1
|
Zhao M, Cao N, Gu H, Xu J, Xu W, Zhang D, Wei TYW, Wang K, Guo R, Cui H, Wang X, Guo X, Li Z, He K, Li Z, Zhang Y, Shyy JYJ, Dong E, Xiao H. AMPK Attenuation of β-Adrenergic Receptor-Induced Cardiac Injury via Phosphorylation of β-Arrestin-1-ser330. Circ Res 2024; 135:651-667. [PMID: 39082138 DOI: 10.1161/circresaha.124.324762] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND β-adrenergic receptor (β-AR) overactivation is a major pathological cue associated with cardiac injury and diseases. AMPK (AMP-activated protein kinase), a conserved energy sensor, regulates energy metabolism and is cardioprotective. However, whether AMPK exerts cardioprotective effects via regulating the signaling pathway downstream of β-AR remains unclear. METHODS Using immunoprecipitation, mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we determined whether AMPK phosphorylates β-arrestin-1 at serine (Ser) 330. Wild-type mice and mice with site-specific mutagenesis (S330A knock-in [KI]/S330D KI) were subcutaneously injected with the β-AR agonist isoproterenol (5 mg/kg) to evaluate the causality between β-adrenergic insult and β-arrestin-1 Ser330 phosphorylation. Cardiac transcriptomics was used to identify changes in gene expression from β-arrestin-1-S330A/S330D mutation and β-adrenergic insult. RESULTS Metformin could decrease cAMP/PKA (protein kinase A) signaling induced by isoproterenol. AMPK bound to β-arrestin-1 and phosphorylated Ser330 with the highest phosphorylated mass spectrometry score. AMPK activation promoted β-arrestin-1 Ser330 phosphorylation in vitro and in vivo. Neonatal mouse cardiomyocytes overexpressing β-arrestin-1-S330D (active form) inhibited the β-AR/cAMP/PKA axis by increasing PDE (phosphodiesterase) 4 expression and activity. Cardiac transcriptomics revealed that the differentially expressed genes between isoproterenol-treated S330A KI and S330D KI mice were mainly involved in immune processes and inflammatory response. β-arrestin-1 Ser330 phosphorylation inhibited isoproterenol-induced reactive oxygen species production and NLRP3 (NOD-like receptor protein 3) inflammasome activation in neonatal mouse cardiomyocytes. In S330D KI mice, the β-AR-activated cAMP/PKA pathways were attenuated, leading to repressed inflammasome activation, reduced expression of proinflammatory cytokines, and mitigated macrophage infiltration. Compared with S330A KI mice, S330D KI mice showed diminished cardiac fibrosis and improved cardiac function upon isoproterenol exposure. However, the cardiac protection exerted by AMPK was abolished in S330A KI mice. CONCLUSIONS AMPK phosphorylation of β-arrestin-1 Ser330 potentiated PDE4 expression and activity, thereby inhibiting β-AR/cAMP/PKA activation. Subsequently, β-arrestin-1 Ser330 phosphorylation blocks β-AR-induced cardiac inflammasome activation and remodeling.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Ning Cao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital (N.C.), Capital Medical University, Beijing, China
| | - Huijun Gu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Jiachao Xu
- Laboratory for Clinical Medicine (N.C.), Capital Medical University, Beijing, China
| | - Wenli Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China (W.X., E.D., H.X.)
| | - Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies (D.Z., Zhiyuan Li), Peking University, Beijing, China
| | - Tong-You Wade Wei
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-Y.W.W., J.Y.-J.S.)
| | - Kang Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Ruiping Guo
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Hongtu Cui
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Xiaofeng Wang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (X.W.)
| | - Xin Guo
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Zhiyuan Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies (D.Z., Zhiyuan Li), Peking University, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China (J.X., K.H.)
- University of Chinese Academy of Sciences, Beijing, China (K.H.)
| | - Zijian Li
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-Y.W.W., J.Y.-J.S.)
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- Institute of Cardiovascular Sciences (E.D.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China (W.X., E.D., H.X.)
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China (W.X., E.D., H.X.)
| |
Collapse
|
2
|
Nibley PC, Shenoy SK. β-adrenergic receptor signaling mediated by β-arrestins and its potential role in heart failure. CURRENT OPINION IN PHYSIOLOGY 2024; 37:100723. [PMID: 38094036 PMCID: PMC10715791 DOI: 10.1016/j.cophys.2023.100723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
The lethality of heart failure (HF), particularly in the context of post-acute sequelae SARS-CoV-2 infection (PASC)-related myocarditis, necessitates the discovery of the cellular pathways implicated in cardiovascular disease (CVD). We summarize the signaling mechanisms of the catecholamine-binding β-adrenergic receptors (β-ARs), with an emphasis on the role of β-arrestins. β-ARs, a subset of G protein-coupled receptors (GPCRs), canonically propagate signals through heterotrimeric G proteins. However, since their discovery in the late 1980s, β-arrestins have been shown to, both (i) quench G protein signaling and (ii) initiate their own independent signaling cascades, which is influenced by post-translational modifications. β-arrestin-biased agonism by the beta-blocker carvedilol and its allosteric modulation can serve a cardioprotective role. The increasingly labyrinthine nature of GPCR signaling suggests that ligand-dependent β-AR signaling, either stimulated by an agonist or blocked by an antagonist, is selectively enhanced or suppressed by allosteric modulations, which are orchestrated by novel drugs or endogenous post-translational modifications.
Collapse
Affiliation(s)
- Preston C. Nibley
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudha K. Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Güven B, Sun Q, Wagg CS, Almeida de Oliveira A, Silver H, Persad KL, Onay-Besikci A, Vu J, Oudit GY, Lopaschuk GD. Obesity Is a Major Determinant of Impaired Cardiac Energy Metabolism in Heart Failure with Preserved Ejection Fraction. J Pharmacol Exp Ther 2024; 388:145-155. [PMID: 37977817 DOI: 10.1124/jpet.123.001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major health problem with limited treatment options. Although optimizing cardiac energy metabolism is a potential approach to treating heart failure, it is poorly understood what alterations in cardiac energy metabolism actually occur in HFpEF. To determine this, we used mice in which HFpEF was induced using an obesity and hypertension HFpEF protocol for 10 weeks. Next, carvedilol, a third-generation β-blocker and a biased agonist that exhibits agonist-like effects through β arrestins by activating extracellular signal-regulated kinase, was used to decrease one of these parameters, namely hypertension. Heart function was evaluated by invasive pressure-volume loops and echocardiography as well as by ex vivo working heart perfusions. Glycolysis and oxidation rates of glucose, fatty acids, and ketones were measured in the isolated working hearts. The development of HFpEF was associated with a dramatic decrease in cardiac glucose oxidation rates, with a parallel increase in palmitate oxidation rates. Carvedilol treatment decreased the development of HFpEF but had no major effect on cardiac energy substrate metabolism. Carvedilol treatment did increase the expression of cardiac β arrestin 2 and proteins involved in mitochondrial biogenesis. Decreasing bodyweight in obese HFpEF mice increased glucose oxidation and improved heart function. This suggests that the dramatic energy metabolic changes in HFpEF mice hearts are primarily due to the obesity component of the HFpEF model. SIGNIFICANCE STATEMENT: Metabolic inflexibility occurs in heart failure with preserved ejection fraction (HFpEF) mice hearts. Lowering blood pressure improves heart function in HFpEF mice with no major effect on energy metabolism. Between hypertension and obesity, the latter appears to have the major role in HFpEF cardiac energetic changes. Carvedilol increases mitochondrial biogenesis and overall energy expenditure in HFpEF hearts.
Collapse
Affiliation(s)
- Berna Güven
- Cardiovascular Research Centre, Department of Pediatrics (B.G., Q.S., C.S.W., H.S., K.L.P., G.D.L.), Department of Medicine, Division of Cardiology (A.A.O., J.V., G.Y.O.), and Mazankowski Alberta Heart Institute (A.A.O., J.V., G.Y.O.), University of Alberta, Edmonton, Canada and Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey (B.G., A.O.-B.)
| | - Qiuyu Sun
- Cardiovascular Research Centre, Department of Pediatrics (B.G., Q.S., C.S.W., H.S., K.L.P., G.D.L.), Department of Medicine, Division of Cardiology (A.A.O., J.V., G.Y.O.), and Mazankowski Alberta Heart Institute (A.A.O., J.V., G.Y.O.), University of Alberta, Edmonton, Canada and Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey (B.G., A.O.-B.)
| | - Cory S Wagg
- Cardiovascular Research Centre, Department of Pediatrics (B.G., Q.S., C.S.W., H.S., K.L.P., G.D.L.), Department of Medicine, Division of Cardiology (A.A.O., J.V., G.Y.O.), and Mazankowski Alberta Heart Institute (A.A.O., J.V., G.Y.O.), University of Alberta, Edmonton, Canada and Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey (B.G., A.O.-B.)
| | - Amanda Almeida de Oliveira
- Cardiovascular Research Centre, Department of Pediatrics (B.G., Q.S., C.S.W., H.S., K.L.P., G.D.L.), Department of Medicine, Division of Cardiology (A.A.O., J.V., G.Y.O.), and Mazankowski Alberta Heart Institute (A.A.O., J.V., G.Y.O.), University of Alberta, Edmonton, Canada and Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey (B.G., A.O.-B.)
| | - Heidi Silver
- Cardiovascular Research Centre, Department of Pediatrics (B.G., Q.S., C.S.W., H.S., K.L.P., G.D.L.), Department of Medicine, Division of Cardiology (A.A.O., J.V., G.Y.O.), and Mazankowski Alberta Heart Institute (A.A.O., J.V., G.Y.O.), University of Alberta, Edmonton, Canada and Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey (B.G., A.O.-B.)
| | - Kaya L Persad
- Cardiovascular Research Centre, Department of Pediatrics (B.G., Q.S., C.S.W., H.S., K.L.P., G.D.L.), Department of Medicine, Division of Cardiology (A.A.O., J.V., G.Y.O.), and Mazankowski Alberta Heart Institute (A.A.O., J.V., G.Y.O.), University of Alberta, Edmonton, Canada and Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey (B.G., A.O.-B.)
| | - Arzu Onay-Besikci
- Cardiovascular Research Centre, Department of Pediatrics (B.G., Q.S., C.S.W., H.S., K.L.P., G.D.L.), Department of Medicine, Division of Cardiology (A.A.O., J.V., G.Y.O.), and Mazankowski Alberta Heart Institute (A.A.O., J.V., G.Y.O.), University of Alberta, Edmonton, Canada and Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey (B.G., A.O.-B.)
| | - Jennie Vu
- Cardiovascular Research Centre, Department of Pediatrics (B.G., Q.S., C.S.W., H.S., K.L.P., G.D.L.), Department of Medicine, Division of Cardiology (A.A.O., J.V., G.Y.O.), and Mazankowski Alberta Heart Institute (A.A.O., J.V., G.Y.O.), University of Alberta, Edmonton, Canada and Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey (B.G., A.O.-B.)
| | - Gavin Y Oudit
- Cardiovascular Research Centre, Department of Pediatrics (B.G., Q.S., C.S.W., H.S., K.L.P., G.D.L.), Department of Medicine, Division of Cardiology (A.A.O., J.V., G.Y.O.), and Mazankowski Alberta Heart Institute (A.A.O., J.V., G.Y.O.), University of Alberta, Edmonton, Canada and Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey (B.G., A.O.-B.)
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics (B.G., Q.S., C.S.W., H.S., K.L.P., G.D.L.), Department of Medicine, Division of Cardiology (A.A.O., J.V., G.Y.O.), and Mazankowski Alberta Heart Institute (A.A.O., J.V., G.Y.O.), University of Alberta, Edmonton, Canada and Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey (B.G., A.O.-B.)
| |
Collapse
|
4
|
Mathieu NM, Nakagawa P, Grobe JL, Sigmund CD. Insights Into the Role of Angiotensin-II AT 1 Receptor-Dependent β-Arrestin Signaling in Cardiovascular Disease. Hypertension 2024; 81:6-16. [PMID: 37449411 PMCID: PMC10787814 DOI: 10.1161/hypertensionaha.123.19419] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
β-arrestins are a family of intracellular signaling proteins that play a key role in regulating the activity of G protein-coupled receptors. The angiotensin-II type 1 receptor is an important G protein-coupled receptor involved in the regulation of cardiovascular function and has been implicated in the progression of cardiovascular diseases. In addition to canonical G protein signaling, G protein-coupled receptors including the angiotensin-II type 1 receptor can signal via β-arrestin. Dysregulation of β-arrestin signaling has been linked to several cardiovascular diseases including hypertension, atherosclerosis, and heart failure. Understanding the role of β-arrestins in these conditions is critical to provide new therapeutic targets for the treatment of cardiovascular disease. In this review, we will discuss the beneficial and maladaptive physiological outcomes of angiotensin-II type 1 receptor-dependent β-arrestin activation in different cardiovascular diseases.
Collapse
Affiliation(s)
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
5
|
Yang Z, He M, Austin J, Sayed D, Abdellatif M. Reducing branched-chain amino acids improves cardiac stress response in mice by decreasing histone H3K23 propionylation. J Clin Invest 2023; 133:e169399. [PMID: 37669116 PMCID: PMC10645387 DOI: 10.1172/jci169399] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Identification of branched-chain amino acid (BCAA) oxidation enzymes in the nucleus led us to predict that they are a source of the propionyl-CoA that is utilized for histone propionylation and, thereby, regulate gene expression. To investigate the effects of BCAAs on the development of cardiac hypertrophy and failure, we applied pressure overload on the heart in mice maintained on a diet with standard levels of BCAAs (BCAA control) versus a BCAA-free diet. The former was associated with an increase in histone H3K23-propionyl (H3K23Pr) at the promoters of upregulated genes (e.g., cell signaling and extracellular matrix genes) and a decrease at the promoters of downregulated genes (e.g., electron transfer complex [ETC I-V] and metabolic genes). Intriguingly, the BCAA-free diet tempered the increases in promoter H3K23Pr, thus reducing collagen gene expression and fibrosis during cardiac hypertrophy. Conversely, the BCAA-free diet inhibited the reductions in promoter H3K23Pr and abolished the downregulation of ETC I-V subunits, enhanced mitochondrial respiration, and curbed the progression of cardiac hypertrophy. Thus, lowering the intake of BCAAs reduced pressure overload-induced changes in histone propionylation-dependent gene expression in the heart, which retarded the development of cardiomyopathy.
Collapse
|
6
|
Guven B, Onay-Besikci A. Past and present of beta arrestins: A new perspective on insulin secretion and effect. Eur J Pharmacol 2023; 956:175952. [PMID: 37541367 DOI: 10.1016/j.ejphar.2023.175952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Beta arrestins had been known as intracellular adaptors that uncouple and inactivate the G protein-coupled receptors that they interact with. Their roles as signal initiators for some receptors have recently been recognized. SCOPE OF REVIEW In this review, we focused on their role in mediating metabolic modulation primarily in relation to insulin signaling. Commenced by the upstream receptor, they seem to act like intracellular hubs that divert the metabolic profile of the cell. The amount of metabolic substrates in circulation and their usage/deposition by tissues are controlled by the contribution of all systems in the organism. This control is enabled by the release of hormones such as insulin, glucagon and glucagon-like peptide-1. Intriguingly, some ligands -either agonists or antagonists-of different classes of receptors have preferential properties mediated by β arrestins. This is not surprizing considering that substrate supply and usage should parallel physiological function such as hormone release or muscle contraction. MAJOR CONCLUSIONS Available data indicate that β arrestins conduct the regulatory role in insulin secretion and action. They may be good candidates to target when the upstream signal demands the function that may compromise the cell. An example is carvedilol that is protective by preventing the stimulatory effects of excessive catecholamines, stimulates mitochondrial function and has preferential clinical outcomes in metabolic disorders.
Collapse
Affiliation(s)
- Berna Guven
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey
| | - Arzu Onay-Besikci
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey.
| |
Collapse
|
7
|
Lymperopoulos A, Borges JI, Suster MS. Angiotensin II-dependent aldosterone production in the adrenal cortex. VITAMINS AND HORMONES 2023; 124:393-404. [PMID: 38408805 DOI: 10.1016/bs.vh.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal cortex is responsible for production of adrenal steroid hormones and is anatomically divided into three distinct zones: zona glomerulosa secreting mineralocorticoids (mainly aldosterone), zona fasciculata secreting glucocorticoids (cortisol), and zona reticularis producing androgens. Importantly, due to their high lipophilicity, no adrenal steroid hormone (including aldosterone) is stored in vesicles but rather gets synthesized and secreted instantly upon cell stimulation with specific stimuli. Aldosterone is the most potent mineralocorticoid hormone produced from the adrenal cortex in response to either angiotensin II (AngII) or elevated K+ levels in the blood (hyperkalemia). AngII, being a peptide, cannot cross cell membranes and thus, uses two distinct G protein-coupled receptor (GPCR) types, AngII type 1 receptor (AT1R) and AT2R to exert its effects inside cells. In zona glomerulosa cells, AT1R activation by AngII results in aldosterone synthesis and secretion via two main pathways: (a) Gq/11 proteins that activate phospholipase C ultimately raising intracellular free calcium concentration; and (b) βarrestin1 and -2 (also known as Arrestin-2 and -3, respectively) that elicit sustained extracellular signal-regulated kinase (ERK) activation. Both pathways induce upregulation and acute activation of StAR (steroidogenic acute regulatory) protein, the enzyme that catalyzes the rate-limiting step in aldosterone biosynthesis. This chapter describes these two salient pathways underlying AT1R-induced aldosterone production in zona glomerulosa cells. We also highlight some pharmacologically important notions pertaining to the efficacy of the currently available AT1R antagonists, also known as angiotensin receptor blockers (ARBs) or sartans at suppressing both pathways, i.e., their inverse agonism efficacy at G proteins and βarrestins.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States.
| | - Jordana I Borges
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Malka S Suster
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
8
|
Maning J, Desimine VL, Pollard CM, Ghandour J, Lymperopoulos A. Carvedilol Selectively Stimulates βArrestin2-Dependent SERCA2a Activity in Cardiomyocytes to Augment Contractility. Int J Mol Sci 2022; 23:11315. [PMID: 36232617 PMCID: PMC9570329 DOI: 10.3390/ijms231911315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure (HF) carries the highest mortality in the western world and β-blockers [β-adrenergic receptor (AR) antagonists] are part of the cornerstone pharmacotherapy for post-myocardial infarction (MI) chronic HF. Cardiac β1AR-activated βarrestin2, a G protein-coupled receptor (GPCR) adapter protein, promotes Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a SUMO (small ubiquitin-like modifier)-ylation and activity, thereby directly increasing cardiac contractility. Given that certain β-blockers, such as carvedilol and metoprolol, can activate βarrestins and/or SERCA2a in the heart, we investigated the effects of these two agents on cardiac βarrestin2-dependent SERCA2a SUMOylation and activity. We found that carvedilol, but not metoprolol, acutely induces βarrestin2 interaction with SERCA2a in H9c2 cardiomyocytes and in neonatal rat ventricular myocytes (NRVMs), resulting in enhanced SERCA2a SUMOylation. However, this translates into enhanced SERCA2a activity only in the presence of the β2AR-selective inverse agonist ICI 118,551 (ICI), indicating an opposing effect of carvedilol-occupied β2AR subtype on carvedilol-occupied β1AR-stimulated, βarrestin2-dependent SERCA2a activation. In addition, the amplitude of fractional shortening of NRVMs, transfected to overexpress βarrestin2, is acutely enhanced by carvedilol, again in the presence of ICI only. In contrast, metoprolol was without effect on NRVMs' shortening amplitude irrespective of ICI co-treatment. Importantly, the pro-contractile effect of carvedilol was also observed in human induced pluripotent stem cell (hIPSC)-derived cardiac myocytes (CMs) overexpressing βarrestin2, and, in fact, it was present even without concomitant ICI treatment of human CMs. Metoprolol with or without concomitant ICI did not affect contractility of human CMs, either. In conclusion, carvedilol, but not metoprolol, stimulates βarrestin2-mediated SERCA2a SUMOylation and activity through the β1AR in cardiac myocytes, translating into direct positive inotropy. However, this unique βarrestin2-dependent pro-contractile effect of carvedilol may be opposed or masked by carvedilol-bound β2AR subtype signaling.
Collapse
Affiliation(s)
| | | | | | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
9
|
Jiang H, Galtes D, Wang J, Rockman HA. G protein-coupled receptor signaling: transducers and effectors. Am J Physiol Cell Physiol 2022; 323:C731-C748. [PMID: 35816644 PMCID: PMC9448338 DOI: 10.1152/ajpcell.00210.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are of considerable interest due to their importance in a wide range of physiological functions and in a large number of Food and Drug Administration (FDA)-approved drugs as therapeutic entities. With continued study of their function and mechanism of action, there is a greater understanding of how effector molecules interact with a receptor to initiate downstream effector signaling. This review aims to explore the signaling pathways, dynamic structures, and physiological relevance in the cardiovascular system of the three most important GPCR signaling effectors: heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. We will first summarize their prominent roles in GPCR pharmacology before transitioning into less well-explored areas. As new technologies are developed and applied to studying GPCR structure and their downstream effectors, there is increasing appreciation for the elegance of the regulatory mechanisms that mediate intracellular signaling and function.
Collapse
Affiliation(s)
- Haoran Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniella Galtes
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
10
|
Borges JI, Ferraino KE, Cora N, Nagliya D, Suster MS, Carbone AM, Lymperopoulos A. Adrenal G Protein-Coupled Receptors and the Failing Heart: A Long-distance, Yet Intimate Affair. J Cardiovasc Pharmacol 2022; 80:386-392. [PMID: 34983911 PMCID: PMC9294064 DOI: 10.1097/fjc.0000000000001213] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/11/2021] [Indexed: 01/31/2023]
Abstract
Systolic heart failure (HF) is a chronic clinical syndrome characterized by the reduction in cardiac function and still remains the disease with the highest mortality worldwide. Despite considerable advances in pharmacological treatment, HF represents a severe clinical and social burden. Chronic human HF is characterized by several important neurohormonal perturbations, emanating from both the autonomic nervous system and the adrenal glands. Circulating catecholamines (norepinephrine and epinephrine) and aldosterone elevations are among the salient alterations that confer significant hormonal burden on the already compromised function of the failing heart. This is why sympatholytic treatments (such as β-blockers) and renin-angiotensin system inhibitors or mineralocorticoid receptor antagonists, which block the effects of angiotensin II (AngII) and aldosterone on the failing heart, are part of the mainstay HF pharmacotherapy presently. The adrenal gland plays an important role in the modulation of cardiac neurohormonal stress because it is the source of almost all aldosterone, of all epinephrine, and of a significant amount of norepinephrine reaching the failing myocardium from the blood circulation. Synthesis and release of these hormones in the adrenals is tightly regulated by adrenal G protein-coupled receptors (GPCRs), such as adrenergic receptors and AngII receptors. In this review, we discuss important aspects of adrenal GPCR signaling and regulation, as they pertain to modulation of cardiac function in the context of chronic HF, by focusing on the 2 best studied adrenal GPCR types in that context, adrenergic receptors and AngII receptors (AT 1 Rs). Particular emphasis is given to findings from the past decade and a half that highlight the emerging roles of the GPCR-kinases and the β-arrestins in the adrenals, 2 protein families that regulate the signaling and functioning of GPCRs in all tissues, including the myocardium and the adrenal gland.
Collapse
Affiliation(s)
- Jordana I. Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Krysten E. Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Deepika Nagliya
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Malka S. Suster
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Alexandra M. Carbone
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
11
|
Structural basis and molecular mechanism of biased GPBAR signaling in regulating NSCLC cell growth via YAP activity. Proc Natl Acad Sci U S A 2022; 119:e2117054119. [PMID: 35858343 PMCID: PMC9303995 DOI: 10.1073/pnas.2117054119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The G protein-coupled bile acid receptor (GPBAR) is the membrane receptor for bile acids and a driving force of the liver-bile acid-microbiota-organ axis to regulate metabolism and other pathophysiological processes. Although GPBAR is an important therapeutic target for a spectrum of metabolic and neurodegenerative diseases, its activation has also been found to be linked to carcinogenesis, leading to potential side effects. Here, via functional screening, we found that two specific GPBAR agonists, R399 and INT-777, demonstrated strikingly different regulatory effects on the growth and apoptosis of non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. Further mechanistic investigation showed that R399-induced GPBAR activation displayed an obvious bias for β-arrestin 1 signaling, thus promoting YAP signaling activation to stimulate cell proliferation. Conversely, INT-777 preferentially activated GPBAR-Gs signaling, thus inactivating YAP to inhibit cell proliferation and induce apoptosis. Phosphorylation of GPBAR by GRK2 at S310/S321/S323/S324 sites contributed to R399-induced GPBAR-β-arrestin 1 association. The cryoelectron microscopy (cryo-EM) structure of the R399-bound GPBAR-Gs complex enabled us to identify key interaction residues and pivotal conformational changes in GPBAR responsible for the arrestin signaling bias and cancer cell proliferation. In summary, we demonstrate that different agonists can regulate distinct functions of cell growth and apoptosis through biased GPBAR signaling and control of YAP activity in a NSCLC cell model. The delineated mechanism and structural basis may facilitate the rational design of GPBAR-targeting drugs with both metabolic and anticancer benefits.
Collapse
|
12
|
Mohamed RMSM, Elshazly SM, Mahmoud NM. Amlexanox Exhibits Cardioprotective Effects in 5/6 Nephrectomized Rats. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
13
|
Lino CA, Barreto-Chaves ML. Beta-arrestins in the context of cardiovascular diseases: Focusing on type 1 angiotensin II receptor (AT1R). Cell Signal 2022; 92:110253. [DOI: 10.1016/j.cellsig.2022.110253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
|
14
|
Borges JI, Carbone AM, Cora N, Sizova A, Lymperopoulos A. GTPγS Assay for Measuring Agonist-Induced Desensitization of Two Human Polymorphic Alpha 2B-Adrenoceptor Variants. Methods Mol Biol 2022; 2547:267-273. [PMID: 36068469 DOI: 10.1007/978-1-0716-2573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
α2-Adrenergic receptors (ARs) mediate many cellular actions of epinephrine and norepinephrine, including inhibition of their secretion (sympathetic inhibition) from adrenal chromaffin cells. Like many other G protein-coupled receptors (GPCRs), they undergo agonist-dependent phosphorylation and desensitization by GPCR kinases (GRKs), a phenomenon recently shown to play a major role in the sympathetic overdrive that accompanies and aggravates chronic heart failure. A three-glutamic acid deletion polymorphism in the human α2B-AR subtype gene (Glu301-303) causes impaired agonist-promoted receptor phosphorylation and desensitization, resulting in enhanced signaling to inhibition of cholinergic-induced catecholamine secretion in adrenal chromaffin cells. One of the various pharmacological assays that can be used to quantify and quantitatively compare the degrees of agonist-dependent desensitization, i.e., G protein decoupling, of these two polymorphic α2B-AR variants (or of any two GPCRs for that matter) is the guanosine-5'-O-3-thiotriphosphate (GTPγS) assay that can directly quantify heterotrimeric G protein activation.
Collapse
Affiliation(s)
- Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Alexandra M Carbone
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
15
|
Lymperopoulos A, Borges JI, Carbone AM, Cora N, Sizova A. Cardiovascular angiotensin II type 1 receptor biased signaling: Focus on non-Gq-, non-βarrestin-dependent signaling. Pharmacol Res 2021; 174:105943. [PMID: 34662735 DOI: 10.1016/j.phrs.2021.105943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
The physiological and pathophysiological roles of the angiotensin II type 1 (AT1) receptor, a G protein-coupled receptor ubiquitously expressed throughout the cardiovascular system, have been the focus of intense investigations for decades. The success of angiotensin converting enzyme inhibitors (ACEIs) and of angiotensin receptor blockers (ARBs), which are AT1R-selective antagonists/inverse agonists, in the treatment of heart disease is a testament to the importance of this receptor for cardiovascular homeostasis. Given the pleiotropic signaling of the cardiovascular AT1R and, in an effort to develop yet better drugs for heart disease, the concept of biased signaling has been exploited to design and develop biased AT1R ligands that selectively activate β-arrestin transduction pathways over Gq protein-dependent pathways. However, by focusing solely on Gq or β-arrestins, studies on AT1R "biased" signaling & agonism tend to largely ignore other non-Gq-, non β-arrestin-dependent signaling modalities the very versatile AT1R employs in cardiovascular tissues, including two very important types of signal transducers/regulators: other G protein types (e.g., Gi/o, G12/13) & the Regulator of G protein Signaling (RGS) proteins. In this review, we provide a brief overview of the current state of cardiovascular AT1R biased signaling field with a special focus on the non-Gq-, non β-arrestin-dependent signaling avenues of this receptor in the cardiovascular system, which usually get left out of the conversation of "biased" AT1R signal transduction.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA.
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Alexandra M Carbone
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
16
|
Mohamed RMSM, Elshazly SM, Nafea OE, Abd El Motteleb DM. Comparative cardioprotective effects of carvedilol versus atenolol in a rat model of cardiorenal syndrome type 4. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:2117-2128. [PMID: 34398250 DOI: 10.1007/s00210-021-02130-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
The incidence of chronic kidney disease is escalating; cardiorenal syndrome (CRS) type 4 is gaining a major health concern causing significant morbidity and mortality, putting major burdens on the healthcare system. This study was designed to compare the cardioprotective effects of carvedilol versus atenolol against CRS type 4 induced by subtotal 5/6 nephrectomy in rats and to explore the underlying mechanisms. Immediately after surgery, carvedilol (20 mg/kg/day) or atenolol (20 mg/kg/day) was added to drinking water for 10 weeks. Carvedilol was more effective than atenolol in improving kidney functions, decreasing elevated blood pressures, attenuating cardiac hypertrophy, reducing serum brain natriuretic peptide, and diminished cardiac fibrous tissue deposition. However, carvedilol was equivalent to atenolol in modulating β1-adrenergic receptors (β1ARs) and cardiac diacylglycerol (DAG) signaling, but carvedilol was superior in modulating β-arrestin2, phosphatidyl inositol 4,5 bisphosphates (PIP2), and caspase 3 levels. Carvedilol has superior cardioprotective effects than atenolol in a rat model of CRS type 4. These protective effects are mediated through modulating cardiac β1ARs/β-arrestin2/PIP2/DAG as well as abating cardiac apoptotic signaling pathways (caspase3/pS473 protein kinase B (Akt)).
Collapse
Affiliation(s)
- Rasha M S M Mohamed
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shimaa M Elshazly
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ola E Nafea
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia.
| | | |
Collapse
|
17
|
Du X. Sympatho-adrenergic mechanisms in heart failure: new insights into pathophysiology. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:47-77. [PMID: 37724075 PMCID: PMC10388789 DOI: 10.1515/mr-2021-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 09/20/2023]
Abstract
The sympathetic nervous system is activated in the setting of heart failure (HF) to compensate for hemodynamic instability. However, acute sympathetic surge or sustained high neuronal firing rates activates β-adrenergic receptor (βAR) signaling contributing to myocardial remodeling, dysfunction and electrical instability. Thus, sympatho-βAR activation is regarded as a hallmark of HF and forms pathophysiological basis for β-blocking therapy. Building upon earlier research findings, studies conducted in the recent decades have significantly advanced our understanding on the sympatho-adrenergic mechanism in HF, which forms the focus of this article. This review notes recent research progress regarding the roles of cardiac β2AR or α1AR in the failing heart, significance of β1AR-autoantibodies, and βAR signaling through G-protein independent signaling pathways. Sympatho-βAR regulation of immune cells or fibroblasts is specifically discussed. On the neuronal aspects, knowledge is assembled on the remodeling of sympathetic nerves of the failing heart, regulation by presynaptic α2AR of NE release, and findings on device-based neuromodulation of the sympathetic nervous system. The review ends with highlighting areas where significant knowledge gaps exist but hold promise for new breakthroughs.
Collapse
Affiliation(s)
- Xiaojun Du
- Faculty of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, 76 West Yanta Road, Xi’an710061, Shaanxi, China
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC3004, Australia
| |
Collapse
|
18
|
Guitart-Mampel M, Urquiza P, Borges JI, Lymperopoulos A, Solesio ME. Impact of Aldosterone on the Failing Myocardium: Insights from Mitochondria and Adrenergic Receptors Signaling and Function. Cells 2021; 10:1552. [PMID: 34205363 PMCID: PMC8235589 DOI: 10.3390/cells10061552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The mineralocorticoid aldosterone regulates electrolyte and blood volume homeostasis, but it also adversely modulates the structure and function of the chronically failing heart, through its elevated production in chronic human post-myocardial infarction (MI) heart failure (HF). By activating the mineralocorticoid receptor (MR), a ligand-regulated transcription factor, aldosterone promotes inflammation and fibrosis of the heart, while increasing oxidative stress, ultimately induding mitochondrial dysfunction in the failing myocardium. To reduce morbidity and mortality in advanced stage HF, MR antagonist drugs, such as spironolactone and eplerenone, are used. In addition to the MR, aldosterone can bind and stimulate other receptors, such as the plasma membrane-residing G protein-coupled estrogen receptor (GPER), further complicating it signaling properties in the myocardium. Given the salient role that adrenergic receptor (ARs)-particularly βARs-play in cardiac physiology and pathology, unsurprisingly, that part of the impact of aldosterone on the failing heart is mediated by its effects on the signaling and function of these receptors. Aldosterone can significantly precipitate the well-documented derangement of cardiac AR signaling and impairment of AR function, critically underlying chronic human HF. One of the main consequences of HF in mammalian models at the cellular level is the presence of mitochondrial dysfunction. As such, preventing mitochondrial dysfunction could be a valid pharmacological target in this condition. This review summarizes the current experimental evidence for this aldosterone/AR crosstalk in both the healthy and failing heart, and the impact of mitochondrial dysfunction in HF. Recent findings from signaling studies focusing on MR and AR crosstalk via non-conventional signaling of molecules that normally terminate the signaling of ARs in the heart, i.e., the G protein-coupled receptor-kinases (GRKs), are also highlighted.
Collapse
Affiliation(s)
- Mariona Guitart-Mampel
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (M.G.-M.); (P.U.)
| | - Pedro Urquiza
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (M.G.-M.); (P.U.)
| | - Jordana I. Borges
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Maria E. Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (M.G.-M.); (P.U.)
| |
Collapse
|
19
|
Beta-Arrestins in the Treatment of Heart Failure Related to Hypertension: A Comprehensive Review. Pharmaceutics 2021. [DOI: 10.3390/pharmaceutics13060838
expr 929824082 + 956151497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Heart failure (HF) is a complicated clinical syndrome that is considered an increasingly frequent reason for hospitalization, characterized by a complex therapeutic regimen, reduced quality of life, and high morbidity. Long-standing hypertension ultimately paves the way for HF. Recently, there have been improvements in the treatment of hypertension and overall management not limited to only conventional medications, but several novel pathways and their pharmacological alteration are also conducive to the treatment of hypertension. Beta-arrestin (β-arrestin), a protein responsible for beta-adrenergic receptors’ (β-AR) functioning and trafficking, has recently been discovered as a potential regulator in hypertension. β-arrestin isoforms, namely β-arrestin1 and β-arrestin2, mainly regulate cardiac function. However, there have been some controversies regarding the function of the two β-arrestins in hypertension regarding HF. In the present review, we try to figure out the paradox between the roles of two isoforms of β-arrestin in the treatment of HF.
Collapse
|
20
|
Rakib A, Eva TA, Sami SA, Mitra S, Nafiz IH, Das A, Tareq AM, Nainu F, Dhama K, Emran TB, Simal-Gandara J. Beta-Arrestins in the Treatment of Heart Failure Related to Hypertension: A Comprehensive Review. Pharmaceutics 2021; 13:838. [PMID: 34198801 PMCID: PMC8228839 DOI: 10.3390/pharmaceutics13060838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) is a complicated clinical syndrome that is considered an increasingly frequent reason for hospitalization, characterized by a complex therapeutic regimen, reduced quality of life, and high morbidity. Long-standing hypertension ultimately paves the way for HF. Recently, there have been improvements in the treatment of hypertension and overall management not limited to only conventional medications, but several novel pathways and their pharmacological alteration are also conducive to the treatment of hypertension. Beta-arrestin (β-arrestin), a protein responsible for beta-adrenergic receptors' (β-AR) functioning and trafficking, has recently been discovered as a potential regulator in hypertension. β-arrestin isoforms, namely β-arrestin1 and β-arrestin2, mainly regulate cardiac function. However, there have been some controversies regarding the function of the two β-arrestins in hypertension regarding HF. In the present review, we try to figure out the paradox between the roles of two isoforms of β-arrestin in the treatment of HF.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (T.A.E.); (S.A.S.)
| | - Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (T.A.E.); (S.A.S.)
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (T.A.E.); (S.A.S.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (I.H.N.); (A.D.)
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (I.H.N.); (A.D.)
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Kota Makassar, Sulawesi Selatan 90245, Indonesia;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
21
|
Ferraino KE, Cora N, Pollard CM, Sizova A, Maning J, Lymperopoulos A. Adrenal angiotensin II type 1 receptor biased signaling: The case for "biased" inverse agonism for effective aldosterone suppression. Cell Signal 2021; 82:109967. [PMID: 33640432 DOI: 10.1016/j.cellsig.2021.109967] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022]
Abstract
Angiotensin II (AngII) uses two distinct G protein-coupled receptor (GPCR) types, AT1R and AT2R, to exert a plethora of physiologic effects in the body and to significantly affect cardiovascular homeostasis. Although not much is known about the signaling of the AT2R, AT1R signaling is known to be quite pleiotropic, mobilizing a variety of signal transducers inside cells to produce a biological outcome. When the outcome in question is aldosterone production from the adrenal cortex, the main transducers activated specifically by the adrenocortical AT1R to signal toward that cellular effect are the Gq/11 protein alpha subunits and the β-arrestins (also known as Arrestin-2 and -3). The existence of various downstream pathways the AT1R signal can travel down on has led to the ever-expanding filed of GPCR pharmacology termed "biased" signaling, which refers to a ligand preferentially activating one signaling pathway over others downstream of the same receptor in the same cell. However, "biased" signaling or "biased" agonism is therapeutically desirable only when the downstream pathways lead to different or opposite cellular outcomes, so the pathway promoting the beneficial effect can be selectively activated over the pathway that leads to detrimental consequences. In the case of the adrenal AT1R, both Gq/11 proteins and β-arrestins mediate signaling to the same end-result: aldosterone synthesis and secretion. Therefore, both pathways need to remain inactive in the adrenal cortex to fully suppress the production of aldosterone, which is one of the culprit hormones elevated in chronic heart failure, hypertension, and various other cardiovascular diseases. Variations in the effectiveness of the AT1R antagonists, which constitute the angiotensin receptor blocker (ARB) class of drugs (also known as sartans), at the relative blockade of these two pathways downstream of the adrenal AT1R opens the door to the flip term "biased" inverse agonism at the AT1R. ARBs that are unbiased and equipotent inverse agonists for both G proteins and β-arrestins at this receptor, like candesartan and valsartan, are the most preferred agents with the best efficacy at reducing circulating aldosterone, thereby ameliorating heart failure. In the present review, the biased signaling of the adrenal AT1R, particularly in relation to aldosterone production, is examined and the term "biased" inverse agonism at the AT1R is introduced and explained, as a means of pharmacological categorization of the various agents within the ARB drug class.
Collapse
Affiliation(s)
- Krysten E Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA.
| |
Collapse
|
22
|
Lymperopoulos A, Cora N, Maning J, Brill AR, Sizova A. Signaling and function of cardiac autonomic nervous system receptors: Insights from the GPCR signalling universe. FEBS J 2021; 288:2645-2659. [PMID: 33599081 DOI: 10.1111/febs.15771] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
The two branches of the autonomic nervous system (ANS), adrenergic and cholinergic, exert a multitude of effects on the human myocardium thanks to the activation of distinct G protein-coupled receptors (GPCRs) expressed on the plasma membranes of cardiac myocytes, cardiac fibroblasts, and coronary vascular endothelial cells. Norepinephrine (NE)/epinephrine (Epi) and acetylcholine (ACh) are released from cardiac ANS terminals and mediate the biological actions of the ANS on the heart via stimulation of cardiac adrenergic or muscarinic receptors, respectively. In addition, several other neurotransmitters/hormones act as facilitators of ANS neurotransmission in the heart, taking part in the so-called nonadrenergic noncholinergic (NANC) part of the ANS's control of cardiac function. These NANC mediators also use several different cell membrane-residing GPCRs to exert their effects in the myocardium. Cardiac ANS dysfunction and an imbalance between the activities of its two branches underlie a variety of cardiovascular diseases, from heart failure and hypertension to coronary artery disease, myocardial ischemia, and arrhythmias. In this review, we present the main well-established signaling modalities used by cardiac autonomic GPCRs, including receptors for salient NANC mediators, and we also highlight the latest developments pertaining to cardiac cell type-specific signal transduction, resulting in cell type-specific cardiac effects of each of these autonomic receptors.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ava R Brill
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
23
|
Abstract
Heart failure is a major source of morbidity and mortality, driven, in part, by maladaptive sympathetic hyperactivity in response to poor cardiac output. Current therapies target β-adrenergic and angiotensin II G protein-coupled receptors to reduce adverse cardiac remodeling and improve clinical outcomes; however, there is a pressing need for new therapeutic approaches to preserve cardiac function. β-arrestin is a multifunctional protein which has come under analysis in recent years as a key player in G protein-coupled receptor signal transduction and a potential therapeutic target in heart failure. β-arrestin attenuates β-adrenergic and angiotensin II receptor signaling to limit the deleterious response to excessive sympathetic stimulation while simultaneously transactivating cardioprotective signaling cascades that preserve cardiac structure and function in response to injury. β-arrestin signaling may provide unique advantages compared to classic heart failure treatment approaches, but a number of challenges currently limit clinical applications. In this review, we discuss the role and functions of β-arrestin and the current attempts to develop G protein-coupled receptor agonists biased towards β-arrestin activation. Furthermore, we examine the functional diversity of cardiac β-arrestin isotypes to explore key considerations in the promise of β-arrestin as a pharmacotherapeutic target in heart failure.
Collapse
|
24
|
Maccari S, Pace V, Barbagallo F, Stati T, Ambrosio C, Grò MC, Molinari P, Vezzi V, Catalano L, Matarrese P, Patrizio M, Rizzi R, Marano G. Intermittent β-adrenergic blockade downregulates the gene expression of β-myosin heavy chain in the mouse heart. Eur J Pharmacol 2020; 882:173287. [PMID: 32585157 DOI: 10.1016/j.ejphar.2020.173287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/14/2023]
Abstract
Expression of the β-myosin heavy chain (β-MHC), a major component of the cardiac contractile apparatus, is tightly regulated as even modest increases can be detrimental to heart under stress. In healthy hearts, continuous inhibition of β-adrenergic tone upregulates β-MHC expression. However, it is unknown whether the duration of the β-adrenergic inhibition and β-MHC expression are related. Here, we evaluated the effects of intermittent β-blockade on cardiac β-MHC expression. To this end, the β-blocker propranolol, at the dose of 15mg/kg, was administered once a day in mice for 14 days. This dosing schedule caused daily drug-free periods of at least 6 h as evidenced by propranolol plasma concentrations and cardiac β-adrenergic responsiveness. Under these conditions, β-MHC expression decreased by about 75% compared to controls. This effect was abolished in mice lacking β1- but not β2-adrenergic receptors (β-AR) indicating that β-MHC expression is regulated in a β1-AR-dependent manner. In β1-AR knockout mice, the baseline β-MHC expression was fourfold higher than in wild-type mice. Also, we evaluated the impact of intermittent β-blockade on β-MHC expression in mice with systolic dysfunction, in which an increased β-MHC expression occurs. At 3 weeks after myocardial infarction, mice showed systolic dysfunction and upregulation of β-MHC expression. Intermittent β-blockade decreased β-MHC expression while attenuating cardiac dysfunction. In vitro studies showed that propranolol does not affect β-MHC expression on its own but antagonizes catecholamine effects on β-MHC expression. In conclusion, a direct relationship occurs between the duration of the β-adrenergic inhibition and β-MHC expression through the β1-AR.
Collapse
Affiliation(s)
- Sonia Maccari
- Center for Gender-Specific Medicine, National Institute of Health, Rome, Italy
| | - Valentina Pace
- Institute of Biochemistry and Cellular Biology, National Council of Research, Monterotondo (RM), Italy
| | | | - Tonino Stati
- Center for Gender-Specific Medicine, National Institute of Health, Rome, Italy
| | - Caterina Ambrosio
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Maria Cristina Grò
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Paola Molinari
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Vanessa Vezzi
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | | | - Paola Matarrese
- Center for Gender-Specific Medicine, National Institute of Health, Rome, Italy
| | - Mario Patrizio
- Center for Gender-Specific Medicine, National Institute of Health, Rome, Italy
| | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Institute for Biomedical Technologies, National Council of Research, Milan, Italy
| | - Giuseppe Marano
- Center for Gender-Specific Medicine, National Institute of Health, Rome, Italy.
| |
Collapse
|
25
|
Eid RA, Khalil MA, Alkhateeb MA, Eleawa SM, Zaki MSA, El-Kott AF, Al-Shraim M, El-Sayed F, Eldeen MA, Bin-Meferij MM, Awaji KME, Shatoor AS. Exendin-4 Attenuates Remodeling in the Remote Myocardium of Rats After an Acute Myocardial Infarction by Activating β-Arrestin-2, Protein Phosphatase 2A, and Glycogen Synthase Kinase-3 and Inhibiting β-Catenin. Cardiovasc Drugs Ther 2020; 35:1095-1110. [PMID: 32474680 DOI: 10.1007/s10557-020-07006-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE This study tested if the protective anti-remodeling effect of GLP-1 agonist Exendin-4 after an acute myocardial infarction (MI) in rats involves inhibition of the Wnt1/β-catenin signaling pathway. METHODS Rats were divided into sham, sham + Exendin-4 (10 μg/day, i.p), MI, and MI + Exendin-4. MI was introduced to rats by permanent left anterior descending coronary artery (LAD) ligation. RESULTS On day 7 post-infraction, MI rats showed LV dysfunction with higher serum levels of cardiac markers. Their remote myocardia showed increased mRNA and protein levels of collagen I/III with higher levels of reactive oxygen species (ROS) and inflammatory cytokines, as well as protein levels of Wnt1, phospho-Akt, transforming growth factor (TGF-β1), Smad, phospho-Smad3, α-SMA, caspase-3, and Bax. They also showed higher protein levels of phospho-glycogen synthase kinase-3β (p-GSK3β), as well as total, phosphorylated, and nuclear β-catenin with a concomitant decrease in the levels of cyclic adenosine monophosphate (cAMP), mRNA of manganese superoxide dismutase (MnSOD), and protein levels of Bcl-2, β-arrestin-2, and protein phosphatase-2 (PP2A). Administration of Exendin-4 to MI rats reduced the infarct size and reversed the aforementioned signaling molecules without altering protein levels of TGF-1β and Wnt1 or Akt activation. Interestingly, Exendin-4 increased mRNA levels of MnSOD, protein levels of β-arrestin-2 and PP2A, and β-catenin phosphorylation but reduced the phosphorylation of GSK3β and Smad3, and total β-catenin levels in the LV of control rats. CONCLUSION Exendin-4 inhibits the remodeling in the remote myocardium of rats following acute MI by attenuating β-catenin activation and activating β-arrestin-2, PP2A, and GSK3β. Graphical Abstract A graphical abstract that illustrates the mechanisms by which Exendin-4 inhibits cardiac remodeling in remote myocardium of left ventricle MI-induced rats. Mechanisms are assumed to occur in the cardiomyocytes and/or other resident cells such as fibroblast. Β-catenin activation and nuclear translocation are associated with increased synthesis of inflammatory cytokines and transforming growth factor β-1 (TGF-β1). GSK3β is inhibited by phosphorylation at Ser9. Under normal conditions, β-catenin is degraded in the cytoplasm by the active GSK3β-dependent degradation complex (un-phosphorylated) which usually phosphorylates β-catenin at Ser33/37/Thr41. After MI, TGF-β1, and Wnt 1 levels are significantly increased, the overproduction of Wnt1 induces β-catenin stabilization and nuclear translocation through increasing the phosphorylation of disheveled (DVL) protein which in turn phosphorylates and inhibits GSK3β. TGF-β1 stimulates the phosphorylation of Smad-3 and subsequent nuclear translocation to activate the transcription of collage 1/III and α-smooth muscle actin (α-SMA). Besides, TGF-β1 stabilizes cytoplasmic β-catenin levels indirectly by phosphorylation of Akt at Thr308-induced inhibition of GSK3β by increasing phosphorylation of Ser9. Exendin-4, and possibly through G protein-coupled receptors (GPCRs), increases levels of cAMP and upregulates β-arrestin-2 levels. Both can result in a positive inotropic effect. Besides, β-arrestin-2 can stimulate PP2A to dephosphorylation Smad3 (inhibition) and GSK3β (activation), thus reduces fibrosis and prevents the activation of β-catenin and collagen deposition.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia.
| | - Mohammad Adnan Khalil
- Department of Basic Medical Sciences, Faculty of Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mahmoud A Alkhateeb
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Samy M Eleawa
- Department of Applied Medical Sciences, College of Health Sciences, PAAET, Shuwaikh, Kuwait
| | - Mohamed Samir Ahmed Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Histology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Attalla Farag El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia
| | - Fahmy El-Sayed
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia
| | - Muhammad Alaa Eldeen
- Department of Biology, Physiology Section, Faculty of Science, Zagazig University, Zagazig, Egypt
| | | | - Khalid M E Awaji
- Clinical laboratories Department, Asser Central Hospital, Abha, Saudi Arabia
| | - Abdullah S Shatoor
- Department of Clinical Cardiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
26
|
Cora N, Ghandour J, Pollard CM, Desimine VL, Ferraino KE, Pereyra JM, Valiente R, Lymperopoulos A. Nicotine-induced adrenal beta-arrestin1 upregulation mediates tobacco-related hyperaldosteronism leading to cardiac dysfunction. World J Cardiol 2020; 12:192-202. [PMID: 32547713 PMCID: PMC7283997 DOI: 10.4330/wjc.v12.i5.192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/27/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tobacco-related products, containing the highly addictive nicotine together with numerous other harmful toxicants and carcinogens, have been clearly associated with coronary artery disease, heart failure, stroke, and other heart diseases. Among the mechanisms by which nicotine contributes to heart disease is elevation of the renin-angiotensin-aldosterone system (RAAS) activity. Nicotine, and its major metabolite in humans cotinine, have been reported to induce RAAS activation, resulting in aldosterone elevation in smokers. Aldosterone has various direct and indirect adverse cardiac effects. It is produced by the adrenal cortex in response to angiotensin II (AngII) activating AngII type 1 receptors. RAAS activity increases in chronic smokers, causing raised aldosterone levels (nicotine exposure causes the same in rats). AngII receptors exert their cellular effects via either G proteins or the two βarrestins (βarrestin1 and-2). AIM Since adrenal ßarrestin1 is essential for adrenal aldosterone production and nicotine/cotinine elevate circulating aldosterone levels in humans, we hypothesized that nicotine activates adrenal ßarrestin1, which contributes to RAAS activation and heart disease development. METHODS We studied human adrenocortical zona glomerulosa H295R cells and found that nicotine and cotinine upregulate βarrestin1 mRNA and protein levels, thereby enhancing AngII-dependent aldosterone synthesis and secretion. RESULTS In contrast, siRNA-mediated βarrestin1 knockdown reversed the effects of nicotine on AngII-induced aldosterone production in H295R cells. Importantly, nicotine promotes hyperaldosteronism via adrenal βarrestin1, thereby precipitating cardiac dysfunction, also in vivo, since nicotine-exposed experimental rats with adrenal-specific βarrestin1 knockdown display lower circulating aldosterone levels and better cardiac function than nicotine-exposed control animals with normal adrenal βarrestin1 expression. CONCLUSION Adrenal βarrestin1 upregulation is one of the mechanisms by which tobacco compounds, like nicotine, promote cardio-toxic hyperaldosteronism in vitro and in vivo. Thus, adrenal βarrestin1 represents a novel therapeutic target for tobacco-related heart disease prevention or mitigation.
Collapse
Affiliation(s)
- Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Jennifer Ghandour
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Celina Marie Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Victoria Lynn Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Krysten Elaine Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Janelle Marie Pereyra
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Rachel Valiente
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States.
| |
Collapse
|
27
|
Xu X, Zhang Z, Lu Y, Sun Q, Liu Y, Liu Q, Tian W, Yin Y, Yu H, Sun B. ARRB1 ameliorates liver ischaemia/reperfusion injury via antagonizing TRAF6-mediated Lysine 6-linked polyubiquitination of ASK1 in hepatocytes. J Cell Mol Med 2020; 24:7814-7828. [PMID: 32445435 PMCID: PMC7348167 DOI: 10.1111/jcmm.15412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/14/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatic ischaemia/reperfusion (I/R) injury is a major clinical problem during liver surgical procedures, which usually lead to early transplantation failure and higher organ rejection rate, and current effective therapeutic strategies are still limited. Therefore, in‐depth exploring of the molecular mechanisms underlying liver I/R injury is key to the development of new therapeutic methods. β‐arrestins are multifunctional proteins serving as important signalling scaffolds in numerous physiopathological processes, including liver‐specific diseases. However, the role and underlying mechanism of β‐arrestins in hepatic I/R injury remain largely unknown. Here, we showed that only ARRB1, but not ARRB2, was down‐regulated during liver I/R injury. Hepatocyte‐specific overexpression of ARRB1 significantly ameliorated liver damage, as demonstrated by decreases in serum aminotransferases, hepatocellular necrosis and apoptosis, infiltrating inflammatory cells and secretion of pro‐inflammatory cytokines relative to control mice, whereas experiments with ARRB1 knockout mice gotten opposite effects. Mechanistically, ARRB1 directly interacts with ASK1 in hepatocytes and inhibits its TRAF6‐mediated Lysine 6‐linked polyubiquitination, which then prevents the activation of ASK1 and its downstream signalling pathway during hepatic I/R injury. In addition, inhibition of ASK1 remarkably abolished the disruptive effect result from ARRB1 deficiency in liver I/R injury in vivo, indicating that ASK1 was required for ARRB1 function in hepatic I/R injury. In conclusion, we proposed that ARRB1 is a novel protective regulator during liver I/R injury, and modulation of the regulatory axis between ARRB1 and ASK1 could be a novel therapeutic strategy to prevent this pathological process.
Collapse
Affiliation(s)
- Xiaoliang Xu
- School of Medicine, Southeast University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zechuan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yijun Lu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qikai Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qiaoyu Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenfang Tian
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yin Yin
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hailong Yu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Beicheng Sun
- School of Medicine, Southeast University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
28
|
Maning J, McCrink KA, Pollard CM, Desimine VL, Ghandour J, Perez A, Cora N, Ferraino KE, Parker BM, Brill AR, Aukszi B, Lymperopoulos A. Antagonistic Roles of GRK2 and GRK5 in Cardiac Aldosterone Signaling Reveal GRK5-Mediated Cardioprotection via Mineralocorticoid Receptor Inhibition. Int J Mol Sci 2020; 21:2868. [PMID: 32326036 PMCID: PMC7215681 DOI: 10.3390/ijms21082868] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Aldosterone (Aldo), when overproduced, is a cardiotoxic hormone underlying heart failure and hypertension. Aldo exerts damaging effects via the mineralocorticoid receptor (MR) but also activates the antiapoptotic G protein-coupled estrogen receptor (GPER) in the heart. G protein-coupled receptor (GPCR)-kinase (GRK)-2 and -5 are the most abundant cardiac GRKs and phosphorylate GPCRs as well as non-GPCR substrates. Herein, we investigated whether they phosphorylate and regulate cardiac MR and GPER. To this end, we used the cardiomyocyte cell line H9c2 and adult rat ventricular myocytes (ARVMs), in which we manipulated GRK5 protein levels via clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and GRK2 activity via pharmacological inhibition. We report that GRK5 phosphorylates and inhibits the cardiac MR whereas GRK2 phosphorylates and desensitizes GPER. In H9c2 cardiomyocytes, GRK5 interacts with and phosphorylates the MR upon β2-adrenergic receptor (AR) activation. In contrast, GRK2 opposes agonist-activated GPER signaling. Importantly, GRK5-dependent MR phosphorylation of the MR inhibits transcriptional activity, since aldosterone-induced gene transcription is markedly suppressed in GRK5-overexpressing cardiomyocytes. Conversely, GRK5 gene deletion augments cardiac MR transcriptional activity. β2AR-stimulated GRK5 phosphorylates and inhibits the MR also in ARVMs. Additionally, GRK5 is necessary for the protective effects of the MR antagonist drug eplerenone against Aldo-induced apoptosis and oxidative stress in ARVMs. In conclusion, GRK5 blocks the cardiotoxic MR-dependent effects of Aldo in the heart, whereas GRK2 may hinder beneficial effects of Aldo through GPER. Thus, cardiac GRK5 stimulation (e.g., via β2AR activation) might be of therapeutic value for heart disease treatment via boosting the efficacy of MR antagonists against Aldo-mediated cardiac injury.
Collapse
Affiliation(s)
- Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Katie A. McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Celina M. Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Victoria L. Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Jennifer Ghandour
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Arianna Perez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Krysten E. Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Barbara M. Parker
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Ava R. Brill
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Beatrix Aukszi
- Department of Chemistry and Physics, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| |
Collapse
|
29
|
Pollard CM, Ghandour J, Cora N, Perez A, Parker BM, Desimine VL, Wertz SL, Pereyra JM, Ferraino KE, Patel JJ, Lymperopoulos A. GRK2-Mediated Crosstalk Between β-Adrenergic and Angiotensin II Receptors Enhances Adrenocortical Aldosterone Production In Vitro and In Vivo. Int J Mol Sci 2020; 21:574. [PMID: 31963151 PMCID: PMC7013621 DOI: 10.3390/ijms21020574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Aldosterone is produced by adrenocortical zona glomerulosa (AZG) cells in response to angiotensin II (AngII) acting through its type I receptors (AT1Rs). AT1R is a G protein-coupled receptor (GPCR) that induces aldosterone via both G proteins and the adapter protein βarrestin1, which binds the receptor following its phosphorylation by GPCR-kinases (GRKs) to initiate G protein-independent signaling. β-adrenergic receptors (ARs) also induce aldosterone production in AZG cells. Herein, we investigated whether GRK2 or GRK5, the two major adrenal GRKs, is involved in the catecholaminergic regulation of AngII-dependent aldosterone production. In human AZG (H295R) cells in vitro, the βAR agonist isoproterenol significantly augmented both AngII-dependent aldosterone secretion and synthesis, as measured by the steroidogenic acute regulatory (StAR) protein and CYP11B2 (aldosterone synthase) mRNA inductions. Importantly, GRK2, but not GRK5, was indispensable for the βAR-mediated enhancement of aldosterone in response to AngII. Specifically, GRK2 inhibition with Cmpd101 abolished isoproterenol's effects on AngII-induced aldosterone synthesis/secretion, whereas the GRK5 knockout via CRISPR/Cas9 had no effect. It is worth noting that these findings were confirmed in vivo, since rats overexpressing GRK2, but not GRK5, in their adrenals had elevated circulating aldosterone levels compared to the control animals. However, treatment with the β-blocker propranolol prevented hyperaldosteronism in the adrenal GRK2-overexpressing rats. In conclusion, GRK2 mediates a βAR-AT1R signaling crosstalk in the adrenal cortex leading to elevated aldosterone production. This suggests that adrenal GRK2 may be a molecular link connecting the sympathetic nervous and renin-angiotensin systems at the level of the adrenal cortex and that its inhibition might be therapeutically advantageous in hyperaldosteronism-related conditions.
Collapse
|
30
|
Lowered anti-beta1 adrenergic receptor antibody concentrations may have prognostic significance in acute coronary syndrome. Sci Rep 2019; 9:14552. [PMID: 31601947 PMCID: PMC6787077 DOI: 10.1038/s41598-019-51125-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/20/2019] [Indexed: 12/25/2022] Open
Abstract
Although several risk factors exist for acute coronary syndrome (ACS) no biomarkers for survival or risk of re-infarction have been validated. Previously, reduced serum concentrations of anti-ß1AR Ab have been implicated in poorer ACS outcomes. This study further evaluates the prognostic implications of anti-ß1AR-Ab levels at the time of ACS onset. Serum anti-ß1AR Ab concentrations were measured in randomly selected patients from within the PLATO cohort. Stratification was performed according to ACS event: ST-elevation myocardial infarct (STEMI) vs. non-ST elevation myocardial infarct (NSTEMI). Antibody concentrations at ACS presentation were compared to 12-month all-cause and cardiovascular mortality, as well as 12-month re-infarction. Sub-analysis, stratifying for age and the correlation between antibody concentration and conventional cardiac risk-factors was subsequently performed. Serum anti-ß1AR Ab concentrations were measured in 400/799 (50%) STEMI patients and 399 NSTEMI patients. Increasing anti-ß1AR Ab concentrations were associated with STEMI (p = 0.001). Across all ACS patients, no associations between anti-ß1AR Ab concentration and either all-cause cardiovascular death or myocardial re-infarction (p = 0.14) were evident. However among STEMI patients ≤60 years with anti-ß1AR Ab concentration <median higher rates of re-infarction were observed, compared to those with anti-ß1AR Ab concentrations > median (14/198 (7.1%) vs. 2/190 (1.1%)); p = 0.01). Similarly, the same sub-group demonstrated greater risk of cardiovascular death in year 1, including re-infarction and stroke (22/198 (11.1%) vs. 10/190 (5.3%); p = 0.017). ACS Patients ≤60 years, exhibiting lower concentrations of ß1AR Ab carry a greater risk for early re-infarction and cardiovascular death. Large, prospective studies quantitatively assessing the prognostic relevance of Anti-ß1AR Ab levels should be considered.
Collapse
|
31
|
Solesio ME, Mitaishvili E, Lymperopoulos A. Adrenal βarrestin1 targeting for tobacco-associated cardiac dysfunction treatment: Aldosterone production as the mechanistic link. Pharmacol Res Perspect 2019; 7:e00497. [PMID: 31236278 PMCID: PMC6581946 DOI: 10.1002/prp2.497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/13/2022] Open
Abstract
Tobacco kills 6 million people annually and its global health costs are continuously rising. The main addictive component of every tobacco product is nicotine. Among the mechanisms by which nicotine, and its major metabolite, cotinine, contribute to heart disease is the renin-angiotensin-aldosterone system (RAAS) activation. This increases aldosterone production from the adrenals and circulating aldosterone levels. Aldosterone is a mineralocorticoid hormone with various direct harmful effects on the myocardium, including increased reactive oxygen species (ROS) generation, which contributes significantly to cardiac mitochondrial dysfunction and cardiac aging. Aldosterone is produced in the adrenocortical zona glomerulosa (AZG) cells in response to angiotensin II (AngII), activating its type 1 receptor (AT1R). The AT1R is a G protein-coupled receptor (GPCR) that leads to aldosterone biosynthesis and secretion, via signaling from both Gq/11 proteins and the GPCR adapter protein βarrestin1, in AZG cells. Adrenal βarrestin1 is essential for AngII-dependent adrenal aldosterone production, which aggravates heart disease. Since adrenal βarrestin1 is essential for raising circulating aldosterone in the body and tobacco compounds are also known to elevate aldosterone levels in smokers, accelerating heart disease progression, our central hypothesis is that nicotine and cotinine increase aldosterone levels to induce cardiac injury by stimulating adrenal βarrestin1. In the present review, we provide an overview of the current literature of the physiology and pharmacology of adrenal aldosterone production regulation, of the effects of tobacco on this process and, finally, of the effects of tobacco and aldosterone on cardiac structure and function, with a particular focus on cardiac mitochondrial function. We conclude our literature account with a brief experimental outline, as well as with some therapeutic perspectives of our pharmacological hypothesis, that is that adrenal βarrestin1 is a novel molecular target for preventing tobacco-induced hyperaldosteronism, thereby also ameliorating tobacco-related heart disease development.
Collapse
Affiliation(s)
- Maria E Solesio
- Department of Basic SciencesNew York UniversityNew YorkNew York
| | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical SciencesNova Southeastern University College of PharmacyFort Lauderdale, Florida
| |
Collapse
|
32
|
de Lucia C, Gambino G, Petraglia L, Elia A, Komici K, Femminella GD, D'Amico ML, Formisano R, Borghetti G, Liccardo D, Nolano M, Houser SR, Leosco D, Ferrara N, Koch WJ, Rengo G. Long-Term Caloric Restriction Improves Cardiac Function, Remodeling, Adrenergic Responsiveness, and Sympathetic Innervation in a Model of Postischemic Heart Failure. Circ Heart Fail 2019. [PMID: 29535114 DOI: 10.1161/circheartfailure.117.004153] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Caloric restriction (CR) has been described to have cardioprotective effects and improve functional outcomes in animal models and humans. Chronic ischemic heart failure (HF) is associated with reduced cardiac sympathetic innervation, dysfunctional β-adrenergic receptor signaling, and decreased cardiac inotropic reserve. We tested the effects of a long-term CR diet, started late after myocardial infarction on cardiac function, sympathetic innervation, and β-adrenergic receptor responsiveness in a rat model of postischemic HF. METHODS AND RESULTS Adult male rats were randomly assigned to myocardial infarction or sham operation and 4 weeks later were further randomized to a 1-year CR or normal diet. One year of CR resulted in a significant reduction in body weight, heart weight, and heart weight/tibia length ratio when compared with normal diet in HF groups. At the end of the study period, echocardiography and histology revealed that HF animals under the CR diet had ameliorated left ventricular remodeling compared with HF rats fed with normal diet. Invasive hemodynamic showed a significant improvement of cardiac inotropic reserve in CR HF rats compared with HF-normal diet animals. Importantly, CR dietary regimen was associated with a significant increase of cardiac sympathetic innervation and with normalized cardiac β-adrenergic receptor levels in HF rats when compared with HF rats on the standard diet. CONCLUSIONS We demonstrate, for the first time, that chronic CR, when started after HF established, can ameliorate cardiac dysfunction and improve inotropic reserve. At the molecular level, we find that chronic CR diet significantly improves sympathetic cardiac innervation and β-adrenergic receptor levels in failing myocardium.
Collapse
Affiliation(s)
- Claudio de Lucia
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Giuseppina Gambino
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Laura Petraglia
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Andrea Elia
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Klara Komici
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Grazia Daniela Femminella
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Maria Loreta D'Amico
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Roberto Formisano
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Giulia Borghetti
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Daniela Liccardo
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Maria Nolano
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Steven R Houser
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Dario Leosco
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Nicola Ferrara
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.)
| | - Walter J Koch
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.).
| | - Giuseppe Rengo
- From the Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (C.d.L., G.G., L.P., A.E., K.K., G.D.F., M.L.D., R.F., D. Liccardo, D. Leosco, N.F., G.R.); Center for Translational Medicine (C.d.L., D. Liccardo, W.J.K.), Department of Pharmacology (C.d.L., D. Liccardo, W.J.K.) and Cardiovascular Research Center (G.B., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.G., A.E., M.L.D., M.N., N.F., G.R.); and Neurology Imaging Unit, Imperial College London, United Kingdom (G.D.F.).
| |
Collapse
|
33
|
Philip JL, Xu X, Han M, Akhter SA, Razzaque MA. Regulation of cardiac fibroblast-mediated maladaptive ventricular remodeling by β-arrestins. PLoS One 2019; 14:e0219011. [PMID: 31269046 PMCID: PMC6609028 DOI: 10.1371/journal.pone.0219011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/13/2019] [Indexed: 01/17/2023] Open
Abstract
Cardiac fibroblasts (CF) play a critical role in post-infarction remodeling which can ultimately lead to pathological fibrosis and heart failure. Recent evidence demonstrates that remote (non-infarct) territory fibrosis is a major mechanism for ventricular dysfunction and arrhythmogenesis. β-arrestins are important signaling molecules involved in β-adrenergic receptor (β-AR) desensitization and can also mediate signaling in a G protein independent fashion. Recent work has provided evidence that β-arrestin signaling in the heart may be beneficial, however, these studies have primarily focused on cardiac myocytes and their role in adult CF biology has not been well studied. In this study, we show that β-arrestins can regulate CF biology and contribute to pathological fibrosis. Adult male rats underwent LAD ligation to induce infarction and were studied by echocardiography. There was a significant decline in LV function at 2–12 weeks post-MI with increased infarct and remote territory fibrosis by histology consistent with maladaptive remodeling. Collagen synthesis was upregulated 2.9-fold in CF isolated at 8 and 12 weeks post-MI and β-arrestin expression was significantly increased. β-adrenergic signaling was uncoupled in the post-MI CF and β-agonist-mediated inhibition of collagen synthesis was lost. Knockdown of β-arrestin1 or 2 in the post-MI CF inhibited transformation to myofibroblasts as well as basal and TGF-β-stimulated collagen synthesis. These data suggest that β-arrestins can regulate CF biology and that targeted inhibition of these signaling molecules may represent a novel approach to prevent post-infarction pathological fibrosis and the transition to HF.
Collapse
Affiliation(s)
- Jennifer L. Philip
- Department of Surgery, Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Surgery, Section of Cardiac and Thoracic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Xianyao Xu
- Department of Surgery, Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Surgery, Section of Cardiac and Thoracic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Mei Han
- Department of Surgery, Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Surgery, Section of Cardiac and Thoracic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Shahab A. Akhter
- Department of Surgery, Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Surgery, Section of Cardiac and Thoracic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Cardiovascular Sciences, East Carolina Heart Institute at East Carolina University, Greenville, North Carolina, United States of America
| | - Md Abdur Razzaque
- Department of Surgery, Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Surgery and Cardiovascular Center of Excellence, Louisiana State University, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
34
|
Bencivenga L, Liccardo D, Napolitano C, Visaggi L, Rengo G, Leosco D. β-Adrenergic Receptor Signaling and Heart Failure: From Bench to Bedside. Heart Fail Clin 2019; 15:409-419. [PMID: 31079699 DOI: 10.1016/j.hfc.2019.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite improvements in management and therapeutic approach in the last decades, heart failure is still associated with high mortality rates. The sustained enhancement in the sympathetic nervous system tone, observed in patients with heart failure, causes alteration in β-adrenergic receptor signaling and function. This latter phenomenon is the result of several heart failure-related molecular abnormalities involving adrenergic receptors, G-protein-coupled receptor kinases, and β-arrestins. This article summarizes novel encouraging preclinical strategies to reactivate β-adrenergic receptor signaling in heart failure, including pharmacologic and gene therapy approaches, and attempts to translate acquired notions into the clinical setting.
Collapse
Affiliation(s)
- Leonardo Bencivenga
- Department of Translational Medical Sciences, Division of Geriatrics, Federico II University, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Daniela Liccardo
- Department of Translational Medical Sciences, Division of Geriatrics, Federico II University, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Carmen Napolitano
- Department of Translational Medical Sciences, Division of Geriatrics, Federico II University, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Lucia Visaggi
- Department of Translational Medical Sciences, Division of Geriatrics, Federico II University, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Division of Geriatrics, Federico II University, Via Sergio Pansini, 5, Naples 80131, Italy; Istituti Clinici Scientifici Maugeri SpA Società Benefit (ICS Maugeri SpA SB), Telese Terme, Italy
| | - Dario Leosco
- Department of Translational Medical Sciences, Division of Geriatrics, Federico II University, Via Sergio Pansini, 5, Naples 80131, Italy.
| |
Collapse
|
35
|
Tennakoon M, Kankanamge D, Senarath K, Fasih Z, Karunarathne A. Statins Perturb G βγ Signaling and Cell Behavior in a G γ Subtype Dependent Manner. Mol Pharmacol 2019; 95:361-375. [PMID: 30765461 PMCID: PMC6402420 DOI: 10.1124/mol.118.114710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/25/2019] [Indexed: 01/08/2023] Open
Abstract
Guanine nucleotide-binding proteins (G proteins) facilitate the transduction of external signals to the cell interior, regulate most eukaryotic signaling, and thus have become crucial disease drivers. G proteins largely function at the inner leaflet of the plasma membrane (PM) using covalently attached lipid anchors. Both small monomeric and heterotrimeric G proteins are primarily prenylated, either with a 15-carbon farnesyl or a 20-carbon geranylgeranyl polyunsaturated lipid. The mevalonate [3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase] pathway synthesizes lipids for G-protein prenylation. It is also the source of the precursor lipids for many biomolecules, including cholesterol. Consequently, the rate-limiting enzymes of the mevalonate pathway are major targets for cholesterol-lowering medications and anticancer drug development. Although prenylated G protein γ (Gγ) is essential for G protein-coupled receptor (GPCR)-mediated signaling, how mevalonate pathway inhibitors, statins, influence subcellular distribution of Gβγ dimer and Gαβγ heterotrimer, as well as their signaling upon GPCR activation, is poorly understood. The present study shows that clinically used statins not only significantly disrupt PM localization of Gβγ but also perturb GPCR-G protein signaling and associated cell behaviors. The results also demonstrate that the efficiency of prenylation inhibition by statins is Gγ subtype-dependent and is more effective toward farnesylated Gγ types. Since Gγ is required for Gβγ signaling and shows a cell- and tissue-specific subtype distribution, the present study can help understand the mechanisms underlying clinical outcomes of statin use in patients. This work also reveals the potential of statins as clinically usable drugs to control selected GPCR-G protein signaling.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| | - Kanishka Senarath
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| | - Zehra Fasih
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio
| |
Collapse
|
36
|
Pollard CM, Desimine VL, Wertz SL, Perez A, Parker BM, Maning J, McCrink KA, Shehadeh LA, Lymperopoulos A. Deletion of Osteopontin Enhances β₂-Adrenergic Receptor-Dependent Anti-Fibrotic Signaling in Cardiomyocytes. Int J Mol Sci 2019; 20:1396. [PMID: 30897705 PMCID: PMC6470638 DOI: 10.3390/ijms20061396] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac β₂-adrenergic receptors (ARs) are known to inhibit collagen production and fibrosis in cardiac fibroblasts and myocytes. The β₂AR is a Gs protein-coupled receptor (GPCR) and, upon its activation, stimulates the generation of cyclic 3',5'-adenosine monophosphate (cAMP). cAMP has two effectors: protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac). Epac1 has been shown to inhibit cardiac fibroblast activation and fibrosis. Osteopontin (OPN) is a ubiquitous pro-inflammatory cytokine, which also mediates fibrosis in several tissues, including the heart. OPN underlies several cardiovascular pathologies, including atherosclerosis and cardiac adverse remodeling. We found that the cardiotoxic hormone aldosterone transcriptionally upregulates OPN in H9c2 rat cardiac myoblasts-an effect prevented by endogenous β₂AR activation. Additionally, CRISPR-mediated OPN deletion enhanced cAMP generation in response to both β₁AR and β₂AR activation in H9c2 cardiomyocytes, leading to the upregulation of Epac1 protein levels. These effects rendered β₂AR stimulation capable of completely abrogating transforming growth factor (TGF)-β-dependent fibrosis in OPN-lacking H9c2 cardiomyocytes. Finally, OPN interacted constitutively with Gαs subunits in H9c2 cardiac cells. Thus, we uncovered a direct inhibitory role of OPN in cardiac β₂AR anti-fibrotic signaling via cAMP/Epac1. OPN blockade could be of value in the treatment and/or prevention of cardiac fibrosis.
Collapse
Affiliation(s)
- Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Arianna Perez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Barbara M Parker
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Lina A Shehadeh
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
37
|
Komici K, Femminella GD, de Lucia C, Cannavo A, Bencivenga L, Corbi G, Leosco D, Ferrara N, Rengo G. Predisposing factors to heart failure in diabetic nephropathy: a look at the sympathetic nervous system hyperactivity. Aging Clin Exp Res 2019; 31:321-330. [PMID: 29858985 DOI: 10.1007/s40520-018-0973-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/17/2018] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus (DM) and heart failure (HF) are frequent comorbidities among elderly patients. HF, a leading cause of mortality and morbidity worldwide, is characterized by sympathetic nervous system hyperactivity. The prevalence of diabetes mellitus (DM) is rapidly growing and the risk of developing HF is higher among DM patients. DM is responsible for several macro- and micro-angiopathies that contribute to the development of coronary artery disease (CAD), peripheral artery disease, retinopathy, neuropathy and diabetic nephropathy (DN) as well. Independently of CAD, chronic kidney disease (CKD) and DM increase the risk of HF. Individuals with diabetic nephropathy are likely to present a distinct pathological condition, defined as diabetic cardiomyopathy, even in the absence of hypertension or CAD, whose pathogenesis is only partially known. However, several hypotheses have been proposed to explain the mechanism of diabetic cardiomyopathy: increased oxidative stress, altered substrate metabolism, mitochondrial dysfunction, activation of renin-angiotensin-aldosterone system (RAAS), insulin resistance, and autonomic dysfunction. In this review, we will focus on the involvement of sympathetic system hyperactivity in the diabetic nephropathy.
Collapse
Affiliation(s)
- Klara Komici
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy.
| | - Grazia Daniela Femminella
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Claudio de Lucia
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Alessandro Cannavo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Leonardo Bencivenga
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Dario Leosco
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Nicola Ferrara
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
- Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS - Istituto Scientifico di Telese, Terme, BN, Italy
| | - Giuseppe Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy.
- Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS - Istituto Scientifico di Telese, Terme, BN, Italy.
| |
Collapse
|
38
|
Lymperopoulos A, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA. Not all arrestins are created equal: Therapeutic implications of the functional diversity of the β-arrestins in the heart. World J Cardiol 2019; 11:47-56. [PMID: 30820275 PMCID: PMC6391623 DOI: 10.4330/wjc.v11.i2.47] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/28/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
The two ubiquitous, outside the retina, G protein-coupled receptor (GPCR) adapter proteins, β-arrestin-1 and -2 (also known as arrestin-2 and -3, respectively), have three major functions in cells: GPCR desensitization, i.e., receptor decoupling from G-proteins; GPCR internalization via clathrin-coated pits; and signal transduction independently of or in parallel to G-proteins. Both β-arrestins are expressed in the heart and regulate a large number of cardiac GPCRs. The latter constitute the single most commonly targeted receptor class by Food and Drug Administration-approved cardiovascular drugs, with about one-third of all currently used in the clinic medications affecting GPCR function. Since β-arrestin-1 and -2 play important roles in signaling and function of several GPCRs, in particular of adrenergic receptors and angiotensin II type 1 receptors, in cardiac myocytes, they have been a major focus of cardiac biology research in recent years. Perhaps the most significant realization coming out of their studies is that these two GPCR adapter proteins, initially thought of as functionally interchangeable, actually exert diametrically opposite effects in the mammalian myocardium. Specifically, the most abundant of the two β-arrestin-1 exerts overall detrimental effects on the heart, such as negative inotropy and promotion of adverse remodeling post-myocardial infarction (MI). In contrast, β-arrestin-2 is overall beneficial for the myocardium, as it has anti-apoptotic and anti-inflammatory effects that result in attenuation of post-MI adverse remodeling, while promoting cardiac contractile function. Thus, design of novel cardiac GPCR ligands that preferentially activate β-arrestin-2 over β-arrestin-1 has the potential of generating novel cardiovascular therapeutics for heart failure and other heart diseases.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States.
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| |
Collapse
|
39
|
Wertz SL, Desimine VL, Maning J, McCrink KA, Lymperopoulos A. Co-IP assays for measuring GPCR–arrestin interactions. Methods Cell Biol 2019; 149:205-213. [DOI: 10.1016/bs.mcb.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Santa-Helena E, da Costa Cabrera D, Teixeira S, Rodrigues J, Castro M, Montes D'Oca MG, Maia Nery LE, Neves Gonçalves CA. New fatty dihydropyridines present cardioprotective potential in H9c2 cardioblasts submitted to simulated ischemia and reperfusion. Biomed Pharmacother 2018; 109:1532-1540. [PMID: 30551405 DOI: 10.1016/j.biopha.2018.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022] Open
Abstract
Nifedipine is a calcium channel blocker dihydropyridine that has been used in the treatment of hypertension. The production of reactive species and calcium overload are the main contributors to myocardial ischemia-reperfusion (I / R) injury. We investigated the ability of novel dihydropyridines (DHPs) to improve the effect of protecting against the injury induced by ischemia and reperfusion in cardioblasts when compared to nifedipine. Forty three DHPs were created varying the fatty chains derived from palmitic acid, stearic acid and oleic acids and aromatic moiety in addition to the addition of chemical elements such as chlorine, nitrogen dioxide, furfural, hydroxyl and methoxy. Cytotoxicity and inhibition of linoleic oxidation were evaluated for all new DHPs and also for nifedipine. The alpha-tocopherol and butylated hydroxytoluene (BHT) were used as antioxidants controls. The compounds with the best antioxidant potential were used in the ischemia and reperfusion (I / R) induction test in cardioblasts (H9c2). Cardioblasts were treated 24 h after assembly of plates and submitted to the ischemia simulation (30 min), after which, normoxia and cellular nutrition conditions were reestablished, simulating reperfusion (additional 30 min). Right after, cell viability, apoptosis, necrosis, and the generation of reactive oxygen species (ROS) were evaluated. Cell viability during I / R was not altered in cells treated with nifedipine, BHT and the new DHP composed of palmitic acid with hydroxyl group in the aromatic substituent. The other new DHPs increased cell viability during I / R simulation and reduced levels of reactive species compared to the I / R group, demonstrating the antioxidant capacity of the new DHPs. Therefore, DHPS with palmitic and oleic acids in the C3 and C5 position with NO2 or Cl in aromatic moiety, presented the highest antioxidant potential (linoleic oxidant test). The new DHPs increased cell viability during I / R simulation and reduced levels of reactive species compared to the ischemia and reperfusion group, demonstrating the antioxidant capacity of the new DHPs. Taken together, these results indicate that those new DHPs have a greater cardioprotective antioxidant capacity to face the damages of ischemia and reperfusion.
Collapse
Affiliation(s)
- Eduarda Santa-Helena
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Diego da Costa Cabrera
- Laboratório Kolbe de Síntese Orgânica, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Stefanie Teixeira
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Jonathan Rodrigues
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Micheli Castro
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Marcelo G Montes D'Oca
- Laboratório Kolbe de Síntese Orgânica, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Luiz Eduardo Maia Nery
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Carla Amorim Neves Gonçalves
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
41
|
Xu Y, Qiu Z, Yang R, Wu Y, Cheng X. Efficacy of mineralocorticoid receptor antagonists in postmyocardial infarction patients with or without left ventricular dysfunction: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2018; 97:e13690. [PMID: 30572494 PMCID: PMC6319977 DOI: 10.1097/md.0000000000013690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND There is heated debate about the benefits of using mineralocorticoid receptor antagonists (MRAs) in addition to standard therapy in patients admitted for myocardial infarction (MI) with or without left ventricular dysfunction (LVD). METHODS Randomized controlled trials (RCTs) were scanned by a formal search of electronic databases (PubMed, EMBASE, Cochrane Library, Ovid, and clinical trials) from their inception to April 2018. A meta-analysis was conducted using Review Manager 5.3 to identify studies reporting the efficacy of MRAs use in post-MI patients with or without LVD. RESULTS Thirteen RCTs involving 11,365 individuals were eligible for this study. MRAs treatment reduced all-cause mortality by 16%, cardiovascular death by 16%, and death from heart failure (HF) by 22% in post-MI patients. MRAs use reduced all-cause mortality by 13% and cardiovascular death by 15% in post-MI patients with LVD, but there was no significant difference in all-cause mortality and cardiovascular death in post-MI patients without LVD (relative ratios [RR] 0.83, 95% confidence interval [CI] 0.26-2.69, P = .76, I = 0%; RR 1.01, 95% CI 0.33-3.09, P = .99, I = 0%). In 6 RCTs involving post-MI patients, MRAs treatment had a significant effect on improving left ventricular ejection fraction (LVEF) (mean difference 3.33, 95% CI 0.91-5.75, P = .007, I = 94%). Patients treated with MRAs did not show a decrease in recurrent MI or repeat revascularization compared with patients treated without MRAs (RR 0.95, 95% CI [0.80-1.12], P = .54, I = 0%; RR 1.09, 95% CI [0.79-1.50], P = .61, I = 0%). However, MRAs treatment significantly increased the incidence of hyperkalemia compared with patients treated without MRAs (RR 2.05, 95% CI [1.60, 2.61], P < .00001, I = 49%). CONCLUSION MRAs treatment reduced all-cause mortality, cardiovascular death, and death from HF in post-MI patients. MRAs treatment also demonstrated a significant improvement in LVEF. MRAs reduced cardiovascular death and all-cause mortality in patients with LVD. Eplerenone significantly reduced all-cause mortality and cardiovascular death in post-MI patients. However, MRAs failed to show any cardiovascular benefit in post-MI patients without LVD.
Collapse
Affiliation(s)
- Yan Xu
- Department of Cardiovascular, Institute of Cardiovascular Disease
| | - Zhiqiang Qiu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Renqiang Yang
- Department of Cardiovascular, Institute of Cardiovascular Disease
| | - Yanqing Wu
- Department of Cardiovascular, Institute of Cardiovascular Disease
| | - Xiaoshu Cheng
- Department of Cardiovascular, Institute of Cardiovascular Disease
| |
Collapse
|
42
|
van Gastel J, Hendrickx JO, Leysen H, Santos-Otte P, Luttrell LM, Martin B, Maudsley S. β-Arrestin Based Receptor Signaling Paradigms: Potential Therapeutic Targets for Complex Age-Related Disorders. Front Pharmacol 2018; 9:1369. [PMID: 30546309 PMCID: PMC6280185 DOI: 10.3389/fphar.2018.01369] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022] Open
Abstract
G protein coupled receptors (GPCRs) were first characterized as signal transducers that elicit downstream effects through modulation of guanine (G) nucleotide-binding proteins. The pharmacotherapeutic exploitation of this signaling paradigm has created a drug-based field covering nearly 50% of the current pharmacopeia. Since the groundbreaking discoveries of the late 1990s to the present day, it is now clear however that GPCRs can also generate productive signaling cascades through the modulation of β-arrestin functionality. β-Arrestins were first thought to only regulate receptor desensitization and internalization - exemplified by the action of visual arrestin with respect to rhodopsin desensitization. Nearly 20 years ago, it was found that rather than controlling GPCR signal termination, productive β-arrestin dependent GPCR signaling paradigms were highly dependent on multi-protein complex formation and generated long-lasting cellular effects, in contrast to G protein signaling which is transient and functions through soluble second messenger systems. β-Arrestin signaling was then first shown to activate mitogen activated protein kinase signaling in a G protein-independent manner and eventually initiate protein transcription - thus controlling expression patterns of downstream proteins. While the possibility of developing β-arrestin biased or functionally selective ligands is now being investigated, no additional research has been performed on its possible contextual specificity in treating age-related disorders. The ability of β-arrestin-dependent signaling to control complex and multidimensional protein expression patterns makes this therapeutic strategy feasible, as treating complex age-related disorders will likely require therapeutics that can exert network-level efficacy profiles. It is our understanding that therapeutically targeting G protein-independent effectors such as β-arrestin will aid in the development of precision medicines with tailored efficacy profiles for disease/age-specific contextualities.
Collapse
Affiliation(s)
- Jaana van Gastel
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Jhana O Hendrickx
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Hanne Leysen
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt University of Berlin, Berlin, Germany
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, Charleston, SC, United States
| | - Bronwen Martin
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| |
Collapse
|
43
|
Mangmool S, Parichatikanond W, Kurose H. Therapeutic Targets for Treatment of Heart Failure: Focus on GRKs and β-Arrestins Affecting βAR Signaling. Front Pharmacol 2018; 9:1336. [PMID: 30538631 PMCID: PMC6277550 DOI: 10.3389/fphar.2018.01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
Heart failure (HF) is a heart disease that is classified into two main types: HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). Both types of HF lead to significant risk of mortality and morbidity. Pharmacological treatment with β-adrenergic receptor (βAR) antagonists (also called β-blockers) has been shown to reduce the overall hospitalization and mortality rates and improve the clinical outcomes in HF patients with HFrEF but not HFpEF. Although, the survival rate of patients suffering from HF continues to drop, the management of HF still faces several limitations and discrepancies highlighting the need to develop new treatment strategies. Overstimulation of the sympathetic nervous system is an adaptive neurohormonal response to acute myocardial injury and heart damage, whereas prolonged exposure to catecholamines causes defects in βAR regulation, including a reduction in the amount of βARs and an increase in βAR desensitization due to the upregulation of G protein-coupled receptor kinases (GRKs) in the heart, contributing in turn to the progression of HF. Several studies show that myocardial GRK2 activity and expression are raised in the failing heart. Furthermore, β-arrestins play a pivotal role in βAR desensitization and, interestingly, can mediate their own signal transduction without any G protein-dependent pathway involved. In this review, we provide new insight into the role of GRKs and β-arrestins on how they affect βAR signaling regarding the molecular and cellular pathophysiology of HF. Additionally, we discuss the therapeutic potential of targeting GRKs and β-arrestins for the treatment of HF.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
44
|
Yeves AM, Burgos JI, Medina AJ, Villa-Abrille MC, Ennis IL. Cardioprotective role of IGF-1 in the hypertrophied myocardium of the spontaneously hypertensive rats: A key effect on NHE-1 activity. Acta Physiol (Oxf) 2018; 224:e13092. [PMID: 31595734 DOI: 10.1111/apha.13092] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
AIM Myocardial Na+/H+ exchanger-1 (NHE-1) hyperactivity and oxidative stress are interrelated phenomena playing pivotal roles in the development of pathological cardiac hypertrophy and heart failure. Exercise training is effective to convert pathological into physiological hypertrophy in the spontaneously hypertensive rats (SHR), and IGF-1-key humoral mediator of exercise training-inhibits myocardial NHE-1, at least in normotensive rats. Therefore, we hypothesize that IGF-1 by hampering NHE-1 hyperactivity and oxidative stress should exert a cardioprotective effect in the SHR. METHODS NHE-1 activity [proton efflux ( J H + ) mmol L-1 min-1], expression and phosphorylation; H2O2 production; superoxide dismutase (SOD) activity; contractility and calcium transients were measured in SHR hearts in the presence/absence of IGF-1. RESULTS IGF-1 significantly decreased NHE-1 activity ( J H + at pHi 6.95: 1.39 ± 0.32, n = 9 vs C 3.27 ± 0.3, n = 20, P < .05); effect prevented by AG1024, an antagonist of IGF-1 receptor (2.7 ± 0.4, n = 7); by the PI3K inhibitor wortmannin (3.14 ± 0.41, n = 7); and the AKT inhibitor MK2206 (3.37 ± 0.43, n = 14). Moreover, IGF-1 exerted an antioxidant effect revealed by a significant reduction in H2O2 production accompanied by an increase in SOD activity. In addition, IGF-1 improved cardiomyocyte contractility as evidenced by an increase in sarcomere shortening and a decrease in the relaxation constant, underlined by an increase in the amplitude and rate of decay of the calcium transients. CONCLUSION IGF-1 exerts a cardioprotective role on the hypertrophied hearts of the SHR, in which the inhibition of NHE-1 hyperactivity, as well as the positive inotropic and antioxidant effects, emerges as key players.
Collapse
Affiliation(s)
- A. M. Yeves
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| | - J. I. Burgos
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| | - A. J. Medina
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| | - M. C. Villa-Abrille
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| | - I. L. Ennis
- Centro de Investigaciones Cardiovasculares; Facultad de Ciencias Médicas; UNLP-CONICET; La Plata Argentina
| |
Collapse
|
45
|
Koyama R, Mannic T, Ito J, Amar L, Zennaro MC, Rossier MF, Maturana AD. MicroRNA-204 Is Necessary for Aldosterone-Stimulated T-Type Calcium Channel Expression in Cardiomyocytes. Int J Mol Sci 2018; 19:E2941. [PMID: 30262720 PMCID: PMC6212903 DOI: 10.3390/ijms19102941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 01/03/2023] Open
Abstract
Activation of the mineralocorticoid receptor (MR) in the heart is considered to be a cardiovascular risk factor. MR activation leads to heart hypertrophy and arrhythmia. In ventricular cardiomyocytes, aldosterone induces a profound remodeling of ion channel expression, in particular, an increase in the expression and activity of T-type voltage-gated calcium channels (T-channels). The molecular mechanisms immediately downstream from MR activation, which lead to the increased expression of T-channels and, consecutively, to an acceleration of spontaneous cell contractions in vitro, remain poorly investigated. Here, we investigated the putative role of a specific microRNA in linking MR activation to the regulation of T-channel expression and cardiomyocyte beating frequency. A screening assay identified microRNA 204 (miR-204) as one of the major upregulated microRNAs after aldosterone stimulation of isolated neonatal rat cardiomyocytes. Aldosterone significantly increased the level of miR-204, an effect blocked by the MR antagonist spironolactone. When miR-204 was overexpressed in isolated cardiomyocytes, their spontaneous beating frequency was significantly increased after 24 h, like upon aldosterone stimulation, and messenger RNAs coding T-channels (CaV3.1 and CaV3.2) were increased. Concomitantly, T-type calcium currents were significantly increased upon miR-204 overexpression. Specifically repressing the expression of miR-204 abolished the aldosterone-induced increase of CaV3.1 and CaV3.2 mRNAs, as well as T-type calcium currents. Finally, aldosterone and miR-204 overexpression were found to reduce REST-NRSF, a known transcriptional repressor of CaV3.2 T-type calcium channels. Our study thus strongly suggests that miR-204 expression stimulated by aldosterone promotes the expression of T-channels in isolated rat ventricular cardiomyocytes, and therefore, increases the frequency of the cell spontaneous contractions, presumably through the inhibition of REST-NRSF protein.
Collapse
Affiliation(s)
- Riko Koyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Tiphaine Mannic
- Department of Human Protein Science, University of Geneva, CH-1211 Geneva, Switzerland.
| | - Jumpei Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Laurence Amar
- Inserm, UMRS_970, Paris Cardiovascular Research Center, 75015 Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension artérielle, 75015 Paris, France.
| | - Maria-Christina Zennaro
- Inserm, UMRS_970, Paris Cardiovascular Research Center, 75015 Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, 75015 Paris, France.
| | - Michel Florian Rossier
- Department of Human Protein Science, University of Geneva, CH-1211 Geneva, Switzerland.
- Central Institute of Hospitals, Hospital of Valais, CH-1951 Sion, Switzerland.
| | | |
Collapse
|
46
|
Grisanti LA, Thomas TP, Carter RL, de Lucia C, Gao E, Koch WJ, Benovic JL, Tilley DG. Pepducin-mediated cardioprotection via β-arrestin-biased β2-adrenergic receptor-specific signaling. Theranostics 2018; 8:4664-4678. [PMID: 30279730 PMCID: PMC6160776 DOI: 10.7150/thno.26619] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022] Open
Abstract
Reperfusion as a therapeutic intervention for acute myocardial infarction-induced cardiac injury itself induces further cardiomyocyte death. β-arrestin (βarr)-biased β-adrenergic receptor (βAR) activation promotes survival signaling responses in vitro; thus, we hypothesize that this pathway can mitigate cardiomyocyte death at the time of reperfusion to better preserve function. However, a lack of efficacious βarr-biased orthosteric small molecules has prevented investigation into whether this pathway relays protection against ischemic injury in vivo. We recently demonstrated that the pepducin ICL1-9, a small lipidated peptide fragment designed from the first intracellular loop of β2AR, allosterically engaged pro-survival signaling cascades in a βarr-dependent manner in vitro. Thus, in this study we tested whether ICL1-9 relays cardioprotection against ischemia/reperfusion (I/R)-induced injury in vivo. Methods: Wild-type (WT) C57BL/6, β2AR knockout (KO), βarr1KO and βarr2KO mice received intracardiac injections of either ICL1-9 or a scrambled control pepducin (Scr) at the time of ischemia (30 min) followed by reperfusion for either 24 h, to assess infarct size and cardiomyocyte death, or 4 weeks, to monitor the impact of ICL1-9 on long-term cardiac structure and function. Neonatal rat ventricular myocytes (NRVM) were used to assess the impact of ICL1-9 versus Scr pepducin on cardiomyocyte survival and mitochondrial superoxide formation in response to either serum deprivation or hypoxia/reoxygenation (H/R) in vitro and to investigate the associated mechanism(s). Results: Intramyocardial injection of ICL1-9 at the time of I/R reduced infarct size, cardiomyocyte death and improved cardiac function in a β2AR- and βarr-dependent manner, which led to improved contractile function early and less fibrotic remodeling over time. Mechanistically, ICL1-9 attenuated mitochondrial superoxide production and promoted cardiomyocyte survival in a RhoA/ROCK-dependent manner. RhoA activation could be detected in cardiomyocytes and whole heart up to 24 h post-treatment, demonstrating the stability of ICL1-9 effects on βarr-dependent β2AR signaling. Conclusion: Pepducin-based allosteric modulation of βarr-dependent β2AR signaling represents a novel therapeutic approach to reduce reperfusion-induced cardiac injury and relay long-term cardiac remodeling benefits.
Collapse
|
47
|
Abstract
Heart failure (HF) has become increasingly common within the elderly population, decreasing their survival and overall quality of life. In fact, despite the improvements in treatment, many elderly people suffer from cardiac dysfunction (HF, valvular diseases, arrhythmias or hypertension-induced cardiac hypertrophy) that are much more common in an older fragile heart. Since β-adrenergic receptor (β-AR) signaling is abnormal in failing as well as aged hearts, this pathway is an effective diagnostic and therapeutic target. Both HF and aging are characterized by activation/hyperactivity of various neurohormonal pathways, the most important of which is the sympathetic nervous system (SNS). SNS hyperactivity is initially a compensatory mechanism to stimulate contractility and maintain cardiac output. Unfortunately, this chronic stimulation becomes detrimental and causes decreased cardiac function as well as reduced inotropic reserve due to a decrease in cardiac β-ARs responsiveness. Therapies which (e.g., β-blockers and physical activity) restore β-ARs responsiveness can ameliorate cardiac performance and outcomes during HF, particularly in older patients. In this review, we will discuss physiological β-adrenergic signaling and its alterations in both HF and aging as well as the potential clinical application of targeting β-adrenergic signaling in these disease processes.
Collapse
|
48
|
de Lucia C, Eguchi A, Koch WJ. New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Front Pharmacol 2018; 9:904. [PMID: 30147654 PMCID: PMC6095970 DOI: 10.3389/fphar.2018.00904] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) has become increasingly common within the elderly population, decreasing their survival and overall quality of life. In fact, despite the improvements in treatment, many elderly people suffer from cardiac dysfunction (HF, valvular diseases, arrhythmias or hypertension-induced cardiac hypertrophy) that are much more common in an older fragile heart. Since β-adrenergic receptor (β-AR) signaling is abnormal in failing as well as aged hearts, this pathway is an effective diagnostic and therapeutic target. Both HF and aging are characterized by activation/hyperactivity of various neurohormonal pathways, the most important of which is the sympathetic nervous system (SNS). SNS hyperactivity is initially a compensatory mechanism to stimulate contractility and maintain cardiac output. Unfortunately, this chronic stimulation becomes detrimental and causes decreased cardiac function as well as reduced inotropic reserve due to a decrease in cardiac β-ARs responsiveness. Therapies which (e.g., β-blockers and physical activity) restore β-ARs responsiveness can ameliorate cardiac performance and outcomes during HF, particularly in older patients. In this review, we will discuss physiological β-adrenergic signaling and its alterations in both HF and aging as well as the potential clinical application of targeting β-adrenergic signaling in these disease processes.
Collapse
Affiliation(s)
| | | | - Walter J. Koch
- Department of Pharmacology – Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
49
|
Wang Y, Jin L, Song Y, Zhang M, Shan D, Liu Y, Fang M, Lv F, Xiao RP, Zhang Y. β-arrestin 2 mediates cardiac ischemia-reperfusion injury via inhibiting GPCR-independent cell survival signalling. Cardiovasc Res 2018; 113:1615-1626. [PMID: 29016703 DOI: 10.1093/cvr/cvx147] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 08/03/2017] [Indexed: 01/14/2023] Open
Abstract
Aims Ischemic heart disease is a leading cause of morbidity and mortality worldwide. Although timely restoration of coronary blood flow (reperfusion) is the most effective therapeutics of myocardial infarction, reperfusion causes further cardiac damage, i.e. ischemia-reperfusion (I/R) injury. β-arrestins (Arrbs) have been traditionally defined as negative regulators of G protein-coupled receptor (GPCR) signalling, but recent studies have shown that they are essential for G protein-independent, GPCR-mediated biased signalling. Several ligands have been reported to be cardioprotective via Arrbs dependent pathway. However, it is unclear whether Arrbs exert receptor-independent physiological or pathological functions in the heart. Here, we sought to determine whether and how Arrbs play a role in regulating cardiomyocyte viability and myocardial remodelling following I/R injury. Methods and results The expression of β-arrestin 2 (Arrb2), but not β-arrestin 1 (Arrb1), is upregulated in rat hearts subjected to I/R injury, or in cultured neonatal rat cardiomyocytes treated with hypoxia-reoxygenation (H/R) injury. Deficiency of Arrb2 in cultured neonatal rat cardiomyocytes alleviates H/R-induced cardiomyocyte death and Arrb2-/- mice are resistant to myocardial damage caused by I/R injury. In contrast, upregulation of Arrb2 triggers cardiomyocyte death and exaggerates I/R (or H/R)-induced detrimental effects. Mechanically, Arrb2 induces cardiomyocyte death by interacting with the p85 subunit of PI3K, and negatively regulating the formation of p85-PI3K/CaV3 survival complex, thus blocking activation of PI3K-Akt-GSK3β cell survival signalling pathway. Conclusion We define an upregulation of Arrb2 as a pathogenic factor in cardiac I/R injury, and also reveal a novel GPCR-independent mechanism of Arrb2-mediated cell death signalling in the heart.
Collapse
Affiliation(s)
- Yimei Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Li Jin
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Ying Song
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Mao Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Dan Shan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yuli Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Meng Fang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
50
|
Abstract
β-arrestin1 (or arrestin2) and β-arrestin2 (or arrestin3) are ubiquitously expressed cytosolic adaptor proteins that were originally discovered for their inhibitory role in G protein-coupled receptor (GPCR) signaling through heterotrimeric G proteins. However, further biochemical characterization revealed that β-arrestins do not just "block" the activated GPCRs, but trigger endocytosis and kinase activation leading to specific signaling pathways that can be localized on endosomes. The signaling pathways initiated by β-arrestins were also found to be independent of G protein activation by GPCRs. The discovery of ligands that blocked G protein activation but promoted β-arrestin binding, or vice-versa, suggested the exciting possibility of selectively activating intracellular signaling pathways. In addition, it is becoming increasingly evident that β-arrestin-dependent signaling is extremely diverse and provokes distinct cellular responses through different GPCRs even when the same effector kinase is involved. In this review, we summarize various signaling pathways mediated by β-arrestins and highlight the physiologic effects of β-arrestin-dependent signaling.
Collapse
|