1
|
Sharma P, Sharma S, Paliwal S, Jain S. Aminopeptidase A: A Novel Therapeutic Target for Hypertension Management. Cell Biochem Funct 2024; 42:e70008. [PMID: 39445480 DOI: 10.1002/cbf.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The renin-angiotensin system (RAS) is crucial for regulating and understanding the pathophysiology of hypertension. However, there has been little focus on the breakdown of the active peptide, angiotensin II (AngII). Given that animals lacking aminopeptidase A (APA) exhibit hypertension, it may be concluded that APA is a crucial enzyme in regulating blood pressure by breaking down AngII. It has been also seen that the elevated blood pressure in the spontaneously hypertensive rat (SHR) is caused by the activation of the RAS and a concurrent reduction in renal angiotensin-converting enzyme (ACE) activity. The activity of APA is elevated at the beginning of pre-eclampsia and decreases below the levels seen during a normal pregnancy as pre-eclampsia progresses (particularly, in severe cases). The activity of Serum APA is also heightened after hormone replacement treatment (HRT), perhaps as a response to increasing levels of AngII. Therefore, it is crucial to examine the connection between the activation of the RAS, the levels of AngII in the bloodstream, and the presence of APA in hypertension conditions.
Collapse
Affiliation(s)
- Pragya Sharma
- Department of Pharmacy, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Suman Sharma
- Department of Pharmacy, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
2
|
Balavoine F, Compere D, Miege F, De Mota N, Keck M, Fer M, Christen A, Martin E, Roche D, Llorens-Cortes C, Rodeschini V. Rational design, synthesis and pharmacological characterization of novel aminopeptidase A inhibitors. Bioorg Med Chem Lett 2024; 113:129940. [PMID: 39233188 DOI: 10.1016/j.bmcl.2024.129940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Aminopeptidase A (APA) is a membrane-bound zinc metallopeptidase involved in the production of angiotensin III, one effector peptide of the brain renin-angiotensin system, making brain APA a relevant pharmacological target for the development of novel therapeutic treatments against hypertension and heart failure. The structure-based design of new APA inhibitors is described, based on previously developed thiol-containing inhibitors and APA crystal structure. Chemical synthesis, in vitro assessment against APA activity, pharmacological and pharmacokinetic profiling were performed, ultimately leading to a potent and selective APA inhibitor.
Collapse
Affiliation(s)
| | - Delphine Compere
- Quantum Genomics, 6 rue Cambacérès, F-75008 Paris, France; Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France
| | - Frédéric Miege
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France
| | - Mathilde Keck
- Quantum Genomics, 6 rue Cambacérès, F-75008 Paris, France; Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France
| | - Mickael Fer
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Aude Christen
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Emmeline Martin
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Didier Roche
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France.
| | | |
Collapse
|
3
|
Popa IP, Clim A, Pînzariu AC, Lazăr CI, Popa Ș, Tudorancea IM, Moscalu M, Șerban DN, Șerban IL, Costache-Enache II, Tudorancea I. Arterial Hypertension: Novel Pharmacological Targets and Future Perspectives. J Clin Med 2024; 13:5927. [PMID: 39407987 PMCID: PMC11478071 DOI: 10.3390/jcm13195927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Arterial hypertension (HTN) is one of the major global contributors to cardiovascular diseases and premature mortality, particularly due to its impact on vital organs and the coexistence of various comorbidities such as chronic renal disease, diabetes, cerebrovascular diseases, and obesity. Regardless of the accessibility of several well-established pharmacological treatments, the percentage of patients achieving adequate blood pressure (BP) control is still significantly lower than recommended levels. Therefore, the pharmacological and non-pharmacological management of HTN is currently the major focus of healthcare systems. Various strategies are being applied, such as the development of new pharmacological agents that target different underlying physiopathological mechanisms or associated comorbidities. Additionally, a novel group of interventional techniques has emerged in recent years, specifically for situations when blood pressure is not properly controlled despite the use of multiple antihypertensives in maximum doses or when patients are unable to tolerate or desire not to receive antihypertensive medications. Nonetheless, reducing the focus on antihypertensive medication development by the pharmaceutical industry and increasing recognition of ineffective HTN control due to poor drug adherence demands ongoing research into alternative approaches to treatment. The aim of this review is to summarize the potential novel pharmacological targets for the treatment of arterial hypertension as well as the future perspectives of the treatment strategy.
Collapse
Affiliation(s)
- Irene Paula Popa
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Alin Constantin Pînzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Cristina Iuliana Lazăr
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ștefan Popa
- 2nd Department of Surgery–Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dragomir N. Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ionela Lăcrămioara Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Irina-Iuliana Costache-Enache
- Department of Internal Medicine I, Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
4
|
Minvielle Moncla LH, Briend M, Sokhna Sylla M, Mathieu S, Rufiange A, Bossé Y, Mathieu P. Mendelian randomization reveals interactions of the blood proteome and immunome in mitral valve prolapse. COMMUNICATIONS MEDICINE 2024; 4:108. [PMID: 38844506 PMCID: PMC11156961 DOI: 10.1038/s43856-024-00530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Mitral valve prolapse (MVP) is a common heart disorder characterized by an excessive production of proteoglycans and extracellular matrix in mitral valve leaflets. Large-scale genome-wide association study (GWAS) underlined that MVP is heritable. The molecular underpinnings of the disease remain largely unknown. METHODS We interrogated cross-modality data totaling more than 500,000 subjects including GWAS, 4809 molecules of the blood proteome, and genome-wide expression of mitral valves to identify candidate drivers of MVP. Data were investigated through Mendelian randomization, network analysis, ligand-receptor inference and digital cell quantification. RESULTS In this study, Mendelian randomization identify that 33 blood proteins, enriched in networks for immunity, are associated with the risk of MVP. MVP- associated blood proteins are enriched in ligands for which their cognate receptors are differentially expressed in mitral valve leaflets during MVP and enriched in cardiac endothelial cells and macrophages. MVP-associated blood proteins are involved in the renewal-polarization of macrophages and regulation of adaptive immune response. Cytokine activity profiling and digital cell quantification show in MVP a shift toward cytokine signature promoting M2 macrophage polarization. Assessment of druggability identify CSF1R, CX3CR1, CCR6, IL33, MMP8, ENPEP and angiotensin receptors as actionable targets in MVP. CONCLUSIONS Hence, integrative analysis identifies networks of candidate molecules and cells involved in immune control and remodeling of the extracellular matrix, which drive the risk of MVP.
Collapse
Affiliation(s)
| | - Mewen Briend
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Mame Sokhna Sylla
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Samuel Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Anne Rufiange
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Patrick Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada.
- Department of Surgery, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
5
|
Fatima N, Ashique S, Upadhyay A, Kumar S, Kumar H, Kumar N, Kumar P. Current Landscape of Therapeutics for the Management of Hypertension - A Review. Curr Drug Deliv 2024; 21:662-682. [PMID: 37357524 DOI: 10.2174/1567201820666230623121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 06/27/2023]
Abstract
Hypertension is a critical health problem. It is also the primary reason for coronary heart disease, stroke, and renal vascular disease. The use of herbal drugs in the management of any disease is increasing. They are considered the best immune booster to fight against several types of diseases. To date, the demand for herbal drugs has been increasing because of their excellent properties. This review highlights antihypertensive drugs, polyphenols, and synbiotics for managing hypertension. Evidence is mounting in favour of more aggressive blood pressure control with reduced adverse effects, especially for specific patient populations. This review aimed to present contemporary viewpoints and novel treatment options, including cutting-edge technological applications and emerging interventional and pharmaceutical therapies, as well as key concerns arising from several years of research and epidemiological observations related to the management of hypertension.
Collapse
Affiliation(s)
- Neda Fatima
- Department of Pharmacology, Amity University, Lucknow Campus, Lucknow, Uttar Pradesh 226010, India
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal 713378, India
| | - Aakash Upadhyay
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, Uttar Pradesh, 250103, India
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, Uttar Pradesh, 250103, India
| | - Himanshu Kumar
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, Uttar Pradesh, 250103, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Prashant Kumar
- College of Pharmacy, Teerthanker Mahaveer University, Moradabad-244001, UP, India
| |
Collapse
|
6
|
Lazartigues E, Llorens-Cortes C, Danser AHJ. New Approaches Targeting the Renin-Angiotensin System: Inhibition of Brain Aminopeptidase A, ACE2 Ubiquitination, and Angiotensinogen. Can J Cardiol 2023; 39:1900-1912. [PMID: 37348757 PMCID: PMC10730775 DOI: 10.1016/j.cjca.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Despite the availability of various therapeutic classes of antihypertensive drugs, hypertension remains poorly controlled, in part because of poor adherence. Hence, there is a need for the development of antihypertensive drugs acting on new targets to improve control of blood pressure. This review discusses novel insights (including the data of recent clinical trials) with regard to interference with the renin-angiotensin system, focusing on the enzymes aminopeptidase A and angiotensin-converting enzyme 2 (ACE2) in the brain, as well as the substrate of renin- angiotensinogen-in the liver. It raises the possibility that centrally acting amino peptidase A inhibitors (eg, firibastat), preventing the conversion of angiotensin II to angiotensin III in the brain, might be particularly useful in African Americans and patients with obesity. Firibastat additionally upregulates brain ACE2, allowing the conversion of angiotensin II to its protective metabolite angiotensin-(1-7). Furthermore, antisense oligonucleotides or small interfering ribonucleic acids suppress hepatic angiotensinogen for weeks to months after 1 injection and thus could potentially overcome adherence issues. Finally, interference with ACE2 ubiquitination is emerging as a future option for the treatment of neurogenic hypertension, given that ubiquitination resistance might upregulate ACE2 activity.
Collapse
Affiliation(s)
- Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Catherine Llorens-Cortes
- Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France; CEA, Medicines and Healthcare Technologies Department, SIMoS, Gif-sur-Yvette, France
| | - A H Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Höcht C, Allo MA, Polizio AH, Morettón MA, Carranza A, Chiappetta DA, Choi MR. New and developing pharmacotherapies for hypertension. Expert Rev Cardiovasc Ther 2022; 20:647-666. [PMID: 35880547 DOI: 10.1080/14779072.2022.2105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Despite the significant contribution of hypertension to the global burden of disease, disease control remains poor worldwide. Considering this unmet clinical need, several new antihypertensive drugs with novel mechanisms of action are under development. AREAS COVERED The present review summarizes the recent advances in the development of emerging pharmacological agents for the management of hypertension. The latest technological innovations in the design of optimized formulations of available antihypertensive drugs and the potential role of the modification of intestinal microbiota to improve blood pressure (BP) control are also covered. EXPERT OPINION Significant efforts have been made to develop new antihypertensive agents with novel actions that target the main mechanisms involved in resistant hypertension. Sacubitril/valsartan may emerge as a potential first-line drug due to its superiority over renin angiotensin system inhibitors, and SGLT2 inhibitors can reduce BP in difficult-to-control hypertensive patients with type 2 diabetes. In addition, firibastat and aprocitentan may expand the therapeutic options for resistant hypertension by novel mechanism of actions. Since gut dysbiosis not only leads to hypertension but also causes direct target organ damage, prebiotics and probiotics could represent a potential strategy to prevent or reduce the development of hypertension and to contribute to BP control.
Collapse
Affiliation(s)
- Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab
| | - Miguel A Allo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab
| | - Ariel Héctor Polizio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab
| | - Marcela A Morettón
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentinac.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea Carranza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentinae
| | - Diego A Chiappetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentinac.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcelo Roberto Choi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentinae.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Buenos Aires, Argentina f
| |
Collapse
|
8
|
Oumata N, Lu K, Teng Y, Cavé C, Peng Y, Galons H, Roques BP. Molecular mechanisms in Alzheimer's disease and related potential treatments such as structural target convergence of antibodies and simple organic molecules. Eur J Med Chem 2022; 240:114578. [PMID: 35841881 DOI: 10.1016/j.ejmech.2022.114578] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/12/2022]
Abstract
The amyloid cascade is the most frequently accepted hypothesis of Alzheimer's Disease (AD). According to this hypothesis, the formation of plaques precedes the appearance of fibrillary tangles. Therapeutic agents able to inhibit the formation of plaques are therefore considered as potential disease-modifying treatments (DMT) that could prevent or limit the progression of AD. Plaques are deposits formed by aggregates of amyloid-β (Aβ)-peptides. These peptides are metabolites of amyloid precursor protein (APP) first mediated by two enzymes: β-secretase 1 (BACE1) and γ-secretase. Molecular identification of these two enzymes has stimulated the development of their inhibitors. The clinical testing of these two classes of molecules has not been successful to date. The oligomerization of Aβ-peptides into plaques is now targeted by immunological approaches such as antibodies and vaccines. Structural consideration of the Aβ-peptide sequence led to the launch of the antibody Aducanumab. Several other antibodies are in late clinical phases. Progress in the understanding of the effects of N-truncated Aβ-peptides such as pE3-42, formed by the action of recently well characterized enzymes (aminopeptidase A, dipeptidylpeptidase-4 and glutaminyl cyclase) suggests that oligomerization can be limited either by enzyme inhibitors or antibody approaches. This strategy associating two structurally interconnected mechanisms is focused in this review.
Collapse
Affiliation(s)
- Nassima Oumata
- Unité de Technologies Chimiques et Biologiques pour la Santé, Université Paris Cité INSERM U1267, CNRS UMR 8258, 4 Avenue de l'Observatoire, Paris, 75006, France
| | - Kui Lu
- Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yuou Teng
- Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Christian Cavé
- UMR CNRS 8076 BioCIS, Faculty of Pharmacy, University Paris-Saclay, France
| | - Yu Peng
- Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Hervé Galons
- Unité de Technologies Chimiques et Biologiques pour la Santé, Université Paris Cité INSERM U1267, CNRS UMR 8258, 4 Avenue de l'Observatoire, Paris, 75006, France; Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Bernard P Roques
- Unité de Technologies Chimiques et Biologiques pour la Santé, Université Paris Cité INSERM U1267, CNRS UMR 8258, 4 Avenue de l'Observatoire, Paris, 75006, France.
| |
Collapse
|
9
|
O'Connor AT, Haspula D, Alanazi AZ, Clark MA. Roles of Angiotensin III in the brain and periphery. Peptides 2022; 153:170802. [PMID: 35489649 DOI: 10.1016/j.peptides.2022.170802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Angiotensin (Ang) III, a biologically active peptide of the renin angiotensin system (RAS) is predominantly known for its central effects on blood pressure. Our understanding of the RAS has evolved from the simplified, classical RAS, a hormonal system regulating blood pressure to a complex system affecting numerous biological processes. Ang II, the main RAS peptide has been widely studied, and its deleterious effects when overexpressed is well-documented. However, other components of the RAS such as Ang III are not well studied. This review examines the molecular and biological actions of Ang III and provides insight into Ang III's potential role in metabolic diseases.
Collapse
Affiliation(s)
- Ann Tenneil O'Connor
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD NIH-20892, USA
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
10
|
Current Knowledge about the New Drug Firibastat in Arterial Hypertension. Int J Mol Sci 2022; 23:ijms23031459. [PMID: 35163378 PMCID: PMC8836050 DOI: 10.3390/ijms23031459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hypertension significantly increases the risk of cardiovascular disease. Currently, effective standard pharmacological treatment is available in the form of diuretics, ACE inhibitors, angiotensin II receptor blockers and calcium channel blockers. These all help to decrease blood pressure in hypertensive patients, each with their own mechanism. Recently, firibastat, a new first-in-class antihypertensive drug has been developed. Firibastat is a prodrug that when crossing the blood-brain barrier, is cleaved into two active EC33 molecules. EC33 is the active molecule that inhibits the enzyme aminopeptidase A. Aminopeptidase A converts angiotensin II to angiotensin III. Angiotensin III usually has three central mechanisms that increase blood pressure, so by inhibiting this enzyme activity, a decrease in blood pressure is seen. Firibastat is an antihypertensive drug that affects the brain renin angiotensin system by inhibiting aminopeptidase A. Clinical trials with firibastat have been performed in animals and humans. No severe adverse effects related to firibastat treatment have been reported. Results from studies show that firibastat is generally well tolerated and safe to use in hypertensive patients. The aim of this review is to investigate the current knowledge about firibastat in the treatment of hypertension.
Collapse
|
11
|
Boitard SE, Keck M, Deloux R, Girault-Sotias PE, Marc Y, De Mota N, Compere D, Agbulut O, Balavoine F, Llorens-Cortes C. QGC606, a best-in-class orally active centrally acting aminopeptidase A inhibitor prodrug, for treating heart failure following myocardial infarction. Can J Cardiol 2022; 38:815-827. [DOI: 10.1016/j.cjca.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/02/2022] Open
|
12
|
Marc Y, Hmazzou R, De Mota N, Balavoine F, Llorens-Cortes C. Effects of firibastat in combination with enalapril and hydrochlorothiazide on blood pressure and vasopressin release in hypertensive DOCA-salt rats. Biomed Pharmacother 2021; 140:111682. [PMID: 34020248 DOI: 10.1016/j.biopha.2021.111682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
In the brain, aminopeptidase A (APA) generates angiotensin III, one of the effector peptides of the brain renin-angiotensin system (RAS), exerting tonic stimulatory control over blood pressure (BP) in hypertensive rats. Oral administration of firibastat, an APA inhibitor prodrug, in hypertensive rats, inhibits brain APA activity, blocks brain angiotensin III formation and decreases BP. In this study, we evaluated the efficacy of firibastat in combination with enalapril, an angiotensin I-converting enzyme inhibitor, and hydrochlorothiazide (HCTZ), in conscious hypertensive deoxycorticosterone acetate (DOCA)-salt rats, which display high plasma arginine-vasopressin levels, low circulating renin levels and resistance to treatment by systemic RAS blockers. We determined mean arterial BP, heart rate, plasma arginine-vasopressin levels and renin activity in DOCA-salt rats orally treated with firibastat, enalapril or HCTZ administered alone or in combination. Acute oral firibastat administration (30 mg/kg) induced a significant decrease in BP, whereas enalapril (10 mg/kg) or HCTZ (10 mg/kg) administered alone induced no significant change in BP in conscious DOCA-salt rats. The BP decrease induced by acute and nine-day chronic tritherapy [Firibastat+Enalapril+HCTZ] was significantly greater than that observed after bitherapy [Enalapril+HCTZ]. Interestingly, the chronic administration of a combination of firibastat with [Enalapril+HCTZ] reduced plasma arginine-vasopressin levels by 62% relative to those measured in DOCA-salt rats receiving bitherapy. Our data show that tritherapy with firibastat, enalapril and HCTZ improves BP control and arginine-vasopressin release in an experimental salt-dependent model of hypertension, paving the way for the development of new treatments for patients with currently difficult-to-treat or resistant hypertension.
Collapse
Affiliation(s)
- Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France; Quantum Genomics SA, Paris F-75008, France
| | - Reda Hmazzou
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| | | | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France.
| |
Collapse
|
13
|
The Road to Better Management in Resistant Hypertension-Diagnostic and Therapeutic Insights. Pharmaceutics 2021; 13:pharmaceutics13050714. [PMID: 34068168 PMCID: PMC8153016 DOI: 10.3390/pharmaceutics13050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022] Open
Abstract
Resistant hypertension (R-HTN) implies a higher mortality and morbidity compared to non-R-HTN due to increased cardiovascular risk and associated adverse outcomes—greater risk of developing chronic kidney disease, heart failure, stroke and myocardial infarction. R-HTN is considered when failing to lower blood pressure below 140/90 mmHg despite adequate lifestyle measures and optimal treatment with at least three medications, including a diuretic, and usually a blocker of the renin-angiotensin system and a calcium channel blocker, at maximally tolerated doses. Hereby, we discuss the diagnostic and therapeutic approach to a better management of R-HTN. Excluding pseudoresistance, secondary hypertension, white-coat hypertension and medication non-adherence is an important step when diagnosing R-HTN. Most recently different phenotypes associated to R-HTN have been described, specifically refractory and controlled R-HTN and masked uncontrolled hypertension. Optimizing the three-drug regimen, including the diuretic treatment, adding a mineralocorticoid receptor antagonist as the fourth drug, a β-blocker as the fifth drug and an α1-blocker or a peripheral vasodilator as a final option when failing to achieve target blood pressure values are current recommendations regarding the correct management of R-HTN.
Collapse
|
14
|
Firibastat: A Novel Brain Aminopeptidase Inhibitor - A New Era of Antihypertensive therapy. Curr Probl Cardiol 2021; 47:100859. [PMID: 33994025 DOI: 10.1016/j.cpcardiol.2021.100859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 01/21/2023]
Abstract
Global incidence and prevalence of hypertension continues to increase and remains a significant challenge. The ever-increasing number of cases are due to comorbid conditions such as obesity and diabetes, as well as lifestyle indiscretions such as excessive salt intake. Hypertension, congestive heart failure, and kidney disease are all conditions resulting from abnormal Renin-Angiotensin-Aldosterone activation and adverse remodeling. Firibastat, a novel Brain Aminopeptidase inhibitor, may be able to help achieve blood pressure control in those with resistant hypertension. In this review article, we will discuss the biochemical pathway of firibastat and various trials assessing drug efficacy in animals and humans. This drug has the potential to curb the risk of uncontrolled hypertension and help improve long term cardiovascular morbidity and mortality.
Collapse
|
15
|
Hmazzou R, Marc Y, Flahault A, Gerbier R, De Mota N, Llorens-Cortes C. Brain ACE2 activation following brain aminopeptidase A blockade by firibastat in salt-dependent hypertension. Clin Sci (Lond) 2021; 135:775-791. [PMID: 33683322 DOI: 10.1042/cs20201385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
In the brain, aminopeptidase A (APA), a membrane-bound zinc metalloprotease, generates angiotensin III from angiotensin II. Brain angiotensin III exerts a tonic stimulatory effect on the control of blood pressure (BP) in hypertensive rats and increases vasopressin release. Blocking brain angiotensin III formation by the APA inhibitor prodrug RB150/firibastat normalizes arterial BP in hypertensive deoxycorticosterone acetate (DOCA)-salt rats without inducing angiotensin II accumulation. We therefore hypothesized that another metabolic pathway of brain angiotensin II, such as the conversion of angiotensin II into angiotensin 1-7 (Ang 1-7) by angiotensin-converting enzyme 2 (ACE2) might be activated following brain APA inhibition. We found that the intracerebroventricular (icv) administration of RB150/firibastat in conscious DOCA-salt rats both inhibited brain APA activity and induced an increase in brain ACE2 activity. Then, we showed that the decreases in BP and vasopressin release resulting from brain APA inhibition with RB150/firibastat were reduced if ACE2 was concomitantly inhibited by MLN4760, a potent ACE2 inhibitor, or if the Mas receptor (MasR) was blocked by A779, a MasR antagonist. Our findings suggest that in the brain, the increase in ACE2 activity resulting from APA inhibition by RB150/firibastat treatment, subsequently increasing Ang 1-7 and activating the MasR while blocking angiotensin III formation, contributes to the antihypertensive effect and the decrease in vasopressin release induced by RB150/firibastat. RB150/firibastat treatment constitutes an interesting therapeutic approach to improve BP control in hypertensive patients by inducing in the brain renin-angiotensin system, hyperactivity of the beneficial ACE2/Ang 1-7/MasR axis while decreasing that of the deleterious APA/Ang II/Ang III/ATI receptor axis.
Collapse
Affiliation(s)
- Reda Hmazzou
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
- Université René Descartes, "Ecole doctorale MTCI n°563", Paris F-75270, France
| | - Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
- Quantum Genomics SA, Paris F-75015, France
| | - Adrien Flahault
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
- Université René Descartes, "Ecole doctorale MTCI n°563", Paris F-75270, France
| | - Romain Gerbier
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| |
Collapse
|
16
|
Alomar SA, Alghabban SA, Alharbi HA, Almoqati MF, Alduraibi Y, Abu-Zaid A. Firibastat, the first-in-class brain aminopeptidase a inhibitor, in the management of hypertension: A review of clinical trials. Avicenna J Med 2021; 11:1-7. [PMID: 33520782 PMCID: PMC7839263 DOI: 10.4103/ajm.ajm_117_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
An unfortunate subset of hypertensive patients develops resistant hypertension in which optimal doses of three or more first-line antihypertensive drugs fail to sufficiently control blood pressure. Patients with resistant hypertension represent a high-risk and difficult-to-treat group, and such patients are at amplified jeopardies for substantial hypertension-related multi-organ failure, morbidity, and mortality. Thus, there is a pressing requirement to better improve blood pressure control through the pharmaceutical generation of novel classes of antihypertensive drugs that act on newer and alternative therapeutic targets. The hyperactivity of the brain renin-angiotensin system (RAS) has been shown to play a role in the pathogenesis of hypertension in various experimental and genetic hypertensive animal models. In the brain, angiotensin-II is metabolized to angiotensin-III by aminopeptidase A (APA), a membrane-bound zinc metalloprotease enzyme. A large body of evidence has previously established that angiotensin-III is one of the main effector peptides of the brain RAS. Angiotensin-III exerts central stimulatory regulation over blood pressure through several proposed mechanisms. Accumulating evidence from preclinical studies demonstrated that the centrally acting APA inhibitor prodrugs (firibastat and NI956) are very safe and effective at reducing blood pressure in various hypertensive animal models. The primary purpose of this study is to narratively review the published phase I-II literature on the safety and efficacy of APA inhibitors in the management of patients with hypertension. Moreover, a summary of ongoing clinical trials and future perspectives are presented.
Collapse
Affiliation(s)
| | | | | | | | - Yazid Alduraibi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed Abu-Zaid
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
17
|
Receptors | Angiotensin Receptors. ENCYCLOPEDIA OF BIOLOGICAL CHEMISTRY III 2021. [PMCID: PMC8326513 DOI: 10.1016/b978-0-12-819460-7.00096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The renin-angiotensin-aldosterone system (RAS) is a vital hormone-receptor system that regulates cardiovascular and renal functions. In this article, we discuss exciting new findings in the RAS field. Recently solved active state crystal structures of Angiotensin II type 1 (AT1R) and type 2 receptor (AT2R) helped in understanding receptor activation mechanisms in detail. Also, considerable attention is given to the developments in characterizing the counter-regulatory RAS axis due to current hope for harnessing this axis for the development of protective therapies against various cardiovascular diseases. We describe the RAS component, angiotensin-converting enzyme 2 (ACE2) functioning as cellular entry receptor for the causative agent of COVID-19 pandemic, SARS-CoV-2. Altogether, these discoveries paved the way for developing novel therapies targeting different components of the RAS in the future.
Collapse
|
18
|
New drug targets for hypertension: A literature review. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166037. [PMID: 33309796 DOI: 10.1016/j.bbadis.2020.166037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Hypertension is one of the most prevalent cardiovascular diseases worldwide. However, in the population of resistant hypertension, blood pressure is difficult to control effectively. Moreover, antihypertensive drugs may have adverse effect currently. Hence, new therapeutic targets and treatments are needed to uncovered and exploited to control hypertension and its comorbidities. In the past, classical drug targets, such as the aldosterone receptor, aldosterone synthase, and ACE2/angiotensin 1-7/Mas receptor axis, have been investigated. Recently, vaccines and drugs targeting the gastrointestinal microbiome, which represent drug classes, have also been investigated for the management of blood pressure. In this review, we summarized current knowledge on classical and new drug targets and discussed the potential utility of new drugs in the treatment of hypertension.
Collapse
|
19
|
Structural insight into the catalytic mechanism and inhibitor binding of aminopeptidase A. Biochem J 2020; 477:4133-4148. [PMID: 32955085 DOI: 10.1042/bcj20200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022]
Abstract
Aminopeptidase A (APA) is a membrane-bound monozinc aminopeptidase. In the brain, APA generates angiotensin III which exerts a tonic stimulatory effect on the control of blood pressure (BP) in hypertensive animals. The oral administration of RB150 renamed firibastat by WHO, an APA inhibitor prodrug, targeting only the S1 subsite, decreases BP in hypertensive patients from various ethnic origins. To identify new families of potent and selective APA inhibitors, we explored the organization of the APA active site, especially the S2' subsite. By molecular modeling, docking, molecular dynamics simulations and site-directed mutagenesis, we revealed that Arg368 and Arg386, in the S2' subsite of human APA established various types of interactions in major part with the P2' residue but also with the P1' residue of APA inhibitors, required for their nanomolar inhibitory potency. We also demonstrated an important role for Arg368 in APA catalysis, in maintaining the structural integrity of the GAMEN motif, a conserved sequence involved in exopeptidase specificity and optimal positioning of the substrate in monozinc aminopeptidases. This arginine together with the GAMEN motif are key players for the catalytic mechanism of these enzymes.
Collapse
|
20
|
Berillo O, Ouerd S, Idris-Khodja N, Rehman A, Richer C, Sinnett D, Kwitek AE, Paradis P, Schiffrin EL. Chromosome 2 Fragment Substitutions in Dahl Salt-Sensitive Rats and RNA Sequencing Identified Enpep and Hs2st1 as Vascular Inflammatory Modulators. Hypertension 2020; 77:178-189. [PMID: 33161775 DOI: 10.1161/hypertensionaha.120.15690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chromosome 2 introgression from normotensive Brown Norway (BN) rats into hypertensive Dahl salt-sensitive (SS) background (SS-chromosome 2BN/Mcwi; consomic S2B) reduced blood pressure and vascular inflammation under a normal-salt diet (NSD). We hypothesized that BN chromosome 2 contains anti-inflammatory genes that could reduce blood pressure and vascular inflammation in rats fed NSD or high-salt diet (HSD). Four- to 6-week old male SS and congenic rats containing the BN chromosome 2 distal portion (SS.BN-[rs13453786-rs66377062]/Aek; S2Ba) and middle segment (SS.BN-[rs106982173-rs65057186]/Aek; S2Bb) were fed NSD or HSD (4% NaCl) up to age 12 to 13 weeks. Systolic blood pressure determined by telemetry was higher in SS rats fed HSD versus NSD. Systolic blood pressure was lower in both congenic rats than in SS under NSD, but similar under HSD versus SS. Reactive oxygen species generation using dihydroethidium staining, expression of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and immune cell infiltration by immunofluorescence demonstrated that S2Ba rats present less inflammation under NSD and more under HSD versus SS rats. RNA sequencing and reverse transcription-quantitative PCR identified 2 differentially expressed genes encoded within BN chromosome 2 distal portion that could act as regulators of vascular inflammation. These were downregulated glutamyl aminopeptidase (Enpep) that was anti-inflammatory under NSD and upregulated heparan sulfate 2-O-sulfotransferase 1 (Hs2st1) that was proinflammatory under HSD. In conclusion, 2 differentially expressed genes encoded within introgressed BN chromosome 2 distal fragment were identified: Enpep associated with reduced vascular inflammation under NSD, and Hs2st1, associated with increased vascular inflammation under HSD.
Collapse
Affiliation(s)
- Olga Berillo
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (O.B., S.O., N.I.-K., A.R., P.P., E.L.S.)
| | - Sofiane Ouerd
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (O.B., S.O., N.I.-K., A.R., P.P., E.L.S.)
| | - Noureddine Idris-Khodja
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (O.B., S.O., N.I.-K., A.R., P.P., E.L.S.)
| | - Asia Rehman
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (O.B., S.O., N.I.-K., A.R., P.P., E.L.S.)
| | - Chantal Richer
- Sainte-Justine University Hospital, Montreal, QC, Canada (C.R., D.S.)
| | - Daniel Sinnett
- Sainte-Justine University Hospital, Montreal, QC, Canada (C.R., D.S.)
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee (A.E.K.)
| | - Pierre Paradis
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (O.B., S.O., N.I.-K., A.R., P.P., E.L.S.)
| | - Ernesto L Schiffrin
- Department of Medicine (E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University
| |
Collapse
|
21
|
Abstract
Systemic hypertension is the leading cause of death and disability worldwide. The management of hypertension is challenging in the high-risk patient population with high salt-sensitivity and low serum renin levels. The renin-angiotensin system (RAS) plays a central role in blood pressure (BP) regulation. While we have effective medications to act on peripheral RAS, our understanding of brain RAS and its effect on BP regulation is still in an evolving stage. Brain RAS hyperactivity is associated with the development and maintenance of hypertension. In comparison to peripheral RAS, where angiotensin II is the most crucial component responsible for BP regulation, angiotensin III is likely the main active peptide in the brain RAS. Angiotensin II is metabolized by aminopeptidase A into angiotensin III in the brain. EC33 is a potent inhibitor of brain aminopeptidase A tested in animal models. The use of EC33 in conscious spontaneously hypertensive rats, hypertensive deoxycorticosterone acetate-salt rats, and conscious normotensive rat models leads to a reduction in BP. In order to facilitate the passage of EC33 through the blood-brain barrier, the 2 molecules of EC33 were linked by a disulfide bridge to form a prodrug called RB150. RB150, later renamed as QGC001 or firibastat, was found to be effective in animal models and well-tolerated when used in healthy participants. Firibastat was found to be safe and effective in phase 2 trials, and is now planned to undergo a phase 3 trial. Firibastat has the potential to be groundbreaking in the management of resistant hypertension.
Collapse
|
22
|
Chrysant SG, Chrysant GS. New and emerging cardiovascular and antihypertensive drugs. Expert Opin Drug Saf 2020; 19:1315-1327. [DOI: 10.1080/14740338.2020.1810232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Steven G. Chrysant
- Department of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - George S. Chrysant
- Department of Cardiology, INTEGRIS Baptist Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
23
|
Marc Y, Boitard SE, Balavoine F, Azizi M, Llorens-Cortes C. Targeting Brain Aminopeptidase A: A New Strategy for the Treatment of Hypertension and Heart Failure. Can J Cardiol 2020; 36:721-731. [PMID: 32389345 DOI: 10.1016/j.cjca.2020.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of heart failure (HF) and hypertension are thought to involve brain renin-angiotensin system (RAS) hyperactivity. Angiotensin III, a key effector peptide in the brain RAS, provides tonic stimulatory control over blood pressure (BP) in hypertensive rats. Aminopeptidase A (APA), the enzyme responsible for generating brain angiotensin III, constitutes a potential therapeutic target for hypertension treatment. We focus here on studies of RB150/firibastat, the first prodrug of the specific and selective APA inhibitor EC33 able to cross the blood-brain barrier. We consider its development from therapeutic target discovery to clinical trials of the prodrug. After oral administration, firibastat crosses the gastrointestinal and blood-brain barriers. On arrival in the brain, it is cleaved to generate EC33, which inhibits brain APA activity, lowering BP in various experimental models of hypertension. Firibastat was clinically and biologically well tolerated, even at high doses, in phase I trials conducted in healthy human subjects. It was then shown to decrease BP effectively in patients of various ethnic origins with hypertension in phase II trials. Brain RAS hyperactivity leads to excessive sympathetic activity, which can contribute to HF after myocardial infarction (MI). Chronic treatment with oral firibastat (4 or 8 weeks after MI) has been shown to normalize brain APA activity in mice. This effect is accompanied by a normalization of brain RAS and sympathetic activities, reducing cardiac fibrosis and hypertrophy and preventing cardiac dysfunction. Firibastat may therefore represent a novel therapeutic advance in the clinical management of patients with hypertension and potentially with HF after MI.
Collapse
Affiliation(s)
- Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Quantum Genomics, Paris, France
| | - Solène Emmanuelle Boitard
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Quantum Genomics, Paris, France
| | | | - Michel Azizi
- Centres d'Investigation Clinique 1418, Institut National de la Santé et de la Recherche Médicale, Paris, France; Hypertension Unit and Départements Médico-Universitaires Cardiovasculaire, Rénal, transplantation et neurovasculaire (DMU CARTE), l'Assistance Publique-Hôpitaux de Paris, Hôpital European Georges-Pompidou, Paris, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France.
| |
Collapse
|
24
|
Ferdinand KC, Harrison D, Johnson A. The NEW-HOPE study and emerging therapies for difficult-to-control and resistant hypertension. Prog Cardiovasc Dis 2020; 63:64-73. [DOI: 10.1016/j.pcad.2019.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 12/11/2022]
|
25
|
Llorens-Cortes C, Touyz RM. Evolution of a New Class of Antihypertensive Drugs: Targeting the Brain Renin-Angiotensin System. Hypertension 2019; 75:6-15. [PMID: 31786978 DOI: 10.1161/hypertensionaha.119.12675] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to the circulating renin-angiotensin system, activation of the brain renin-angiotensin system plays an important role in the pathophysiology of hypertension. One of the major components of the brain renin-angiotensin system implicated in the development of hypertension is Ang III (angiotensin III). Brain Ang III, produced from Ang II (angiotensin II) by APA (aminopeptidase A), exerts a tonic stimulatory control over blood pressure in hypertensive rats. Targeting Ang III by inhibiting brain APA is now considered a potentially important target in the management of hypertension. This has led to development of RB150, an orally active prodrug of the specific and selective APA inhibitor, EC33. Orally administered RB150 crosses the gastrointestinal and blood-brain barriers, enters the brain where it generates 2 active molecules of EC33 that block brain APA activity. This results in decreased brain Ang III formation and reduced blood pressure in hypertensive rats. The RB150-induced blood pressure decrease is due to a reduced vasopressin release, which increases diuresis, reducing extracellular volume, a decrease in sympathetic tone, leading to a reduction of vascular resistances, and the improvement of the baroreflex function. RB150 was renamed firibastat by the World Health Organization. Phase Ia/Ib clinical trials showed that firibastat is clinically and biologically well tolerated in healthy volunteers. Clinical efficacy of firibastat in hypertensive patients was, therefore, demonstrated in 2 phase II studies. Accordingly, firibastat could represent the first drug of a novel class of antihypertensive drugs targeting the brain renin-angiotensin system.
Collapse
Affiliation(s)
- Catherine Llorens-Cortes
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050/CNRS UMR 7241, Paris (C.L.-C.)
| | - Rhian M Touyz
- British Heart Foundation Chair in Cardiovascular Medicine, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| |
Collapse
|
26
|
Keck M, De Almeida H, Compère D, Inguimbert N, Flahault A, Balavoine F, Roques B, Llorens-Cortes C. NI956/QGC006, a Potent Orally Active, Brain-Penetrating Aminopeptidase A Inhibitor for Treating Hypertension. Hypertension 2019; 73:1300-1307. [PMID: 31067198 DOI: 10.1161/hypertensionaha.118.12499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Brain renin-angiotensin system hyperactivity has been implicated in the development and maintenance of hypertension. We have shown that aminopeptidase A is involved in the formation of brain angiotensin III, which exerts tonic stimulatory control over blood pressure in hypertensive deoxycorticosterone acetate-salt rats and spontaneously hypertensive rats. We have also shown that injection of the specific and selective aminopeptidase A inhibitor, (3S)-3-amino-4-sulfanyl-butane-1-sulfonic acid (EC33), by central route or its prodrug, RB150/firibastat, by oral route inhibited brain aminopeptidase A activity and blocked the formation of brain angiotensin III, normalizing blood pressure in hypertensive rats. These findings identified brain aminopeptidase A as a potential new therapeutic target for hypertension. We report here the development of a new aminopeptidase A inhibitor prodrug, NI956/QGC006, obtained by the disulfide bridge-mediated dimerization of NI929. NI929 is 10× more efficient than EC33 at inhibiting recombinant mouse aminopeptidase A activity in vitro. After oral administration at a dose of 4 mg/kg in conscious deoxycorticosterone acetate-salt rats, NI956/QGC006 normalized brain aminopeptidase A activity and induced a marked decrease in blood pressure of -44±13 mm Hg 4 hours after treatment ( P<0.001), sustained over 10 hours (-21±12 mm Hg; P<0.05). Moreover, NI956/QGC006 decreased plasma arginine-vasopressin levels, and increased diuresis and natriuresis, that may participate to the blood pressure decrease. Finally, NI956/QGC006 did not affect plasma sodium and potassium concentrations. This study shows that NI956/QGC006 is a best-in-class central-acting aminopeptidase A inhibitor prodrug. Our results support the development of hypertension treatments targeting brain aminopeptidase A.
Collapse
Affiliation(s)
- Mathilde Keck
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.).,Quantum Genomics, Tour Montparnasse, Paris, France (M.K., D.C., F.B.)
| | - Hugo De Almeida
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.)
| | - Delphine Compère
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.).,Quantum Genomics, Tour Montparnasse, Paris, France (M.K., D.C., F.B.)
| | - Nicolas Inguimbert
- USR 3278 CRIOBE, PSL Research University, EPHEUPVD-CNRS, Université de Perpignan Via Domitia, Laboratoire d'Excellence, France (N.I.)
| | - Adrien Flahault
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.)
| | - Fabrice Balavoine
- Quantum Genomics, Tour Montparnasse, Paris, France (M.K., D.C., F.B.)
| | - Bernard Roques
- U1022 INSERM/UMR 8258 CNRS, Université Paris-Descartes (Paris V), France (B.R.)
| | - Catherine Llorens-Cortes
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.)
| |
Collapse
|
27
|
Azizi M, Rossignol P, Hulot JS. Emerging Drug Classes and Their Potential Use in Hypertension. Hypertension 2019; 74:1075-1083. [DOI: 10.1161/hypertensionaha.119.12676] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the availability of multiple antihypertensive drugs targeting the different pathways implicated in its pathophysiology, hypertension remains poorly controlled worldwide, and its prevalence is increasing because of the aging of the population and the obesity epidemic. Although nonadherence to treatment contributes to uncontrolled hypertension, it is likely that not all the pathophysiological mechanisms are neutralized by the various classes of antihypertensive treatment currently available, and, the counter-regulatory mechanisms triggered by these treatments may decrease their blood pressure–lowering effect. The development of new antihypertensive drugs acting on new targets, with different modes of action, therefore, remains essential, to improve blood pressure control and reduce the residual burden of cardiovascular risks further. However, the difficulties encountered in the conception, development, costs, and delivery to the market of new classes of antihypertensive agents highlights the hurdles that must be overcome to release and to evaluate their long-term safety and efficacy for hypertension only, especially because of the market pressure of cheap generic drugs. New chemical entities with blood pressure–lowering efficacy are thus being developed more for heart failure or diabetic kidney disease, 2 diseases pathophysiologically associated with hypertension. These include dual angiotensin II receptor-neprilysin inhibitors, soluble guanylate cyclase stimulators, nonsteroidal dihydropyridine-based mineralocorticoid receptor antagonists, as well as sodium-glucose cotransporter 2 inhibitors. However, centrally acting aminopeptidase A inhibitors and endothelin receptor antagonists have a dedicated program of development for hypertension. All these emergent drug classes and their potential use in hypertension are reviewed here.
Collapse
Affiliation(s)
- Michel Azizi
- From the Université de Paris, CIC1418, INSERM, F-75015 Paris, France (M.A., J.-S.H.)
- Hypertension unit and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France (M.A.)
- F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Paris, France (M.A., J.-S.H.)
| | - Patrick Rossignol
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques-Plurithématique 1433, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France (P.R.)
| | - Jean-Sébastien Hulot
- From the Université de Paris, CIC1418, INSERM, F-75015 Paris, France (M.A., J.-S.H.)
- F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Paris, France (M.A., J.-S.H.)
- Université de Paris, PARCC, INSERM, F-75015 Paris, France (J.-S.H.)
| |
Collapse
|
28
|
Arendse LB, Danser AHJ, Poglitsch M, Touyz RM, Burnett JC, Llorens-Cortes C, Ehlers MR, Sturrock ED. Novel Therapeutic Approaches Targeting the Renin-Angiotensin System and Associated Peptides in Hypertension and Heart Failure. Pharmacol Rev 2019; 71:539-570. [PMID: 31537750 PMCID: PMC6782023 DOI: 10.1124/pr.118.017129] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the success of renin-angiotensin system (RAS) blockade by angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type 1 receptor (AT1R) blockers, current therapies for hypertension and related cardiovascular diseases are still inadequate. Identification of additional components of the RAS and associated vasoactive pathways, as well as new structural and functional insights into established targets, have led to novel therapeutic approaches with the potential to provide improved cardiovascular protection and better blood pressure control and/or reduced adverse side effects. The simultaneous modulation of several neurohumoral mediators in key interconnected blood pressure-regulating pathways has been an attractive approach to improve treatment efficacy, and several novel approaches involve combination therapy or dual-acting agents. In addition, increased understanding of the complexity of the RAS has led to novel approaches aimed at upregulating the ACE2/angiotensin-(1-7)/Mas axis to counter-regulate the harmful effects of the ACE/angiotensin II/angiotensin III/AT1R axis. These advances have opened new avenues for the development of novel drugs targeting the RAS to better treat hypertension and heart failure. Here we focus on new therapies in preclinical and early clinical stages of development, including novel small molecule inhibitors and receptor agonists/antagonists, less conventional strategies such as gene therapy to suppress angiotensinogen at the RNA level, recombinant ACE2 protein, and novel bispecific designer peptides.
Collapse
Affiliation(s)
- Lauren B Arendse
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - A H Jan Danser
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Marko Poglitsch
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Rhian M Touyz
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - John C Burnett
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Catherine Llorens-Cortes
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Mario R Ehlers
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Hypertension (HTN) is a widespread and growing disease, with medication intolerance and side-effect present among many. To address these obstacles novel pharmacotherapy is an active area of drug development. This review seeks to explore future drug therapy for HTN in the preclinical and clinical arenas. RECENT FINDINGS The future of pharmacological therapy in HTN consists of revisiting old pathways to find new targets and exploring wholly new approaches to provide additional avenues of treatment. In this review, we discuss the current status of the most recent drug therapy in HTN. New developments in well trod areas include novel mineralocorticoid antagonists, aldosterone synthase inhibitors, aminopeptidase-A inhibitors, natriuretic peptide receptor agonists, or the counter-regulatory angiotensin converting enzyme 2/angiotensin (Ang) (1-7)/Mas receptor axis. Neprilysin inhibitors popularized for heart failure may also still hold HTN potential. Finally, we examine unique systems in development never before used in HTN such as Na/H exchange inhibitors, vasoactive intestinal peptide agonists, and dopamine beta hydroxylase inhibitors. SUMMARY A concise review of future directions of HTN pharmacotherapy.
Collapse
|
30
|
A pilot double-blind randomized placebo-controlled crossover pharmacodynamic study of the centrally active aminopeptidase A inhibitor, firibastat, in hypertension. J Hypertens 2019; 37:1722-1728. [DOI: 10.1097/hjh.0000000000002092] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Ferdinand KC, Balavoine F, Besse B, Black HR, Desbrandes S, Dittrich HC, Nesbitt SD. Efficacy and Safety of Firibastat, A First-in-Class Brain Aminopeptidase A Inhibitor, in Hypertensive Overweight Patients of Multiple Ethnic Origins. Circulation 2019; 140:138-146. [DOI: 10.1161/circulationaha.119.040070] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - Bruno Besse
- Quantum Genomics, Paris, France (F.B., B.B., S.D.)
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW To review the data supporting the use of aminopeptidase A (APA) inhibitor prodrugs as centrally acting antihypertensive agents. RECENT FINDINGS Brain renin-angiotensin system (RAS) hyperactivity has been implicated in the development and maintenance of hypertension. Angiotensin III, generated by APA, one of the main effector peptides of the brain RAS, exerts a tonic stimulatory control over blood pressure in hypertensive rats. This identified brain APA as a potential therapeutic target for the treatment of hypertension, leading to the development of RB150/firibastat, an orally active prodrug of the specific and selective APA inhibitor, EC33. When given orally, RB150/firibastat crosses the gastrointestinal and blood-brain barriers, enters the brain, and generates two active molecules of EC33 which inhibit brain APA activity, blocking brain angiotensin III formation, and decrease blood pressure for several hours in hypertensive rats. Orally active APA inhibitor prodrugs, by blocking brain RAS activity, represent promising novel strategy for treating hypertension.
Collapse
|
33
|
Central antihypertensive effects of chronic treatment with RB150: an orally active aminopeptidase A inhibitor in deoxycorticosterone acetate-salt rats. J Hypertens 2019; 36:641-650. [PMID: 28968260 DOI: 10.1097/hjh.0000000000001563] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Hyperactivity of the brain renin-angiotensin (Ang) system has been implicated in the development and maintenance of hypertension. AngIII, one of the main effector peptides of the brain renin-Ang system, exerts a tonic stimulatory control over blood pressure (BP) in hypertensive rats. Aminopeptidase A (APA), the enzyme generating brain AngIII, represents a new therapeutic target for the treatment of hypertension. We developed RB150, a prodrug of the specific and selective APA inhibitor, EC33. When given orally in acute treatment in hypertensive rats, RB150 crosses the gastrointestinal and blood-brain barriers, enters the brain, inhibits brain APA activity and decreases BP. We investigate, here, the antihypertensive effects of chronic oral RB150 (50 mg/kg per day) treatment over 24 days in alert hypertensive deoxycorticosterone acetate-salt rats. METHODS We measured variations in Brain APA enzymatic activity, SBP, plasma arginine vasopressin levels and metabolic parameters after RB150 chronic administration. RESULTS This resulted in a significant decrease in SBP over the 24-day treatment period showing that no tolerance to the antihypertensive RB150 effect was observed throughout the treatment period. Chronic RB150 treatment also significantly decreased plasma arginine vasopressin levels and increased diuresis, which participate to BP decrease by reducing the size of fluid compartment. Interestingly, we observed an increased natriuresis without modifying both plasma sodium and potassium levels. CONCLUSION Our results strengthen the interest of developing RB150 as a novel central-acting antihypertensive agent and evaluating its efficacy in salt-sensitive hypertension.
Collapse
|
34
|
Abstract
PURPOSE OF THE REVIEW Pharmacology remains the mainstay of treatment for hypertension across the globe. In what may seem like a well-trodden field, there are actually an exciting array of new pathways for the treatment of hypertension on the horizon. This review seeks to discuss the most recent research in ongoing areas of drug development in the field of hypertension. RECENT FINDINGS Novel areas of research in the field of hypertension pharmacology include central nervous system regulators, peripheral noradrenergic inhibitors, gastrointestinal sodium modulators, and a counter-regulatory arm of the renin-angiotensin-aldosterone system. This review discusses these pathways in a look into the current status of emerging pharmacological therapies for hypertension.
Collapse
Affiliation(s)
- Merrill H Stewart
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, 1514 Jefferson Highway, New Orleans, LA, 70121, USA.
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| | - Hector O Ventura
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| |
Collapse
|
35
|
Specific Inhibition of Brain Angiotensin III Formation as a New Strategy for Prevention of Heart Failure After Myocardial Infarction. J Cardiovasc Pharmacol 2019; 73:82-91. [DOI: 10.1097/fjc.0000000000000638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Boitard SE, Marc Y, Keck M, Mougenot N, Agbulut O, Balavoine F, Llorens-Cortes C. Brain renin-angiotensin system blockade with orally active aminopeptidase A inhibitor prevents cardiac dysfunction after myocardial infarction in mice. J Mol Cell Cardiol 2018; 127:215-222. [PMID: 30599150 DOI: 10.1016/j.yjmcc.2018.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/16/2018] [Accepted: 12/17/2018] [Indexed: 11/25/2022]
Abstract
Brain renin-angiotensin system (RAS) hyperactivity has been implicated in sympathetic hyperactivity and progressive left ventricular (LV) dysfunction after myocardial infarction (MI). Angiotensin III, generated by aminopeptidase A (APA), is one of the main effector peptides of the brain RAS in the control of cardiac function. We hypothesized that orally administered firibastat (previously named RB150), an APA inhibitor prodrug, would attenuate heart failure (HF) development after MI in mice, by blocking brain RAS hyperactivity. Two days after MI, adult male CD1 mice were randomized to three groups, for four to eight weeks of oral treatment with vehicle (MI + vehicle), firibastat (150 mg/kg; MI + firibastat) or the angiotensin I converting enzyme inhibitor enalapril (1 mg/kg; MI + enalapril) as a positive control. From one to four weeks post-MI, brain APA hyperactivity occurred, contributing to brain RAS hyperactivity. Firibastat treatment normalized brain APA hyperactivity, with a return to the control values measured in sham group two weeks after MI. Four and six weeks after MI, MI + firibastat mice had a significant lower LV end-diastolic pressure, LV end-systolic diameter and volume, and a higher LV ejection fraction than MI + vehicle mice. Moreover, the mRNA levels of biomarkers of HF (Myh7, Bnp and Anf) were significantly lower following firibastat treatment. For a similar infarct size, the peri-infarct area of MI + firibastat mice displayed lower levels of mRNA for Ctgf and collagen types I and III (markers of fibrosis) than MI + vehicle mice. Thus, chronic oral firibastat administration after MI in mice prevents cardiac dysfunction by normalizing brain APA hyperactivity, and attenuates cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Solène Emmanuelle Boitard
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, Paris 75005, France; Quantum Genomics, Tour Montparnasse, 33 avenue du Maine, Paris 75015, France
| | - Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, Paris 75005, France; Quantum Genomics, Tour Montparnasse, 33 avenue du Maine, Paris 75015, France
| | - Mathilde Keck
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, Paris 75005, France; Quantum Genomics, Tour Montparnasse, 33 avenue du Maine, Paris 75015, France
| | | | - Onnik Agbulut
- Biological Adaptation and Ageing, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Paris 75005, France
| | - Fabrice Balavoine
- Quantum Genomics, Tour Montparnasse, 33 avenue du Maine, Paris 75015, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, Paris 75005, France.
| |
Collapse
|
37
|
Abstract
Purpose of Review The purpose of this review is to summarize the most recent data available on advances in development of novel medical treatments for hypertension and related comorbidities. Recent Findings Approximately half of all hypertensive patients have not achieved goal blood pressure with current available antihypertensive medications. Recent landmark studies and new hypertension guidelines have called for stricter blood pressure control, creating a need for better strategies for lowering blood pressure. This has led to a shift in focus, in recent years, to the development of combination pills as a means of achieving improved blood pressure control by increasing adherence to prescribed medications along with further research and development of promising novel drugs based on discovery of new molecular targets such as the counter-regulatory renin-angiotensin system. Summary Fixed-dose combination pills and novel treatments based on recently discovered pathogenic mechanisms of hypertension that have demonstrated promising results as treatments for hypertension and related comorbidities will be discussed in this review.
Collapse
Affiliation(s)
- Jared Davis
- Department of Medicine, University of Alabama at Birmingham, BDB 327, 1720 2nd Ave S, Birmingham, AL, 35294, USA.
| | - Suzanne Oparil
- UAB Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, University of Alabama at Birmingham, ZRB 1034, 703 19th St S, Birmingham, AL, 35233, USA
| |
Collapse
|
38
|
Kehoe PG, Hibbs E, Palmer LE, Miners JS. Angiotensin-III is Increased in Alzheimer's Disease in Association with Amyloid-β and Tau Pathology. J Alzheimers Dis 2018; 58:203-214. [PMID: 28387670 DOI: 10.3233/jad-161265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hyperactivity of the renin-angiotensin system (RAS) is associated with the pathogenesis of Alzheimer's disease (AD) believed to be mediated by angiotensin-II (Ang-II) activation of the angiotensin type 1 receptor (AT1R). We previously showed that angiotensin-converting enzyme-1 (ACE-1) activity, the rate-limiting enzyme in the production of Ang-II, is increased in human postmortem brain tissue in AD. Angiotensin-III (Ang-III) activates the AT1R and angiotensin type-2 receptor (AT2R), but its potential role in the pathophysiology of AD remains unexplored. We measured Ang-II and Ang-III levels by ELISA, and the levels and activities of aminopeptidase-A (AP-A) and aminopeptidase-N (AP-N) (responsible for the production and metabolism of Ang-III, respectively) in human postmortem brain tissue in the mid-frontal cortex (Brodmann area 9) in a cohort of AD (n = 90) and age-matched non-demented controls (n = 59), for which we had previous measurements of ACE-1 activity, Aβ level, and tau pathology (also in the mid-frontal cortex). We found that both Ang-II and Ang-III levels were significantly higher in AD compared to age-matched controls and that Ang-III, rather than Ang-II, was strongly associated with Aβ load and tau load. Levels of AP-A were significantly reduced in AD but AP-A enzyme activity was unchanged whereas AP-N activity was reduced in AD but AP-N protein level was unchanged. Together, these data indicate that the APA/Ang-III/APN/Ang-IV/AT4R pathway is dysregulated and that elevated Ang-III could contribute to the pathogenesis of AD.
Collapse
|
39
|
Leenen FHH, Blaustein MP, Hamlyn JM. Update on angiotensin II: new endocrine connections between the brain, adrenal glands and the cardiovascular system. Endocr Connect 2017; 6:R131-R145. [PMID: 28855243 PMCID: PMC5613704 DOI: 10.1530/ec-17-0161] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
In the brain, angiotensinergic pathways play a major role in chronic regulation of cardiovascular and electrolyte homeostasis. Increases in plasma angiotensin II (Ang II), aldosterone, [Na+] and cytokines can directly activate these pathways. Chronically, these stimuli also activate a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium channels and endogenous ouabain (EO). This pathway increases AT1R and NADPH oxidase subunits and maintains/further increases the activity of angiotensinergic pathways. These brain pathways not only increase the setpoint of sympathetic activity per se, but also enhance its effectiveness by increasing plasma EO and EO-dependent reprogramming of arterial and cardiac function. Blockade of any step in this slow pathway or of AT1R prevents Ang II-, aldosterone- or salt and renal injury-induced forms of hypertension. MR/AT1R activation in the CNS also contributes to the activation of sympathetic activity, the circulatory and cardiac RAAS and increase in circulating cytokines in HF post MI. Chronic central infusion of an aldosterone synthase inhibitor, MR blocker or AT1R blocker prevents a major part of the structural remodeling of the heart and the decrease in LV function post MI, indicating that MR activation in the CNS post MI depends on aldosterone, locally produced in the CNS. Thus, Ang II, aldosterone and EO are not simply circulating hormones that act on the CNS but rather they are also paracrine neurohormones, locally produced in the CNS, that exert powerful effects in key CNS pathways involved in the long-term control of sympathetic and neuro-endocrine function and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Frans H H Leenen
- Brain and Heart Research GroupUniversity of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Mordecai P Blaustein
- Department of PhysiologyUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of MedicineUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John M Hamlyn
- Department of PhysiologyUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Involvement of arginine 878 together with Ca2+ in mouse aminopeptidase A substrate specificity for N-terminal acidic amino-acid residues. PLoS One 2017; 12:e0184237. [PMID: 28877217 PMCID: PMC5587309 DOI: 10.1371/journal.pone.0184237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022] Open
Abstract
Aminopeptidase A (APA) is a membrane-bound zinc metalloprotease cleaving, in the brain, the N-terminal aspartyl residue of angiotensin II to generate angiotensin III, which exerts a tonic stimulatory effect on the control of blood pressure in hypertensive animals. Using a refined APA structure derived from the human APA crystal structure, we docked the specific and selective APA inhibitor, EC33 in the presence of Ca2+. We report the presence in the S1 subsite of Arg-887 (Arg-878 in mouse APA), the guanidinium moiety of which established an interaction with the electronegative sulfonate group of EC33. Mutagenic replacement of Arg-878 with an alanine or a lysine residue decreased the affinity of the recombinant enzymes for the acidic substrate, α-L-glutamyl-β-naphthylamide, with a slight decrease in substrate hydrolysis velocity either with or without Ca2+. In the absence of Ca2+, the mutations modified the substrate specificity of APA for the acidic substrate, the mutated enzymes hydrolyzing more efficiently basic and neutral substrates, although the addition of Ca2+ partially restored the acidic substrate specificity. The analysis of the 3D models of the Arg-878 mutated APAs revealed a change in the volume of the S1 subsite, which may impair the binding and/or the optimal positioning of the substrate in the active site as well as its hydrolysis. These findings demonstrate the key role of Arg-878 together with Ca2 + in APA substrate specificity for N-terminal acidic amino acid residues by ensuring the optimal positioning of acidic substrates during catalysis.
Collapse
|
41
|
Huber G, Schuster F, Raasch W. Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 2017; 125:72-90. [PMID: 28687340 DOI: 10.1016/j.phrs.2017.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVD) are among the main causes of death globally and in this context hypertension represents one of the key risk factors for developing a CVD. It is well established that the peripheral renin-angiotensin system (RAS) plays an important role in regulating blood pressure (BP). All components of the classic RAS can also be found in the brain but, in contrast to the peripheral RAS, how the endogenous RAS is involved in modulating cardiovascular effects in the brain is not fully understood yet. It is a complex system that may work differently in diverse areas of the brain and is linked to the peripheral system by the circumventricular organs (CVO), which do not have a blood brain barrier (BBB). In this review, we focus on the brain angiotensin peptides, their interactions with each other, and the consequences in the central nervous system (CNS) concerning cardiovascular control. Additionally, we present potential drug targets in the brain RAS for the treatment of hypertension.
Collapse
Affiliation(s)
- Gianna Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Franziska Schuster
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
42
|
Tamargo M, Tamargo J. Future drug discovery in renin-angiotensin-aldosterone system intervention. Expert Opin Drug Discov 2017; 12:827-848. [PMID: 28541811 DOI: 10.1080/17460441.2017.1335301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Renin-angiotensin-aldosterone system inhibitors (RAASIs), including angiotensin-converting enzyme inhibitors, angiotensin AT1 receptor blockers and mineralocorticoid receptor antagonists (MRAs), are the cornerstone for the treatment of cardiovascular and renal diseases. Areas covered: The authors searched MEDLINE, PubMed and ClinicalTrials.gov to identify eligible full-text English language papers. Herein, the authors discuss AT2-receptor agonists and ACE2/angiotensin-(1-7)/Mas-receptor axis modulators, direct renin inhibitors, brain aminopeptidase A inhibitors, biased AT1R blockers, chymase inhibitors, multitargeted drugs, vaccines and aldosterone receptor antagonists as well as aldosterone synthase inhibitors. Expert opinion: Preclinical studies have demonstrated that activation of the protective axis of the RAAS represents a novel therapeutic strategy for treating cardiovascular and renal diseases, but there are no clinical trials supporting our expectations. Non-steroidal MRAs might become the third-generation of MRAs for the treatment of heart failure, diabetes mellitus and chronic kidney disease. The main challenge for these new drugs is that conventional RAASIs are safe, effective and cheap generics. Thus, the future of new RAASIs will be directed by economical/strategic reasons.
Collapse
Affiliation(s)
- Maria Tamargo
- a Department of Cardiology , Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV , Madrid , Spain
| | - Juan Tamargo
- b Department of Pharmacology , School of Medicine, University Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV , Madrid , Spain
| |
Collapse
|
43
|
Excess of Aminopeptidase A in the Brain Elevates Blood Pressure via the Angiotensin II Type 1 and Bradykinin B2 Receptors without Dipsogenic Effect. Int J Hypertens 2017; 2017:3967595. [PMID: 28421141 PMCID: PMC5380851 DOI: 10.1155/2017/3967595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 01/19/2023] Open
Abstract
Aminopeptidase A (APA) cleaves angiotensin (Ang) II, kallidin, and other related peptides. In the brain, it activates the renin angiotensin system and causes hypertension. Limited data are available on the dipsogenic effect of APA and pressor effect of degraded peptides of APA such as bradykinin. Wistar-Kyoto rats received intracerebroventricular (icv) APA in a conscious, unrestrained state after pretreatment with (i) vehicle, (ii) 80 μg of telmisartan, an Ang II type-1 (AT1) receptor blocker, (iii) 800 nmol of amastatin, an aminopeptidase inhibitor, and (iv) 1 nmol of HOE-140, a bradykinin B2 receptor blocker. Icv administration of 400 and 800 ng of APA increased blood pressure by 12.6 ± 3.0 and 19.0 ± 3.1 mmHg, respectively. APA did not evoke drinking behavior. Pressor response to APA was attenuated on pretreatment with telmisartan (vehicle: 22.1 ± 2.2 mmHg versus telmisartan: 10.4 ± 3.2 mmHg). Pressor response to APA was also attenuated with amastatin and HOE-140 (vehicle: 26.5 ± 1.1 mmHg, amastatin: 14.4 ± 4.2 mmHg, HOE-140: 16.4 ± 2.2 mmHg). In conclusion, APA increase in the brain evokes a pressor response via enzymatic activity without dipsogenic effect. AT1 receptors and B2 receptors in the brain may contribute to the APA-induced pressor response.
Collapse
|
44
|
Lobo MD, Sobotka PA, Pathak A. Interventional procedures and future drug therapy for hypertension. Eur Heart J 2017; 38:1101-1111. [PMID: 27406184 PMCID: PMC5400047 DOI: 10.1093/eurheartj/ehw303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/09/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
Hypertension management poses a major challenge to clinicians globally once non-drug (lifestyle) measures have failed to control blood pressure (BP). Although drug treatment strategies to lower BP are well described, poor control rates of hypertension, even in the first world, suggest that more needs to be done to surmount the problem. A major issue is non-adherence to antihypertensive drugs, which is caused in part by drug intolerance due to side effects. More effective antihypertensive drugs are therefore required which have excellent tolerability and safety profiles in addition to being efficacious. For those patients who either do not tolerate or wish to take medication for hypertension or in whom BP control is not attained despite multiple antihypertensives, a novel class of interventional procedures to manage hypertension has emerged. While most of these target various aspects of the sympathetic nervous system regulation of BP, an additional procedure is now available, which addresses mechanical aspects of the circulation. Most of these new devices are supported by early and encouraging evidence for both safety and efficacy, although it is clear that more rigorous randomized controlled trial data will be essential before any of the technologies can be adopted as a standard of care.
Collapse
Affiliation(s)
- Melvin D. Lobo
- Barts BP Centre of Excellence, Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Paul A. Sobotka
- The Ohio State University, Columbus, OH, USA
- ROX Medical, San Clemente, CA, USA
| | - Atul Pathak
- Department of Cardiovascular Medicine, Hypertension and Heart Failure Unit, Health Innovation Lab (Hi-Lab) Clinique Pasteur, Toulouse, France
| |
Collapse
|
45
|
Ghazi L, Drawz P. Advances in understanding the renin-angiotensin-aldosterone system (RAAS) in blood pressure control and recent pivotal trials of RAAS blockade in heart failure and diabetic nephropathy. F1000Res 2017; 6. [PMID: 28413612 PMCID: PMC5365219 DOI: 10.12688/f1000research.9692.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/11/2022] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays a fundamental role in the physiology of blood pressure control and the pathophysiology of hypertension (HTN) with effects on vascular tone, sodium retention, oxidative stress, fibrosis, sympathetic tone, and inflammation. Fortunately, RAAS blocking agents have been available to treat HTN since the 1970s and newer medications are being developed. In this review, we will (1) examine new anti-hypertensive medications affecting the RAAS, (2) evaluate recent studies that help provide a better understanding of which patients may be more likely to benefit from RAAS blockade, and (3) review three recent pivotal randomized trials that involve newer RAAS blocking agents and inform clinical practice.
Collapse
Affiliation(s)
- Lama Ghazi
- Division of Renal Disease and Hypertension, Department of Medicine, University of Minnesota, Minnesota, MN, USA
| | - Paul Drawz
- Division of Renal Disease and Hypertension, Department of Medicine, University of Minnesota, Minnesota, MN, USA
| |
Collapse
|
46
|
Drinkwater N, Lee J, Yang W, Malcolm TR, McGowan S. M1 aminopeptidases as drug targets: broad applications or therapeutic niche? FEBS J 2017; 284:1473-1488. [PMID: 28075056 PMCID: PMC7164018 DOI: 10.1111/febs.14009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/12/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022]
Abstract
M1 aminopeptidase enzymes are a diverse family of metalloenzymes characterized by conserved structure and reaction specificity. Excluding viruses, M1 aminopeptidases are distributed throughout all phyla, and have been implicated in a wide range of functions including cell maintenance, growth and development, and defense. The structure and catalytic mechanism of M1 aminopeptidases are well understood, and make them ideal candidates for the design of small‐molecule inhibitors. As a result, many research groups have assessed their utility as therapeutic targets for both infectious and chronic diseases of humans, and many inhibitors with a range of target specificities and potential therapeutic applications have been developed. Herein, we have aimed to address these studies, to determine whether the family of M1 aminopeptidases does in fact present a universal target for the treatment of a diverse range of human diseases. Our analysis indicates that early validation of M1 aminopeptidases as therapeutic targets is often overlooked, which prevents the enzymes from being confirmed as drug targets. This validation cannot be neglected, and needs to include a thorough characterization of enzymes’ specific roles within complex physiological pathways. Furthermore, any chemical probes used in target validation must be carefully designed to ensure that specificity over the closely related enzymes has been achieved. While many drug discovery programs that target M1 aminopeptidases remain in their infancy, certain inhibitors have shown promise for the treatment of a range of conditions including malaria, hypertension, and cancer.
Collapse
Affiliation(s)
- Nyssa Drinkwater
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Vic., Australia
| | - Jisook Lee
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic., Australia
| | - Wei Yang
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Vic., Australia
| | - Tess R Malcolm
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Vic., Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
47
|
Abstract
Hypertension, or high blood pressure, is a prevalent yet modifiable risk factor for cardiovascular disease. While there are many effective treatments available to combat hypertension, patients often require at least two to three medications to control blood pressure, although there are patients who are resistant to such therapies. This short review will briefly update on recent clinical advances and potential emerging therapies and is intended for a cross-disciplinary readership.
Collapse
Affiliation(s)
- Andrew J. Freeman
- Department of Pharmacology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Antony Vinh
- Department of Pharmacology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E. Widdop
- Department of Pharmacology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
48
|
Mascolo A, Sessa M, Scavone C, De Angelis A, Vitale C, Berrino L, Rossi F, Rosano G, Capuano A. New and old roles of the peripheral and brain renin-angiotensin-aldosterone system (RAAS): Focus on cardiovascular and neurological diseases. Int J Cardiol 2016; 227:734-742. [PMID: 27823897 DOI: 10.1016/j.ijcard.2016.10.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023]
Abstract
It is commonly accepted that the renin-angiotensin-aldosterone system (RAAS) is a cardiovascular circulating hormonal system that plays also an important role in the modulation of several patterns in the brain. The pathway of the RAAS can be divided into two classes: the traditional pathway of RAAS, also named classic RAAS, and the non-classic RAAS. Both pathways play a role in both cardiovascular and neurological diseases through a peripheral or central control. In this regard, renewed interest is growing in the last years for the consideration that the brain RAAS could represent a new important therapeutic target to regulate not only the blood pressure via central nervous control, but also neurological diseases. However, the development of compounds able to cross the blood-brain barrier and to act on the brain RAAS is challenging, especially if the metabolic stability and the half-life are taken into consideration. To date, two drug classes (aminopeptidase type A inhibitors and angiotensin IV analogues) acting on the brain RAAS are in development in pre-clinical or clinical stages. In this article, we will present an overview of the biological functions played by peripheral and brain classic and non-classic pathways of the RAAS in several clinical conditions, focusing on the brain RAAS and on the new pharmacological targets of the RAAS.
Collapse
Affiliation(s)
- A Mascolo
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy.
| | - M Sessa
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - C Scavone
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - A De Angelis
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - C Vitale
- IRCCS San Raffaele Pisana, Rome, Italy
| | - L Berrino
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - F Rossi
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - G Rosano
- IRCCS San Raffaele Pisana, Rome, Italy; Cardiovascular and Cell Sciences Research Institute, St. George's, University of London, London, UK
| | - A Capuano
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| |
Collapse
|
49
|
Alponti RF, Silveira PF. Adipocyte aminopeptidases in obesity and fasting. Mol Cell Endocrinol 2015; 415:24-31. [PMID: 26257241 DOI: 10.1016/j.mce.2015.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 07/13/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022]
Abstract
This study checked the existence of a diverse array of aminopeptidase (AP) enzymes in high (HDM) and low (LDM) density microsomal and plasma membrane (MF) fractions from adipocytes of control, monosodium glutamate obese and food deprived rats. Gene expression was detected for ArgAP, AspAP, MetAP, and two AlaAP (APM and PSA). APM and PSA had the highest catalytic efficiency, whereas AspAP the highest affinity. Subcellular distribution of AP activities depended on metabolic status. Comparing catalytic levels, AspAP in HDM, LDM and MF was absent in obese and control under food deprivation; PSA in LDM was 3.5-times higher in obese than in normally fed control and control and obese under food deprivation; MetAP in MF was 4.5-times higher in obese than in food deprived obese. Data show new AP enzymes genetically expressed in subcellular compartments of adipocytes, three of them with altered catalytic levels that respond to whole-body energetic demands.
Collapse
Affiliation(s)
- Rafaela Fadoni Alponti
- Laboratory of Pharmacology, Instituto Butantan, Av. Vital Brasil, 1500, 05503-900, Sao Paulo, Brazil; Department of Physiology, Universidade de Sao Paulo, Rua do Matao, Travessa 14, 101, 05508-900, Sao Paulo, Brazil
| | - Paulo Flavio Silveira
- Laboratory of Pharmacology, Instituto Butantan, Av. Vital Brasil, 1500, 05503-900, Sao Paulo, Brazil.
| |
Collapse
|
50
|
Abstract
Hypertension is the most common modifiable risk factor for cardiovascular disease and death, and lowering blood pressure with antihypertensive drugs reduces target organ damage and prevents cardiovascular disease outcomes. Despite a plethora of available treatment options, a substantial portion of the hypertensive population has uncontrolled blood pressure. The unmet need of controlling blood pressure in this population may be addressed, in part, by developing new drugs and devices/procedures to treat hypertension and its comorbidities. In this Compendium Review, we discuss new drugs and interventional treatments that are undergoing preclinical or clinical testing for hypertension treatment. New drug classes, eg, inhibitors of vasopeptidases, aldosterone synthase and soluble epoxide hydrolase, agonists of natriuretic peptide A and vasoactive intestinal peptide receptor 2, and a novel mineralocorticoid receptor antagonist are in phase II/III of development, while inhibitors of aminopeptidase A, dopamine β-hydroxylase, and the intestinal Na
+
/H
+
exchanger 3, agonists of components of the angiotensin-converting enzyme 2/angiotensin(1–7)/Mas receptor axis and vaccines directed toward angiotensin II and its type 1 receptor are in phase I or preclinical development. The two main interventional approaches, transcatheter renal denervation and baroreflex activation therapy, are used in clinical practice for severe treatment resistant hypertension in some countries. Renal denervation is also being evaluated for treatment of various comorbidities, eg, chronic heart failure, cardiac arrhythmias and chronic renal failure. Novel interventional approaches in early development include carotid body ablation and arteriovenous fistula placement. Importantly, none of these novel drug or device treatments has been shown to prevent cardiovascular disease outcomes or death in hypertensive patients.
Collapse
Affiliation(s)
- Suzanne Oparil
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama (S.O.); and Department of Nephrology and Hypertension, University Hospital of the University Erlangen-Nürnberg, Germany (R.E.S.)
| | - Roland E. Schmieder
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama (S.O.); and Department of Nephrology and Hypertension, University Hospital of the University Erlangen-Nürnberg, Germany (R.E.S.)
| |
Collapse
|