DM1 patients and 7 HME patients in comparison to 12 healthy controls. Blood samples, urine samples, and skin biopsies were taken to investigate glycosaminoglycan sulfation patterns and both systemic and cellular osmoregulatory responses. Results Hypertonic sodium infusion increased plasma sodium in all groups, but more in DM1 patients than in controls. High sodium diet increased expression of nuclear factor of activated t-cells 5 (NFAT5)—a transcription factor responsive to changes in osmolarity—and moderately sulfated heparan sulfate in skin of healthy controls. In HME patients, skin dermatan sulfate, rather than heparan sulfate, increased in response to high sodium diet, while in DM1 patients, no changes were observed. Conclusion DM1 and HME patients show distinct osmoregulatory responses to sodium loading when comparing to controls with indications for reduced sodium storage capacity in DM1 patients, suggesting that intact glycosaminoglycan biosynthesis is important in sodium and water homeostasis. Trial registration These trials were registered with the Netherlands trial register with registration numbers: NTR4095 (https://www.trialregister.nl/trial/3933 at 2013-07-29) and NTR4788 (https://www.trialregister.nl/trial/4645 at 2014-09-12).
Collapse
Affiliation(s)
- Eliane F E Wenstedt
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jetta J Oppelaar
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Stijn Besseling
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Nienke M G Rorije
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Rik H G Olde Engberink
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Arie Oosterhof
- Department of Biochemistry, Radboud UMC, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud UMC, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - Bert-Jan H van den Born
- Department of Internal Medicine, Section of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jan Aten
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands. .,Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, Room D3-324, Meibergdreef 9, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Sahinoz M, Tintara S, Deger SM, Alsouqi A, Crescenzi RL, Mambungu C, Vincz A, Mason OJ, Prigmore HL, Guide A, Stewart TG, Harrison DG, Luft FC, Titze J, Ikizler TA. Tissue sodium stores in peritoneal dialysis and hemodialysis patients determined by 23-sodium magnetic resonance imaging. Nephrol Dial Transplant 2020; 36:gfaa350. [PMID: 33351140 PMCID: PMC8237985 DOI: 10.1093/ndt/gfaa350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/21/2020] [Accepted: 11/18/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Tissue sodium content in patients on maintenance hemodialysis (MHD) and peritoneal dialysis (PD) were previously explored using 23Sodium magnetic resonance imaging (23NaMRI). Larger studies would provide a better understanding of sodium stores in patients on dialysis as well as the factors influencing this sodium accumulation. METHODS In this cross-sectional study, we quantified the calf muscle and skin sodium content in 162 subjects (10 PD, 33 MHD patients, and 119 controls) using 23NaMRI. Plasma levels of interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hsCRP) were measured to assess systemic inflammation. Sixty-four subjects had repeat 23NaMRI scans that were analyzed to assess the repeatability of the 23NaMRI measurements. RESULTS Patients on MHD and PD exhibited significantly higher muscle and skin sodium accumulation compared to controls. African American patients on dialysis exhibited greater muscle and skin sodium content compared to non-African Americans. Multivariable analysis showed that older age was associated with both higher muscle and skin sodium. Male sex was also associated with increased skin sodium deposition. Greater ultrafiltration was associated with lower skin sodium in patients on PD (Spearman's rho=-0.68, P = 0.035). Higher plasma IL-6 and hsCRP levels correlated with increased muscle and skin sodium content in the overall study population. Patients with higher baseline tissue sodium content exhibited greater variability in tissue sodium stores on repeat measurements. CONCLUSIONS Our findings highlight greater muscle and skin sodium content in dialysis patients compared to controls without kidney disease. Tissue sodium deposition and systemic inflammation seen in dialysis patients might influence one another bidirectionally.
Collapse
Affiliation(s)
- Melis Sahinoz
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center Nashville, TN, USA
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Supisara Tintara
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Serpil Muge Deger
- Department of Nephrology, Yuksek Ihtisas University, Koru Ankara Hospital, Ankara, Turkey
| | - Aseel Alsouqi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachelle L Crescenzi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cindy Mambungu
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center Nashville, TN, USA
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Andrew Vincz
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center Nashville, TN, USA
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Olivia J Mason
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather L Prigmore
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew Guide
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas G Stewart
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David G Harrison
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Friedrich C Luft
- Experimental and Clinical Research Center, Charité Medical Faculty, Berlin, Germany
| | - Jens Titze
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- Division of Nephrology and Hypertension, University Clinic Erlangen, Erlangen, Germany
- Division of Nephrology, Duke University School of Medicine, Durham, NC, USA
| | - Talat Alp Ikizler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center Nashville, TN, USA
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
42
|
Le bilan du sodium : nouveaux aspects. NUTR CLIN METAB 2020. [DOI: 10.1016/j.nupar.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Metabolomics of Interstitial Fluid, Plasma and Urine in Patients with Arterial Hypertension: New Insights into the Underlying Mechanisms. Diagnostics (Basel) 2020; 10:diagnostics10110936. [PMID: 33187152 PMCID: PMC7698256 DOI: 10.3390/diagnostics10110936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 01/04/2023] Open
Abstract
There is growing evidence that lymphatic system plays a pivotal role in the pathogenesis of hypertension. Here, for the first time, the metabolome of interstitial fluid is analyzed in patients with arterial hypertension. Due to ethical issues to obtain human interstitial fluid samples, this study included only oncological patients after axillary lymph node dissection (ALND). These patients were matched into hypertensive (n = 29) and normotensive (n = 35) groups with similar oncological status. Simultaneous evaluation of interstitial fluid, plasma, and urine was obtained by combining high-resolution proton nuclear magnetic resonance (1H NMR) spectroscopy with chemometric analysis. Orthogonal partial least squares discriminant analysis (OPLS-DA) provided a clear differentiation between the hypertension and normotensive group, with the discrimination visible in each biofluid. In interstitial fluid nine potential metabolomic biomarkers for hypertension could be identified (creatinine, proline, pyroglutamine, glycine, alanine, 1-methylhistidine, the lysyl group of albumin, threonine, lipids), seven distinct markers in plasma (creatinine, mannose, isobutyrate, glycine, alanine, lactate, acetate, ornithine), and seven respectively in urine (methylmalonate, citrulline, phenylacetylglycine, fumarate, citrate, 1-methylnicotinamide, trans-aconitate). Biomarkers in plasma and urine allowed for the identification of specific biochemical pathways involved in hypertension, as previously suggested. Analysis of the interstitial fluid metabolome provided additional biomarkers compared to plasma or urine. Those biomarkers reflected primarily alterations in the metabolism of lipids and amino acids, and indicated increased levels of oxidative stress/inflammation in patients with hypertension.
Collapse
|
44
|
Stewart RH. A Modern View of the Interstitial Space in Health and Disease. Front Vet Sci 2020; 7:609583. [PMID: 33251275 PMCID: PMC7674635 DOI: 10.3389/fvets.2020.609583] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Increases in the volume of the interstitial space are readily recognized clinically as interstitial edema formation in the loose connective tissue of skin, mucosa, and lung. However, the contents and the hydrostatic pressure of this interstitial fluid can be very difficult to determine even in experimental settings. These difficulties have long obscured what we are beginning to appreciate is a dynamic milieu that is subject to both intrinsic and extrinsic regulation. This review examines current concepts regarding regulation of interstitial volume, pressure, and flow and utilizes that background to address three major topics of interest that impact IV fluid administration. The first of these started with the discovery that excess dietary salt can be stored non-osmotically in the interstitial space with minimal impact on vascular volume and pressures. This led to the hypothesis that, along with the kidney, the interstitial space plays an active role in the long-term regulation of blood pressure. Second, it now appears that hypovolemic shock leads to systemic inflammatory response syndrome principally through the entry of digestive enzymes into the intestinal interstitial space and the subsequent progression of enzymes and inflammatory agents through the mesenteric lymphatic system to the general circulation. Lastly, current evidence strongly supports the non-intuitive view that the primary factor leading to inflammatory edema formation is a decrease in interstitial hydrostatic pressure that dramatically increases microvascular filtration.
Collapse
Affiliation(s)
- Randolph H Stewart
- Department of Veterinary Physiology and Pharmacology, Michael E. DeBakey Institute, Texas A&M University, College Station, TX, United States
| |
Collapse
|
45
|
Schröder A, Leikam A, Käppler P, Neubert P, Jantsch J, Neuhofer W, Deschner J, Proff P, Kirschneck C. Impact of salt and the osmoprotective transcription factor NFAT-5 on macrophages during mechanical strain. Immunol Cell Biol 2020; 99:84-96. [PMID: 32888231 DOI: 10.1111/imcb.12398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023]
Abstract
Myeloid cells regulate bone density in response to increased salt (NaCl) intake via the osmoprotective transcription factor, nuclear factor of activated T cells-5 (NFAT-5). Because orthodontic tooth movement (OTM) is a pseudoinflammatory immunological process, we investigated the influence of NaCl and NFAT-5 on the expression pattern of macrophages in a model of simulated OTM. RAW264.7 macrophages were exposed for 4 h to 2 g cm-2 compressive or 16% tensile or no mechanical strain (control), with or without the addition of 40 mm NaCl. We analyzed the expression of inflammatory genes and proteins [tumor necrosis factor (TNF), interleukin (IL)-6 and prostaglandin endoperoxide synthase-2 (Ptgs-2)/prostaglandin E2 (PG-E2)] by real-time-quantitative PCR and ELISA. To investigate the role of NFAT-5 in these responses, NFAT-5 was both constitutively expressed and silenced. Salt and compressive strain, but not tensile strain increased the expression of NFAT-5 and most tested inflammatory factors in macrophages. NaCl induced the expression of Ptgs-2/PG-E2 and TNF, whereas secretion of IL-6 was inhibited. Similarly, a constitutive expression of NFAT-5 reduced IL-6 expression, while increasing Ptgs-2/PG-E2 and TNF expression. Silencing of NFAT-5 upregulated IL-6 and reduced Ptgs-2/PG-E2 and TNF expression. Salt had an impact on the expression profile of macrophages as a reaction to compressive and tensile strain that occur during OTM. This was mediated via NFAT-5, which surprisingly also seems to play a regulatory role in mechanotransduction of compressive strain. Sodium accumulation in the periodontal ligament caused by dietary salt consumption might propagate local osteoclastogenesis via increased local inflammation and thus OTM velocity, but possibly also entail side effects such as dental root resorptions or periodontal bone loss.
Collapse
Affiliation(s)
- Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Alexandra Leikam
- Department of Orthodontics, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Paul Käppler
- Department of Orthodontics, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Wolfgang Neuhofer
- Department of Nephrology, Helios Klinikum Erfurt, Erfurt, 99089, Germany
| | - James Deschner
- Department of Periodontology and Operative Medicine, University Medicine Mainz, Mainz, 55131, Germany
| | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, Regensburg, 93053, Germany
| |
Collapse
|
46
|
Minegishi S, Luft FC, Titze J, Kitada K. Sodium Handling and Interaction in Numerous Organs. Am J Hypertens 2020; 33:687-694. [PMID: 32198504 DOI: 10.1093/ajh/hpaa049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/27/2022] Open
Abstract
Salt (NaCl) is a prerequisite for life. Excessive intake of salt, however, is said to increase disease risk, including hypertension, arteriosclerosis, heart failure, renal disease, stroke, and cancer. Therefore, considerable research has been expended on the mechanism of sodium handling based on the current concepts of sodium balance. The studies have necessarily relied on relatively short-term experiments and focused on extremes of salt intake in humans. Ultra-long-term salt balance has received far less attention. We performed long-term salt balance studies at intakes of 6, 9, and 12 g/day and found that although the kidney remains the long-term excretory gate, tissue and plasma sodium concentrations are not necessarily the same and that urinary salt excretion does not necessarily reflect total-body salt content. We found that to excrete salt, the body makes a great effort to conserve water, resulting in a natriuretic-ureotelic principle of salt excretion. Of note, renal sodium handling is characterized by osmolyte excretion with anti-parallel water reabsorption, a state-of-affairs that is achieved through the interaction of multiple organs. In this review, we discuss novel sodium and water balance concepts in reference to our ultra-long-term study. An important key to understanding body sodium metabolism is to focus on water conservation, a biological principle to protect from dehydration, since excess dietary salt excretion into the urine predisposes to renal water loss because of natriuresis. We believe that our research direction is relevant not only to salt balance but also to cardiovascular regulatory mechanisms.
Collapse
Affiliation(s)
- Shintaro Minegishi
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Friedrich C Luft
- Experimental & Clinical Research Center, a joint collaboration between Max-Delbrück Center for Molecular Medicine and Charité Universitätsmedizin, Berlin, Germany
| | - Jens Titze
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- Division of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Nephrology and Hypertension, University Clinic Erlangen, Erlangen, Germany
| | - Kento Kitada
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- JSPS Overseas Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
47
|
Tissue sodium content in hypertension and related organ damage. J Hypertens 2020; 38:2363-2368. [PMID: 32740402 DOI: 10.1097/hjh.0000000000002580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
: Most textbooks state that sodium (Na) accumulation goes hand in hand with fluid retention to maintain the environmental isotonicity. In the last century, several studies found, however, that Na is stored in the extravascular space leading to an activation of the monocyte phagocytic system cells that work as a regulator of the interstitial electrolyte homeostasis. Na-MRI was developed to quantify noninvasively, accurately and reliably tissue Na content. In this review, we give an up-to-date overview of clinical studies utilizing this Na-MRI technique to elucidate the importance of tissue Na content in patients with cardiovascular risk factors leading to microvascular and macrovascular complications. Na storage leads ultimately to organ damage such as left ventricular hypertrophy or hypertrophic vascular remodeling of resistance vessels. Elevated Na content in muscle and skin has been detected in patients with treatment resistant hypertension, type 2 diabetes mellitus, acute and chronic heart failure, chronic kidney disease and end-stage renal failure. Pharmacological interventions have shown that a mobilization of extracellular accumulated Na is possible and may emerge as a new therapeutic approach in some diseases.
Collapse
|
48
|
Effects of sodium chloride on the gene expression profile of periodontal ligament fibroblasts during tensile strain. J Orofac Orthop 2020; 81:360-370. [PMID: 32632652 PMCID: PMC8494687 DOI: 10.1007/s00056-020-00232-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
Purpose During orthodontic tooth movement, pressure and tension zones develop in the periodontal ligament, and periodontal ligament fibroblasts (PDLF) become exposed to mechanical strain. Enhanced salt (NaCl) concentrations are known to modulate responses of PDLF and immune cells to different stimuli like mechanical strain. Here, we investigated the impact of tensile strain on the gene expression profile of PDLF under normal (NS) and high salt (HS) conditions. Methods After preincubation under NS or HS (+40 mM NaCl in medium) conditions for 24 h, PDLF were stretched 16% for 48 h using custom-made spherical cap silicone stamps using an established and published setup. After determination of cell number and cytotoxicity, we analyzed expression of genes involved in extracellular matrix reorganization, angiogenesis, bone remodeling, and inflammation by quantitative real-time polymerase chain reaction (RT-qPCR). Results Tensile strain did not affect the expression of genes involved in angiogenesis or extracellular matrix reorganization by PDLF, which however modulate inflammatory responses and bone remodeling in reaction to 16% static tensile strain. Salt (NaCl) treatment triggered enhanced extracellular matrix formation, expression of cyclooxygenase 2 and bone metabolism in PDLF during tensile strain. Conclusions Salt (NaCl) consumption may influence orthodontic tooth movement and periodontal bone loss via modulation of extracellular matrix and bone metabolism. Excessive salt intake during orthodontic therapy may cause adverse effects regarding periodontal inflammation and bone resorption.
Collapse
|
49
|
Borrelli S, Provenzano M, Gagliardi I, Ashour M, Liberti ME, De Nicola L, Conte G, Garofalo C, Andreucci M. Sodium Intake and Chronic Kidney Disease. Int J Mol Sci 2020; 21:E4744. [PMID: 32635265 PMCID: PMC7369961 DOI: 10.3390/ijms21134744] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
In Chronic Kidney Disease (CKD) patients, elevated blood pressure (BP) is a frequent finding and is traditionally considered a direct consequence of their sodium sensitivity. Indeed, sodium and fluid retention, causing hypervolemia, leads to the development of hypertension in CKD. On the other hand, in non-dialysis CKD patients, salt restriction reduces BP levels and enhances anti-proteinuric effect of renin-angiotensin-aldosterone system inhibitors in non-dialysis CKD patients. However, studies on the long-term effect of low salt diet (LSD) on cardio-renal prognosis showed controversial findings. The negative results might be the consequence of measurement bias (spot urine and/or single measurement), reverse epidemiology, as well as poor adherence to diet. In end-stage kidney disease (ESKD), dialysis remains the only effective means to remove dietary sodium intake. The mismatch between intake and removal of sodium leads to fluid overload, hypertension and left ventricular hypertrophy, therefore worsening the prognosis of ESKD patients. This imposes the implementation of a LSD in these patients, irrespective of the lack of trials proving the efficacy of this measure in these patients. LSD is, therefore, a rational and basic tool to correct fluid overload and hypertension in all CKD stages. The implementation of LSD should be personalized, similarly to diuretic treatment, keeping into account the volume status and true burden of hypertension evaluated by ambulatory BP monitoring.
Collapse
MESH Headings
- Blood Pressure
- Diet, Sodium-Restricted
- Humans
- Hypertension/diet therapy
- Hypertension/etiology
- Hypertension/physiopathology
- Hypertrophy, Left Ventricular/diet therapy
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/physiopathology
- Kidney Failure, Chronic/complications
- Kidney Failure, Chronic/diet therapy
- Kidney Failure, Chronic/physiopathology
- Prognosis
- Renal Dialysis
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/diet therapy
- Renal Insufficiency, Chronic/physiopathology
- Renin-Angiotensin System/physiology
- Sodium Chloride, Dietary/administration & dosage
- Water-Electrolyte Imbalance/diet therapy
- Water-Electrolyte Imbalance/etiology
- Water-Electrolyte Imbalance/physiopathology
Collapse
Affiliation(s)
- Silvio Borrelli
- Nephrology Unit, Advanced Surgical and Medical Sciences Department of University of Campania “Luigi Vanvitelli”, Piazza Miraglia, 80137 Naples, Italy; (M.E.L.); (L.D.N.); (G.C.); (C.G.)
| | - Michele Provenzano
- Nephrology Unit, Department of Health Sciences, “Magna Grecia” University, 88100 Catanzaro, Italy; (M.P.); (I.G.); (M.A.); (M.A.)
| | - Ida Gagliardi
- Nephrology Unit, Department of Health Sciences, “Magna Grecia” University, 88100 Catanzaro, Italy; (M.P.); (I.G.); (M.A.); (M.A.)
| | - Michael Ashour
- Nephrology Unit, Department of Health Sciences, “Magna Grecia” University, 88100 Catanzaro, Italy; (M.P.); (I.G.); (M.A.); (M.A.)
| | - Maria Elena Liberti
- Nephrology Unit, Advanced Surgical and Medical Sciences Department of University of Campania “Luigi Vanvitelli”, Piazza Miraglia, 80137 Naples, Italy; (M.E.L.); (L.D.N.); (G.C.); (C.G.)
| | - Luca De Nicola
- Nephrology Unit, Advanced Surgical and Medical Sciences Department of University of Campania “Luigi Vanvitelli”, Piazza Miraglia, 80137 Naples, Italy; (M.E.L.); (L.D.N.); (G.C.); (C.G.)
| | - Giuseppe Conte
- Nephrology Unit, Advanced Surgical and Medical Sciences Department of University of Campania “Luigi Vanvitelli”, Piazza Miraglia, 80137 Naples, Italy; (M.E.L.); (L.D.N.); (G.C.); (C.G.)
| | - Carlo Garofalo
- Nephrology Unit, Advanced Surgical and Medical Sciences Department of University of Campania “Luigi Vanvitelli”, Piazza Miraglia, 80137 Naples, Italy; (M.E.L.); (L.D.N.); (G.C.); (C.G.)
| | - Michele Andreucci
- Nephrology Unit, Department of Health Sciences, “Magna Grecia” University, 88100 Catanzaro, Italy; (M.P.); (I.G.); (M.A.); (M.A.)
| |
Collapse
|
50
|
Neubert P, Homann A, Wendelborn D, Bär AL, Krampert L, Trum M, Schröder A, Ebner S, Weichselbaum A, Schatz V, Linz P, Veelken R, Schulte-Schrepping J, Aschenbrenner AC, Quast T, Kurts C, Geisberger S, Kunzelmann K, Hammer K, Binger KJ, Titze J, Müller DN, Kolanus W, Schultze JL, Wagner S, Jantsch J. NCX1 represents an ionic Na+ sensing mechanism in macrophages. PLoS Biol 2020; 18:e3000722. [PMID: 32569301 PMCID: PMC7307728 DOI: 10.1371/journal.pbio.3000722] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/22/2020] [Indexed: 01/20/2023] Open
Abstract
Inflammation and infection can trigger local tissue Na+ accumulation. This Na+-rich environment boosts proinflammatory activation of monocyte/macrophage-like cells (MΦs) and their antimicrobial activity. Enhanced Na+-driven MΦ function requires the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5), which augments nitric oxide (NO) production and contributes to increased autophagy. However, the mechanism of Na+ sensing in MΦs remained unclear. High extracellular Na+ levels (high salt [HS]) trigger a substantial Na+ influx and Ca2+ loss. Here, we show that the Na+/Ca2+ exchanger 1 (NCX1, also known as solute carrier family 8 member A1 [SLC8A1]) plays a critical role in HS-triggered Na+ influx, concomitant Ca2+ efflux, and subsequent augmented NFAT5 accumulation. Moreover, interfering with NCX1 activity impairs HS-boosted inflammatory signaling, infection-triggered autolysosome formation, and subsequent antibacterial activity. Taken together, this demonstrates that NCX1 is able to sense Na+ and is required for amplifying inflammatory and antimicrobial MΦ responses upon HS exposure. Manipulating NCX1 offers a new strategy to regulate MΦ function.
Collapse
Affiliation(s)
- Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Arne Homann
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - David Wendelborn
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Anna-Lorena Bär
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Luka Krampert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Maximilian Trum
- Department of Internal Medicine II, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Agnes Schröder
- Institute of Orthodontics, University Hospital of Regensburg, Regensburg, Germany
| | - Stefan Ebner
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andrea Weichselbaum
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Peter Linz
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4, University Hospital Erlangen, Erlangen, Germany
| | - Jonas Schulte-Schrepping
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Anna C. Aschenbrenner
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thomas Quast
- Molecular Immunology and Cell Biology LIMES Institute, University of Bonn, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Sabrina Geisberger
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Karl Kunzelmann
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Karin Hammer
- Department of Internal Medicine II, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Katrina J. Binger
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Jens Titze
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Dominik N. Müller
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology LIMES Institute, University of Bonn, Bonn, Germany
| | - Joachim L. Schultze
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Platform for Single Cell Genomics & Epigenomics at the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn, Bonn, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| |
Collapse
|