1
|
Jiang S, Han S, Wang DW. The involvement of soluble epoxide hydrolase in the development of cardiovascular diseases through epoxyeicosatrienoic acids. Front Pharmacol 2024; 15:1358256. [PMID: 38628644 PMCID: PMC11019020 DOI: 10.3389/fphar.2024.1358256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Arachidonic acid (AA) has three main metabolic pathways: the cycloxygenases (COXs) pathway, the lipoxygenases (LOXs) pathway, and the cytochrome P450s (CYPs) pathway. AA produces epoxyeicosatrienoic acids (EETs) through the CYPs pathway. EETs are very unstable in vivo and can be degraded in seconds to minutes. EETs have multiple degradation pathways, but are mainly degraded in the presence of soluble epoxide hydrolase (sEH). sEH is an enzyme of bifunctional nature, and current research focuses on the activity of its C-terminal epoxide hydrolase (sEH-H), which hydrolyzes the EETs to the corresponding inactive or low activity diol. Previous studies have reported that EETs have cardiovascular protective effects, and the activity of sEH-H plays a role by degrading EETs and inhibiting their protective effects. The activity of sEH-H plays a different role in different cells, such as inhibiting endothelial cell proliferation and migration, but promoting vascular smooth muscle cell proliferation and migration. Therefore, it is of interest whether the activity of sEH-H is involved in the initiation and progression of cardiovascular diseases by affecting the function of different cells through EETs.
Collapse
Affiliation(s)
- Shan Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Siyi Han
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
2
|
Attiq A, Afzal S, Ahmad W, Kandeel M. Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur J Pharmacol 2024; 966:176338. [PMID: 38242225 DOI: 10.1016/j.ejphar.2024.176338] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Inflammation drives coronary artery disease and atherosclerosis implications. Lipoprotein entry, retention, and oxidative modification cause endothelial damage, triggering innate and adaptive immune responses. Recruited immune cells orchestrate the early atherosclerotic lesions by releasing proinflammatory cytokines, expediting the foam cell formation, intraplaque haemorrhage, secretion of matrix-degrading enzymes, and lesion progression, eventually promoting coronary artery syndrome via various inflammatory cascades. In addition, soluble mediators disrupt the dynamic anti- and prothrombotic balance maintained by endothelial cells and pave the way for coronary artery disease such as angina pectoris. Recent studies have established a relationship between elevated levels of inflammatory markers, including C-reactive protein (CRP), interleukins (IL-6, IL-1β), and tumour necrosis factor-alpha (TNF-α) with the severity of CAD and the possibility of future cardiovascular events. High-sensitivity C-reactive protein (hs-CRP) is a marker for assessing systemic inflammation and predicting the risk of developing CAD based on its peak plasma levels. Hence, understanding cross-talk interactions of inflammation, atherogenesis, and CAD is highly warranted to recalculate the risk factors that activate and propagate arterial lesions and devise therapeutic strategies accordingly. Cholesterol-inflammation lowering agents (statins), monoclonal antibodies targeting IL-1 and IL-6 (canakinumab and tocilizumab), disease-modifying antirheumatic drugs (methotrexate), sodium-glucose transport protein-2 (SGLT2) inhibitors, colchicine and xanthene oxidase inhibitor (allopurinol) have shown promising results in reducing inflammation, regressing atherogenic plaque and modifying the course of CAD. Here, we review the complex interplay between inflammatory, endothelial, smooth muscle and foam cells. Moreover, the putative role of inflammation in atherosclerotic CAD, underlying mechanisms and potential therapeutic implications are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al Ahsa, Saudi Arabia.
| | - Waqas Ahmad
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al Ahsa, Saudi Arabia
| |
Collapse
|
3
|
Cyp2c44 epoxygenase-derived epoxyeicosatrienoic acids in vascular smooth muscle cells elicit vasoconstriction of the murine ophthalmic artery. Sci Rep 2021; 11:18764. [PMID: 34548575 PMCID: PMC8455677 DOI: 10.1038/s41598-021-98236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Cytochrome P450 (CYP) signalling pathway has been shown to play a vital role in the vasoreactivity of wild type mouse ophthalmic artery. In this study, we determined the expression, vascular responses and potential mechanisms of the CYP-derived arachidonic acid metabolites. The expression of murine CYP (Cyp2c44) and soluble epoxide hydrolase (sEH) in the wild type ophthalmic artery was determined with immunofluorescence, which showed predominant expression of Cyp2c44 in the vascular smooth muscle cells (VSMC), while sEH was found mainly in the endothelium of the wild type ophthalmic artery. Artery of Cyp2c44-/- and sEH-/- mice were used as negative controls. Targeted mass spectrometry-based lipidomics analysis of endogenous epoxide and diols of the wild type artery detected only 14, 15-EET. Vasorelaxant responses of isolated vessels in response to selective pharmacological blockers and agonist were analysed ex vivo. Direct antagonism of epoxyeicosatrienoic acids (EETs) with a selective inhibitor caused partial vasodilation, suggesting that EETs may behave as vasoconstrictors. Exogenous administration of synthetic EET regioisomers significantly constricted the vessels in a concentration-dependent manner, with the strongest responses elicited by 11, 12- and 14, 15-EETs. Our results provide the first experimental evidence that Cyp2c44-derived EETs in the VSMC mediate vasoconstriction of the ophthalmic artery.
Collapse
|
4
|
Luther JM, Wei DS, Ghoshal K, Peng D, Adler GK, Turcu AF, Nian H, Yu C, Solorzano CC, Pozzi A, Brown NJ. Treatment of Primary Aldosteronism Increases Plasma Epoxyeicosatrienoic Acids. Hypertension 2021; 77:1323-1331. [PMID: 33583202 PMCID: PMC8320355 DOI: 10.1161/hypertensionaha.120.14808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 01/17/2021] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- James M. Luther
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
| | - Dawei S. Wei
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
| | - Kakali Ghoshal
- Vanderbilt University Medical Center Department of Medicine, Division of Nephrology and Hypertension
| | - Dungeng Peng
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
| | - Gail K. Adler
- Brigham and Women’s Hospital, Division of Endocrinology and Hypertension, Department of Medicine, Harvard Medical School
| | - Adina F. Turcu
- University of Michigan, Division of Endocrinology, Department of Medicine
| | - Hui Nian
- Vanderbilt University Department of Biostatistics
| | - Chang Yu
- Vanderbilt University Department of Biostatistics
| | | | - Ambra Pozzi
- Vanderbilt University Medical Center Department of Medicine, Division of Nephrology and Hypertension
- Department of Veterans Affairs, Nashville, TN
| | - Nancy J. Brown
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
- Yale School of Medicine
| |
Collapse
|
5
|
Vasconez AE, Janetzko P, Oo JA, Pflüger-Müller B, Ratiu C, Gu L, Helin K, Geisslinger G, Fleming I, Schröder K, Fork C, Brandes RP, Leisegang MS. The histone demethylase Jarid1b mediates angiotensin II-induced endothelial dysfunction by controlling the 3'UTR of soluble epoxide hydrolase. Acta Physiol (Oxf) 2019; 225:e13168. [PMID: 30076673 DOI: 10.1111/apha.13168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 01/25/2023]
Abstract
AIM The histone demethylase Jarid1b limits gene expression by removing the active methyl mark from histone3 lysine4 at gene promoter regions. A vascular function of Jarid1b is unknown, but a vasoprotective function to inflammatory and hypertrophic stimuli, like angiotensin II (AngII) could be inferred. This hypothesis was tested using Jarid1b knockout mice and the inhibitor PBIT. METHODS Mice or aortic segments were treated with AngII to induce endothelial dysfunction. Aortae from WT and Jarid1b knockout were studied in organ chambers and endothelium-dependent dilator responses to acetylcholine and endothelium-independent responses to DetaNONOate were recorded after pre-constriction with phenylephrine in the presence or absence of the NO-synthase inhibitor nitro-L-arginine. Molecular mechanisms were investigated with chromatin immunoprecipitation, RNA-Seq, RNA-3'-adaptor-ligation, actinomycin D and RNA-immunoprecipitation. RESULTS Knockout or inhibition of Jarid1b prevented the development of endothelial dysfunction in response to AngII. This effect was not a consequence of altered nitrite oxide availability but accompanied by a loss of the inflammatory response to AngII. As Jarid1b mainly inhibits gene expression, an indirect effect should account for this observation. AngII induced the soluble epoxide hydrolase (sEH), which degrades anti-inflammatory lipids, and thus promotes inflammation. Knockout or inhibition of Jarid1b prevented the AngII-mediated sEH induction. Mechanistically, Jarid1b maintained the length of the 3'untranslated region of the sEH mRNA, thereby increasing its stability and thus sEH protein expression. Loss of Jarid1b activity therefore resulted in sEH mRNA destabilization. CONCLUSION Jarid1b contributes to the pro-inflammatory effects of AngII by stabilizing sEH expression. Jarid1b inhibition might be an option for future therapeutics against cardiovascular dysfunction.
Collapse
Affiliation(s)
- Andrea E. Vasconez
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Patrick Janetzko
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - James A. Oo
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Beatrice Pflüger-Müller
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Corina Ratiu
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- Department of Functional Sciences - Pathophysiology; “Victor Babes” University of Medicine and Pharmacy Timisoara; Timisoara Romania
| | - Lunda Gu
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC); University of Copenhagen; Copenhagen Denmark
- Centre for Epigenetics; University of Copenhagen; Copenhagen Denmark
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt; Institute of Clinical Pharmacology; Goethe-University; Frankfurt Germany
| | - Ingrid Fleming
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
- Institute for Vascular Signalling; Centre for Molecular Medicine; Goethe-University; Frankfurt Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Christian Fork
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Matthias S. Leisegang
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| |
Collapse
|
6
|
Lefebvre H, Duparc C, Naccache A, Lopez AG, Castanet M, Louiset E. Paracrine Regulation of Aldosterone Secretion in Physiological and Pathophysiological Conditions. VITAMINS AND HORMONES 2018; 109:303-339. [PMID: 30678861 DOI: 10.1016/bs.vh.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aldosterone secretion by the zona glomerulosa of the adrenal cortex is controlled by circulating factors including the renin angiotensin system (RAS) and potassium. Mineralocorticoid production is also regulated through an autocrine/paracrine mechanism by a wide variety of bioactive signals released in the vicinity of adrenocortical cells by chromaffin cells, nerve endings, cells of the immune system, endothelial cells and adipocytes. These regulatory factors include conventional neurotransmitters and neuropeptides. Their physiological role in the control of aldosterone secretion is not fully understood, but it is likely that they participate in the RAS-independent regulation of zona glomerulosa cells. Interestingly, recent observations indicate that autocrine/paracrine processes are involved in the pathophysiology of primary aldosteronism. The intraadrenal regulatory systems observed in aldosterone-producing adenomas (APA), although globally similar to those occurring in the normal adrenal gland, harbor alterations at different levels, which tend to strengthen the potency of paracrine signals to activate aldosterone secretion. Enhancement of paracrine stimulatory tone may participate to APA expansion and aldosterone hypersecretion together with somatic mutations of driver genes which activate the calcium signaling pathway and subsequently aldosterone synthase expression. Intraadrenal regulatory mechanisms represent thus promising pharmacological targets for the treatment of primary aldosteronism.
Collapse
Affiliation(s)
- Hervé Lefebvre
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandie University, UNIROUEN, INSERM, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen University Hospital, Rouen, France.
| | - Céline Duparc
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandie University, UNIROUEN, INSERM, Rouen, France
| | - Alexandre Naccache
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandie University, UNIROUEN, INSERM, Rouen, France; Unit of Pediatric Endocrinology, Department of Pediatrics, Rouen University Hospital, Rouen, France
| | - Antoine-Guy Lopez
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandie University, UNIROUEN, INSERM, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen University Hospital, Rouen, France
| | - Mireille Castanet
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandie University, UNIROUEN, INSERM, Rouen, France; Unit of Pediatric Endocrinology, Department of Pediatrics, Rouen University Hospital, Rouen, France
| | - Estelle Louiset
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandie University, UNIROUEN, INSERM, Rouen, France
| |
Collapse
|
7
|
Liu P, Zhang S, Gao J, Lin Y, Shi G, He W, Touyz RM, Yan L, Huang H. Downregulated Serum 14, 15-Epoxyeicosatrienoic Acid Is Associated With Abdominal Aortic Calcification in Patients With Primary Aldosteronism. Hypertension 2018; 71:592-598. [PMID: 29440332 DOI: 10.1161/hypertensionaha.117.10644] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/16/2017] [Accepted: 01/17/2018] [Indexed: 01/02/2023]
Abstract
Patients with primary aldosteronism (PA) have increased risk of target-organ damage, among which vascular calcification is an important indicator of cardiovascular mortality. 14, 15-Epoxyeicosatrienoic acid (14, 15-EET) has been shown to have beneficial effects in vascular remodeling. However, whether 14, 15-EET associates with vascular calcification in PA is unknown. Thus, we aimed to investigate the association between 14, 15-EET and abdominal aortic calcification (AAC) in patients with PA. Sixty-nine patients with PA and 69 controls with essential hypertension, matched for age, sex, and blood pressure, were studied. 14, 15-Dihydroxyeicosatrienoic acid (14, 15-DHET), the inactive metabolite from 14, 15-EET, was estimated to reflect serum 14, 15-EET levels. AAC was assessed by computed tomographic scanning. Compared with matched controls, the AAC prevalence was almost 1-fold higher in patients with PA (27 [39.1%] versus 14 [20.3%]; P=0.023), accompanied by significantly higher serum 14, 15-DHET levels (7.18±4.98 versus 3.50±2.07 ng/mL; P<0.001). Plasma aldosterone concentration was positively associated with 14, 15-DHET (β=0.444; P<0.001). Multivariable logistic analysis revealed that lower 14, 15-DHET was an independent risk factor for AAC in PA (odds ratio, 1.371; 95% confidence interval, 1.145-1.640; P<0.001), especially in young patients with mild hypertension and normal body mass index. In conclusion, PA patients exibited more severe AAC, accompanied by higher serum 14, 15-DHET levels. On the contrary, decreased 14, 15-EET was significantly associated with AAC prevalence in PA patients, especially in those at low cardiovascular risk.
Collapse
Affiliation(s)
- Pinming Liu
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Shaoling Zhang
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Jingwei Gao
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Ying Lin
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Guangzi Shi
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Wanbing He
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Rhian M Touyz
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Li Yan
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Hui Huang
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.).
| |
Collapse
|
8
|
Shah AJ, Kriska T, Gauthier KM, Falck JR, Campbell WB. Effect of Angiotensin II and ACTH on Adrenal Blood Flow in the Male Rat Adrenal Gland In Vivo. Endocrinology 2018; 159:217-226. [PMID: 29140411 PMCID: PMC5761607 DOI: 10.1210/en.2016-1594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/08/2017] [Indexed: 02/01/2023]
Abstract
Angiotensin II (Ang II) and adrenocorticotropic hormone (ACTH) regulate adrenal vascular tone in vitro through endothelial and zona glomerulosa cell-derived mediators. The role of these mediators in regulating adrenal blood flow (ABF) and mean arterial pressure (MAP) was examined in anesthetized rats. Ang II (0.01 to 100 ng/kg) increased ABF [maximal increase of 97.2 ± 6.9 perfusion units (PUs) at 100 ng/kg] and MAP (basal, 115 ± 7 mm Hg; Ang II, 163 ± 5 mm Hg). ACTH (0.1 to 1000 ng/kg) also increased ABF (maximum increase of 91.4 ± 10.7 PU) without changing MAP. ABF increase by Ang II was partially inhibited by the nitric oxide (NO) synthase inhibitor N-nitro-l-arginine methyl ester (L-NAME) (maximum increase of 72.9 ± 4.2 PU), the cytochrome P450 inhibitor miconazole (maximum increase of 39.1 ± 6.8 PU) and the epoxyeicosatrienoic acid (EET) antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) (maximum increase of 56.0 ± 13.7 PU) alone, whereas combined administration of miconazole and L-NAME (maximum increase of 16.40 ± 8.98 PU) ablated it. These treatments had no effect on MAP. Indomethacin did not affect the increase in ABF or MAP induced by Ang II. The ABF increase by ACTH was partially ablated by miconazole and 14,15-EEZE but not by L-NAME. Steroidogenic stimuli such as Ang II and ACTH increase ABF to promote oxygen and cholesterol delivery for steroidogenesis and aldosterone transport to its target tissues. The increases in ABF induced by Ang II are mediated by release of NO and EETs, whereas ABF increases with ACTH are mediated by EETs only.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Adrenal Glands/blood supply
- Adrenal Glands/drug effects
- Adrenal Glands/metabolism
- Adrenocorticotropic Hormone/administration & dosage
- Adrenocorticotropic Hormone/metabolism
- Angiotensin II/administration & dosage
- Angiotensin II/metabolism
- Animals
- Cyclooxygenase Inhibitors/pharmacology
- Cytochrome P-450 Enzyme Inhibitors/pharmacology
- Eicosanoids/antagonists & inhibitors
- Eicosanoids/blood
- Eicosanoids/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/pharmacology
- Indomethacin/pharmacology
- Injections, Intravenous
- Male
- Miconazole/pharmacology
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/antagonists & inhibitors
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, Corticotropin/agonists
- Receptors, Corticotropin/metabolism
- Regional Blood Flow/drug effects
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Abdul J. Shah
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad-22060, KPK, Pakistan
| | - Tamas Kriska
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Kathryn M. Gauthier
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - William B. Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
9
|
Kopf PG, Park SK, Herrnreiter A, Krause C, Roques BP, Campbell WB. Obligatory Metabolism of Angiotensin II to Angiotensin III for Zona Glomerulosa Cell-Mediated Relaxations of Bovine Adrenal Cortical Arteries. Endocrinology 2018; 159:238-247. [PMID: 29088382 PMCID: PMC5761603 DOI: 10.1210/en.2017-00759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Hyperaldosteronism is associated with hypertension, cardiac hypertrophy, and congestive heart failure. Steroidogenic factors facilitate aldosterone secretion by increasing adrenal blood flow. Angiotensin (Ang) II decreases adrenal vascular tone through release of zona glomerulosa (ZG) cell-derived vasodilatory eicosanoids. However, ZG cell-mediated relaxation of bovine adrenal cortical arteries to Ang II is not altered by angiotensin type 1 or 2 receptor antagonists. Because traditional Ang II receptors do not mediate these vasorelaxations to Ang II, we investigated the role of Ang II metabolites. Ang III was identified by liquid chromatography-mass spectrometry as the primary ZG cell metabolite of Ang II. Ang III stimulated ZG cell-mediated relaxation of adrenal arteries with greater potency than did Ang II. Furthermore, ZG cell-mediated relaxations of adrenal arteries by Ang II were attenuated by aminopeptidase inhibition, and Ang III-stimulated relaxations persisted. Ang IV had little effect compared with Ang II. Moreover, ZG cell-mediated relaxations of adrenal arteries by Ang II were attenuated by an Ang III antagonist but not by an Ang (1-7) antagonist. In contrast, Ang II and Ang III were equipotent in stimulating aldosterone secretion from ZG cells and were unaffected by aminopeptidase inhibition. Additionally, aspartyl and leucyl aminopeptidases, which convert Ang II to Ang III, are the primary peptidase expressed in ZG cells. This was confirmed by enzyme activity. These data indicate that intra-adrenal metabolism of Ang II to Ang III is required for ZG cell-mediated relaxations of adrenal arteries but not aldosterone secretion. These studies have defined an important role of Ang III in the adrenal gland.
Collapse
MESH Headings
- Abattoirs
- Adrenal Cortex/blood supply
- Adrenal Cortex/drug effects
- Adrenal Cortex/metabolism
- Aldosterone/metabolism
- Aminopeptidases/antagonists & inhibitors
- Aminopeptidases/genetics
- Aminopeptidases/metabolism
- Angiotensin I/antagonists & inhibitors
- Angiotensin I/metabolism
- Angiotensin II/analogs & derivatives
- Angiotensin II/chemistry
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Angiotensin III/metabolism
- Animals
- Arterioles/cytology
- Arterioles/drug effects
- Arterioles/metabolism
- Cattle
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- In Vitro Techniques
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Peptide Fragments/antagonists & inhibitors
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Protease Inhibitors/pharmacology
- Vasodilation/drug effects
- Zona Glomerulosa/cytology
- Zona Glomerulosa/drug effects
- Zona Glomerulosa/metabolism
Collapse
Affiliation(s)
- Phillip G. Kopf
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515
| | - Sang-Kyu Park
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Anja Herrnreiter
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Christian Krause
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Bernard P. Roques
- Unité de Technologies Chimiques et Biologiques pour la Santé (U1022 INSERM, UMR8258 CNRS), Université Paris Descartes, 75006 Paris, France
| | - William B. Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
10
|
Elijovich F, Milne GL, Brown NJ, Laniado-Schwartzman M, Laffer CL. Two Pools of Epoxyeicosatrienoic Acids in Humans: Alterations in Salt-Sensitive Normotensive Subjects. Hypertension 2017; 71:346-355. [PMID: 29279315 DOI: 10.1161/hypertensionaha.117.10392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/14/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022]
Abstract
We measured epoxyeicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs) in 21 normotensive subjects classified as salt resistant (13) or salt sensitive (8) with an inpatient protocol of salt loading (460 mEq Na+/24 hours, HiNa) and depletion (10 mEq Na+/24 hours+furosemide 40 mg×3, LoNa). No urine EETs were detected; hence, enzyme linked innumosorbent assay 14,15-DHETs (dihydroxyeicosatrienoic acids) were considered the total converted 14,15-urine pool. We report ultra-performance liquid chromatography/tandem mass spectrometry plasma EETs, DHETs, and their sum (plasma total pool) for the 3 regioisomers (8,9-, 11,12-, 14,15-) and their sum (08,15-). In salt-resistant subjects, urine total pool was unchanged by HiNa, decreased by LoNa, and correlated with urine sodium excretion, fractional excretion of Na+, and Na+/K+ ratio for the 3 days of the experiment combined (P<0.03). In contrast, plasma total pool increased in LoNa and did not correlate with natriuresis or Na+/K+ ratio but showed correlations between EETs, blood pressures, and catecholamines and between DHETs and aldosterone (P<0.03). Urine total pool of salt-sensitive was lower than that of salt-resistant subjects in certain phases of the experiment, lacked responses to changes in salt balance, and exhibited limited correlations with natriuresis and Na+/K+ ratio during LoNa only. Plasma total pool of salt-sensitive was lower than in salt-resistant subjects and did not correlate with blood pressures or aldosterone but did with catecholamines. We conclude that the urine total pool reflects a renal pool involved in regulation of natriuresis, whereas the plasma total pools are of systemic origin, uninvolved in Na+ excretion, perhaps contributing to regulation of vascular tone. Data suggest that abnormalities in EETs in salt-sensitive subjects participate in their renal or vascular dysfunction, which has potential therapeutic implications.
Collapse
Affiliation(s)
- Fernando Elijovich
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.).
| | - Ginger L Milne
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.)
| | - Nancy J Brown
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.)
| | - Michal Laniado-Schwartzman
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.)
| | - Cheryl L Laffer
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.)
| |
Collapse
|
11
|
Abstract
Biologically active epoxyeicosatrienoic acid (EET) regioisomers are synthesized from arachidonic acid by cytochrome P450 epoxygenases of endothelial, myocardial, and renal tubular cells. EETs relax vascular smooth muscle and decrease inflammatory cell adhesion and cytokine release. Renal EETs promote sodium excretion and vasodilation to decrease hypertension. Cardiac EETs reduce infarct size after ischemia-reperfusion injury and decrease fibrosis and inflammation in heart failure. In diabetes, EETs improve insulin sensitivity, increase glucose tolerance, and reduce the renal injury. These actions of EETs emphasize their therapeutic potential. To minimize metabolic inactivation, 14,15-EET agonist analogs with stable epoxide bioisosteres and carboxyl surrogates were developed. In preclinical rat models, a subset of agonist analogs, termed EET-A, EET-B, and EET-C22, are orally active with good pharmacokinetic properties. These orally active EET agonists lower blood pressure and reduce cardiac and renal injury in spontaneous and angiotensin hypertension. Other beneficial cardiovascular actions include improved endothelial function and cardiac antiremodeling actions. In rats, EET analogs effectively combat acute and chronic kidney disease including drug- and radiation-induced kidney damage, hypertension and cardiorenal syndrome kidney damage, and metabolic syndrome and diabetes nephropathy. The compelling preclinical efficacy supports the prospect of advancing EET analogs to human clinical trials for kidney and cardiovascular diseases.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/administration & dosage
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- Administration, Oral
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/physiopathology
- Fatty Acids, Monounsaturated/administration & dosage
- Fatty Acids, Monounsaturated/chemistry
- Humans
- Hypertension/drug therapy
- Hypertension/physiopathology
- Kidney Diseases/drug therapy
- Kidney Diseases/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Structure-Activity Relationship
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- William B Campbell
- *Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI; and †Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | | |
Collapse
|
12
|
Huang X, Wang Y, Zhang Z, Wang Y, Chen X, Wang Y, Gao Y. Ophiopogonin D and EETs ameliorate Ang II-induced inflammatory responses via activating PPARα in HUVECs. Biochem Biophys Res Commun 2017; 490:123-133. [DOI: 10.1016/j.bbrc.2017.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/03/2017] [Indexed: 11/24/2022]
|
13
|
Weir MR, Bakris GL, Gross C, Mayo MR, Garza D, Stasiv Y, Yuan J, Berman L, Williams GH. Treatment with patiromer decreases aldosterone in patients with chronic kidney disease and hyperkalemia on renin-angiotensin system inhibitors. Kidney Int 2016; 90:696-704. [DOI: 10.1016/j.kint.2016.04.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/29/2016] [Accepted: 04/04/2016] [Indexed: 02/07/2023]
|
14
|
Ansurudeen I, Kopf PG, Gauthier KM, Bornstein SR, Cowley AW, Campbell WB. Aldosterone secretagogues increase adrenal blood flow in male rats. Endocrinology 2014; 155:127-32. [PMID: 24169551 PMCID: PMC3868807 DOI: 10.1210/en.2013-1532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adrenal blood flow (ABF) is closely coupled to steroid hormone release. ACTH and angiotensin (Ang) II stimulate cortisol and aldosterone secretion; however, their effects on ABF remain poorly defined. We used the laser-Doppler technique to measure rat ABF. Anesthetized male Sprague-Dawley rats were cannulated for mean arterial pressure (MAP) measurement and drug infusion. The left adrenal gland was exposed for ABF measurement. ABF and MAP changes to ACTH and Ang II were determined. Bolus injections of Ang II (0.01-1000 ng/kg) increased ABF (maximal increase = 110 ± 18 perfusion units at 1000 ng/kg) and increased MAP at doses greater than 10 ng/kg (basal, 99.2 ± 1.4 mm Hg; 1000 ng/kg Ang II, 149.7 ± 3.9 mm Hg). ACTH (0.1-1000 ng/kg) increased ABF (maximum increase = 158 ± 33 perfusion units) without increasing MAP. ABF increases induced by Ang II and ACTH were ablated by the cytochrome 450 inhibitor miconazole (2 mg/kg). Bolus injections of endothelin-1 (1-1000 ng/kg) increased ABF only at 1 ng/kg and increased MAP at 1000 ng/kg. Bolus injections of sodium nitroprusside increased ABF at 1 and 10 μg/kg and decreased MAP at 10 μg/kg. Thus, laser-Doppler flowmetry is a useful tool for understanding ABF regulation by peptides that stimulate steroid hormone release. Our results demonstrate that Ang II and ACTH increases in ABF are mediated by a cytochrome P450 metabolite.
Collapse
Affiliation(s)
- Ishrath Ansurudeen
- Departments of Pharmacology and Toxicology (I.A., P.G.K., K.M.G., W.B.C.) and Physiology (A.W.C.), Medical College of Wisconsin, Milwaukee, Wisconsin 53226; Department of Medicine III (I.A., S.R.B.), Carl Gustav Carus Medical School, University of Technology, D-01307 Dresden, Germany; and Department of Pharmacology (P.G.K.), Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515
| | | | | | | | | | | |
Collapse
|
15
|
Wu CK, Lee JK, Lin LY, Huang YT, Hwang JJ, Lin CL, Tseng CD, Chiang FT. Renin-Angiotensin System Genes Polymorphisms and Long-Term Prognosis in Taiwanese Patients with Hypertension and Coronary Artery Disease. ACTA CARDIOLOGICA SINICA 2013; 29:28-36. [PMID: 27122682 PMCID: PMC4804958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/26/2012] [Indexed: 06/05/2023]
Abstract
OBJECTIVES The objective of this study was to evaluate the renin-angiotensin system genetic effects and pharmacogenetic interactions for angiotensin-converting enzyme (ACE) inhibitors in hypertensive coronary artery disease (CAD) patients. METHODS Subjects with hypertension and angiographic CAD were recruited from 1995 to 2003. Baseline characteristics and genetic polymorphisms [ACE gene insertion/deletion (I/D) polymorphism, six polymorphisms of the angiotensinogen (AGT) gene, and A1166C polymorphisms of the angiotensin II type I receptor gene (AGT1R)] were collected. Patients were assigned to 2 groups (ACE inhibitor or No-ACE inhibitor) and followed-for up to 12 years. Kaplan-Meier curves and Cox regression models were used to demonstrate the survival and major cardiovascular events (MACE) event-free survival trends. Pharmacogenetic effects were determined by several Cox regression models. RESULTS Of the 518 patients in our study, 290 were treated with ACE inhibitors and 228 were not. Prescription of ACE inhibitors was associated with a lower rate of MACE at 4000 days. In addition, ACE I/D gene D was associated with a higher rate of MACE in a multivariate regression analysis [hazard ration (HR): 1.64, 95% confidence interval (CI): 1.27-1.98, p < 0.001]. This effect could be attenuated by the pharmacogenetic interaction of ACE inhibitors and the ACE gene (ACE in hibitors*ACE D gene, HR: 0.68, 95% CI: 0.52-0.84, p = 0.014). CONCLUSIONS The use of ACE inhibitors was associated with a significant decrease in MACE in hypertensive patients diagnosed with CAD. Genetic variants were also associated with event-free survival, but their effects were modified by the use of ACE inhibitors. KEY WORDS Angiotensin-converting enzyme inhibitors; Coronary artery disease; Hypertension; Pharmacogenetic.
Collapse
Affiliation(s)
- Cho-Kai Wu
- Department of Internal Medicine, National Taiwan University College of Medicine and Hospital
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei
| | - Jen-Kuang Lee
- Department of Clinical Pathology & Cardiovascular Center
| | - Lian-Yu Lin
- Department of Internal Medicine, National Taiwan University College of Medicine and Hospital
| | - Yin-Tsen Huang
- Department of Family Medicine and Health Management Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Juey-Jen Hwang
- Department of Internal Medicine, National Taiwan University College of Medicine and Hospital
| | - Chunn-Lee Lin
- Department of Internal Medicine, National Taiwan University College of Medicine and Hospital
| | - Chuen-Den Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine and Hospital
| | - Fu-Tien Chiang
- Department of Internal Medicine, National Taiwan University College of Medicine and Hospital
| |
Collapse
|
16
|
Mele PG, Duarte A, Paz C, Capponi A, Podestá EJ. Role of intramitochondrial arachidonic acid and acyl-CoA synthetase 4 in angiotensin II-regulated aldosterone synthesis in NCI-H295R adrenocortical cell line. Endocrinology 2012; 153:3284-94. [PMID: 22549224 DOI: 10.1210/en.2011-2108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although the role of arachidonic acid (AA) in angiotensin II (ANG II)- and potassium-stimulated steroid production in zona glomerulosa cells is well documented, the mechanism responsible for AA release is not fully described. In this study we evaluated the mechanism involved in the release of intramitochondrial AA and its role in the regulation of aldosterone synthesis by ANG II in glomerulosa cells. We show that ANG II and potassium induce the expression of acyl-coenzyme A (CoA) thioesterase 2 and acyl-CoA synthetase 4, two enzymes involved in intramitochondrial AA generation/export system well characterized in other steroidogenic systems. We demonstrate that mitochondrial ATP is required for AA generation/export system, steroid production, and steroidogenic acute regulatory protein induction. We also demonstrate the role of protein tyrosine phosphatases regulating acyl-CoA synthetase 4 and steroidogenic acute regulatory protein induction, and hence ANG II-stimulated aldosterone synthesis.
Collapse
Affiliation(s)
- Pablo G Mele
- Department of Biochemistry, School of Medicine, University of Buenos Aires, Institute of Biomedical Investigations, UBA-Consejo Nacional de Investigaciones Científicas y Técnicas, Paraguay 2155, 5 Floor, C1121ABG Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
17
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:233-47. [PMID: 22531108 DOI: 10.1097/med.0b013e3283542fb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Regulation of forskolin-induced cAMP production by cytochrome P450 epoxygenase metabolites of arachidonic acid in HEK293 cells. Cell Biol Toxicol 2011; 27:321-32. [PMID: 21519968 DOI: 10.1007/s10565-011-9190-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Cytochrome P450 epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs), which in turn are converted to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). EETs are known to modulate a number of vascular and renal functions, but the exact signaling mechanism(s) of these EET-mediated effects remains unknown. PURPOSE The purpose of this study is to investigate the role of EETs and DHETs in regulating cyclic adenosine monophosphate (cAMP) production via adenylyl cyclase in a human embryonic kidney cell line (HEK293). METHOD HEK293 cells were treated with vehicle, forskolin, epinephrine, 11,12-EET, 11,12-DHET, as well as potential pathway and G-protein inhibitors to assess changes in cAMP production. RESULTS Co-administering 11,12-EET with forskolin effectively eliminated the increased cAMP levels observed in cells treated with forskolin alone. The inhibitory effect of EETs on forskolin-mediated cAMP production was abolished when cells were treated with a sEH inhibitor (tAUCB). 11,12-DHET also negated the effects of forskolin, suggesting that the inhibitory effect observed in EET-treated cells could be attributed to the downstream metabolites, DHETs. In contrast, inhibition of phosphodiesterase IV (PDE4) with rolipram eliminated the effects of EETs or DHETs, and inhibition of Gαi with pertussis toxin also resulted in enhanced cAMP production. CONCLUSION Our data suggest that DHETs regulate cAMP production via PDE4 and Gαi protein. Moreover, they provide novel evidence as to how EET-mediated signaling may alter G-protein coupling in HEK293 cells.
Collapse
|