1
|
Tunnicliffe DJ, Reid S, Craig JC, Samuels JA, Molony DA, Strippoli GF. Non-immunosuppressive treatment for IgA nephropathy. Cochrane Database Syst Rev 2024; 2:CD003962. [PMID: 38299639 PMCID: PMC10832348 DOI: 10.1002/14651858.cd003962.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common primary glomerular disease, with approximately 20% to 40% of patients progressing to kidney failure within 25 years. Non-immunosuppressive treatment has become a mainstay in the management of IgAN by improving blood pressure (BP) management, decreasing proteinuria, and avoiding the risks of long-term immunosuppressive management. Due to the slowly progressive nature of the disease, clinical trials are often underpowered, and conflicting information about management with non-immunosuppressive treatment is common. This is an update of a Cochrane review, first published in 2011. OBJECTIVES To assess the benefits and harms of non-immunosuppressive treatment for treating IgAN in adults and children. We aimed to examine all non-immunosuppressive therapies (e.g. anticoagulants, antihypertensives, dietary restriction and supplementation, tonsillectomy, and herbal medicines) in the management of IgAN. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to December 2023 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs of non-immunosuppressive agents in adults and children with biopsy-proven IgAN were included. DATA COLLECTION AND ANALYSIS Two authors independently reviewed search results, extracted data and assessed study quality. Results were expressed as mean differences (MD) for continuous outcomes and risk ratios (RR) for dichotomous outcomes with 95% confidence intervals (CI) using random-effects meta-analysis. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS This review includes 80 studies (4856 participants), of which 24 new studies (2018 participants) were included in this review update. The risk of bias within the included studies was mostly high or unclear for many of the assessed methodological domains, with poor reporting of important key clinical trial methods in most studies. Antihypertensive therapies were the most examined non-immunosuppressive therapy (37 studies, 1799 participants). Compared to placebo or no treatment, renin-angiotensin system (RAS) inhibition probably decreases proteinuria (3 studies, 199 participants: MD - 0.71 g/24 h, 95% CI -1.04 to -0.39; moderate certainty evidence) but may result in little or no difference to kidney failure or doubling of serum creatinine (SCr), or complete remission of proteinuria (low certainty evidence). Death, remission of haematuria, relapse of proteinuria or > 50% increase in SCr were not reported. Compared to symptomatic treatment, RAS inhibition (3 studies, 168 participants) probably decreases proteinuria (MD -1.16 g/24 h, 95% CI -1.52 to -0.81) and SCr (MD -9.37 µmol/L, 95% CI -71.95 to -6.80) and probably increases creatinine clearance (2 studies, 127 participants: MD 23.26 mL/min, 95% CI 10.40 to 36.12) (all moderate certainty evidence); however, the risk of kidney failure is uncertain (1 study, 34 participants: RR 0.20, 95% CI 0.01 to 3.88; very low certainty evidence). Death, remission of proteinuria or haematuria, or relapse of proteinuria were not reported. The risk of adverse events may be no different with RAS inhibition compared to either placebo or symptomatic treatment (low certainty evidence). In low certainty evidence, tonsillectomy in people with IgAN in addition to standard care may increase remission of proteinuria compared to standard care alone (2 studies, 143 participants: RR 1.90, 95% CI 1.45 to 2.47) and remission of microscopic haematuria (2 studies, 143 participants: RR 1.93, 95% CI 1.47 to 2.53) and may decrease relapse of proteinuria (1 study, 73 participants: RR 0.70, 95% CI 0.57 to 0.85) and relapse of haematuria (1 study, 72 participants: RR 0.70, 95% CI 0.51 to 0.98). Death, kidney failure and a > 50% increase in SCr were not reported. These trials have only been conducted in Japanese people with IgAN, and the findings' generalisability is unclear. Anticoagulant therapy, fish oil, and traditional Chinese medicines exhibited small benefits to kidney function in patients with IgAN when compared to placebo or no treatment. However, compared to standard care, the kidney function benefits are no longer evident. Antimalarial therapy compared to placebo in one study reported an increase in a > 50% reduction of proteinuria (53 participants: RR 3.13 g/24 h, 95% CI 1.17 to 8.36; low certainty evidence). Although, there was uncertainty regarding adverse events from this study due to very few events. AUTHORS' CONCLUSIONS Available RCTs focused on a diverse range of interventions. They were few, small, and of insufficient duration to determine potential long-term benefits on important kidney and cardiovascular outcomes and harms of treatment. Antihypertensive agents appear to be the most beneficial non-immunosuppressive intervention for IgAN. The antihypertensives examined were predominantly angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. The benefits of RAS inhibition appear to outweigh the harms in patients with IgAN. The certainty of the evidence of RCTs demonstrating a benefit of tonsillectomy to patients with Japanese patients with IgAN was low. In addition, these findings are inconsistent across observational studies in people with IgAN of other ethnicities; hence, tonsillectomy is not widely recommended, given the potential harm of therapy. The RCT evidence is insufficiently robust to demonstrate efficacy for the other non-immunosuppressive treatments evaluated here.
Collapse
Affiliation(s)
| | - Sharon Reid
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Joshua A Samuels
- Division of Pediatric Nephrology and Hypertension, UT-Houston Health Science Center, Houston, TX, USA
| | - Donald A Molony
- Internal Medicine, UT-Houston Health Science Center, Houston, TX, USA
| | - Giovanni Fm Strippoli
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
2
|
Lin H, Geurts F, Hassler L, Batlle D, Mirabito Colafella KM, Denton KM, Zhuo JL, Li XC, Ramkumar N, Koizumi M, Matsusaka T, Nishiyama A, Hoogduijn MJ, Hoorn EJ, Danser AHJ. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacol Rev 2022; 74:462-505. [PMID: 35710133 PMCID: PMC9553117 DOI: 10.1124/pharmrev.120.000236] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Collapse
Affiliation(s)
- Hui Lin
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Frank Geurts
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Luise Hassler
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Daniel Batlle
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Katrina M Mirabito Colafella
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Kate M Denton
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Jia L Zhuo
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Xiao C Li
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Nirupama Ramkumar
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Masahiro Koizumi
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Taiji Matsusaka
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Akira Nishiyama
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Martin J Hoogduijn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Ewout J Hoorn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| |
Collapse
|
3
|
McMahon EJ, Campbell KL, Bauer JD, Mudge DW, Kelly JT. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst Rev 2021; 6:CD010070. [PMID: 34164803 PMCID: PMC8222708 DOI: 10.1002/14651858.cd010070.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Evidence indicates that reducing dietary salt may reduce the incidence of heart disease and delay decline in kidney function in people with chronic kidney disease (CKD). This is an update of a review first published in 2015. OBJECTIVES To evaluate the benefits and harms of altering dietary salt for adults with CKD. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 6 October 2020 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA Randomised controlled trials comparing two or more levels of salt intake in adults with any stage of CKD. DATA COLLECTION AND ANALYSIS Two authors independently assessed studies for eligibility, conducted risk of bias evaluation and evaluated confidence in the evidence using GRADE. Results were summarised using random effects models as risk ratios (RR) for dichotomous outcomes or mean differences (MD) for continuous outcomes, with 95% confidence intervals (CI). MAIN RESULTS We included 21 studies (1197 randomised participants), 12 in the earlier stages of CKD (779 randomised participants), seven in dialysis (363 randomised participants) and two in post-transplant (55 randomised participants). Selection bias was low in seven studies, high in one and unclear in 13. Performance and detection biases were low in four studies, high in two, and unclear in 15. Attrition and reporting biases were low in 10 studies, high in three and unclear in eight. Because duration of the included studies was too short (1 to 36 weeks) to test the effect of salt restriction on endpoints such as death, cardiovascular events or CKD progression, changes in salt intake on blood pressure and other secondary risk factors were examined. Reducing salt by mean -73.51 mmol/day (95% CI -92.76 to -54.27), equivalent to 4.2 g or 1690 mg sodium/day, reduced systolic/diastolic blood pressure by -6.91/-3.91 mm Hg (95% CI -8.82 to -4.99/-4.80 to -3.02; 19 studies, 1405 participants; high certainty evidence). Albuminuria was reduced by 36% (95% CI 26 to 44) in six studies, five of which were carried out in people in the earlier stages of CKD (MD -0.44, 95% CI -0.58 to -0.30; 501 participants; high certainty evidence). The evidence is very uncertain about the effect of lower salt intake on weight, as the weight change observed (-1.32 kg, 95% CI -1.94 to -0.70; 12 studies, 759 participants) may have been due to fluid volume, lean tissue, or body fat. Lower salt intake may reduce extracellular fluid volume in the earlier stages of CKD (-0.87 L, 95% CI -1.17 to -0.58; 3 studies; 187 participants; low certainty evidence). The evidence is very uncertain about the effect of lower salt intake on reduction in antihypertensive dose (RR 2.45, 95% CI 0.98 to 6.08; 8 studies; 754 participants). Lower salt intake may lead to symptomatic hypotension (RR 6.70, 95% CI 2.40 to 18.69; 6 studies; 678 participants; moderate certainty evidence). Data were sparse for other types of adverse events. AUTHORS' CONCLUSIONS We found high certainty evidence that salt reduction reduced blood pressure in people with CKD, and albuminuria in people with earlier stage CKD in the short-term. If such reductions could be maintained long-term, this effect may translate to clinically significant reductions in CKD progression and cardiovascular events. Research into the long-term effects of sodium-restricted diet for people with CKD is warranted.
Collapse
Affiliation(s)
- Emma J McMahon
- Wellbeing and Preventable Chronic Diseases Division, Menzies School of Health Research, Charles Darwin University, Brisbane, Australia
| | - Katrina L Campbell
- Centre for Applied Health Economics, Menzies Health Institute Queensland, Griffith University, Nathan, Australia
- Healthcare Excellence and Innovation, Metro North Hospital and Health Service, Herston, Australia
| | - Judith D Bauer
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Australia
| | - David W Mudge
- Department of Nephrology, University of Queensland at Princess Alexandra Hospital, Woolloongabba, Australia
| | - Jaimon T Kelly
- Centre for Applied Health Economics, Menzies Health Institute Queensland, Griffith University, Nathan, Australia
| |
Collapse
|
4
|
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. Changing views on the common physiologic abnormality that mediates salt sensitivity and initiation of salt-induced hypertension: Japanese research underpinning the vasodysfunction theory of salt sensitivity. Hypertens Res 2018; 42:6-18. [DOI: 10.1038/s41440-018-0122-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/24/2022]
|
5
|
Zhang D, Pollock DM. Circadian regulation of kidney function: finding a role for Bmal1. Am J Physiol Renal Physiol 2018; 314:F675-F678. [PMID: 29357439 PMCID: PMC6031908 DOI: 10.1152/ajprenal.00580.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/28/2023] Open
Abstract
Mounting evidence suggests that there is an internal molecular "clock" within the kidney to help maintain normal renal function. Disturbance of the kidney circadian rhythm may pose a threat to water and electrolyte homeostasis and blood pressure regulation, among many other problems. The identification of circadian genes facilitated a more comprehensive appreciation of the importance of "keeping the body on time"; however, our knowledge is very limited with regard to how circadian genes regulate kidney function. In this brief review, we summarize recent progress in circadian control of renal physiology, with a particular focus on aryl hydrocarbon receptor nuclear translocator-like protein (Arntl1; also called Bmal1).
Collapse
Affiliation(s)
- Dingguo Zhang
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
6
|
Zhang Y, Sun L, Zhou S, Xu Q, Xu Q, Liu D, Liu L, Hu R, Quan S, Xing G. Intrarenal Arterial Lesions Are Associated with Higher Blood Pressure, Reduced Renal Function and Poorer Renal Outcomes in Patients with IgA Nephropathy. Kidney Blood Press Res 2018; 43:639-650. [PMID: 29698975 DOI: 10.1159/000489290] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/17/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Arterial fibrotic intimal thickening and arteriolar hyaline are considered common pathological features in immunoglobulin A nephropathy (IgAN), whereas little is known about the acute pathological manifestations of endothelial cell injury. The aim of this study was to investigate characteristics of intrarenal arterial lesions and to estimate their prognostic values in patients with IgAN. The primary renal endpoint was a 50% reduction in estimated glomerular filtration rate (eGFR) or end-stage renal disease (ESRD). METHODS Various renal arterial lesions (arterial fibrotic intimal thickening, arteriolar hyaline, arteriolar endotheliocyte swelling, arteriolar inflammatory cell infiltration, and arteriolar thrombosis) in 1683 patients with IgAN were reviewed and reclassified using a semi-quantitative scoring system. Their correlations with clinical features, pathological characteristics, and renal outcomes were evaluated. RESULTS The prevalence of intrarenal arterial lesions was up to 72.2% in IgAN patients. There were 978 patients (58.1%) with arterial fibrotic intimal thickening, 350 patients (20.8%) with arteriolar hyaline, 432 patients (25.7%) with arteriolar endotheliocyte swelling, 356 patients (21.2%) with arteriolar inflammatory cell infiltration and 43 patients (2.6%) with arteriolar thrombosis. Arterial fibrotic intimal thickening and arteriolar hyaline were strongly associated with higher mean arterial pressure (MAP) and reduced eGFR (P < 0.001) but were not related to proteinuria at the time of renal biopsy. In contrast, arteriolar endotheliocyte swelling and arteriolar thrombosis were correlated with heavier proteinuria as well as higher MAP and reduced eGFR. During follow-up, patients with vascular lesions received more renin-angiotensin system (RAS) blockade and less glucocorticoid and showed poorer renal outcomes. Univariate Cox model showed that the presence of renal vascular lesions [hazard ratio (HR) = 25.01, 95% confidence interval (CI): 6.19 to 101.03, P < 0.001] was a risk factor for renal outcomes. However, in multivariable Cox analysis, which included clinical factors and the Oxford-MEST-C, vascular lesions were not significantly associated with an increased risk of renal failure. Remarkably, the impact of vascular lesions on the survival from ESRD or 50% reduction in renal function was eliminated by the use of RAS blockade after adjustment for eGFR, proteinuria, and MAP. CONCLUSION Our study demonstrates the high prevalence of vascular lesions, including the chronic and acute arterial pathological changes, in patients with IgAN. The presence of vascular lesions is associated with higher MAP, reduced eGFR and poorer renal outcomes, which could be influenced by the RAS blockade treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Sun
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suhan Zhou
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qihe Xu
- Medical Research Council Centre for Transplantation, King's College London, London, United Kingdom
| | - Qiannan Xu
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongyu Liu
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Liu
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruimin Hu
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songxia Quan
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guolan Xing
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Nishiyama A, Kobori H. Independent regulation of renin-angiotensin-aldosterone system in the kidney. Clin Exp Nephrol 2018; 22:1231-1239. [PMID: 29600408 PMCID: PMC6163102 DOI: 10.1007/s10157-018-1567-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 03/21/2018] [Indexed: 01/13/2023]
Abstract
Renin-angiotensin-aldosterone system (RAAS) plays important roles in regulating renal hemodynamics and functions, as well as in the pathophysiology of hypertension and renal disease. In the kidney, angiotensin II (Ang II) production is controlled by independent multiple mechanisms. Ang II is compartmentalized in the renal interstitial fluid with much higher concentrations than those existing in the circulation. Inappropriate activation of the intrarenal RAAS is an important contributor to the pathogenesis of hypertension and renal injury. It has been revealed that intrarenal Ang II levels are predominantly regulated by angiotensinogen and therefore, urinary angiotensinogen could be a biomarker for intrarenal Ang II generation. In addition, recent studies have demonstrated that aldosterone contributes to the progression of renal injury via direct actions on glomerular podocytes, mesangial cells, proximal tubular cells and tubulo-interstitial fibroblasts through the activation of locally expressed mineralocorticoid receptor. Thus, it now appears that intrarenal RAAS is independently regulated and its inappropriate activation contributes to the pathogenesis of the development of hypertension and renal disease. This short review article will focus on the independent regulation of the intrarenal RAAS with an emphasis on the specific role of angiotensinogen.
Collapse
Affiliation(s)
- Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | - Hiroyuki Kobori
- Departments of Pharmacology and Nephrology, Faculty of Medicine, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
8
|
Isobe-Sasaki Y, Fukuda M, Ogiyama Y, Sato R, Miura T, Fuwa D, Mizuno M, Matsuoka T, Shibata H, Ito H, Ono M, Abe-Dohmae S, Kiyono K, Yamamoto Y, Kobori H, Michikawa M, Hayano J, Ohte N. Sodium balance, circadian BP rhythm, heart rate variability, and intrarenal renin-angiotensin-aldosterone and dopaminergic systems in acute phase of ARB therapy. Physiol Rep 2018; 5:5/11/e13309. [PMID: 28576855 PMCID: PMC5471446 DOI: 10.14814/phy2.13309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/29/2017] [Accepted: 05/10/2017] [Indexed: 01/11/2023] Open
Abstract
We have revealed that even in humans, activated intrarenal renin–angiotensin–aldosterone system (RAAS) enhances tubular sodium reabsorption to facilitate salt sensitivity and nondipper rhythm of blood pressure (BP), and that angiotensin receptor blocker (ARB) could increase daytime urinary sodium excretion rate (UNaV) to produce lower sodium balance and restore nondipper rhythm. However, the sympathetic nervous system and intrarenal dopaminergic system can also contribute to renal sodium handling. A total of 20 patients with chronic kidney disease (61 ± 15 years) underwent 24‐h ambulatory BP monitoring before and during two‐day treatment with ARB, azilsartan. Urinary angiotensinogen excretion rate (UAGTV, μg/gCre) was measured as intrarenal RAAS; urinary dopamine excretion rate (UDAV, pg/gCre) as intrarenal dopaminergic system; heart rate variabilities (HRV, calculated from 24‐h Holter‐ECG) of non‐Gaussianity index λ25s as sympathetic nerve activity; and power of high‐frequency (HF) component or deceleration capacity (DC) as parasympathetic nerve activity. At baseline, glomerular filtration rate correlated inversely with UAGTV (r = −0.47, P = 0.04) and positively with UDAV (r = 0.58, P = 0.009). HF was a determinant of night/day BP ratio (β = −0.50, F = 5.8), rather than DC or λ25s. During the acute phase of ARB treatment, a lower steady sodium balance was not achieved. Increase in daytime UNaV preceded restoration of BP rhythm, accompanied by decreased UAGTV (r = −0.88, P = 0.05) and increased UDAV (r = 0.87, P = 0.05), but with no changes in HRVs. Diminished sodium excretion can cause nondipper BP rhythm. This was attributable to intrarenal RAAS and dopaminergic system and impaired parasympathetic nerve activity. During the acute phase of ARB treatment, cooperative effects of ARB and intrarenal dopaminergic system exert natriuresis to restore circadian BP rhythm.
Collapse
Affiliation(s)
- Yukako Isobe-Sasaki
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Michio Fukuda
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshiaki Ogiyama
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ryo Sato
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshiyuki Miura
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Daisuke Fuwa
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masashi Mizuno
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuhei Matsuoka
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroko Shibata
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Ito
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Minamo Ono
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sumiko Abe-Dohmae
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ken Kiyono
- Department of Mechanical Science and Bioengineering, Osaka University, Osaka, Japan
| | - Yoshiharu Yamamoto
- Department of Physical and Health Education, University of Tokyo Graduate School of Education, Tokyo, Japan
| | - Hiroyuki Kobori
- International University of Health and Welfare, Tokyo, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Junichiro Hayano
- Department of Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuyuki Ohte
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
9
|
Takami T, Okada S, Saito Y, Nishijima Y, Kobori H, Nishiyama A. Effects of Olmesartan and Azilsartan on Albuminuria and the Intrarenal Renin-Angiotensin System. WORLD JOURNAL OF RESEARCH AND REVIEW 2018; 6:7-10. [PMID: 29683146 PMCID: PMC5909402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE Olmesartan and azilsartan decrease blood pressure more effectively than other angiotensin receptor blockers (ARBs). ARBs additionally decrease the urinary albumin to creatinine ratio (UACR), a urinary albumin marker, and urinary angiotensinogen (u-AGT), an intrarenal renin-angiotensin system activity marker. We examined the effects of these ARBs on blood pressure, UACR, and u-AGT in patients with uncontrolled hypertension. METHODS Patients with uncontrolled hypertension treated with conventional ARBs, excluding olmesartan and azilsartan, for over 8 weeks were enrolled. We randomly switched patients from their prior ARBs to either olmesartan or azilsartan, and followed them for 24 weeks. RESULTS Systolic blood pressure (SBP), diastolic blood pressure (DBP), and central systolic blood pressure (cSBP) significantly decreased at 24 weeks. UACR and u-AGT also decreased at 24 weeks in both groups. There were no significant differences in SBP, DBP, cSBP, UACR, or u-AGT between the groups. Therefore, we combined both groups for further analyses. After combining, SBP (160.5 ± 16.4 to 139.6 ± 15.6 mm Hg, P < 0.0001), DBP (88.4 ± 13.7 to 80.7 ± 13.2 mm Hg, P = 0.008), cSBP (167.4 ± 20.8 to 146.6 ± 24.6 mm Hg, P < 0.0001), UACR (13.8 to 9.0 mg/g Cre, P = 0.0096), and u-AGT (4.13 to 2.32 μg/g Cre, P = 0.0074) significantly decreased at 24 weeks. Patients with microalbuminuria (UACR ≥ 30 mg/g Cre) had significantly greater ΔUACR (-39.4 vs 0.27, P = 0.0024) and Δu-AGT (-11.9 vs -0.61, P = 0.0235) than patients without microalbuminuria. The changes in u-AGT were significantly associated with changes in UACR (r = 0.411, P = 0.046); however, there was no significant relationship between the changes in u-AGT and those in SBP or DBP. CONCLUSION Olmesartan and azilsartan decreased blood pressure, UACR, and u-AGT more than the other ARBs, and exerted depressor and renoprotective effects.
Collapse
Affiliation(s)
- Takeshi Takami
- Department of Internal Medicine, Clinic Jingumae, Kashihara, Japan
| | - Sadanori Okada
- Department of Cardiovascular Medicine, Nara medical University, Kashihara, Japan
| | - Yoshihiko Saito
- Professor of Department of Cardiovascular Medicine, Nara medical University, Kashihara,, Japan
| | - Yoko Nishijima
- Department of CardioRenal and CerebroVascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroyuki Kobori
- Professor in the Departments of Pharmacology and of Nephrology, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Akira Nishiyama
- Professor of the Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
10
|
Yoshimoto T, Furuki T, Kobori H, Miyakawa M, Imachi H, Murao K, Nishiyama A. Effects of sodium-glucose cotransporter 2 inhibitors on urinary excretion of intact and total angiotensinogen in patients with type 2 diabetes. J Investig Med 2017; 65:1057-1061. [PMID: 28596160 PMCID: PMC5812257 DOI: 10.1136/jim-2017-000445] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/26/2022]
Abstract
We conducted a descriptive case study to examine the effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on urinary angiotensinogen excretion, which represents the function of the intrarenal renin–angiotensin system, in patients with type 2 diabetes. An SGLT2 inhibitor (canagliflozin 100 mg/day, ipragliflozin 25 mg/day, dapagliflozin 5 mg/day, luseogliflozin 2.5 mg/day or tofogliflozin 20 mg/day) was administered for 1 month (n=9). ELISA kits were used to measure both urinary intact and total angiotensinogen levels. Treatment with SGLT2 inhibitors significantly decreased hemoglobin A1c, body weight, systolic blood pressure and diastolic blood pressure (8.5±1.3 to 7.5%±1.0%, 82.5±20.2 to 80.6±20.9 kg, 143±8 to 128±14 mm Hg, 78±10 to 67±9 mm Hg, p<0.05, respectively), while urinary albumin/creatinine ratio was not significantly changed (58.6±58.9 to 29.2±60.7 mg/g, p=0.16). Both total urinary angiotensinogen/creatinine ratio and intact urinary angiotensinogen/creatinine ratio tended to decrease after administration of SGLT2 inhibitors. However, these changes were not significant (p=0.19 and p=0.08, respectively). These data suggest that treatment with SGLT2 inhibitors does not activate the intrarenal renin–angiotensin system in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Takuo Yoshimoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Miki - cho, Kagawa, Japan
| | - Takayuki Furuki
- Department of Medicine, Hadanoeki - Minamiguchi Clinic, Hadano, Kanagawa, Japan
| | - Hiroyuki Kobori
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki - cho, Kagawa, Japan
| | - Masaaki Miyakawa
- Department of Medicine, Miyakawa Clinic, Yokohama, Kanagawa, Japan
| | - Hitomi Imachi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Miki - cho, Kagawa, Japan
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Miki - cho, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki - cho, Kagawa, Japan
| |
Collapse
|
11
|
Circadian rhythm of blood pressure and the renin–angiotensin system in the kidney. Hypertens Res 2016; 40:413-422. [DOI: 10.1038/hr.2016.166] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 01/13/2023]
|
12
|
Affiliation(s)
- John E Hall
- From the Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson.
| |
Collapse
|
13
|
Fuwa D, Fukuda M, Ogiyama Y, Sato R, Mizuno M, Miura T, Abe-Dohmae S, Michikawa M, Kobori H, Ohte N. Addition of hydrochlorothiazide to angiotensin receptor blocker therapy can achieve a lower sodium balance with no acceleration of intrarenal renin angiotensin system in patients with chronic kidney disease. J Renin Angiotensin Aldosterone Syst 2016; 17:1470320316652032. [PMID: 27283968 PMCID: PMC4940185 DOI: 10.1177/1470320316652032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/14/2016] [Indexed: 01/09/2023] Open
Abstract
Objective: Angiotensin receptor blockers (ARBs) produce a lower sodium (Na) balance, and the natriuretic effect is enhanced under Na deprivation, despite falls in blood pressure (BP) and glomerular filtration rate (GFR). Methods: The effect of additional hydrochlorothiazide (HCTZ; 12.5 mg/day) to ARB treatment (valsartan; 80 mg/day) on glomerulotubular Na balance was evaluated in 23 patients with chronic kidney disease. Results: Add-on HCTZ decreased GFR, tubular Na load, and tubular Na reabsorption (tNa), although 24-hour urinary Na excretion (UNaV) remained constant. Daily urinary angiotensinogen excretion (UAGTV, 152±10→82±17 μg/g Cre) reduced (p=0.02). Changes in tubular Na load (r2=0.26) and tNa (r2=0.25) correlated with baseline 24-hour UAGTV. Changes in filtered Na load correlated with changes in nighttime systolic BP (r2=0.17), but not with changes in daytime systolic BP. The change in the tNa to filtered Na load ratio was influenced by the change in daytime UNaV (β=−0.67, F=16.8), rather than the change in nighttime UNaV. Conclusions: Lower Na balance was produced by add-on HCTZ to ARB treatment without an increase of intra-renal renin-angiotensin system activity, leading to restoration of nocturnal hypertension. A further study is needed to demonstrate that the reduction of UAGTV by additional diuretics to ARBs prevents the progression of nephropathy or cardiovascular events.
Collapse
Affiliation(s)
- Daisuke Fuwa
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Michio Fukuda
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Yoshiaki Ogiyama
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Ryo Sato
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Masashi Mizuno
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Toshiyuki Miura
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Sumiko Abe-Dohmae
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Japan
| | | | - Nobuyuki Ohte
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
14
|
Abstract
OBJECTIVE Urinary excretion of angiotensinogen [urine angiotensinogen (UAGT)] has been proposed as a biomarker of intrarenal renin-angiotensin system activity. We investigated the association between UAGT and salt-sensitivity and potassium-sensitivity of blood pressure (BP) among Genetic Epidemiology Network of Salt Sensitivity study participants. METHODS The intervention consisted of a 7-day low-sodium diet (51.3 mmol sodium/day), 7-day high-sodium diet (307.8 mmol sodium/day), and 7-day high-sodium diet with potassium supplementation (307.8 mmol sodium/day and 60 mmol potassium/day). Twenty-four-hour UAGT was estimated at baseline and at the end of each intervention for 100 randomly selected participants. RESULTS Median UAGT (μg/24 h) and UAGT-to-creatinine ratio (UAGT/Cr, μg/g) were significantly reduced during the low-sodium and potassium-supplementation interventions and increased during the high-sodium intervention (both P = 0.01). Baseline log-transformed UAGT and UAGT/Cr ratio were significantly positively associated with BP at baseline and at the end of each intervention. For example, one standard deviation higher log-UAGT/Cr ratio (1.2 μg/g) was associated with a 5.0-mmHg (95% confidence interval 2.3-7.8) higher SBP at the end of the high-sodium intervention, after adjusting for multiple covariates (P = 0.003). In addition, one standard deviation higher log-UAGT/Cr ratio was associated with a 1.6-mmHg increase in age-adjusted and sex-adjusted SBP from the low-sodium intervention to the high-sodium intervention (95% confidence interval 0.1-3.1, P = 0.04). This association was no longer statistically significant after multivariable adjustment. CONCLUSION These data indicate that elevated UAGT are associated with BP sodium sensitivity. Augmentation of intrarenal renin-angiotensin system activity may play an important role in developing salt-sensitive hypertension.
Collapse
|
15
|
Ihm CG. Hypertension in Chronic Glomerulonephritis. Electrolyte Blood Press 2015; 13:41-5. [PMID: 26848302 PMCID: PMC4737660 DOI: 10.5049/ebp.2015.13.2.41] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022] Open
Abstract
Chronic glomerulonephritis (GN), which includes focal segmental glomerulosclerosis and proliferative forms of GN such as IgA nephropathy, increases the risk of hypertension. Hypertension in chronic GN is primarily volume dependent, and this increase in blood volume is not related to the deterioration of renal function. Patients with chronic GN become salt sensitive as renal damage including arteriolosclerosis progresses and the consequent renal ischemia causes the stimulation of the intrarenal renin-angiotensin-aldosterone system(RAAS). Overactivity of the sympathetic nervous system also contributes to hypertension in chronic GN. According to the KDIGO guideline, the available evidence indicates that the target BP should be ≤140mmHg systolic and ≤90mmHg diastolic in chronic kidney disease patients without albuminuria. In most patients with an albumin excretion rate of ≥30mg/24 h (i.e., those with both micro-and macroalbuminuria), a lower target of ≤130mmHg systolic and ≤80mmHg diastolic is suggested. The use of agents that block the RAAS system is recommended or suggested in all patients with an albumin excretion rate of ≥30mg/ 24 h. The combination of a RAAS blockade with a calcium channel blocker and a diuretic may be effective in attaining the target BP, and in reducing the amount of urinary protein excretion in patients with chronic GN.
Collapse
Affiliation(s)
- Chun-Gyoo Ihm
- Division of Nephrology, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Murano Y, Nishizaki N, Endo A, Ikeda N, Someya T, Nakagawa M, Hara T, Sakuraya K, Hara S, Hirano D, Suzuki M, Shoji H, Fujinaga S, Ohtomo Y, Shimizu T. Evaluation of kidney dysfunction and angiotensinogen as an early novel biomarker of intrauterine growth restricted offspring rats. Pediatr Res 2015; 78:678-82. [PMID: 26270574 DOI: 10.1038/pr.2015.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/13/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Few studies have addressed the growing concerns of chronic kidney diseases in children with intrauterine growth restriction (IUGR). Therefore, the purpose of this study was to evaluate long-term kidney dysfunction and determine if urinary angiotensinogen (AGT) was suitable as a novel early biomarker for kidney dysfunction in IUGR offspring. METHODS Pregnant rats underwent bilateral uterine artery ligation, and as a control group, sham surgeries were performed. RESULTS The birth weight was reduced, the urinary AGT to creatinine ratio was significantly higher at week 20, and urinary protein levels were significantly higher at week 32 in IUGR rats than in control rats. On the other hand, the histological findings at week 32 revealed long-term kidney dysfunction, more severe glomerulosclerosis, and greater glomerular diameters in IUGR rats. Moreover, AGT mRNA expression and immunohistological staining were significantly increased in IUGR rats; this suggests that the intrarenal renin-angiotensin system (RAS) contributes to renal dysfunction of IUGR offspring. CONCLUSION Urinary AGT elevation prior to urinary protein levels suggests that AGT is an early biomarker. At week 32, kidney dysfunction was severe in IUGR rats and intrarenal RAS appeared to be one of the causes.
Collapse
Affiliation(s)
- Yayoi Murano
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoto Nishizaki
- Department of Pediatrics and Adolescent Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Amane Endo
- Department of Pediatrics and Adolescent Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Naho Ikeda
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomonosuke Someya
- Department of Pediatrics and Adolescent Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Mayu Nakagawa
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taichi Hara
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Sakuraya
- Division of Nephrology, Saitama Children's Medical Center, Saitama, Japan
| | - Satoshi Hara
- Department of Pediatrics and Adolescent Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Daishi Hirano
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiromichi Shoji
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shuichiro Fujinaga
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Ohtomo
- Department of Pediatrics and Adolescent Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Relationship between blood pressure variability and renal activity of the renin-angiotensin system. J Hum Hypertens 2015. [PMID: 26223347 DOI: 10.1038/jhh.2015.71] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Local renin-angiotensin system (RAS) activity in the kidneys is a pathogenetic factor in patients with primary hypertension. This study aimed to determine the relationship between local kidney RAS activity and blood pressure variability, as the literature currently lacks any such study. The study included 73 consecutive primary hypertensive patients. All patients underwent 24-h ambulatory blood pressure monitoring to determine the average real variability (ARV) index, as an indicator of blood pressure variability. Local RAS activity was determined using the urine angiotensinogen/creatinine (UAGT/UCre) ratio. The high UAGT/UCre ratio group had significantly higher mean 24-h systolic ARV than the low UAGT/UCre ratio group (13.2±3.4 vs 11.0±2.6, P=0.003). Similarly, the high UAGT/UCre ratio group had significantly higher mean 24-h diastolic ARV than the low UAGT/UCre ratio group (10.8±3.2 vs 8.7±2.2, P=0.001). Multivariate regression analysis showed that Log(UAGT/UCre) was an independent predictor of both 24-h diastolic ARV and 24-h systolic ARV. Local RAS activity in the kidneys might have a role in blood pressure variability. On the basis of these findings, we think that additional prospective studies are needed to more fully discern the effect of local RAS activity on blood pressure variability.
Collapse
|
18
|
|
19
|
Anti-albuminuric effects of spironolactone in patients with type 2 diabetic nephropathy: a multicenter, randomized clinical trial. Clin Exp Nephrol 2015; 19:1098-106. [PMID: 25795029 DOI: 10.1007/s10157-015-1106-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/03/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Several studies have demonstrated that spironolactone has an anti-albuminuric property in diabetic nephropathy. As an adverse event, spironolactone often induces the elevation of creatinine levels with hypotension and hyperkalemia. Therefore, we aimed to evaluate the efficacy and safety of spironolactone in Japanese patients with type 2 diabetes treated with either angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. METHODS Fifty-two Japanese patients with diabetic nephropathy and albuminuria (100 mg/gCr-2000 mg/gCr) treated with renin-angiotensin system (RAS) blockade were enrolled in a prospective, randomized, open-label study. The patients were subjected to add-on treatment with spironolactone 25 mg once daily and compared with matched controls for 8 weeks. The primary outcome was a reduction in the rate of albuminuria at 8 weeks compared with the baseline value. This study was registered with UMIN Clinical Trials Registry (000008016). RESULTS Albuminuria was reduced by 33 % (95 % confidence interval: 22-54; P = 0.0002) at 8 weeks with spironolactone. In the spironolactone group, blood pressure tended to lower and the estimated glomerular filtration rate (eGFR) was significantly decreased compared to those in the control group. When adjusted by systolic blood pressure and eGFR, spironolactone treatment still showed a significant effect on albuminuria reduction in a linear mixed model (coefficient ± standard error; 514.4 ± 137.6 mg/gCr, P < 0.0005). No patient was excluded from the study because of hyperkalemia. CONCLUSIONS Spironolactone reduced albuminuria along with conventional RAS inhibitors in patients with diabetic nephropathy. Our study suggests that spironolactone exerts anti-albuminuric effects independent of systemic hemodynamic alterations.
Collapse
|
20
|
McMahon EJ, Campbell KL, Bauer JD, Mudge DW. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst Rev 2015:CD010070. [PMID: 25691262 DOI: 10.1002/14651858.cd010070.pub2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Salt intake shows great promise as a modifiable risk factor for reducing heart disease incidence and delaying kidney function decline in people with chronic kidney disease (CKD). However, a clear consensus of the benefits of reducing salt in people with CKD is lacking. OBJECTIVES This review evaluated the benefits and harms of altering dietary salt intake in people with CKD. SEARCH METHODS We searched the Cochrane Renal Group's Specialised Register to 13 January 2015 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared two or more levels of salt intake in people with any stage of CKD. DATA COLLECTION AND ANALYSIS Two authors independently assessed studies for eligibility and conducted risk of bias evaluation. Results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes, and mean difference (MD) and 95% CI for continuous outcomes. Mean effect sizes were calculated using the random-effects models. MAIN RESULTS We included eight studies (24 reports, 258 participants). Because duration of the included studies was too short (1 to 26 weeks) to test the effect of salt restriction on endpoints such as mortality, cardiovascular events or CKD progression, changes in salt intake on blood pressure and other secondary risk factors were applied. Three studies were parallel RCTs and five were cross-over studies. Selection bias was low in five studies and unclear in three. Performance and detection biases were low in two studies and unclear in six. Attrition and reporting biases were low in four studies and unclear in four. One study had the potential for high carryover effect; three had high risk of bias from baseline characteristics (change of medication or diet) and two studies were industry funded.There was a significant reduction in 24 hour sodium excretion associated with low salt interventions (range 52 to 141 mmol) (8 studies, 258 participants: MD -105.86 mmol/d, 95% CI -119.20 to -92.51; I(2) = 51%). Reducing salt intake significantly reduced systolic blood pressure (8 studies, 258 participants: MD -8.75 mm Hg, 95% CI -11.33 to -6.16; I(2) = 0%) and diastolic blood pressure (8 studies, 258 participants: MD -3.70 mm Hg, 95% CI -5.09 to -2.30; I(2) = 0%). One study reported restricting salt intake reduced the risk of oedema by 56%. Salt restriction significantly increased plasma renin activity (2 studies, 71 participants: MD 1.08 ng/mL/h, 95% CI 0.51 to 1.65; I(2) = 0%) and serum aldosterone (2 studies, 71 participants: 6.20 ng/dL (95% CI 3.82 to 8.58; I(2) = 0%). Antihypertensive medication dosage was significantly reduced with a low salt diet (2 studies, 52 participants): RR 5.48, 95% CI 1.27 to 23.66; I(2) = 0%). There was no significant difference in eGFR (2 studies, 68 participants: MD -1.14 mL/min/1.73 m(2), 95% CI -4.38 to 2.11; I(2) = 0%), creatinine clearance (3 studies, 85 participants): MD -4.60 mL/min, 95% CI -11.78 to 2.57; I(2) = 0%), serum creatinine (5 studies, 151 participants: MD 5.14 µmol/L, 95% CI -8.98 to 19.26; I(2) = 59%) or body weight (5 studies, 139 participants: MD -1.46 kg; 95% CI -4.55 to 1.64; I(2) = 0%). There was no significant change in total cholesterol in relation to salt restriction (3 studies, 105 participants: MD -0.23 mmol/L, 95% CI -0.57 to 0.10; I(2) = 0%) or symptomatic hypotension (2 studies, 72 participants: RR 6.60, 95% CI 0.77 to 56.55; I(2) = 0%). Salt restriction significantly reduced urinary protein excretion in all studies that reported proteinuria as an outcome, however data could not be meta-analysed. AUTHORS' CONCLUSIONS We found a critical evidence gap in long-term effects of salt restriction in people with CKD that meant we were unable to determine the direct effects of sodium restriction on primary endpoints such as mortality and progression to end-stage kidney disease (ESKD). We found that salt reduction in people with CKD reduced blood pressure considerably and consistently reduced proteinuria. If such reductions could be maintained long-term, this effect may translate to clinically significant reductions in ESKD incidence and cardiovascular events. Research into the long-term effects of sodium-restricted diet for people with CKD is warranted, as is investigation into adherence to a low salt diet.
Collapse
Affiliation(s)
- Emma J McMahon
- Nutrition and Dietetics, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, Queensland, Australia, 4102.
| | | | | | | |
Collapse
|
21
|
Tiryaki O, Usalan C. Association between urinary angiotensinogen excretion rates and left ventricular mass index and carotid intima-media thickness in hypertensive kidney transplant recipients. Clin Transplant 2015; 29:351-8. [PMID: 25627691 DOI: 10.1111/ctr.12521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 01/13/2023]
Abstract
OBJECTIVES The renin-angiotensin system (RAS) is thought to regulate blood pressure and to be an independent risk factor for the development of left ventricular hypertrophy (LVH) and carotid intima-media thickness (CIMT). Locally produced RAS in most tissues has been recently described. It has been reported that urinary angiotensinogen levels provide a specific index of the intrarenal RAS status and is significantly correlated with blood pressure and proteinuria. The aim of this study was to evaluate the relationship of local intrarenal RAS with LVH and CIMT in hypertensive renal transplant recipients (RTRs). RESULTS A total of 96 non-diabetic RTRs (50 hypertensive patients, 46 normotensive patients) were included in this study. Urinary angiotensinogen (UAGT)/urinary creatinine (Ucre) was significantly higher in hypertensive patients compared with normotensive patients (p < 0.01). Left ventricular mass (LVM)I and CIMT were significantly higher in hypertensive patients compared with the normotensive patients (p < 0.01). Importantly, a significant positive correlation was found between UAGT/Ucre levels and LVMI (r = 0.724, p = 0.012) and also CIMT (r = 0.452, p = 0.02) in hypertensive RTRs. CONCLUSIONS These data indicate that UAGT is increased in hypertensive RTRs, and local RAS may play an important role in the development of cardiovascular abnormalities in hypertensive renal transplant recipients.
Collapse
Affiliation(s)
- Ozlem Tiryaki
- Department of Nephrology, Gaziantep University School of Medicine, Gaziantep, Turkey
| | | |
Collapse
|
22
|
Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol 2015; 4:1201-28. [PMID: 24944035 DOI: 10.1002/cphy.c130040] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The renin-angiotensin system has powerful effects in control of the blood pressure and sodium homeostasis. These actions are coordinated through integrated actions in the kidney, cardiovascular system and the central nervous system. Along with its impact on blood pressure, the renin-angiotensin system also influences a range of processes from inflammation and immune responses to longevity. Here, we review the actions of the "classical" renin-angiotensin system, whereby the substrate protein angiotensinogen is processed in a two-step reaction by renin and angiotensin converting enzyme, resulting in the sequential generation of angiotensin I and angiotensin II, the major biologically active renin-angiotensin system peptide, which exerts its actions via type 1 and type 2 angiotensin receptors. In recent years, several new enzymes, peptides, and receptors related to the renin-angiotensin system have been identified, manifesting a complexity that was previously unappreciated. While the functions of these alternative pathways will be reviewed elsewhere in this journal, our focus here is on the physiological role of components of the "classical" renin-angiotensin system, with an emphasis on new developments and modern concepts.
Collapse
Affiliation(s)
- Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | |
Collapse
|
23
|
Cao W, Li A, Wang L, Zhou Z, Su Z, Bin W, Wilcox CS, Hou FF. A Salt-Induced Reno-Cerebral Reflex Activates Renin-Angiotensin Systems and Promotes CKD Progression. J Am Soc Nephrol 2015; 26:1619-33. [PMID: 25635129 DOI: 10.1681/asn.2014050518] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/10/2014] [Indexed: 12/30/2022] Open
Abstract
Salt intake promotes progression of CKD by uncertain mechanisms. We hypothesized that a salt-induced reno-cerebral reflex activates a renin-angiotensin axis to promote CKD. Sham-operated and 5/6-nephrectomized rats received a normal-salt (0.4%), low-salt (0.02%), or high-salt (4%) diet for 2 weeks. High salt in 5/6-nephrectomized rats increased renal NADPH oxidase, inflammation, BP, and albuminuria. Furthermore, high salt activated the intrarenal and cerebral, but not the systemic, renin-angiotensin axes and increased the activity of renal sympathetic nerves and neurons in the forebrain of these rats. Renal fibrosis was increased 2.2-fold by high versus low salt, but intracerebroventricular tempol, losartan, or clonidine reduced this fibrosis by 65%, 69%, or 59%, respectively, and renal denervation or deafferentation reduced this fibrosis by 43% or 38%, respectively (all P<0.05). Salt-induced fibrosis persisted after normalization of BP with hydralazine. These data suggest that the renal and cerebral renin-angiotensin axes are interlinked by a reno-cerebral reflex that is activated by salt and promotes oxidative stress, fibrosis, and progression of CKD independent of BP.
Collapse
Affiliation(s)
- Wei Cao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; and
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; and
| | - Liangliang Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; and
| | - Zhanmei Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; and
| | - Zhengxiu Su
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; and
| | - Wei Bin
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; and
| | - Christopher S Wilcox
- Center for Hypertension, Kidney, and Vascular Research, Georgetown University, Washington, DC
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; and
| |
Collapse
|
24
|
Kamiyama M, Garner MK, Farragut KM, Sofue T, Hara T, Morikawa T, Konishi Y, Imanishi M, Nishiyama A, Kobori H. Detailed localization of augmented angiotensinogen mRNA and protein in proximal tubule segments of diabetic kidneys in rats and humans. Int J Biol Sci 2014; 10:530-42. [PMID: 24910532 PMCID: PMC4046880 DOI: 10.7150/ijbs.8450] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/22/2014] [Indexed: 01/13/2023] Open
Abstract
In the intrarenal renin-angiotensin system, angiotensinogen levels are well known to be increased in diabetes, and these enhanced intrarenal angiotensinogen levels may initiate the development and accelerate the progression of diabetic nephropathy. However, the specific localization of the augmented angiotensinogen in proximal tubule segments in diabetes is still unknown. We investigated the detailed localization of angiotensinogen in 3 proximal tubule segments in the diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats and the control Long-Evans Tokushima Otsuka (LETO) rats. We also prepared OLETF rats treated with angiotensin II type 1 receptor blocker, olmesartan or with a combination of vasodilator agents. Moreover, biopsied samples of human kidney cortex were used to confirm the results of animal studies. We examined the co-localization of angiotensinogen with segment-specific markers by double staining using fluorescence in situ hybridization and/or immunofluorescence. Angiotensinogen mRNA expression was barely detectable in segment 1. In segment 3, the area of angiotensinogen mRNA expression was augmented in the OLETF rats compared with the LETO rats. Angiotensinogen protein expression areas in segments 1 and 3 were also increased in the OLETF rats compared with the LETO rats. Chronic treatment with olmesartan ameliorated these areas of augmented angiotensinogen expression. Biopsied human kidney samples showed similar results. These data suggest that the augmented angiotensinogen mRNA levels in segment 3 and angiotensinogen protein levels in segments 1 and 3 may contribute to the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Masumi Kamiyama
- 1. Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; ; 2. Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michelle K Garner
- 1. Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; ; 2. Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kristina M Farragut
- 1. Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; ; 2. Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tadashi Sofue
- 4. Department of Cardiorenal and Cerebrovascular Medicine, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Taiga Hara
- 4. Department of Cardiorenal and Cerebrovascular Medicine, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Takashi Morikawa
- 6. Department of Nephrology and Hypertension, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Yoshio Konishi
- 6. Department of Nephrology and Hypertension, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Masahito Imanishi
- 6. Department of Nephrology and Hypertension, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Akira Nishiyama
- 5. Department of Pharmacology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Hiroyuki Kobori
- 1. Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; ; 2. Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; ; 3. Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; ; 5. Department of Pharmacology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| |
Collapse
|
25
|
Isobe S, Ohashi N, Fujikura T, Tsuji T, Sakao Y, Yasuda H, Kato A, Miyajima H, Fujigaki Y. Disturbed circadian rhythm of the intrarenal renin-angiotensin system: relevant to nocturnal hypertension and renal damage. Clin Exp Nephrol 2014; 19:231-9. [PMID: 24728489 DOI: 10.1007/s10157-014-0973-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/31/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND The intrarenal renin-angiotensin system (RAS) plays an important role in the development of hypertension and renal damage. Disruption of diurnal blood pressure (BP) variation is an additional risk factor for renal damage. However, little is known regarding whether intrarenal RAS circadian rhythm exists or if it influences the disruption of diurnal BP and renal damage. METHODS We investigated the circadian rhythm of urinary angiotensinogen (U-AGT) that reflects intrarenal RAS activity in 14 individuals without chronic kidney disease (CKD) and 36 CKD patients classified according to circadian BP rhythms. RESULTS BP values were higher during the daytime than during the nighttime in both individuals without CKD and CKD patients. U-AGT levels were not different between the daytime and nighttime in individuals without CKD, but were significantly higher in the daytime in CKD patients (log U-AGT/creatinine: daytime, 2.39 ± 0.99; nighttime, 2.24 ± 1.06; p = 0.001). Furthermore, in CKD patients showing a riser pattern of circadian BP, U-AGT levels did not decrease during the nighttime compared with those in the daytime (log U-AGT/creatinine: daytime, 2.51 ± 0.65; nighttime, 2.52 ± 0.71; p = 0.78). Circadian fluctuation of albuminuria and proteinuria occurred parallel to that of the U-AGT levels. U-AGT levels were significantly and positively correlated with the levels of BP and circadian fluctuation of U-AGT was correlated with diurnal BP changes. CONCLUSION These data suggest that the circadian rhythm of intrarenal RAS activation may lead to renal damage and hypertension, which are associated with diurnal BP variation.
Collapse
Affiliation(s)
- Shinsuke Isobe
- Internal Medicine 1, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu, 431-3192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kamiyama M, Urushihara M, Morikawa T, Konishi Y, Imanishi M, Nishiyama A, Kobori H. Oxidative stress/angiotensinogen/renin-angiotensin system axis in patients with diabetic nephropathy. Int J Mol Sci 2013; 14:23045-62. [PMID: 24284398 PMCID: PMC3856105 DOI: 10.3390/ijms141123045] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 01/22/2023] Open
Abstract
Although recent studies have proven that renin-angiotensin system (RAS) blockades retard the progression of diabetic nephropathy, the detailed mechanisms of their reno-protective effects on the development of diabetic nephropathy remain uncertain. In rodent models, it has been reported that reactive oxygen species (ROS) are important for intrarenal angiotensinogen (AGT) augmentation in the progression of diabetic nephropathy. However, no direct evidence is available to demonstrate that AGT expression is enhanced in the kidneys of patients with diabetes. To examine whether the expression levels of ROS- and RAS-related factors in kidneys are increased with the progression of diabetic nephropathy, biopsied samples from 8 controls and 27 patients with type 2 diabetes were used. After the biopsy, these patients were diagnosed with minor glomerular abnormality or diabetes mellitus by clinical and pathological findings. The intensities of AGT, angiotensin II (Ang II), 4-hydroxy-2-nonenal (4-HNE), and heme oxygenase-1 (HO-1) were examined by fluorescence in situ hybridization and/or immunohistochemistry. Expression levels were greater in patients with diabetes than in control subjects. Moreover, the augmented intrarenal AGT mRNA expression paralleled renal dysfunction in patients with diabetes. These data suggest the importance of the activated oxidative stress/AGT/RAS axis in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Masumi Kamiyama
- Department of Physiology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA; E-Mails: (M.K.); (M.U.)
- Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Maki Urushihara
- Department of Physiology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA; E-Mails: (M.K.); (M.U.)
- Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Takashi Morikawa
- Department of Nephrology and Hypertension, Osaka City General Hospital, 2-13-22 Miyakojima-Hondori, Miyakojima-ku, Osaka 534-0021, Japan; E-Mails: (T.M.); (Y.K.); (M.I.)
| | - Yoshio Konishi
- Department of Nephrology and Hypertension, Osaka City General Hospital, 2-13-22 Miyakojima-Hondori, Miyakojima-ku, Osaka 534-0021, Japan; E-Mails: (T.M.); (Y.K.); (M.I.)
| | - Masahito Imanishi
- Department of Nephrology and Hypertension, Osaka City General Hospital, 2-13-22 Miyakojima-Hondori, Miyakojima-ku, Osaka 534-0021, Japan; E-Mails: (T.M.); (Y.K.); (M.I.)
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Miki, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan; E-Mail:
| | - Hiroyuki Kobori
- Department of Physiology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA; E-Mails: (M.K.); (M.U.)
- Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Pharmacology, Kagawa University Medical School, Miki, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan; E-Mail:
- Department of Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-504-988-2591; Fax: +1-504-988-0911
| |
Collapse
|
27
|
Kobori H, Mori H, Masaki T, Nishiyama A. Angiotensin II blockade and renal protection. Curr Pharm Des 2013; 19:3033-42. [PMID: 23176216 DOI: 10.2174/1381612811319170009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/20/2012] [Indexed: 12/15/2022]
Abstract
Current national guidelines have recommended the use of renin-angiotensin system inhibitors, including angiotensin II type 1 receptor blockers (ARBs), in preference to other antihypertensive agents for treating hypertensive patients with chronic kidney disease. However, the mechanisms underlying the renoprotective effects of ARBs are multiple and complex. Blood pressure reduction by systemic vasodilation with an ARB contributes to its beneficial effects in treating kidney disease. Furthermore, ARB-induced renal vasodilation results in an increase in renal blood flow, leading to improvement of renal ischemia and hypoxia. ARBs are also effective in reducing urinary albumin excretion through a reduction in intraglomerular pressure and the protection of glomerular endothelium and/or podocyte injuries. In addition to blocking angiotensin II-induced renal cell and tissue injuries, ARBs can decrease intrarenal angiotensin II levels by reducing proximal tubular angiotensinogen and production of collecting duct renin, as well as angiotensin II accumulation in the kidney. In this review, we will briefly summarize our current understanding of the pharmacological effects of an ARB in the kidney. We will also discuss the possible mechanisms responsible for the renoprotective effects of ARBs on type 2 diabetic nephropathy.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Ikenobe 1750-1, Miki, Kita, Kagawa 761-0793, Japan
| | | | | | | |
Collapse
|
28
|
McMahon EJ, Bauer JD, Hawley CM, Isbel NM, Stowasser M, Johnson DW, Campbell KL. A randomized trial of dietary sodium restriction in CKD. J Am Soc Nephrol 2013; 24:2096-103. [PMID: 24204003 DOI: 10.1681/asn.2013030285] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a paucity of quality evidence regarding the effects of sodium restriction in patients with CKD, particularly in patients with pre-end stage CKD, where controlling modifiable risk factors may be especially important for delaying CKD progression and cardiovascular events. We conducted a double-blind placebo-controlled randomized crossover trial assessing the effects of high versus low sodium intake on ambulatory BP, 24-hour protein and albumin excretion, fluid status (body composition monitor), renin and aldosterone levels, and arterial stiffness (pulse wave velocity and augmentation index) in 20 adult patients with hypertensive stage 3-4 CKD as phase 1 of the LowSALT CKD study. Overall, salt restriction resulted in statistically significant and clinically important reductions in BP (mean reduction of systolic/diastolic BP, 10/4 mm Hg; 95% confidence interval, 5 to 15 /1 to 6 mm Hg), extracellular fluid volume, albuminuria, and proteinuria in patients with moderate-to-severe CKD. The magnitude of change was more pronounced than the magnitude reported in patients without CKD, suggesting that patients with CKD are particularly salt sensitive. Although studies with longer intervention times and larger sample sizes are needed to confirm these benefits, this study indicates that sodium restriction should be emphasized in the management of patients with CKD as a means to reduce cardiovascular risk and risk for CKD progression.
Collapse
|
29
|
Osaki K, Suzuki Y, Sugaya T, Tanifuji C, Nishiyama A, Horikoshi S, Tomino Y. Amelioration of Angiotensin II–Induced Salt-Sensitive Hypertension by Liver-Type Fatty Acid–Binding Protein in Proximal Tubules. Hypertension 2013; 62:712-8. [DOI: 10.1161/hypertensionaha.113.01203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inappropriate activation of the intrarenal renin–angiotensin system induces generation of reactive oxygen species and tubulointerstitial inflammation, which contribute to salt-sensitive hypertension (SSHT). Liver-type fatty acid–binding protein is expressed in proximal tubules in humans, but not in rodents, and may play an endogenous antioxidative role. The objective of the present study was to examine the antioxidative effect of liver-type fatty acid–binding protein on post–angiotensin II SSHT model in transgenic mice with selective overexpression of human liver-type fatty acid–binding protein in the proximal tubules. The transgenic mice showed marked protection against angiotensin II–induced SSHT. Overexpression of tubular liver-type fatty acid–binding protein prevented intrarenal T-cell infiltration and also reduced reactive oxygen species generation, intrarenal renin–angiotensin system activation, and monocyte chemotactic protein-1 expression. We also performed an in vitro study using the murine proximal tubular cell lines with or without recombinant liver-type fatty acid–binding protein and murine proximal tubular cell lines transfected with human liver-type fatty acid–binding protein, and found that gene transfection of liver-type fatty acid–binding protein and, in part, recombinant liver-type fatty acid–binding protein administration had significantly attenuated angiotensin II–induced reactive oxygen species generation and the expression of angiotensinogen and monocyte chemotactic protein-1 in murine proximal tubular cell lines. These findings indicated that liver-type fatty acid–binding protein in the proximal tubules may protect against angiotensin II–induced SSHT by attenuating activation of the intrarenal renin–angiotensin system and reducing oxidative stress and tubulointerstitial inflammation. Present data suggest that liver-type fatty acid–binding protein in the proximal tubules may be a novel therapeutic target for SSHT.
Collapse
Affiliation(s)
- Ken Osaki
- From the Division of Nephrology, Department of Internal Medicine, Juntendo University, Faculty of Medicine, Tokyo, Japan (K.O., Y.S., C.T., S.H., Y.T.); L-FABP Department, CMIC Holdings Co., Ltd. Tokyo, Japan (T.S.); and Department of Pharmacology, Faculty of Medicine, Kagawa University, Japan (A.N.)
| | - Yusuke Suzuki
- From the Division of Nephrology, Department of Internal Medicine, Juntendo University, Faculty of Medicine, Tokyo, Japan (K.O., Y.S., C.T., S.H., Y.T.); L-FABP Department, CMIC Holdings Co., Ltd. Tokyo, Japan (T.S.); and Department of Pharmacology, Faculty of Medicine, Kagawa University, Japan (A.N.)
| | - Takeshi Sugaya
- From the Division of Nephrology, Department of Internal Medicine, Juntendo University, Faculty of Medicine, Tokyo, Japan (K.O., Y.S., C.T., S.H., Y.T.); L-FABP Department, CMIC Holdings Co., Ltd. Tokyo, Japan (T.S.); and Department of Pharmacology, Faculty of Medicine, Kagawa University, Japan (A.N.)
| | - Chiaki Tanifuji
- From the Division of Nephrology, Department of Internal Medicine, Juntendo University, Faculty of Medicine, Tokyo, Japan (K.O., Y.S., C.T., S.H., Y.T.); L-FABP Department, CMIC Holdings Co., Ltd. Tokyo, Japan (T.S.); and Department of Pharmacology, Faculty of Medicine, Kagawa University, Japan (A.N.)
| | - Akira Nishiyama
- From the Division of Nephrology, Department of Internal Medicine, Juntendo University, Faculty of Medicine, Tokyo, Japan (K.O., Y.S., C.T., S.H., Y.T.); L-FABP Department, CMIC Holdings Co., Ltd. Tokyo, Japan (T.S.); and Department of Pharmacology, Faculty of Medicine, Kagawa University, Japan (A.N.)
| | - Satoshi Horikoshi
- From the Division of Nephrology, Department of Internal Medicine, Juntendo University, Faculty of Medicine, Tokyo, Japan (K.O., Y.S., C.T., S.H., Y.T.); L-FABP Department, CMIC Holdings Co., Ltd. Tokyo, Japan (T.S.); and Department of Pharmacology, Faculty of Medicine, Kagawa University, Japan (A.N.)
| | - Yasuhiko Tomino
- From the Division of Nephrology, Department of Internal Medicine, Juntendo University, Faculty of Medicine, Tokyo, Japan (K.O., Y.S., C.T., S.H., Y.T.); L-FABP Department, CMIC Holdings Co., Ltd. Tokyo, Japan (T.S.); and Department of Pharmacology, Faculty of Medicine, Kagawa University, Japan (A.N.)
| |
Collapse
|
30
|
Abstract
Recent interest focuses on urinary renin and angiotensinogen as markers of renal renin-angiotensin system activity. Before concluding that these components are independent markers, we need to exclude that their presence in urine, like that of albumin (a protein of comparable size), is due to (disturbed) glomerular filtration. This review critically discusses their filtration, reabsorption and local release. Given the close correlation between urinary angiotensinogen and albumin in human studies, it concludes that, in humans, urinary angiotensinogen is a filtration barrier damage marker with the same predictive power as urinary albumin. In contrast, in animals, tubular angiotensinogen release may occur, although tubulus-specific knockout studies do not support a functional role for such angiotensinogen. Urinary renin levels, relative to albumin, are >200-fold higher and unrelated to albumin. This may reflect release of renin from the urinary tract, but could also be attributed to activation of filtered, plasma-derived prorenin and/or incomplete tubular reabsorption.
Collapse
|
31
|
Nishijima Y, Kobori H, Sofue T, Kaifu K, Moriwaki K, Hara T, Hitomi H, Kohno M, Nishiyama A. Important aspects of urine sampling for angiotensinogen measurement: time and preservation conditions in healthy individuals. TOHOKU J EXP MED 2013; 228:333-9. [PMID: 23132274 DOI: 10.1620/tjem.228.333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intrarenal renin-angiotensin system (RAS) plays an important role for the pathogenesis of renal injuries. Experimental studies have demonstrated that angiotensinogen levels in renal tissues reflect the activity of intrarenal RAS. However, dynamics of urinary angiotensinogen have not been investigated in detail. Therefore, we examined the preservation conditions of the measured values of urinary angiotensinogen concentrations and an ultradian rhythm of urinary angiotensinogen excretion in humans. Urine samples were collected from 24 healthy volunteers. The urinary concentrations of angiotensinogen were measured by using ELISA. Two different urine preservation conditions were examined. One cycle of freeze-and-thaw did not change the measured values of urinary angiotensinogen concentrations. Moreover, to keep urine samples at room temperature for 12 hours did not change the measured values of urinary angiotensinogen concentrations. Thus, preservation conditions do not change the measured values of urinary angiotensinogen concentrations. Regarding an ultradian rhythm, blood pressure and the urinary concentrations of angiotensinogen were measured at 09:00, 13:00, and 16:00. The averaged levels of blood pressure were similar over the time. The average of urinary angiotensinogen/creatinine (Cr) ratios was 8.73 ± 1.15 ng/mg Cr at 09:00, 9.53 ± 1.58 ng/mg Cr at 13:00, and 8.58 ± 1.26 ng/mg Cr at 16:00. The urinary angiotensinogen excretion in healthy volunteers does not have an ultradian change during the daytime (P = 0.482). This may be another indication that the intrarenal RAS is independent of the systemic RAS. We have to pay attention to these findings in handling urine samples for measurements of angiotensinogen.
Collapse
Affiliation(s)
- Yoko Nishijima
- Department of Cardio Renal and Cerebro Vascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Burns KD, Hiremath S. Urinary angiotensinogen as a biomarker of chronic kidney disease: ready for prime time? Nephrol Dial Transplant 2013; 27:3010-3. [PMID: 22851623 DOI: 10.1093/ndt/gfs166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Kevin D Burns
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| | | |
Collapse
|
33
|
The angiotensin II type 1 receptor blocker olmesartan preferentially improves nocturnal hypertension and proteinuria in chronic kidney disease. Hypertens Res 2012; 36:262-9. [PMID: 23154587 DOI: 10.1038/hr.2012.184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulated evidence suggests that an altered ambulatory blood pressure (BP) profile, particularly elevated nighttime BP, reflects target organ injury and is a better predictor of further cardiorenal risk than the clinic BP or daytime BP in hypertensive patients complicated by chronic kidney disease (CKD). In this study, we examined the beneficial effects of olmesartan, an angiotensin II type 1 receptor blocker (ARB), on ambulatory BP profiles and renal function in hypertensive CKD patients. Forty-six patients were randomly assigned to the olmesartan add-on group (n=23) or the non-ARB group (n=23). At baseline and after the 16-week treatment period, ambulatory BP monitoring was performed and renal function parameter measurements were collected. Although the baseline clinic BP levels and the after-treatment/baseline (A/B) ratios of clinic BP levels were similar in the olmesartan add-on and non-ARB groups, the A/B ratios of ambulatory 24-h and nighttime BP levels in the olmesartan add-on group were significantly lower. Furthermore, the A/B ratios of urinary protein, albumin and type IV collagen excretion in the olmesartan add-on group were significantly lower than those in the non-ARB group (urinary protein excretion, 0.72±0.41 vs. 1.45±1.48, P=0.030; urinary albumin excretion, 0.73±0.37 vs. 1.50±1.37, P=0.005; urinary type IV collagen excretion, 0.87±0.42 vs. 1.48±0.87, P=0.014) despite comparable A/B ratios for the estimated glomerular filtration rate in the two groups. These results indicate that in hypertensive patients with CKD, olmesartan add-on therapy improves the ambulatory BP profile via a preferential reduction in nighttime BP with concomitant renal injury inhibition.
Collapse
|
34
|
|
35
|
Underwood PC, Chamarthi B, Williams JS, Vaidya A, Garg R, Adler GK, Grotzke MP, Staskus G, Wadwekar D, Hopkins PN, Ferri C, McCall A, McClain D, Williams GH. Nonmodulation as the mechanism for salt sensitivity of blood pressure in individuals with hypertension and type 2 diabetes mellitus. J Clin Endocrinol Metab 2012; 97:3775-82. [PMID: 22865897 PMCID: PMC3462947 DOI: 10.1210/jc.2012-2127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT It is assumed that in individuals with type 2 diabetes mellitus (T2DM), blood pressure sensitivity to salt intake and the frequency of a low renin state are both increased compared with the nondiabetic population. However, studies supporting these assumptions may have been confounded by participant inclusion criteria, and study results may reflect target organ damage. OBJECTIVE The objective of this study was to examine in a cohort of T2DM 1) the frequency of salt sensitivity of blood pressure and 2) whether alterations of the renin-angiotensin-aldosterone system (RAAS) contribute to salt sensitivity in this population. DESIGN, PATIENTS, AND METHODS Within participants of the HyperPATH cohort, four groups were analyzed: 1) T2DM with hypertension (HTN), n=51; 2) T2DM without HTN, n=30; 3) HTN only, n=451; and 4) normotensive, n=209. Phenotype studies were conducted after participants completed two dietary phases: liberal sodium (200 mmol/d) and low sodium (10 mmol/d) for 7 d each. Participants were admitted overnight to a clinical research center after each diet, and supine measurements of the RAAS before and after a 60-min angiotensin II infusion (3 ng/kg·min) were obtained. RESULTS Multivariate regression analysis demonstrated that T2DM status (all individuals with T2DM vs. individuals without T2DM) was not associated with the change in mean arterial pressure between the low and liberal sodium diets after accounting for age, gender, body mass index, race, and baseline blood pressure (T2DM status, P=0.5). Furthermore, two intermediate phenotypes of altered RAAS, low renin, and nonmodulation (NMOD), were associated with salt-sensitive blood pressure but occurred at different frequencies in the T2DM-HTN and HTN groups (low renin, 12% T2DM-HTN vs. 29% HTN; NMOD, 41% T2DM-HTN vs. 27% HTN; P=0.01). CONCLUSION The frequency of NMOD in participants with T2DM was significantly higher compared with HTN, suggesting that the salt sensitivity often seen in T2DM is driven by NMOD.
Collapse
Affiliation(s)
- Patricia C Underwood
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, RFB 386, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kobori H, Urushihara M. Augmented intrarenal and urinary angiotensinogen in hypertension and chronic kidney disease. Pflugers Arch 2012; 465:3-12. [PMID: 22918624 DOI: 10.1007/s00424-012-1143-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 12/22/2022]
Abstract
Activated intrarenal renin-angiotensin system plays a cardinal role in the pathogenesis of hypertension and chronic kidney disease. Angiotensinogen is the only known substrate for renin, which is the rate-limiting enzyme of the renin-angiotensin system. Because the levels of angiotensinogen are close to the Michaelis-Menten constant values for renin, angiotensinogen levels as well as renin levels can control the renin-angiotensin system activity, and thus, upregulation of angiotensinogen leads to an increase in the angiotensin II levels and ultimately increases blood pressure. Recent studies using experimental animal models have documented the involvement of angiotensinogen in the intrarenal renin-angiotensin system activation and development of hypertension. Enhanced intrarenal angiotensinogen mRNA and/or protein levels were observed in experimental models of hypertension and chronic kidney disease, supporting the important roles of angiotensinogen in the development and the progression of hypertension and chronic kidney disease. Urinary excretion rates of angiotensinogen provide a specific index of the intrarenal renin-angiotensin system status in angiotensin II-infused rats. Also, a direct quantitative method has been developed recently to measure urinary angiotensinogen using human angiotensinogen enzyme-linked immunosorbent assay. These data prompted us to measure urinary angiotensinogen in patients with hypertension and chronic kidney disease, and investigate correlations with clinical parameters. This short article will focus on the role of the augmented intrarenal angiotensinogen in the pathophysiology of hypertension and chronic kidney disease. In addition, the potential of urinary angiotensinogen as a novel biomarker of the intrarenal renin-angiotensin system status in hypertension and chronic kidney disease will be also discussed.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Physiology, Tulane University Health Sciences Center, 1430 Tulane Avenue, #SL39, New Orleans, LA 70112-2699, USA.
| | | |
Collapse
|
37
|
Abstract
The renin-angiotensin system (RAS) exercises fundamental control over sodium and water handling in the kidney. Accordingly, dysregulation of the RAS leads to blood pressure elevation with ensuing renal and cardiovascular damage. Recent studies have revealed that the RAS hormonal cascade is more complex than initially posited with multiple enzymes, effector molecules, and receptors that coordinately regulate the effects of the RAS on the kidney and vasculature. Moreover, recently identified tissue-specific RAS components have pleomorphic effects independent of the circulating RAS that influence critical homeostatic mechanisms including the immune response and fetal development. Further characterization of the diverse interactions between the RAS and other signaling pathways within specific tissues should lead to novel treatments for renal and cardiovascular disease.
Collapse
|
38
|
|