1
|
Vahldieck C, Löning S, Hamacher C, Fels B, Rudzewski B, Nickel L, Weil J, Nording H, Baron L, Kleingarn M, Karsten CM, Kusche-Vihrog K. Dysregulated complement activation during acute myocardial infarction leads to endothelial glycocalyx degradation and endothelial dysfunction via the C5a:C5a-Receptor1 axis. Front Immunol 2024; 15:1426526. [PMID: 39055717 PMCID: PMC11269135 DOI: 10.3389/fimmu.2024.1426526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Complement-mediated damage to the myocardium during acute myocardial infarction (AMI), particularly the late components of the terminal pathway (C5-convertase and C5b-9), have previously been characterized. Unfortunately, only few studies have reported a direct association between dysregulated complement activation and endothelial function. Hence, little attention has been paid to the role of the anaphylatoxin C5a. The endothelial glycocalyx (eGC) together with the cellular actin cortex provide a vasoprotective barrier against chronic vascular inflammation. Changes in their nanomechanical properties (stiffness and height) are recognized as hallmarks of endothelial dysfunction as they correlate with the bioavailability of vasoactive substances, such as nitric oxide (NO). Here, we determined how the C5a:C5aR1 axis affects the eGC and endothelial function in AMI. Methods Samples of fifty-five patients with ST-elevation myocardial infarction (STEMI) vs. healthy controls were analyzed in this study. eGC components and C5a levels were determined via ELISA; NO levels were quantified chemiluminescence-based. Endothelial cells were stimulated with C5a or patient sera (with/without C5a-receptor1 antagonist "PMX53") and the nanomechanical properties of eGC quantified using the atomic force microscopy (AFM)-based nanoindentation technique. To measure actin cytoskeletal tension regulator activation (RhoA and Rac1) G-LISA assays were applied. Vascular inflammation was examined by quantifying monocyte-endothelium interaction via AFM-based single-cell-force spectroscopy. Results Serum concentrations of eGC components and C5a were significantly increased during STEMI. Serum and solely C5a stimulation decreased eGC height and stiffness, indicating shedding of the eGC. C5a enhanced RhoA activation, resulting in increased cortical stiffness with subsequent reduction in NO concentrations. Monocyte adhesion to the endothelium was enhanced after both C5a and stimulation with STEMI serum. eGC degradation- and RhoA-induced cortical stiffening with subsequent endothelial dysfunction were attenuated after administering PMX53. Conclusion This study demonstrates that dysregulated C5a activation during AMI results in eGC damage with subsequent endothelial dysfunction and reduced NO bioavailability, indicating progressively developing vascular inflammation. This could be prevented by antagonizing C5aR1, highlighting the role of the C5a:C5a-Receptor1 axis in vascular inflammation development and endothelial dysfunction in AMI, offering new therapeutic approaches for future investigations.
Collapse
Affiliation(s)
- Carl Vahldieck
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein Campus Luebeck, Luebeck, Germany
- Institute of Physiology, University of Luebeck, Luebeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| | - Samuel Löning
- Institute of Physiology, University of Luebeck, Luebeck, Germany
| | | | - Benedikt Fels
- Institute of Physiology, University of Luebeck, Luebeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| | | | - Laura Nickel
- Medizinische Klinik II, Sana Kliniken Luebeck, Luebeck, Germany
| | - Joachim Weil
- Medizinische Klinik II, Sana Kliniken Luebeck, Luebeck, Germany
| | - Henry Nording
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
- Cardioimmunology Group, Medical Clinic II, University Heart Center Luebeck, Luebeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Luebeck, Luebeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Luebeck, Luebeck, Germany
| | | | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Luebeck, Luebeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| |
Collapse
|
2
|
Litwin M. Pathophysiology of primary hypertension in children and adolescents. Pediatr Nephrol 2024; 39:1725-1737. [PMID: 37700113 PMCID: PMC11026201 DOI: 10.1007/s00467-023-06142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
The progress in research on the physiology of the cardiovascular system made in the last 100 years allowed for the development of the pathogenesis not only of secondary forms of hypertension but also of primary hypertension. The main determinants of blood pressure are described by the relationship between stroke volume, heart rate, peripheral resistance, and arterial stiffness. The theories developed by Guyton and Folkow describe the importance of the volume factor and total peripheral resistance. However, none of them fully presents the pathogenesis of essential hypertension. The multifactorial model of primary hypertension pathogenesis developed by Irving Page in the 1940s, called Page's mosaic, covers most of the pathophysiological phenomena observed in essential hypertension. The most important pathophysiological phenomena included in Page's mosaic form a network of interconnected "nodes". New discoveries both from experimental and clinical studies made in recent decades have allowed the original Page mosaic to be modified and the addition of new pathophysiological nodes. Most of the clinical studies confirming the validity of the multifactorial pathogenesis of primary hypertension concern adults. However, hypertension develops in childhood and is even perinatally programmed. Therefore, the next nodes in Page's mosaic should be age and perinatal factors. This article presents data from pediatric clinical trials describing the most important pathophysiological processes associated with the development of essential hypertension in children and adolescents.
Collapse
Affiliation(s)
- Mieczysław Litwin
- Department of Nephrology and Arterial Hypertension, The Children's Memorial Health Institute, Warsaw, Poland.
| |
Collapse
|
3
|
Zhang W, Huo W, Hu H, Li T, Yuan L, Zhang J, Feng Y, Wu Y, Fu X, Ke Y, Wang M, Wang L, Chen Y, Gao Y, Li X, Sun L, Pang J, Zheng Z, Hu F, Zhang M, Liu Y, Hu D, Zhao Y. Dose-response associations of triglyceride to high-density lipoprotein cholesterol ratio and triglyceride-glucose index with arterial stiffness risk. Lipids Health Dis 2024; 23:115. [PMID: 38643148 PMCID: PMC11031917 DOI: 10.1186/s12944-024-02095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio and triglyceride-glucose (TyG) index are novel indexes for insulin resistance (IR). We aimed to evaluate associations of TG/HDL-C and TyG with arterial stiffness risk. METHODS We enrolled 1979 participants from the Rural Chinese Cohort Study, examining arterial stiffness by brachial-ankle pulse wave velocity (baPWV). Logistic and linear regression models were employed to calculate effect estimates. For meta-analysis, we searched relevant articles from PubMed, Embase and Web of Science up to August 26, 2023. The fixed-effects or random-effects models were used to calculate the pooled estimates. We evaluated dose-response associations using restricted cubic splines. RESULTS For cross-sectional studies, the adjusted ORs (95%CIs) for arterial stiffness were 1.12 (1.01-1.23) and 1.78 (1.38-2.30) for per 1 unit increment in TG/HDL-C and TyG. In the meta-analysis, the pooled ORs (95% CIs) were 1.26 (1.14-1.39) and 1.57 (1.36-1.82) for per 1 unit increment of TG/HDL-C and TyG. Additionally, both TG/HDL-C and TyG were positively related to PWV, with β of 0.09 (95% CI 0.04-0.14) and 0.57 (95% CI 0.35-0.78) m/s. We also found linear associations of TG/HDL-C and TyG with arterial stiffness risk. CONCLUSIONS High TG/HDL-C and TyG were related to increased arterial stiffness risk, indicating TG/HDL-C and TyG may be convincing predictors of arterial stiffness.
Collapse
Affiliation(s)
- Wenkai Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Weifeng Huo
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Huifang Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Tianze Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Lijun Yuan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jinli Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yifei Feng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuying Wu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xueru Fu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yamin Ke
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Mengmeng Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Longkang Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yaobing Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yajuan Gao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xi Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Liang Sun
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jinyuan Pang
- Department of Preventive Medicine, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Zeqiang Zheng
- Department of Preventive Medicine, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, school of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
- Guangdong provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, school of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
- Guangdong provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Yu Liu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Yang Zhao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
4
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Lim XR, Harraz OF. Mechanosensing by Vascular Endothelium. Annu Rev Physiol 2024; 86:71-97. [PMID: 37863105 PMCID: PMC10922104 DOI: 10.1146/annurev-physiol-042022-030946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Mechanical forces influence different cell types in our bodies. Among the earliest forces experienced in mammals is blood movement in the vascular system. Blood flow starts at the embryonic stage and ceases when the heart stops. Blood flow exposes endothelial cells (ECs) that line all blood vessels to hemodynamic forces. ECs detect these mechanical forces (mechanosensing) through mechanosensors, thus triggering physiological responses such as changes in vascular diameter. In this review, we focus on endothelial mechanosensing and on how different ion channels, receptors, and membrane structures detect forces and mediate intricate mechanotransduction responses. We further highlight that these responses often reflect collaborative efforts involving several mechanosensors and mechanotransducers. We close with a consideration of current knowledge regarding the dysregulation of endothelial mechanosensing during disease. Because hemodynamic disruptions are hallmarks of cardiovascular disease, studying endothelial mechanosensing holds great promise for advancing our understanding of vascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Xin Rui Lim
- Department of Pharmacology, Larner College of Medicine and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA;
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
6
|
Chen Y, Yu X, Yan Z, Zhang S, Zhang J, Guo W. Role of epithelial sodium channel-related inflammation in human diseases. Front Immunol 2023; 14:1178410. [PMID: 37559717 PMCID: PMC10407551 DOI: 10.3389/fimmu.2023.1178410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer and is widely distributed throughout the kidneys, blood vessels, lungs, colons, and many other organs. The basic role of the ENaC is to mediate the entry of Na+ into cells; the ENaC also has an important regulatory function in blood pressure, airway surface liquid (ASL), and endothelial cell function. Aldosterone, serum/glucocorticoid kinase 1 (SGK1), shear stress, and posttranslational modifications can regulate the activity of the ENaC; some ion channels also interact with the ENaC. In recent years, it has been found that the ENaC can lead to immune cell activation, endothelial cell dysfunction, aggravated inflammation involved in high salt-induced hypertension, cystic fibrosis, pseudohypoaldosteronism (PHA), and tumors; some inflammatory cytokines have been reported to have a regulatory role on the ENaC. The ENaC hyperfunction mediates the increase of intracellular Na+, and the elevated exchange of Na+ with Ca2+ leads to an intracellular calcium overload, which is an important mechanism for ENaC-related inflammation. Some of the research on the ENaC is controversial or unclear; we therefore reviewed the progress of studies on the role of ENaC-related inflammation in human diseases and their mechanisms.
Collapse
Affiliation(s)
- Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Zhiping Yan
- Henan Organ Transplantation Centre, Zhengzhou, China
- Henan Engineering and Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Shuijun Zhang
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
| | - Jiacheng Zhang
- Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| |
Collapse
|
7
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
8
|
Vahldieck C, Cianflone E, Fels B, Löning S, Depelmann P, Sabatino J, Salerno N, Karsten CM, Torella D, Weil J, Sun D, Goligorsky MS, Kusche-Vihrog K. Endothelial Glycocalyx and Cardiomyocyte Damage Is Prevented by Recombinant Syndecan-1 in Acute Myocardial Infarction. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:474-492. [PMID: 36669683 PMCID: PMC10123521 DOI: 10.1016/j.ajpath.2022.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
The outer layer of endothelial cells (ECs), consisting of the endothelial glycocalyx (eGC) and the cortex (CTX), provides a protective barrier against vascular diseases. Structural and functional impairments of their mechanical properties are recognized as hallmarks of endothelial dysfunction and can lead to cardiovascular events, such as acute myocardial infarction (AMI). This study investigated the effects of AMI on endothelial nanomechanics and function and the use of exogenous recombinant syndecan-1 (rSyn-1), a major component of the eGC, as recovering agent. ECs were exposed in vitro to serum samples collected from patients with AMI. In addition, in situ ECs of ex vivo aorta preparations derived from a mouse model for AMI were employed. Effects were quantified by using atomic force microscopy-based nanoindentation measurements, fluorescence staining, and histologic examination of the mouse hearts. AMI serum samples damaged eGC/CTX and augmented monocyte adhesion to the endothelial surface. In particular, the anaphylatoxins C3a and C5a played an important role in these processes. The impairment of endothelial function could be prevented by rSyn-1 treatment. In the mouse model of myocardial infarction, pretreatment with rSyn-1 alleviated eGC/CTX deterioration and reduced cardiomyocyte damage in histologic analyses. However, echocardiographic measurements did not indicate a functional benefit. These results provide new insights into the underlying mechanisms of AMI-induced endothelial dysfunction and perspectives for future studies on the benefit of rSyn-1 in post-AMI treatment.
Collapse
Affiliation(s)
- Carl Vahldieck
- Institute of Physiology, University of Luebeck, Luebeck, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein Campus Luebeck, University of Luebeck, Luebeck, Germany.
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Benedikt Fels
- Institute of Physiology, University of Luebeck, Luebeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| | - Samuel Löning
- Institute of Physiology, University of Luebeck, Luebeck, Germany
| | - Patrik Depelmann
- Institute of Physiology, University of Luebeck, Luebeck, Germany
| | - Jolanda Sabatino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy; Division of Pediatric Cardiology, Department of Women's and Children's Health, University Hospital Padua, Padua, Italy; Pediatric Research Institute "Città della Speranza", Padua, Italy
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Joachim Weil
- Medizinische Klinik II, Sana Kliniken Luebeck, Luebeck, Germany
| | - Dong Sun
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, New York
| | - Michael S Goligorsky
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, New York
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Luebeck, Luebeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| |
Collapse
|
9
|
Cardiovascular Disease in Obstructive Sleep Apnea: Putative Contributions of Mineralocorticoid Receptors. Int J Mol Sci 2023; 24:ijms24032245. [PMID: 36768567 PMCID: PMC9916750 DOI: 10.3390/ijms24032245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic and highly prevalent condition that is associated with oxidative stress, inflammation, and fibrosis, leading to endothelial dysfunction, arterial stiffness, and vascular insulin resistance, resulting in increased cardiovascular disease and overall mortality rates. To date, OSA remains vastly underdiagnosed and undertreated, with conventional treatments yielding relatively discouraging results for improving cardiovascular outcomes in OSA patients. As such, a better mechanistic understanding of OSA-associated cardiovascular disease (CVD) and the development of novel adjuvant therapeutic targets are critically needed. It is well-established that inappropriate mineralocorticoid receptor (MR) activation in cardiovascular tissues plays a causal role in a multitude of CVD states. Clinical studies and experimental models of OSA lead to increased secretion of the MR ligand aldosterone and excessive MR activation. Furthermore, MR activation has been associated with worsened OSA prognosis. Despite these documented relationships, there have been no studies exploring the causal involvement of MR signaling in OSA-associated CVD. Further, scarce clinical studies have exclusively assessed the beneficial role of MR antagonists for the treatment of systemic hypertension commonly associated with OSA. Here, we provide a comprehensive overview of overlapping mechanistic pathways recruited in the context of MR activation- and OSA-induced CVD and propose MR-targeted therapy as a potential avenue to abrogate the deleterious cardiovascular consequences of OSA.
Collapse
|
10
|
Yu L, Nouri MZ, Liu LP, Bala N, Denslow ND, LaDisa JF, Alli AA. C Type Natriuretic Peptide Receptor Activation Inhibits Sodium Channel Activity in Human Aortic Endothelial Cells by Activating the Diacylglycerol-Protein Kinase C Pathway. Int J Mol Sci 2022; 23:13959. [PMID: 36430437 PMCID: PMC9698807 DOI: 10.3390/ijms232213959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The C-type natriuretic peptide receptor (NPRC) is expressed in many cell types and binds all natriuretic peptides with high affinity. Ligand binding results in the activation or inhibition of various intracellular signaling pathways. Although NPRC ligand binding has been shown to regulate various ion channels, the regulation of endothelial sodium channel (EnNaC) activity by NPRC activation has not been studied. The objective of this study was to investigate mechanisms of EnNaC regulation associated with NPRC activation in human aortic endothelial cells (hAoEC). EnNaC protein expression and activity was attenuated after treating hAoEC with the NPRC agonist cANF compared to vehicle, as demonstrated by Western blotting and patch clamping studies, respectively. NPRC knockdown studies using siRNA's corroborated the specificity of EnNaC regulation by NPRC activation mediated by ligand binding. The concentration of multiple diacylglycerols (DAG) and the activity of protein kinase C (PKC) was augmented after treating hAoEC with cANF compared to vehicle, suggesting EnNaC activity is down-regulated upon NPRC ligand binding in a DAG-PKC dependent manner. The reciprocal cross-talk between NPRC activation and EnNaC inhibition represents a feedback mechanism that presumably is involved in the regulation of endothelial function and aortic stiffness.
Collapse
Affiliation(s)
- Ling Yu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA
| | - Lauren P. Liu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Niharika Bala
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA
| | - John F. LaDisa
- Department of Pediatrics, Section of Cardiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Abdel A. Alli
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
Tang LL, Yang X, Yu SQ, Qin Q, Xue R, Sun Y, Xiao H, Shang AQ, Liu JQ, Han SQ, Liang C, Lou J, Wang QS, Yu CJ, Wu MM, Zhang ZR. Aldosterone-stimulated endothelial epithelial sodium channel (EnNaC) plays a role in cold exposure–induced hypertension in rats. Front Pharmacol 2022; 13:970812. [PMID: 36278222 PMCID: PMC9582121 DOI: 10.3389/fphar.2022.970812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies have demonstrated that activated endothelial epithelial sodium channel (EnNaC) impairs vasodilatation, which contributes to salt-sensitive hypertension. Here, we investigate whether mesenteric artery (MA) EnNaC is involved in cold exposure–induced hypertension (CIH) and identify the underlying mechanisms in SD rats.Methods: One group of rats was housed at room temperature and served as control. Three groups of rats were kept in a 4°C cold incubator for 10 h/day; among which two groups were administrated with either benzamil (EnNaC blocker) or eplerenone (mineralocorticoid receptor antagonist, MR). Blood pressure (BP), vasodilatation, and endothelial function were measured with tail-cuff plethysmography, isometric myograph, and Total Nitric Oxide (NO) Assay kit, respectively. A cell-attached patch-clamp technique, in split-open MA, was used to determine the role of EnNaC in CIH rats. Furthermore, the plasma aldosterone levels were detected using an ELISA kit; and Western blot analysis was used to examine the relative expression levels of Sgk1 and Nedd4-2 proteins in the MA of SD rats.Results: We demonstrated that cold exposure increased BP, impaired vasodilatation, and caused endothelial dysfunction in rats. The activity of EnNaC significantly increased, concomitant with an increased level of plasma aldosterone and activation of Sgk1/Nedd4-2 signaling. Importantly, CIH was inhibited by either eplerenone or benzamil. It appeared that cold-induced decrease in NO production and impairment of endothelium-dependent relaxation (EDR) were significantly ameliorated by either eplerenone or benzamil in MA of CIH rats. Moreover, treatment of MAs with aldosterone resulted in an activation of EnNaC, a reduction of NO, and an impairment of EDR, which were significantly inhibited by either eplerenone or GSK650394 (Sgk1 inhibitor) or benzamil.Conclusion: Activation of EnNaC contributes to CIH; we suggest that pharmacological inhibition of the MR/Sgk1/Nedd4-2/EnNaC axis may be a potential therapeutic strategy for CIH.
Collapse
Affiliation(s)
- Liang-Liang Tang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Xu Yang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Shu-Qi Yu
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Qi Qin
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Rong Xue
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Yu Sun
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Han Xiao
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - An-Qi Shang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Jia-Qun Liu
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Song-Qi Han
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Chen Liang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Jie Lou
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Qiu-Shi Wang
- Department of Cardiology, the 1st Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Harbin Medical University and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Chang-Jiang Yu
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Ming-Ming Wu
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Zhi-Ren Zhang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
- Department of Cardiology, the 1st Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Harbin Medical University and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
- *Correspondence: Zhi-Ren Zhang,
| |
Collapse
|
12
|
Effects of Chronic Kidney Disease on Nanomechanics of the Endothelial Glycocalyx Are Mediated by the Mineralocorticoid Receptor. Int J Mol Sci 2022; 23:ijms231810659. [PMID: 36142571 PMCID: PMC9503126 DOI: 10.3390/ijms231810659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 02/03/2023] Open
Abstract
Endothelial mechanics control vascular reactivity and are regulated by the mineralocorticoid receptor (MR) and its downstream target, the epithelial Na+ channel (ENaC). Endothelial dysfunction is a hallmark of chronic kidney disease (CKD), but its mechanisms are poorly understood. We hypothesized that CKD disrupts endothelial mechanics in an MR/ENaC-dependent process. METHODS Primary human endothelial cells were cultured with uremic serum derived from children with stage 3-5 (predialysis) CKD or adult hemodialysis (HD) patients or healthy controls. The height and stiffness of the endothelial glycocalyx (eGC) and cortex were monitored by atomic force microscopy (AFM) using an ultrasensitive mechanical nanosensor. RESULTS In a stage-dependent manner, sera from children with CKD induced a significant increase in eGC and cortex stiffness and an incremental reduction of the eGC height. AFM measurements were significantly associated with individual pulse wave velocity and serum concentrations of gut-derived uremic toxins. Serum from HD patients increased MR expression and mechanical stiffness of the endothelial cortex, an effect reversed by MR and ENaC antagonists, decreased eNOS expression and NO bioavailability, and augmented monocyte adhesion. CONCLUSION These data indicate progressive structural damage of the endothelial surface with diminishing kidney function and identify the MR as a mediator of CKD-induced endothelial dysfunction.
Collapse
|
13
|
Abstract
Besides the physiological regulation of water, sodium, and potassium homeostasis, aldosterone modulates several physiological and pathological processes in the cardiovascular system. At the vascular level, aldosterone excess stimulates endothelial dysfunction and infiltration of inflammatory cells, enhances the development of the atherosclerotic plaque, and favors plaque instability, arterial stiffness, and calcification. At the cardiac level, aldosterone increases cardiac inflammation, fibrosis, and myocardial hypertrophy. As a clinical consequence, high aldosterone levels are associated with enhanced risk of cardiovascular events and mortality, especially when aldosterone secretion is inappropriate for renin levels and sodium intake, as in primary aldosteronism. Several clinical trials showed that mineralocorticoid receptor antagonists reduce cardiovascular mortality in patients with heart failure and reduced ejection fraction, but inconclusive results were reported for other cardiovascular conditions, such as heart failure with preserved ejection fraction, myocardial infarction, and atrial fibrillation. In patients with primary aldosteronism, adrenalectomy or treatment with mineralocorticoid receptor antagonists significantly mitigate adverse aldosterone effects, reducing the risk of cardiovascular events, mortality, and incident atrial fibrillation. In this review, we will summarize the major preclinical and clinical studies investigating the cardiovascular damage mediated by aldosterone and the protective effect of mineralocorticoid receptor antagonists for the reduction of cardiovascular risk in patients with cardiovascular diseases and primary aldosteronism.
Collapse
Affiliation(s)
- Fabrizio Buffolo
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
| | - Martina Tetti
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
| | - Silvia Monticone
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
| |
Collapse
|
14
|
Ehret E, Hummler E. Lessons learned about epithelial sodium channels from transgenic mouse models. Curr Opin Nephrol Hypertens 2022; 31:493-501. [PMID: 35894285 PMCID: PMC10022670 DOI: 10.1097/mnh.0000000000000821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review provides an up-to-date understanding about the regulation of epithelial sodium channel (ENaC) expression and function. In particular, we will focus on its implication in renal Na+ and K+ handling and control of blood pressure using transgenic animal models. RECENT FINDINGS In kidney, the highly amiloride-sensitive ENaC maintains whole body Na+ homeostasis by modulating Na+ transport via epithelia. This classical role is mostly confirmed using genetically engineered animal models. Recently identified key signaling pathways that regulate ENaC expression and function unveiled some nonclassical and unexpected channel regulatory processes. If aberrant, these dysregulated mechanisms may also result in the development of salt-dependent hypertension.The purpose of this review is to highlight the most recent findings in renal ENaC regulation and function, in considering data obtained from animal models. SUMMARY Increased ENaC-mediated Na+ transport is a prerequisite for salt-dependent forms of hypertension. To treat salt-sensitive hypertension it is crucial to fully understand the function and regulation of ENaC.
Collapse
Affiliation(s)
- Elodie Ehret
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne
| | - Edith Hummler
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne
- National Center of Competence in Research, Kidney.CH, Zurich, Switzerland
| |
Collapse
|
15
|
Paudel P, van Hout I, Bunton RW, Parry DJ, Coffey S, McDonald FJ, Fronius M. Epithelial Sodium Channel δ Subunit Is Expressed in Human Arteries and Has Potential Association With Hypertension. Hypertension 2022; 79:1385-1394. [PMID: 35510563 DOI: 10.1161/hypertensionaha.122.18924] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Elevated expression and increased activity of vascular epithelial sodium channel (ENaC) can result in vascular dysfunction in small animal models. However, there is limited or no knowledge on expression and function of ENaC channels in human vasculature. Hence, this study explored the expression and function of ENaC in human arteries and their association with hypertension. METHODS Human internal mammary artery (IMA) and aorta were obtained from cardiovascular patients undergoing coronary artery bypass graft surgery. Expression of the ENaC subunit was analyzed by polymerase chain reaction, Western blot, and immunohistochemistry. ENaC function was observed by patch-clamp electrophysiology in endothelial cells isolated from IMA. Levels of ENaC subunit expression levels were compared between arteries from normotensive, uncontrolled hypertensive, and controlled hypertensive patients. RESULTS For the first time, expression of α, β, γ, and δ was detected at mRNA and protein levels in human IMA and aorta. Single-channel patch-clamp recordings identified both αβγ- and δβγ-like channel conductance in primary endothelial cells isolated and cultured from IMA. Reduced expression of the δ subunit was observed in controlled hypertensive IMA, whereas reduced expression of γ-ENaC was observed in controlled hypertensive aorta. CONCLUSIONS These data suggest that functional ENaC channels are expressed in human arteries and their expression levels are associated with hypertension.
Collapse
Affiliation(s)
- Puja Paudel
- Department of Physiology, School of Biomedical Sciences (P.P., I.v.H., F.J.M., M.F.), University of Otago, Dunedin, New Zealand.,HeartOtago (P.P., I.v.H., S.C., M.F.), University of Otago, Dunedin, New Zealand
| | - Isabelle van Hout
- Department of Physiology, School of Biomedical Sciences (P.P., I.v.H., F.J.M., M.F.), University of Otago, Dunedin, New Zealand.,HeartOtago (P.P., I.v.H., S.C., M.F.), University of Otago, Dunedin, New Zealand
| | - Richard W Bunton
- Department of Cardiothoracic Surgery, Otago Medical School, Dunedin Hospital, New Zealand (R.W.B., D.J.P.)
| | - Dominic J Parry
- Department of Cardiothoracic Surgery, Otago Medical School, Dunedin Hospital, New Zealand (R.W.B., D.J.P.)
| | - Sean Coffey
- HeartOtago (P.P., I.v.H., S.C., M.F.), University of Otago, Dunedin, New Zealand.,Department of Medicine, Otago Medical School (S.C.), University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences (P.P., I.v.H., F.J.M., M.F.), University of Otago, Dunedin, New Zealand
| | - Martin Fronius
- Department of Physiology, School of Biomedical Sciences (P.P., I.v.H., F.J.M., M.F.), University of Otago, Dunedin, New Zealand.,HeartOtago (P.P., I.v.H., S.C., M.F.), University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Achner L, Klersy T, Fels B, Reinberger T, Schmidt CX, Groß N, Hille S, Müller OJ, Aherrahrou Z, Kusche-Vihrog K, Raasch W. AFM-based nanoindentation indicates an impaired cortical stiffness in the AAV-PCSK9 DY atherosclerosis mouse model. Pflugers Arch 2022; 474:993-1002. [PMID: 35648220 PMCID: PMC9393126 DOI: 10.1007/s00424-022-02710-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/22/2022] [Indexed: 12/23/2022]
Abstract
Investigating atherosclerosis and endothelial dysfunction has mainly become established in genetically modified ApoE−/− or LDL-R−/− mice transgenic models. A new AAV-PCSK9DYDY mouse model with no genetic modification has now been reported as an alternative atherosclerosis model. Here, we aimed to employ this AAV-PCSK9DY mouse model to quantify the mechanical stiffness of the endothelial surface, an accepted hallmark for endothelial dysfunction and forerunner for atherosclerosis. Ten-week-old male C57BL/6 N mice were injected with AAV-PCSK9DY (0.5, 1 or 5 × 1011 VG) or saline as controls and fed with Western diet (1.25% cholesterol) for 3 months. Total cholesterol (TC) and triglycerides (TG) were measured after 6 and 12 weeks. Aortic sections were used for atomic force microscopy (AFM) measurements or histological analysis using Oil-Red-O staining. Mechanical properties of in situ endothelial cells derived from ex vivo aorta preparations were quantified using AFM-based nanoindentation. Compared to controls, an increase in plasma TC and TG and extent of atherosclerosis was demonstrated in all groups of mice in a viral load-dependent manner. Cortical stiffness of controls was 1.305 pN/nm and increased (10%) in response to viral load (≥ 0.5 × 1011 VG) and positively correlated with the aortic plaque content and plasma TC and TG. For the first time, we show changes in the mechanical properties of the endothelial surface and thus the development of endothelial dysfunction in the AAV-PCSK9DY mouse model. Our results demonstrate that this model is highly suitable and represents a good alternative to the commonly used transgenic mouse models for studying atherosclerosis and other vascular pathologies.
Collapse
Affiliation(s)
- Leonie Achner
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Tobias Klersy
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Benedikt Fels
- Institute for Physiology, University Lübeck, Lübeck, Germany
| | - Tobias Reinberger
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany.,Institute for Cardiogenetics, University Lübeck, Lübeck, Germany
| | - Cosima X Schmidt
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Natalie Groß
- Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Susanne Hille
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany.,Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Oliver J Müller
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany.,Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Zouhair Aherrahrou
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany.,Institute for Cardiogenetics, University Lübeck, Lübeck, Germany
| | - Kristina Kusche-Vihrog
- Institute for Physiology, University Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany. .,CBBM (Centre for Brain, Behavior and Metabolism), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
17
|
Rapid shear stress-dependent ENaC membrane insertion is mediated by the endothelial glycocalyx and the mineralocorticoid receptor. Cell Mol Life Sci 2022; 79:235. [PMID: 35397686 PMCID: PMC8995297 DOI: 10.1007/s00018-022-04260-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023]
Abstract
The contribution of the shear stress-sensitive epithelial Na+ channel (ENaC) to the mechanical properties of the endothelial cell surface under (patho)physiological conditions is unclear. This issue was addressed in in vivo and in vitro models for endothelial dysfunction. Cultured human umbilical vein endothelial cells (HUVEC) were exposed to laminar (LSS) or non-laminar shear stress (NLSS). ENaC membrane insertion was quantified using Quantum-dot-based immunofluorescence staining and the mechanical properties of the cell surface were probed with the Atomic Force Microscope (AFM) in vitro and ex vivo in isolated aortae of C57BL/6 and ApoE/LDLR-/- mice. Flow- and acetylcholine-mediated vasodilation was measured in vivo using magnetic resonance imaging. Acute LSS led to a rapid mineralocorticoid receptor (MR)-dependent membrane insertion of ENaC and subsequent stiffening of the endothelial cortex caused by actin polymerization. Of note, NLSS stress further augmented the cortical stiffness of the cells. These effects strongly depend on the presence of the endothelial glycocalyx (eGC) and could be prevented by functional inhibition of ENaC and MR in vitro endothelial cells and ex vivo endothelial cells derived from C57BL/6, but not ApoE/LDLR-/- vessel. In vivo In C57BL/6 vessels, ENaC- and MR inhibition blunted flow- and acetylcholine-mediated vasodilation, while in the dysfunctional ApoE/LDLR-/- vessels, this effect was absent. In conclusion, under physiological conditions, endothelial ENaC, together with the glycocalyx, was identified as an important shear stress sensor and mediator of endothelium-dependent vasodilation. In contrast, in pathophysiological conditions, ENaC-mediated mechanotransduction and endothelium-dependent vasodilation were lost, contributing to sustained endothelial stiffening and dysfunction.
Collapse
|
18
|
Mutchler SM, Kleyman TR. Effects of amiloride on acetylcholine-dependent arterial vasodilation evolve over time in mice on a high salt diet. Physiol Rep 2022; 10:e15255. [PMID: 35384364 PMCID: PMC8984245 DOI: 10.14814/phy2.15255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of endothelial health is required for normal vascular function and blood pressure regulation. The epithelial Na+ channel (ENaC) in endothelial cells has emerged as a new molecular player in the regulation of endothelial nitric oxide production and vascular stiffness. While ENaC expression in the kidney is negatively regulated by high [Na+ ], ENaC expression in isolated endothelial cells has been shown to increase in response to a high extracellular [Na+ ]. In culture, this increased expression leads to cellular stiffening and decreased nitric oxide release. In vivo, the effects of high salt diet on endothelial ENaC expression and activity have varied depending on the animal model utilized. Our aim in the present study was to examine the role of endothelial ENaC in mediating vasorelaxation in the C57Bl/6 mouse strain. We utilized pressure myography to test the responsiveness of thoracodorsal arteries to acetylcholine in mice with increased sodium consumption both in the presence and absence of increased aldosterone. ENaC's contribution was assessed with the use of the specific inhibitor amiloride. We found that while aldosterone had very little effect on ENaC's contribution to acetylcholine sensitivity, a high salt diet led to an amiloride-dependent shift in the acetylcholine response of vessels. However, the direction of this shift was dependent on the length of high salt diet administration. Overall, our studies reveal that ENaC's role in the endothelium may be more complicated than previously thought. The channel does not simply inhibit nitric oxide generation, but instead helps preserve a homeostatic response.
Collapse
Affiliation(s)
| | - Thomas R. Kleyman
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Departments of Cell Biology and of Pharmacology and Chemical BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
19
|
Sahinoz M, Elijovich F, Ertuglu LA, Ishimwe J, Pitzer A, Saleem M, Mwesigwa N, Kleyman TR, Laffer CL, Kirabo A. Salt Sensitivity of Blood Pressure in Blacks and Women: A Role of Inflammation, Oxidative Stress, and Epithelial Na + Channel. Antioxid Redox Signal 2021; 35:1477-1493. [PMID: 34569287 PMCID: PMC8713266 DOI: 10.1089/ars.2021.0212] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022]
Abstract
Significance: Salt sensitivity of blood pressure (SSBP) is an independent risk factor for mortality and morbidity due to cardiovascular disease, and disproportionately affects blacks and women. Several mechanisms have been proposed, including exaggerated activation of sodium transporters in the kidney leading to salt retention and water. Recent Advances: Recent studies have found that in addition to the renal epithelium, myeloid immune cells can sense sodium via the epithelial Na+ channel (ENaC), which leads to activation of the nicotinamide adenine dinucleotide phosphate oxidase enzyme complex, increased fatty acid oxidation, and production of isolevuglandins (IsoLGs). IsoLGs are immunogenic and contribute to salt-induced hypertension. In addition, aldosterone-mediated activation of ENaC has been attributed to the increased SSBP in women. The goal of this review is to highlight mechanisms contributing to SSBP in blacks and women, including, but not limited to increased activation of ENaC, fatty acid oxidation, and inflammation. Critical Issues: A critical barrier to progress in management of SSBP is that its diagnosis is not feasible in the clinic and is limited to expensive and laborious research protocols, which makes it difficult to investigate. Yet without understanding the underlying mechanisms, this important risk factor remains without treatment. Future Directions: Further studies are needed to understand the mechanisms that contribute to differential blood pressure responses to dietary salt and find feasible diagnostic tools. This is extremely important and may go a long way in mitigating the racial and sex disparities in cardiovascular outcomes. Antioxid. Redox Signal. 35, 1477-1493.
Collapse
Affiliation(s)
- Melis Sahinoz
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lale A. Ertuglu
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeanne Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ashley Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Naome Mwesigwa
- Department of Medicine and Dentistry, Kampala International University, Kampala, Uganda
| | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cheryl L. Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Mutchler SM, Hasan M, Kohan DE, Kleyman TR, Tan RJ. Deletion of the Gamma Subunit of ENaC in Endothelial Cells Does Not Protect against Renal Ischemia Reperfusion Injury. Int J Mol Sci 2021; 22:ijms222010914. [PMID: 34681576 PMCID: PMC8535410 DOI: 10.3390/ijms222010914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury due to renal ischemia-reperfusion injury (IRI) may lead to chronic or end stage kidney disease. A greater understanding of the cellular mechanisms underlying IRI are required to develop therapeutic options aimed at limiting or reversing damage from IRI. Prior work has shown that deletion of the α subunit of the epithelial Na+ channel (ENaC) in endothelial cells protects from IRI by increasing the availability of nitric oxide. While canonical ENaCs consist of an α, β, and γ subunit, there is evidence of non-canonical ENaC expression in endothelial cells involving the α subunit. We therefore tested whether the deletion of the γ subunit of ENaC also protects mice from IRI to differentiate between these channel configurations. Mice with endothelial-specific deletion of the γ subunit and control littermates were subjected to unilateral renal artery occlusion followed by 48 h of reperfusion. No significant difference was noted in injury between the two groups as assessed by serum creatinine and blood urea nitrogen, levels of specific kidney injury markers, and histological examination. While deletion of the γ subunit did not alter infiltration of immune cells or cytokine message, it was associated with an increase in levels of total and phosphorylated endothelial nitric oxide synthase (eNOS) in the injured kidneys. Our studies demonstrate that even though deletion of the γ subunit of ENaC may allow for greater activation of eNOS, this is not sufficient to prevent IRI, suggesting the protective effects of α subunit deletion may be due, in part, to other mechanisms.
Collapse
Affiliation(s)
- Stephanie M. Mutchler
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.M.); (R.J.T.)
| | - Mahpara Hasan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Donald E. Kohan
- Department of Medicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Thomas R. Kleyman
- Departments of Medicine, Cell Biology, and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence:
| | - Roderick J. Tan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.M.); (R.J.T.)
| |
Collapse
|
21
|
Nouri MZ, Yu L, Liu L, Chacko KM, Denslow ND, LaDisa JF, Alli AA. Increased endothelial sodium channel activity by extracellular vesicles in human aortic endothelial cells: Putative role of MLP1 and bioactive lipids. Am J Physiol Cell Physiol 2021; 321:C535-C548. [PMID: 34288724 DOI: 10.1152/ajpcell.00092.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) contain biological molecules and are secreted by cells into the extracellular milieu. The endothelial sodium channel (EnNaC) plays an important role in modulating endothelial cell stiffness. We hypothesized EVs secreted from human aortic endothelial cells (hAoEC) positively regulate EnNaC in an autocrine dependent manner. A comprehensive lipidomic analysis using targeted mass spectrometry was performed on multiple preparations of EVs isolated from the conditioned media of hAoEC or complete growth media of these cells. Cultured hAoEC challenged with EVs isolated from the conditioned media of these cells resulted in an increase in EnNaC activity when compared to the same concentration of media derived EVs or vehicle alone. EVs isolated from the conditioned media of hAoEC but not human fibroblast cells were enriched in MARCKS Like Protein 1 (MLP1). The pharmacological inhibition of the negative regulator of MLP1, protein kinase C, in cultured hAoEC resulted in an increase in EV size and release compared to vehicle or pharmacological inhibition of protein kinase D. The MLP1 enriched EVs increased the density of actin filaments in cultured hAoEC compared to EVs isolated from human fibroblast cells lacking MLP1. We quantified 141 lipids from glycerolipids, glycerophospholipids, and sphingolipids in conditioned media EVs that represented twice the number found in control media EVs. The concentrations of sphingomyelin, lysophosphatidylcholine and phosphatidylethanolamine were higher in conditioned media EVs. These results provide the first evidence for EnNaC regulation in hAoEC by EVs and provide insight into a possible mechanism involving MLP1, unsaturated lipids, and bioactive lipids.
Collapse
Affiliation(s)
- Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Ling Yu
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Lauren Liu
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Kevin M Chacko
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - John F LaDisa
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States.,Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL, United States
| |
Collapse
|
22
|
Zhang J, Yuan HK, Chen S, Zhang ZR. Detrimental or beneficial: Role of endothelial ENaC in vascular function. J Cell Physiol 2021; 237:29-48. [PMID: 34279047 DOI: 10.1002/jcp.30505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
In the past, it was believed that the expression of the epithelial sodium channel (ENaC) was restricted to epithelial tissues, such as the distal nephron, airway, sweat glands, and colon, where it is critical for sodium homeostasis. Over the past two decades, this paradigm has shifted due to the finding that ENaC is also expressed in various nonepithelial tissues, notably in vascular endothelial cells. In this review, the recent findings of the expression, regulation, and function of the endothelial ENaC (EnNaC) are discussed. The expression of EnNaC subunits is reported in a variety of endothelial cell lines and vasculatures, but this is controversial across different species and vessels and is not a universal finding in all vascular beds. The expression density of EnNaC is very faint compared to ENaC in the epithelium. To date, little is known about the regulatory mechanism of EnNaC. Through it can be regulated by aldosterone, the detailed downstream signaling remains elusive. EnNaC responds to increased extracellular sodium with the feedforward activation mechanism, which is quite different from the Na+ self-inhibition mechanism of ENaC. Functionally, EnNaC was shown to be a determinant of cellular mechanics and vascular tone as it can sense shear stress, and its activation or insertion into plasma membrane causes endothelial stiffness and reduced nitric oxide production. However, in some blood vessels, EnNaC is essential for maintaining the integrity of endothelial barrier function. In this context, we discuss the possible reasons for the distinct role of EnNaC in vasculatures.
Collapse
Affiliation(s)
- Jun Zhang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Kai Yuan
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Chen
- Department of Biopharmaceutical Sciences, School of Pharmacy, Harbin Medical University (Daqing), Daqing, China
| | - Zhi-Ren Zhang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| |
Collapse
|
23
|
Elijovich F, Kleyman TR, Laffer CL, Kirabo A. Immune Mechanisms of Dietary Salt-Induced Hypertension and Kidney Disease: Harry Goldblatt Award for Early Career Investigators 2020. Hypertension 2021; 78:252-260. [PMID: 34232678 DOI: 10.1161/hypertensionaha.121.16495] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Salt sensitivity of blood pressure is an independent risk factor for cardiovascular mortality not only in hypertensive but also in normotensive adults. The diagnosis of salt sensitivity of blood pressure is not feasible in the clinic due to lack of a simple diagnostic test, making it difficult to investigate therapeutic strategies. Most research efforts to understand the mechanisms of salt sensitivity of blood pressure have focused on renal regulation of sodium. However, salt retention or plasma volume expansion is not different between salt-sensitive and salt-resistant individuals. In addition, over 70% of extracellular fluid is interstitial and, therefore, not directly controlled by renal salt and water excretion. We discuss in this review how the seminal work by Harry Goldblatt paved the way for our attempts at understanding the mechanisms that underlie immune activation by salt in hypertension. We describe our findings that sodium, entering antigen-presenting cells via an epithelial sodium channel, triggers a PKC (protein kinase C)- and SGK1 (serum/glucocorticoid kinase 1)-stimulated activation of nicotinamide adenine dinucleotide phosphate oxidase, which, in turn, enhances lipid oxidation with generation of highly reactive isolevuglandins. Isolevuglandins adduct to proteins, with the potential to generate degraded peptide neoantigens. Activated antigen-presenting cells increase production of the TH17 polarizing cytokines, IL (interleukin)-6, IL-1β, and IL-23, which leads to differentiation and proliferation of IL-17A producing T cells. Our laboratory and others have shown that this cytokine contributes to hypertension. We also discuss where this sodium activation of antigen-presenting cells may occur in vivo and describe the multiple experiments, with pharmacological antagonists and knockout mice that we used to unravel this sequence of events in rodents. Finally, we describe experiments in mononuclear cells obtained from normotensive or hypertensive volunteers, which confirm that analogous processes of salt-induced immunity take place in humans.
Collapse
Affiliation(s)
- Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (F.E., C.L.L., A.K.)
| | - Thomas R Kleyman
- Departments of Medicine, Cell Biology, Pharmacology, and Chemical Biology, University of Pittsburgh, PA (T.R.K.)
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (F.E., C.L.L., A.K.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (F.E., C.L.L., A.K.)
| |
Collapse
|
24
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Wang QS, Liang C, Jiang S, Zhu D, Sun Y, Niu N, Yang X, Yang YC, Dong BH, Yao J, Yu CJ, Lou J, Tang LL, Wu MM, Zhang ZR, Ma HP. NaHS or Lovastatin Attenuates Cyclosporine A-Induced Hypertension in Rats by Inhibiting Epithelial Sodium Channels. Front Pharmacol 2021; 12:665111. [PMID: 34122084 PMCID: PMC8187945 DOI: 10.3389/fphar.2021.665111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/19/2021] [Indexed: 12/01/2022] Open
Abstract
The use of cyclosporine A (CsA) in transplant recipients is limited due to its side effects of causing severe hypertension. We have previously shown that CsA increases the activity of the epithelial sodium channel (ENaC) in cultured distal nephron cells. However, it remains unknown whether ENaC mediates CsA-induced hypertension and how we could prevent hypertension. Our data show that the open probability of ENaC in principal cells of split-open cortical collecting ducts was significantly increased after treatment of rats with CsA; the increase was attenuated by lovastatin. Moreover, CsA also elevated the levels of intracellular cholesterol (Cho), intracellular reactive oxygen species (ROS) via activation of NADPH oxidase p47phox, serum- and glucocorticoid-induced kinase isoform 1 (Sgk1), and phosphorylated neural precursor cell-expressed developmentally downregulated protein 4-2 (p-Nedd4-2) in the kidney cortex. Lovastatin also abolished CsA-induced elevation of α-, ß-, and γ-ENaC expressions. CsA elevated systolic blood pressure in rats; the elevation was completely reversed by lovastatin (an inhibitor of cholesterol synthesis), NaHS (a donor of H2S which ameliorated CsA-induced elevation of reactive oxygen species), or amiloride (a potent ENaC blocker). These results suggest that CsA elevates blood pressure by increasing ENaC activity via a signaling cascade associated with elevation of intracellular ROS, activation of Sgk1, and inactivation of Nedd4-2 in an intracellular cholesterol-dependent manner. Our data also show that NaHS ameliorates CsA-induced hypertension by inhibition of oxidative stress.
Collapse
Affiliation(s)
- Qiu-Shi Wang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Chen Liang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Shuai Jiang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Di Zhu
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Yu Sun
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Na Niu
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Xu Yang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Yan-Chao Yang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Bi-Han Dong
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Jie Yao
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Chang-Jiang Yu
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Jie Lou
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Liang-Liang Tang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Ming-Ming Wu
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Zhi-Ren Zhang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder & cancer related cardiovascular diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
26
|
Ware AW, Harris JJ, Slatter TL, Cunliffe HE, McDonald FJ. The epithelial sodium channel has a role in breast cancer cell proliferation. Breast Cancer Res Treat 2021; 187:31-43. [PMID: 33630195 DOI: 10.1007/s10549-021-06133-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Breast cancer is the most common cancer affecting women worldwide with half a million associated deaths annually. Despite a huge global effort, the pathways of breast cancer progression are not fully elucidated. Ion channels have recently emerged as novel regulators of cancer cell proliferation and metastasis. The epithelial sodium channel, ENaC, made up of α, β and γ subunits is well known for its role in Na+ reabsorption in epithelia, but a number of novel roles for ENaC have been described, including potential roles in cancer. A role for ENaC in breast cancer, however, has yet to be described. Therefore, the effects of ENaC level and activity on breast cancer proliferation were investigated. METHODS Through the publicly available SCAN-B dataset associations between αENaC mRNA expression and breast cancer subtypes, proliferation markers and epithelial-mesenchymal transition markers (EMT) were assessed. αENaC expression, through overexpression or siRNA-mediated knockdown, and activity, through the ENaC-specific inhibitor amiloride, were altered in MCF7, T47D, BT549, and MDAMB231 breast cancer cells. MTT and EdU cell proliferation assays were used to determine the effect of these manipulations on breast cancer cell proliferation. RESULTS High αENaC mRNA expression was associated with less aggressive and less proliferative breast cancer subtypes and with reduced expression of proliferation markers. Decreased αENaC expression or activity, in the mesenchymal breast cancer cell lines BT549 and MDAMB231, increased breast cancer cell proliferation. Conversely, increased αENaC expression decreased breast cancer cell proliferation. CONCLUSION αENaC expression is associated with a poor prognosis in breast cancer and is a novel regulator of breast cancer cell proliferation. Taken together, these results identify ENaC as a potential future therapeutic target.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Joshua J Harris
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Heather E Cunliffe
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
27
|
Paudel P, McDonald FJ, Fronius M. The δ subunit of epithelial sodium channel in humans-a potential player in vascular physiology. Am J Physiol Heart Circ Physiol 2020; 320:H487-H493. [PMID: 33275523 DOI: 10.1152/ajpheart.00800.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular epithelial sodium channels (ENaCs) made up of canonical α, β, and γ subunits have attracted more attention recently owing to their physiological role in vascular health and disease. A fourth subunit, δ-ENaC, is expressed in various mammalian species, except mice and rats, which are common animal models for cardiovascular research. Accordingly, δ-ENaC is the least understood subunit. However, the recent discovery of δ subunit in human vascular cells indicates that this subunit may play a significant role in normal/pathological vascular physiology in humans. Channels containing the δ subunit have different biophysical and pharmacological properties compared with channels containing the α subunit, with the potential to alter the vascular function of ENaC in health and disease. Hence, it is important to investigate the expression and function of δ-ENaC in the vasculature to identify whether δ-ENaC is a potential new drug target for the treatment of cardiovascular disease. In this review, we will focus on the existing knowledge of δ-ENaC and implications for vascular physiology and pathophysiology in humans.
Collapse
Affiliation(s)
- Puja Paudel
- Department of Physiology, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Martin Fronius
- Department of Physiology, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Hill MA, Jaisser F, Sowers JR. Role of the vascular endothelial sodium channel activation in the genesis of pathologically increased cardiovascular stiffness. Cardiovasc Res 2020; 118:130-140. [PMID: 33188592 DOI: 10.1093/cvr/cvaa326] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular (CV) stiffening represents a complex series of events evolving from pathological changes in individual cells of the vasculature and heart which leads to overt tissue fibrosis. While vascular stiffening occurs naturally with ageing it is accelerated in states of insulin (INS) resistance, such as obesity and type 2 diabetes. CV stiffening is clinically manifested as increased arterial pulse wave velocity and myocardial fibrosis-induced diastolic dysfunction. A key question that remains is how are these events mechanistically linked. In this regard, heightened activation of vascular mineralocorticoid receptors (MR) and hyperinsulinaemia occur in obesity and INS resistance states. Further, a downstream mediator of MR and INS receptor activation, the endothelial cell Na+ channel (EnNaC), has recently been identified as a key molecular determinant of endothelial dysfunction and CV fibrosis and stiffening. Increased activity of the EnNaC results in a number of negative consequences including stiffening of the cortical actin cytoskeleton in endothelial cells, impaired endothelial NO release, increased oxidative stress-meditated NO destruction, increased vascular permeability, and stimulation of an inflammatory environment. Such endothelial alterations impact vascular function and stiffening through regulation of vascular tone and stimulation of tissue remodelling including fibrosis. In the case of the heart, obesity and INS resistance are associated with coronary vascular endothelial stiffening and associated reductions in bioavailable NO leading to heart failure with preserved systolic function (HFpEF). After a brief discussion on mechanisms leading to vascular stiffness per se, this review then focuses on recent findings regarding the role of INS and aldosterone to enhance EnNaC activity and associated CV stiffness in obesity/INS resistance states. Finally, we discuss how coronary artery-mediated EnNaC activation may lead to cardiac fibrosis and HFpEF, a condition that is especially pronounced in obese and diabetic females.
Collapse
Affiliation(s)
- Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 134 Research Park Drive, Columbia, MO 65212, USA
| | - Frederic Jaisser
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, F-75006 Paris, France
| | - James R Sowers
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 134 Research Park Drive, Columbia, MO 65212, USA.,Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
29
|
Stimulation of Epithelial Sodium Channels in Endothelial Cells by Bone Morphogenetic Protein-4 Contributes to Salt-Sensitive Hypertension in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3921897. [PMID: 33194000 PMCID: PMC7641672 DOI: 10.1155/2020/3921897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/05/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023]
Abstract
Previous studies have shown that high salt induces artery stiffness by causing endothelial dysfunction via increased sodium influx. We used our unique split-open artery technique combined with protein biochemistry and in vitro measurement of vascular tone to test a hypothesis that bone morphogenetic protein 4 (BMP4) mediates high salt-induced loss of vascular relaxation by stimulating the epithelial sodium channel (ENaC) in endothelial cells. The data show that high salt intake increased BMP4 both in endothelial cells and in the serum and that exogenous BMP4 stimulated ENaC in endothelial cells. The data also show that the stimulation is mediated by p38 mitogen-activated protein kinases (p38 MAPK) and serum and glucocorticoid-regulated kinase 1 (Sgk1)/neural precursor cell expressed developmentally downregulated gene 4-2 (Nedd4-2) (Sgk1/Nedd4-2). Furthermore, BMP4 decreased mesenteric artery relaxation in a benzamil-sensitive manner. These results suggest that high salt intake stimulates endothelial cells to express and release BMP4 and that the released BMP4 reduces artery relaxation by stimulating ENaC in endothelial cells. Therefore, stimulation of ENaC in endothelial cells by BMP4 may serve as another pathway to participate in the complex mechanism of salt-sensitive (SS) hypertension.
Collapse
|
30
|
Niu N, Yang X, Zhang BL, Liang C, Zhu D, Wang QS, Cai YX, Yang YC, Ao X, Wu MM, Zhang ZR. Endothelial epithelial sodium channel involves in high-fat diet-induced atherosclerosis in low-density lipoprotein receptor-deficient mice. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165989. [PMID: 33065235 DOI: 10.1016/j.bbadis.2020.165989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/05/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
We previously showed that increased epithelial sodium channel (ENaC) activity in endothelial cells induced by oxidized low-density lipoprotein (ox-LDL) contributes to vasculature dysfunction. Here, we investigated whether ENaC participates in the pathological process of atherosclerosis using LDL receptor-deficient (LDLr-/-) mice. Male C57BL/6 and LDLr-/- mice were fed a normal diet (ND) or high fat diet (HFD) for 10 weeks. Our data show that treatment of LDLr-/- mice with a specific ENaC blocker, benzamil, significantly decreased atherosclerotic lesion formation and expression of matrix metalloproteinase 2 (MMP2) and metalloproteinase 9 (MMP9) in aortic arteries. Furthermore, benzamil ameliorated HFD-induced impairment of aortic endothelium-dependent dilation by reducing expression of proinflammatory cytokines, including TNF-α, IL-1β, and IL-6 and production of adhesion molecules including VCAM-1 and ICAM-1 in both C57BL/6 and LDLr-/- mice fed with HFD. In addition, HFD significantly increased ENaC activity and the levels of serum lipids, including ox-LDL. Our in vitro data further demonstrated that exogenous ox-LDL significantly increased the production of TNF-α, IL-1β, IL-6, VCAM-1 and ICAM-1. This ox-LDL-induced increase in inflammatory cytokines and adhesion molecules was reversed by γ-ENaC silencing or by treatment with the cyclooxygenase-2 (COX-2) antagonist celecoxib. Benzamil inhibited HFD-induced increase in COX-2 expression in aortic tissue in both C57BL/6 and LDLr-/- mice, and γ-ENaC gene silencing attenuated ox-LDL-induced COX-2 expression in HUVECs. These data together suggest that HFD-induced activation of ENaC stimulates inflammatory signaling, thereby contributes to HFD-induced endothelial dysfunction and atherosclerotic lesion formation. Thus, targeting endothelial ENaC may be a promising strategy to halt atherogenesis.
Collapse
Affiliation(s)
- Na Niu
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Xu Yang
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Bao-Long Zhang
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Chen Liang
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Di Zhu
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Qiu-Shi Wang
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Yong-Xu Cai
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Yan-Chao Yang
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Xue Ao
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Ming-Ming Wu
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China
| | - Zhi-Ren Zhang
- Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150081, China.
| |
Collapse
|
31
|
Cosgun ZC, Fels B, Kusche-Vihrog K. Nanomechanics of the Endothelial Glycocalyx. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:732-741. [DOI: 10.1016/j.ajpath.2019.07.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/10/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
|
32
|
It takes more than two to tango: mechanosignaling of the endothelial surface. Pflugers Arch 2020; 472:419-433. [PMID: 32239285 PMCID: PMC7165135 DOI: 10.1007/s00424-020-02369-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
The endothelial surface is a highly flexible signaling hub which is able to sense the hemodynamic forces of the streaming blood. The subsequent mechanosignaling is basically mediated by specific structures, like the endothelial glycocalyx building the top surface layer of endothelial cells as well as mechanosensitive ion channels within the endothelial plasma membrane. The mechanical properties of the endothelial cell surface are characterized by the dynamics of cytoskeletal proteins and play a key role in the process of signal transmission from the outside (lumen of the blood vessel) to the interior of the cell. Thus, the cell mechanics directly interact with the function of mechanosensitive structures and ion channels. To precisely maintain the vascular tone, a coordinated functional interdependency between endothelial cells and vascular smooth muscle cells is necessary. This is given by the fact that mechanosensitive ion channels are expressed in both cell types and that signals are transmitted via autocrine/paracrine mechanisms from layer to layer. Thus, the outer layer of the endothelial cells can be seen as important functional mechanosensitive and reactive cellular compartment. This review aims to describe the known mechanosensitive structures of the vessel building a bridge between the important role of physiological mechanosignaling and the proper vascular function. Since mutations and dysfunction of mechanosensitive proteins are linked to vascular pathologies such as hypertension, they play a potent role in the field of channelopathies and mechanomedicine.
Collapse
|
33
|
Padilla J, Woodford ML, Lastra-Gonzalez G, Martinez-Diaz V, Fujie S, Yang Y, Lising AMC, Ramirez-Perez FI, Aroor AR, Morales-Quinones M, Ghiarone T, Whaley-Connell A, Martinez-Lemus LA, Hill MA, Manrique-Acevedo C. Sexual Dimorphism in Obesity-Associated Endothelial ENaC Activity and Stiffening in Mice. Endocrinology 2019; 160:2918-2928. [PMID: 31617909 PMCID: PMC6853665 DOI: 10.1210/en.2019-00483] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023]
Abstract
Obesity and insulin resistance stiffen the vasculature, with females appearing to be more adversely affected. As augmented arterial stiffness is an independent predictor of cardiovascular disease (CVD), the increased predisposition of women with obesity and insulin resistance to arterial stiffening may explain their heightened risk for CVD. However, the cellular mechanisms by which females are more vulnerable to arterial stiffening associated with obesity and insulin resistance remain largely unknown. In this study, we provide evidence that female mice are more susceptible to Western diet-induced endothelial cell stiffening compared with age-matched males. Mechanistically, we show that the increased stiffening of the vascular intima in Western diet-fed female mice is accompanied by enhanced epithelial sodium channel (ENaC) activity in endothelial cells (EnNaC). Our data further indicate that: (i) estrogen signaling through estrogen receptor α (ERα) increases EnNaC activity to a larger extent in females compared with males, (ii) estrogen-induced activation of EnNaC is mediated by the serum/glucocorticoid inducible kinase 1 (SGK-1), and (iii) estrogen signaling stiffens endothelial cells when nitric oxide is lacking and this stiffening effect can be reduced with amiloride, an ENaC inhibitor. In aggregate, we demonstrate a sexual dimorphism in obesity-associated endothelial stiffening, whereby females are more vulnerable than males. In females, endothelial stiffening with obesity may be attributed to estrogen signaling through the ERα-SGK-1-EnNaC axis, thus establishing a putative therapeutic target for female obesity-related vascular stiffening.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Guido Lastra-Gonzalez
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | - Vanesa Martinez-Diaz
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | - Shumpei Fujie
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Faculty of Sport and Health Sciences, University of Tsukuba, Ibaraki, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Alexandre M C Lising
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Biological Engineering, University of Missouri, Columbia, Missouri
| | - Annayya R Aroor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Adam Whaley-Connell
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- Division of Nephrology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Biological Engineering, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- Correspondence: Camila Manrique-Acevedo, MD, Department of Medicine, University of Missouri, D109 Diabetes Center UHC, One Hospital Drive, Columbia, Missouri 65212. E-mail:
| |
Collapse
|
34
|
Sowers JR, Habibi J, Aroor AR, Yang Y, Lastra G, Hill MA, Whaley-Connell A, Jaisser F, Jia G. Epithelial sodium channels in endothelial cells mediate diet-induced endothelium stiffness and impaired vascular relaxation in obese female mice. Metabolism 2019; 99:57-66. [PMID: 31302199 PMCID: PMC6901094 DOI: 10.1016/j.metabol.2019.153946] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Mineralocorticoid receptor activation of the epithelial sodium channel in endothelial cells (ECs) (EnNaC) is accompanied by aldosterone induced endothelial stiffening and impaired nitric oxide (NO)-mediated arterial relaxation. Recent data support enhanced activity of the alpha subunit of EnNaC (αEnNaC) mediates this aldosterone induced endothelial stiffening and associated endothelial NO synthase (eNOS) activation. There is mounting evidence that diet induced obesity diminishes expression and activation of AMP-activated protein kinase α (AMPKα), sirtuin 1 (Sirt1), which would be expected to lead to impaired downstream eNOS activation. Thereby, we posited that enhanced EnNaC activation contributes to diet induced obesity related increases in stiffness of the endothelium and diminished NO mediated vascular relaxation by increasing oxidative stress and related inhibition of AMPKα, Sirt1, and associated eNOS inactivation. MATERIALS/METHODS Sixteen to twenty week-old αEnNaC knockout (αEnNaC-/-) and wild type littermate (EnNaC+/+) female mice were fed a mouse chow or an obesogenic western diet (WD) containing excess fat (46%) and fructose (17.5%) for 16 weeks. Sodium currents of ECs, endothelial stiffness and NO mediated aortic relaxation were examined along with indices of aortic oxidative stress, vascular remodeling and fibrosis. RESULTS Enhanced EnNaC activation-mediated WD-induced increases in sodium currents in isolated lung ECs, increased endothelial stiffness and impaired aortic endothelium-dependent relaxation to acetylcholine (10-9-10-4 mol/L). These abnormalities occurred in conjunction with WD-mediated aortic tissue oxidative stress, inflammation, and decreased activation of AMPKα, Sirt1, and downstream eNOS were substantially mitigated in αEnNaC-/- mice. Importantly, αEnNaC-/- prevented WD induced increases in endothelial stiffness and related impairment of endothelium-dependent relaxation as well as aortic fibrosis and remodeling. However, EnNaC signaling was not involved in diet-induced abnormal expression of adipokines and CYP11b2 in abdominal aortic perivascular adipose tissue. CONCLUSION These data suggest that endothelial specific EnNaC activation mediates WD-induced endothelial stiffness, impaired eNOS activation, aortic fibrosis and remodeling through increased aortic oxidative stress and increased inflammation related to a reduction of AMPKα and Sirt 1 mediated eNOS phosphorylation/activation and NO production.
Collapse
Affiliation(s)
- James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, 800 Hospital Dr, Columbia, MO 65201, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Javad Habibi
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, 800 Hospital Dr, Columbia, MO 65201, USA
| | - Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, 800 Hospital Dr, Columbia, MO 65201, USA
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA
| | - Guido Lastra
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, 800 Hospital Dr, Columbia, MO 65201, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Adam Whaley-Connell
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, 800 Hospital Dr, Columbia, MO 65201, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Frederic Jaisser
- INSERM, UMRS 1138, Cordeliers Research Center, Sorbonne University, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France
| | - Guanghong Jia
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, 800 Hospital Dr, Columbia, MO 65201, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| |
Collapse
|
35
|
The Absence of Endothelial Sodium Channel α (αENaC) Reduces Renal Ischemia/Reperfusion Injury. Int J Mol Sci 2019; 20:ijms20133132. [PMID: 31252520 PMCID: PMC6651193 DOI: 10.3390/ijms20133132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
The epithelial sodium channel (ENaC) has a key role in modulating endothelial cell stiffness and this in turn regulates nitric oxide (NO) synthesis. The physiological relevance of endothelial ENaC in pathological conditions where reduced NO bioavailability plays an essential role remains largely unexplored. Renal ischemia/reperfusion (IR) injury is characterized by vasoconstriction and sustained decrease in renal perfusion that is partially explained by a reduction in NO bioavailability. Therefore, we aimed to explore if an endothelial ENaC deficiency has an impact on the severity of renal injury induced by IR. Male mice with a specific endothelial sodium channel α (αENaC) subunit gene inactivation in the endothelium (endo-αENaCKO) and control littermates were subjected to bilateral renal ischemia of 22 min and were studied after 24 h of reperfusion. In control littermates, renal ischemia induced an increase in plasma creatinine and urea, augmented the kidney injury molecule-1 (Kim-1) and neutrophil gelatinase associated lipocalin-2 (NGAL) mRNA levels, and produced severe tubular injury. The absence of endothelial αENaC expression prevented renal tubular injury and renal dysfunction. Moreover, endo-αENaCKO mice recovered faster from renal hypoxia after the ischemia episode as compared to littermates. In human endothelial cells, pharmacological ENaC inhibition promoted endothelial nitric oxide synthase (eNOS) coupling and activation. Altogether, these data suggest an important role for endothelial αENaC in kidney IR injury through improving eNOS activation and kidney perfusion, thus, preventing ischemic injury.
Collapse
|
36
|
Mutchler SM, Kleyman TR. New insights regarding epithelial Na+ channel regulation and its role in the kidney, immune system and vasculature. Curr Opin Nephrol Hypertens 2019; 28:113-119. [PMID: 30585851 PMCID: PMC6349474 DOI: 10.1097/mnh.0000000000000479] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review describes recent findings regarding the epithelial Na channel (ENaC) and its roles in physiologic and pathophysiologic states. We discuss new insights regarding ENaC's structure, its regulation by various factors, its potential role in hypertension and nephrotic syndrome, and its roles in the immune system and vasculature. RECENT FINDINGS A recently resolved structure of ENaC provides clues regarding mechanisms of ENaC activation by proteases. The use of amiloride in nephrotic syndrome, and associated complications are discussed. ENaC is expressed in dendritic cells and contributes to immune system activation and increases in blood pressure in response to NaCl. ENaC is expressed in endothelial ENaC and has a role in regulating vascular tone. SUMMARY New findings have emerged regarding ENaC and its role in the kidney, immune system, and vasculature.
Collapse
Affiliation(s)
- Stephanie M. Mutchler
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
37
|
Maase M, Rygula A, Pacia MZ, Proniewski B, Mateuszuk L, Sternak M, Kaczor A, Chlopicki S, Kusche-Vihrog K. Combined Raman- and AFM-based detection of biochemical and nanomechanical features of endothelial dysfunction in aorta isolated from ApoE/LDLR-/- mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 16:97-105. [PMID: 30550804 DOI: 10.1016/j.nano.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 01/08/2023]
Abstract
Endothelial dysfunction is recognized as a critical condition in the development of cardiovascular disorders. This multifactorial process involves changes in the biochemical and mechanical properties of endothelial cells leading to disturbed release of vasoprotective mediators. Hypercholesterolemia and increased stiffness of the endothelial cortex are independently shown to result in reduced release of nitric oxide and thus endothelial dysfunction. However, direct evidence linking these parameters to each other is missing. Here, a novel method combining Raman spectroscopy for biochemical analysis and Atomic Force Microscopy (AFM) for analyzing the endothelial nanomechanics was established. Using this dual approach, the same areas of native ex vivo aortas were investigated, either derived from mice with endothelial dysfunction (ApoE/LDLR-/-) or wild type mice. In particular an increased intracellular lipid content and elevated cortical stiffness/elasticity were shown in ApoE/LDLR-/- aortas, demonstrating a direct link between endothelial dysfunction, the biochemical composition and the nanomechanical properties of endothelial cells.
Collapse
Affiliation(s)
- Martina Maase
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27b, 48149 Münster, Germany
| | - Anna Rygula
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Marta Z Pacia
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; Chair of Pharmacology, Jagiellonian University, Grzegorzecka 16, 31-531 Krakow, Poland.
| | - Kristina Kusche-Vihrog
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27b, 48149 Münster, Germany; Institute of Physiology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
38
|
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. Changing views on the common physiologic abnormality that mediates salt sensitivity and initiation of salt-induced hypertension: Japanese research underpinning the vasodysfunction theory of salt sensitivity. Hypertens Res 2018; 42:6-18. [DOI: 10.1038/s41440-018-0122-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/24/2022]
|
39
|
Jia G, Habibi J, Aroor AR, Hill MA, Yang Y, Whaley-Connell A, Jaisser F, Sowers JR. Epithelial Sodium Channel in Aldosterone-Induced Endothelium Stiffness and Aortic Dysfunction. Hypertension 2018; 72:731-738. [PMID: 29987101 PMCID: PMC6202124 DOI: 10.1161/hypertensionaha.118.11339] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022]
Abstract
Enhanced activation of the endothelial mineralocorticoid receptor contributes to the development of arterial stiffness, which is an independent predictor of cardiovascular disease. Previously, we showed that enhanced endothelium mineralocorticoid receptor signaling in female mice prompts expression and translocation of the α-subunit of the epithelial sodium channel to the endothelial cell (EC) surface (EnNaC) inducing vascular fibrosis and stiffness. Further, amiloride, an epithelial sodium channel antagonist, inhibits vascular fibrosis, remodeling, and stiffness induced by feeding a Western diet high in saturated fat and refined carbohydrates. However, how this occurs remains unknown. Thereby, we hypothesized that endothelial cell-specific EnNaC activation is necessary for aldosterone-mediated endothelium stiffness. To address this notion, EnNaC α-subunit knockout (EnNaC-/-) and wild-type littermate female mice were administrated aldosterone (250 µg/kg per day) via osmotic minipumps for 3 weeks beginning at 25 to 28 weeks of age. In isolated mouse endothelial cells, inward sodium currents were significantly reduced in amiloride controls, as well as in EnNaC-/-. Likewise, aldosterone-induced endothelium stiffness was increased and endothelium-dependent relaxation less in EnNaC-/- versus wild-type. Further, EnNaC-/- mice exhibited attenuated responses to aldosterone infusion, including aortic endoplasmic reticulum stress, endothelium nitric oxide synthase activation, endothelium permeability, expression of proinflammatory cytokines, oxidative stress, and aortic collagen 1 deposition, supporting the notion that αEnNaC subunit activation contributes to these vascular responses.
Collapse
Affiliation(s)
- Guanghong Jia
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
| | - Javad Habibi
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
| | - Annayya R. Aroor
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
| | - Michael A. Hill
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65212, USA
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65212, USA
| | - Adam Whaley-Connell
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
| | - Frederic Jaisser
- INSERM, UMR_S 1138, Team 1, Centre de Recherche des Cordeliers, UPMC Univ Paris 06, Université Paris Descartes, F-75006, Paris, France
| | - James R. Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65212, USA
| |
Collapse
|
40
|
Ettema EM, Kuipers J, van Faassen M, Groen H, van Roon AM, Lefrandt JD, Westerhuis R, Kema IP, van Goor H, Gansevoort RT, Gaillard CAJM, Franssen CFM. Effect of plasma sodium concentration on blood pressure regulators during hemodialysis: a randomized crossover study. BMC Nephrol 2018; 19:214. [PMID: 30134847 PMCID: PMC6106825 DOI: 10.1186/s12882-018-0997-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 08/01/2018] [Indexed: 12/21/2022] Open
Abstract
Background Intradialytic hypotension is a common complication of hemodialysis. The Hemocontrol biofeedback system, improving intradialytic hemodynamic stability, is associated with an initial transient increase in plasma sodium levels. Increases in sodium could affect blood pressure regulators. Methods We investigated whether Hemocontrol dialysis affects vasopressin and copeptin levels, endothelial function, and sympathetic activity in twenty-nine chronic hemodialysis patients. Each patient underwent one standard hemodialysis and one Hemocontrol hemodialysis. Plasma sodium, osmolality, nitrite and nitrate (NOx), endothelin-1, angiopoietins-1 and 2, and methemoglobin as measures of endothelial function, plasma catecholamines as indices of sympathetic activity and plasma vasopressin and copeptin levels were measured six times during each modality. Blood pressure, heart rate, blood volume, and heart rate variability were repeatedly monitored. Generalized Estimating Equations was used to compare the course of the parameters during the two treatment modalities. Results Plasma sodium and osmolality were significantly higher during the first two hours of Hemocontrol hemodialysis. Overall, mean arterial pressure (MAP) was higher during Hemocontrol dialysis. Neither the measures of endothelial function and sympathetic activity nor copeptin levels differed between the two dialysis modalities. In contrast, plasma vasopressin levels were significantly higher during the first half of Hemocontrol dialysis. The intradialytic course of vasopressin was associated with the course of MAP. Conclusions A transient intradialytic increase in plasma sodium did not affect indices of endothelial function or sympathetic activity compared with standard hemodialysis, but coincided with higher plasma vasopressin levels. The beneficial effect of higher intradialytic sodium levels on hemodynamic stability might be mediated by vasopressin. Trial registration ClinicalTrials.gov. Identifier: NCT03578510. Date of registration: July 5th, 2018. Retrospectively registered.
Collapse
Affiliation(s)
- Esmée M Ettema
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, PO box 30, 001 9700, RB, Groningen, The Netherlands.
| | | | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henk Groen
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arie M van Roon
- Department of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joop D Lefrandt
- Department of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, PO box 30, 001 9700, RB, Groningen, The Netherlands
| | - Carlo A J M Gaillard
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, PO box 30, 001 9700, RB, Groningen, The Netherlands
| | - Casper F M Franssen
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, PO box 30, 001 9700, RB, Groningen, The Netherlands
| |
Collapse
|
41
|
Mohammadkarim A, Tabatabaei M, Parandakh A, Mokhtari-Dizaji M, Tafazzoli-Shadpour M, Khani MM. Radiation therapy affects the mechanical behavior of human umbilical vein endothelial cells. J Mech Behav Biomed Mater 2018; 85:188-193. [PMID: 29908486 DOI: 10.1016/j.jmbbm.2018.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/21/2018] [Accepted: 06/05/2018] [Indexed: 12/27/2022]
Abstract
Radiation therapy has been widely utilized as an effective method to eliminate malignant tumors and cancerous cells. However, subjection of healthy tissues and the related networks of blood vessels adjacent to the tumor area to irradiation is inevitable. The aim of this study was to investigate the consequent effects of fractionation radiotherapy on the mechanical characteristics of human umbilical vein endothelial cells (HUVECs) through alterations in cytoskeleton organization and cell and nucleus morphology. In order to simulate the clinical condition of radiotherapy, the HUVECs were exposed to the specific dose of 2 Gy for 1-4 times among four groups with incremental total dose from 2 Gy up to 8 Gy. Fluorescence staining was performed to label F-actin filaments and nuclei. Micropipette aspiration and standard linear solid model were employed to evaluate the elastic and viscoelastic characteristics of the HUVECs. Radiotherapy significantly increased cell elastic moduli. Due to irradiation, instantaneous and equilibrium Young's modulus were also increased. Radiotherapy diminished HUVECs viscoelastic behavior and shifted their creep compliance curves downward. Furthermore, gamma irradiation elevated the nuclei sizes and to a lesser extent the cells sizes resulting in the accumulation of F-actin filaments within the rest of cell body. Endothelial stiffening correlates with endothelial dysfunction, hence the results may be helpful when the consequent effects of radiotherapy are the focus of concern.
Collapse
Affiliation(s)
- Alireza Mohammadkarim
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Tabatabaei
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Azim Parandakh
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Manijhe Mokhtari-Dizaji
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Tafazzoli-Shadpour
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Sternak M, Bar A, Adamski MG, Mohaissen T, Marczyk B, Kieronska A, Stojak M, Kus K, Tarjus A, Jaisser F, Chlopicki S. The Deletion of Endothelial Sodium Channel α (αENaC) Impairs Endothelium-Dependent Vasodilation and Endothelial Barrier Integrity in Endotoxemia in Vivo. Front Pharmacol 2018; 9:178. [PMID: 29692722 PMCID: PMC5902527 DOI: 10.3389/fphar.2018.00178] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/16/2018] [Indexed: 01/09/2023] Open
Abstract
The role of epithelial sodium channel (ENaC) activity in the regulation of endothelial function is not clear. Here, we analyze the role of ENaC in the regulation of endothelium-dependent vasodilation and endothelial permeability in vivo in mice with conditional αENaC subunit gene inactivation in the endothelium (endo-αENaCKO mice) using unique MRI-based analysis of acetylcholine-, flow-mediated dilation and vascular permeability. Mice were challenged or not with lipopolysaccharide (LPS, from Salmonella typhosa, 10 mg/kg, i.p.). In addition, changes in vascular permeability in ex vivo organs were analyzed by Evans Blue assay, while changes in vascular permeability in perfused mesenteric artery were determined by a FITC-dextran-based assay. In basal conditions, Ach-induced response was completely lost, flow-induced vasodilation was inhibited approximately by half but endothelial permeability was not changed in endo-αENaCKO vs. control mice. In LPS-treated mice, both Ach- and flow-induced vasodilation was more severely impaired in endo-αENaCKO vs. control mice. There was also a dramatic increase in permeability in lungs, brain and isolated vessels as evidenced by in vivo and ex vivo analysis in endotoxemic endo-αENaCKO vs. control mice. The impaired endothelial function in endotoxemia in endo-αENaCKO was associated with a decrease of lectin and CD31 endothelial staining in the lung as compared with control mice. In conclusion, the activity of endothelial ENaC in vivo contributes to endothelial-dependent vasodilation in the physiological conditions and the preservation of endothelial barrier integrity in endotoxemia.
Collapse
Affiliation(s)
- Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Mateusz G Adamski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland.,Chair and Department of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Anna Kieronska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Antoine Tarjus
- INSERM UMRS1138, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France
| | - Frederic Jaisser
- INSERM UMRS1138, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France.,INSERM, Clinical Investigation Centre 1433, Vandœuvre-lès-Nancy, France
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
43
|
Ashley Z, Mugloo S, McDonald FJ, Fronius M. Epithelial Na + channel differentially contributes to shear stress-mediated vascular responsiveness in carotid and mesenteric arteries from mice. Am J Physiol Heart Circ Physiol 2018; 314:H1022-H1032. [PMID: 29373035 DOI: 10.1152/ajpheart.00506.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A potential "new player" in arteries for mediating shear stress responses is the epithelial Na+ channel (ENaC). The contribution of ENaC as shear sensor in intact arteries, and particularly different types of arteries (conduit and resistance), is unknown. We investigated the role of ENaC in both conduit (carotid) and resistance (third-order mesenteric) arteries isolated from C57Bl/6J mice. Vessel characteristics were determined at baseline (60 mmHg, no flow) and in response to increased intraluminal pressure and shear stress using a pressure myograph. These protocols were performed in the absence and presence of the ENaC inhibitor amiloride (10 µM) and after inhibition of endothelial nitric oxide synthase (eNOS) by Nω-nitro-l-arginine methyl ester (l-NAME; 100 µM). Under no-flow conditions, amiloride increased internal and external diameters of carotid (13 ± 2%, P < 0.05) but not mesenteric (0.5 ± 0.9%, P > 0.05) arteries. In response to increased intraluminal pressure, amiloride had no effect on the internal diameter of either type of artery. However, amiloride affected the stress-strain curves of mesenteric arteries. With increased shear stress, ENaC-dependent effects were observed in both arteries. In carotid arteries, amiloride augmented flow-mediated dilation (9.2 ± 5.3%) compared with control (no amiloride, 6.2 ± 3.3%, P < 0.05). In mesenteric arteries, amiloride induced a flow-mediated constriction (-11.5 ± 6.6%) compared with control (-2.2 ± 4.5%, P < 0.05). l-NAME mimicked the effect of ENaC inhibition and prevented further amiloride effects in both types of arteries. These observations indicate that ENaC contributes to shear sensing in conduit and resistance arteries. ENaC-mediated effects were associated with NO production but may involve different (artery-dependent) downstream signaling pathways. NEW & NOTEWORTHY The epithelial Na+ channel (ENaC) contributes to shear sensing in conduit and resistance arteries. In conduit arteries ENaC has a role as a vasoconstrictor, whereas in resistance arteries ENaC contributes to vasodilation. Interaction of ENaC with endothelial nitric oxide synthase/nitric oxide signaling to mediate the effects is supported; however, cross talk with other shear stress-dependent signaling pathways cannot be excluded.
Collapse
Affiliation(s)
- Zoe Ashley
- Department of Physiology, University of Otago , Dunedin , New Zealand.,HeartOtago, University of Otago , Dunedin , New Zealand
| | - Sama Mugloo
- Department of Physiology, University of Otago , Dunedin , New Zealand.,HeartOtago, University of Otago , Dunedin , New Zealand
| | - Fiona J McDonald
- Department of Physiology, University of Otago , Dunedin , New Zealand
| | - Martin Fronius
- Department of Physiology, University of Otago , Dunedin , New Zealand.,HeartOtago, University of Otago , Dunedin , New Zealand
| |
Collapse
|
44
|
Prystopiuk V, Fels B, Simon CS, Liashkovich I, Pasrednik D, Kronlage C, Wedlich-Söldner R, Oberleithner H, Fels J. A two-phase response of endothelial cells to hydrostatic pressure. J Cell Sci 2018; 131:jcs.206920. [DOI: 10.1242/jcs.206920] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 05/10/2018] [Indexed: 01/15/2023] Open
Abstract
The vascular endothelium is exposed to three types of mechanical forces: blood flow-mediated shear stress, vessel-diameter dependent wall tension and hydrostatic pressure. Despite considerable variations of blood pressure in normal and pathological physiology, little is known about the acute molecular and cellular effects of hydrostatic pressure on endothelial cells. Here, we used a combination of quantitative fluorescence microscopy, atomic force microscopy and molecular perturbations to characterize the specific response of endothelial cells to pressure application. We identified a two-phase response of endothelial cells to acute (1 h) vs. chronic (24 h) pressure application (100 mmHg). While both regimes induce cortical stiffening, the acute response is linked to calcium-mediated myosin activation, whereas the chronic cell response is dominated by increased cortical actin density and a loss in endothelial barrier function. GsMTx-4 and amiloride inhibit the acute pressure response, which suggest the sodium channel ENaC as key player in endothelial pressure sensing. The described two-phase pressure response may participate in the differential effects of transient changes in blood pressure and hypertension.
Collapse
Affiliation(s)
- Valeria Prystopiuk
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
- current address: Institute of Life Sciences, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, Louvain-la-Neuve B-1348, Belgium
| | - Benedikt Fels
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
| | - Caroline Sophie Simon
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
| | - Ivan Liashkovich
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
| | - Dzmitry Pasrednik
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
| | - Cornelius Kronlage
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
| | - Hans Oberleithner
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
| | - Johannes Fels
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
| |
Collapse
|
45
|
Aroor AR, Jia G, Sowers JR. Cellular mechanisms underlying obesity-induced arterial stiffness. Am J Physiol Regul Integr Comp Physiol 2017; 314:R387-R398. [PMID: 29167167 DOI: 10.1152/ajpregu.00235.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is an emerging pandemic driven by consumption of a diet rich in fat and highly refined carbohydrates (a Western diet) and a sedentary lifestyle in both children and adults. There is mounting evidence that arterial stiffness in obesity is an independent and strong predictor of cardiovascular disease (CVD), cognitive functional decline, and chronic kidney disease. Cardiovascular stiffness is a precursor to atherosclerosis, systolic hypertension, cardiac diastolic dysfunction, and impairment of coronary and cerebral flow. Moreover, premenopausal women lose the CVD protection normally afforded to them in the setting of obesity, insulin resistance, and diabetes, and this loss of CVD protection is inextricably linked to an increased propensity for arterial stiffness. Stiffness of endothelial and vascular smooth muscle cells, extracellular matrix remodeling, perivascular adipose tissue inflammation, and immune cell dysfunction contribute to the development of arterial stiffness in obesity. Enhanced endothelial cortical stiffness decreases endothelial generation of nitric oxide, and increased oxidative stress promotes destruction of nitric oxide. Our research over the past 5 years has underscored an important role of increased aldosterone and vascular mineralocorticoid receptor activation in driving development of cardiovascular stiffness, especially in females consuming a Western diet. In this review the cellular mechanisms of obesity-associated arterial stiffness are highlighted.
Collapse
Affiliation(s)
- Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Harry S Truman Memorial Veterans Hospital , Columbia, Missouri
| | - Guanghong Jia
- Diabetes and Cardiovascular Center, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Harry S Truman Memorial Veterans Hospital , Columbia, Missouri
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Departments of Medical Pharmacology and Physiology, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Harry S Truman Memorial Veterans Hospital , Columbia, Missouri.,Dalton Cardiovascular Center Columbia , Columbia, Missouri
| |
Collapse
|
46
|
AFM-based detection of glycocalyx degradation and endothelial stiffening in the db/db mouse model of diabetes. Sci Rep 2017; 7:15951. [PMID: 29162916 PMCID: PMC5698475 DOI: 10.1038/s41598-017-16179-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/08/2017] [Indexed: 02/08/2023] Open
Abstract
Degradation of the glycocalyx and stiffening of endothelium are important pathophysiological components of endothelial dysfunction. However, to our knowledge, these events have not been investigated in tandem in experimental diabetes. Here, the mechanical properties of the glycocalyx and endothelium in ex vivo mouse aorta were determined simultaneously in indentation experiments with an atomic force microscope (AFM) for diabetic db/db and control db/+ mice at ages of 11–19 weeks. To analyze highly heterogeneous aorta samples, we developed a tailored classification procedure of indentation data based on a bi-layer brush model supplemented with Hertz model for quantification of nanomechanics of endothelial regions with and without the glycocalyx surface. In db/db mice, marked endothelial stiffening and reduced glycocalyx coverage were present already in 11-week-old mice and persisted in older animals. In contrast, reduction of the effective glycocalyx length was progressive and was most pronounced in 19-week-old db/db mice. The reduction of the glycocalyx length correlated with an increasing level of glycated haemoglobin and decreased endothelial NO production. In conclusion, AFM nanoindentation analysis revealed that stiffening of endothelial cells and diminished glycocalyx coverage occurred in early diabetes and were followed by the reduction of the glycocalyx length that correlated with diabetes progression.
Collapse
|
47
|
The endothelial αENaC contributes to vascular endothelial function in vivo. PLoS One 2017; 12:e0185319. [PMID: 28950003 PMCID: PMC5614594 DOI: 10.1371/journal.pone.0185319] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/11/2017] [Indexed: 11/19/2022] Open
Abstract
The Epithelial Sodium Channel (ENaC) is a key player in renal sodium homeostasis. The expression of α β γ ENaC subunits has also been described in the endothelium and vascular smooth muscle, suggesting a role in vascular function. We recently demonstrated that endothelial ENaC is involved in aldosterone-modulated endothelial stiffness. Here we explore the functional role of the endothelial αENaC subunit in vascular function in vivo. Compared to littermates, mice with conditional αENaC subunit gene inactivation in the endothelium only (endo-αENaC Knock Out mice) had no difference in their physiological parameters such as systolic blood pressure or heart rate. Acute and long-term renal Na+ handlings were not affected, indicating that endothelial αENaC subunit is not involved in renal sodium balance. Pharmacological inhibition of ENaC with benzamil blunted acetylcholine-induced nitric oxide production in mesenteric arteries from wild type mice but not in endo-αENaC KO mice, suggesting a critical role of endothelial ENaC in agonist-induced nitric oxide production. In endo-αENaC KO mice, compensatory mechanisms occurred and steady state vascular function was not altered except for flow-mediated dilation. Our data suggest that endothelial αENaC contributes to vascular endothelial function in vivo.
Collapse
|
48
|
Baratchi S, Khoshmanesh K, Woodman OL, Potocnik S, Peter K, McIntyre P. Molecular Sensors of Blood Flow in Endothelial Cells. Trends Mol Med 2017; 23:850-868. [PMID: 28811171 DOI: 10.1016/j.molmed.2017.07.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Mechanical stress from blood flow has a significant effect on endothelial physiology, with a key role in initiating vasoregulatory signals. Disturbances in blood flow, such as in regions of disease-associated stenosis, arterial branch points, and sharp turns, can induce proatherogenic phenotypes in endothelial cells. The disruption of vascular homeostasis as a result of endothelial dysfunction may contribute to early and late stages of atherosclerosis, the underlying cause of coronary artery disease. In-depth knowledge of the mechanobiology of endothelial cells is essential to identifying mechanosensory complexes involved in the pathogenesis of atherosclerosis. In this review, we describe different blood flow patterns and summarize current knowledge on mechanosensory molecules regulating endothelial vasoregulatory functions, with clinical implications. Such information may help in the search for novel therapeutic approaches.
Collapse
Affiliation(s)
- Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
| | | | - Owen L Woodman
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Simon Potocnik
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Karlheinz Peter
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| |
Collapse
|
49
|
Chen L, Higgins PJ, Zhang W. Development and Diseases of the Collecting Duct System. Results Probl Cell Differ 2017; 60:165-203. [PMID: 28409346 DOI: 10.1007/978-3-319-51436-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The collecting duct of the mammalian kidney is important for the regulation of extracellular volume, osmolarity, and pH. There are two major structurally and functionally distinct cell types: principal cells and intercalated cells. The former regulates Na+ and water homeostasis, while the latter participates in acid-base homeostasis. In vivo lineage tracing using Cre recombinase or its derivatives such as CreGFP and CreERT2 is a powerful new technique to identify stem/progenitor cells in their native environment and to decipher the origins of the tissue that they give rise to. Recent studies using this technique in mice have revealed multiple renal progenitor cell populations that differentiate into various nephron segments and collecting duct. In particular, emerging evidence suggests that like principal cells, most of intercalated cells originate from the progenitor cells expressing water channel Aquaporin 2. Mutations or malfunctions of the channels, pumps, and transporters expressed in the collecting duct system cause various human diseases. For example, gain-of-function mutations in ENaC cause Liddle's syndrome, while loss-of-function mutations in ENaC lead to Pseudohypoaldosteronism type 1. Mutations in either AE1 or V-ATPase B1 result in distal renal tubular acidosis. Patients with disrupted AQP2 or AVPR2 develop nephrogenic diabetes insipidus. A better understanding of the function and development of the collecting duct system may facilitate the discovery of new therapeutic strategies for treating kidney disease.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, NHLBI, Bethesda, MD, 20892-1603, USA
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
50
|
Czikora I, Alli AA, Sridhar S, Matthay MA, Pillich H, Hudel M, Berisha B, Gorshkov B, Romero MJ, Gonzales J, Wu G, Huo Y, Su Y, Verin AD, Fulton D, Chakraborty T, Eaton DC, Lucas R. Epithelial Sodium Channel-α Mediates the Protective Effect of the TNF-Derived TIP Peptide in Pneumolysin-Induced Endothelial Barrier Dysfunction. Front Immunol 2017; 8:842. [PMID: 28785264 PMCID: PMC5519615 DOI: 10.3389/fimmu.2017.00842] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/04/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a major etiologic agent of bacterial pneumonia. Autolysis and antibiotic-mediated lysis of pneumococci induce release of the pore-forming toxin, pneumolysin (PLY), their major virulence factor, which is a prominent cause of acute lung injury. PLY inhibits alveolar liquid clearance and severely compromises alveolar-capillary barrier function, leading to permeability edema associated with pneumonia. As a consequence, alveolar flooding occurs, which can precipitate lethal hypoxemia by impairing gas exchange. The α subunit of the epithelial sodium channel (ENaC) is crucial for promoting Na+ reabsorption across Na+-transporting epithelia. However, it is not known if human lung microvascular endothelial cells (HL-MVEC) also express ENaC-α and whether this subunit is involved in the regulation of their barrier function. METHODS The presence of α, β, and γ subunits of ENaC and protein phosphorylation status in HL-MVEC were assessed in western blotting. The role of ENaC-α in monolayer resistance of HL-MVEC was examined by depletion of this subunit by specific siRNA and by employing the TNF-derived TIP peptide, a specific activator that directly binds to ENaC-α. RESULTS HL-MVEC express all three subunits of ENaC, as well as acid-sensing ion channel 1a (ASIC1a), which has the capacity to form hybrid non-selective cation channels with ENaC-α. Both TIP peptide, which specifically binds to ENaC-α, and the specific ASIC1a activator MitTx significantly strengthened barrier function in PLY-treated HL-MVEC. ENaC-α depletion significantly increased sensitivity to PLY-induced hyperpermeability and in addition, blunted the protective effect of both the TIP peptide and MitTx, indicating an important role for ENaC-α and for hybrid NSC channels in barrier function of HL-MVEC. TIP peptide blunted PLY-induced phosphorylation of both calmodulin-dependent kinase II (CaMKII) and of its substrate, the actin-binding protein filamin A (FLN-A), requiring the expression of both ENaC-α and ASIC1a. Since non-phosphorylated FLN-A promotes ENaC channel open probability and blunts stress fiber formation, modulation of this activity represents an attractive target for the protective actions of ENaC-α in both barrier function and liquid clearance. CONCLUSION Our results in cultured endothelial cells demonstrate a previously unrecognized role for ENaC-α in strengthening capillary barrier function that may apply to the human lung. Strategies aiming to activate endothelial NSC channels that contain ENaC-α should be further investigated as a novel approach to improve barrier function in the capillary endothelium during pneumonia.
Collapse
Affiliation(s)
- Istvan Czikora
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States.,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Michael A Matthay
- Cardiovascular Research Institute, UCSF, San Francisco, CA, United States
| | - Helena Pillich
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Besim Berisha
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Maritza J Romero
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Joyce Gonzales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|