1
|
Dreher L, Bode M, Ehnert N, Meyer-Schwesinger C, Wiech T, Köhl J, Huber TB, Freiwald T, Herrnstadt GR, Wenzel UO. Role of the Anaphylatoxin Receptor C5aR2 in Angiotensin II-Induced Hypertension and Hypertensive End-Organ Damage. Am J Hypertens 2024; 37:810-825. [PMID: 38934290 DOI: 10.1093/ajh/hpae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKROUND Complement activation may facilitate hypertension through its effects on immune responses. The anaphylatoxin C5a, a major inflammatory effector, binds to the C5a receptors 1 and 2 (C5aR1, C5aR2). We have recently shown that C5aR1-/- mice have reduced hypertensive renal injury. The role of C5aR2 in hypertension is unknown. METHODS For examination of C5aR2 expression on infiltrating and resident renal cells a tandem dye Tomato-C5aR2 knock-in reporter mouse was used. Human C5aR2 expression was analyzed in a single-cell RNAseq data set from the kidneys of hypertensive patients. Finally, we examined the effect of angiotensin II-induced hypertension in C5aR2-deficient mice. RESULTS Flow cytometric analysis of leukocytes isolated from kidneys of the reporter mice showed that dendritic cells are the major C5aR2-expressing population (34%) followed by monocyte/macrophages (30%) and neutrophils (14%). Using confocal microscopy C5aR2 was not detected in resident renal or cardiac cells. In the human kidney, C5aR2 was also mainly found in monocytes, macrophages, and dendritic cells with a significantly higher expression in hypertension (P < 0.05). Unilateral nephrectomy was performed followed by infusion of Ang II (0.75 ng/g/min) and a high salt diet in wildtype (n = 18) and C5aR2-deficient mice (n = 14). Blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation), and cardiac injury (cardiac fibrosis, heart weight, gene expression) did not differ between hypertensive wildtype and C5aR2-/- mice. CONCLUSIONS In summary, C5aR2 is mainly expressed in myeloid cells in the kidney in mice and humans but its deficiency has no effect on Ang II-induced hypertensive injury.
Collapse
Affiliation(s)
- Leonie Dreher
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Bode
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolas Ehnert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, Section of Nephropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, Lübeck., Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tilo Freiwald
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg R Herrnstadt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich O Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Thangaraj SS, Oxlund CS, Andersen H, Svenningsen P, Stubbe J, Palarasah Y, Fonseca MPD, Ketelhuth DFJ, Enggaard C, Hansen MH, Henriksen JE, Jacobsen IA, Jensen BL. Amiloride lowers plasma TNF and interleukin-6 but not interleukin-17A in patients with hypertension and type 2 diabetes. Am J Physiol Renal Physiol 2024; 327:F37-F48. [PMID: 38779752 DOI: 10.1152/ajprenal.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/12/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Interleukin (IL)-17A contributes to hypertension in preclinical models. T helper 17 and dendritic cells are activated by NaCl, which could involve the epithelial Na+ channel (ENaC). We hypothesized that the ENaC blocker amiloride reduces plasma IL-17A and related cytokines in patients with hypertension. Concentrations of IL-17A, IFN-γ, TNF, IL-6, IL-1β, and IL-10 were determined by immunoassays in plasma from two patient cohorts before and after amiloride treatment: 1) patients with type 2 diabetes mellitus (T2DM) and treatment-resistant hypertension (n = 69, amiloride 5-10 mg/day for 8 wk) and 2) patients with hypertension and type 1 diabetes mellitus (T1DM) (n = 29) on standardized salt intake (amiloride 20-40 mg/day, 2 days). Plasma and tissue from ANG II-hypertensive mice with T1DM treated with amiloride (2 mg/kg/day, 4 days) were analyzed. The effect of amiloride and benzamil on macrophage cytokines was determined in vitro. Plasma cytokines showed higher concentrations (IL-17A ∼40-fold) in patients with T2DM compared with T1DM. In patients with T2DM, amiloride had no effect on IL-17A but lowered TNF and IL-6. In patients with T1DM, amiloride had no effect on IL-17A but increased TNF. In both cohorts, blood pressure decline and plasma K+ increase did not relate to plasma cytokine changes. In mice, amiloride exerted no effect on IL-17A in the plasma, kidney, aorta, or left cardiac ventricle but increased TNF in cardiac and kidney tissues. In lipopolysaccharide-stimulated human THP-1 macrophages, amiloride and benzamil (from 1 nmol/L) decreased TNF, IL-6, IL-10, and IL-1β. In conclusion, inhibition of ENaC by amiloride reduces proinflammatory cytokines TNF and IL-6 but not IL-17A in patients with T2DM, potentially by a direct action on macrophages.NEW & NOTEWORTHY ENaC activity may contribute to macrophage-derived cytokine release, since amiloride exerts anti-inflammatory effects by suppression of TNF and IL-6 cytokines in patients with resistant hypertension and type 2 diabetes and in THP-1-derived macrophages in vitro.
Collapse
Affiliation(s)
- Sai Sindhu Thangaraj
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina S Oxlund
- Department of Cardiology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | - Henrik Andersen
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Micaella Pereira Da Fonseca
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Daniel F J Ketelhuth
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Camilla Enggaard
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Høj Hansen
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Ib Abildgaard Jacobsen
- Research Unit for Cardiovascular and Metabolic Prevention, Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol 2024; 21:396-416. [PMID: 38172242 DOI: 10.1038/s41569-023-00964-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Hypertension is a global health problem, with >1.3 billion individuals with high blood pressure worldwide. In this Review, we present an inflammatory paradigm for hypertension, emphasizing the crucial roles of immune cells, cytokines and chemokines in disease initiation and progression. T cells, monocytes, macrophages, dendritic cells, B cells and natural killer cells are all implicated in hypertension. Neoantigens, the NLRP3 inflammasome and increased sympathetic outflow, as well as cytokines (including IL-6, IL-7, IL-15, IL-18 and IL-21) and a high-salt environment, can contribute to immune activation in hypertension. The activated immune cells migrate to target organs such as arteries (especially the perivascular fat and adventitia), kidneys, the heart and the brain, where they release effector cytokines that elevate blood pressure and cause vascular remodelling, renal damage, cardiac hypertrophy, cognitive impairment and dementia. IL-17 secreted by CD4+ T helper 17 cells and γδ T cells, and interferon-γ and tumour necrosis factor secreted by immunosenescent CD8+ T cells, exert crucial effector roles in hypertension, whereas IL-10 and regulatory T cells are protective. Effector mediators impair nitric oxide bioavailability, leading to endothelial dysfunction and increased vascular contractility. Inflammatory effector mediators also alter renal sodium and water balance and promote renal fibrosis. These mechanisms link hypertension with obesity, autoimmunity, periodontitis and COVID-19. A comprehensive understanding of the immune and inflammatory mechanisms of hypertension is crucial for safely and effectively translating the findings to clinical practice.
Collapse
Affiliation(s)
- Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK.
- Department of Medicine and Omicron Medical Genomics Laboratory, Jagiellonian University, Collegium Medicum, Kraków, Poland.
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK.
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Pasquale Maffia
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Benson LN, Deck KS, Mora CJ, Guo Y, Rafferty TM, Li LX, Huang L, Andrews JT, Qin Z, Trott DW, Hoover RS, Liu Y, Mu S. P2X7-Mediated Antigen-Independent Activation of CD8 + T Cells Promotes Salt-Sensitive Hypertension. Hypertension 2024; 81:530-540. [PMID: 38193292 PMCID: PMC10922507 DOI: 10.1161/hypertensionaha.123.21819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND CD8+ T cells (CD8Ts) have been implicated in hypertension. However, the specific mechanisms are not fully understood. In this study, we explore the contribution of the P2X7 (purinergic receptor P2X7) receptor to CD8T activation and subsequent promotion of sodium retention in the kidney. METHODS We used mouse models of hypertension. Wild type were used as genetic controls, OT1 and Rag2/OT1 mice were utilized to determine antigen dependency, and P2X7-knockout mice were studied to define the role of P2X7 in activating CD8Ts and promoting hypertension. Blood pressure was monitored continuously and kidneys were obtained at different experimental end points. Freshly isolated CD8Ts from mice for activation assays and ATP stimulation. CD8T activation-induced promotion of sodium retention was explored in cocultures of CD8Ts and mouse DCTs. RESULTS We found that OT1 and Rag2/OT1 mice, which are nonresponsive to common antigens, still developed hypertension and CD8T-activation in response to deoxycorticosterone acetate/salt treatment, similar to wild-type mice. Further studies identified the P2X7 receptor on CD8Ts as a possible mediator of this antigen-independent activation of CD8Ts in hypertension. Knockout of the P2X7 receptor prevented calcium influx and cytokine production in CD8Ts. This finding was associated with reduced CD8T-DCT stimulation, reversal of excessive salt retention in DCTs, and attenuated development of salt-sensitive hypertension. CONCLUSIONS Our findings suggest a novel mechanism by which CD8Ts are activated in hypertension to exacerbate salt retention and infer that the P2X7 receptor on CD8Ts may represent a new therapeutic target to attenuate T-cell-mediated immunopathology in hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin-Xi Li
- Department of Microbiology and Immunology
| | - Lu Huang
- Department of Microbiology and Immunology
| | | | - Zhiqiang Qin
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Daniel W. Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX 76019
| | - Robert S. Hoover
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - Shengyu Mu
- Department of Pharmacology and Toxicology
| |
Collapse
|
5
|
Benson LN, Mu S. Interferon gamma in the pathogenesis of hypertension - recent insights. Curr Opin Nephrol Hypertens 2024; 33:154-160. [PMID: 38164939 PMCID: PMC10842676 DOI: 10.1097/mnh.0000000000000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW The mounting body of evidence underscores the pivotal role of interferon gamma (IFNγ) in the pathogenesis of hypertension, prompting exploration of the mechanisms by which this cytokine fosters a pro-inflammatory immune milieu, subsequently exacerbating hypertension. In this review, we delve into recent preclinical and clinical studies from the past two years to elucidate how IFNγ participates in the progression of hypertension. RECENT FINDINGS IFNγ promotes renal CD8 + T cell accumulation by upregulating tubular PDL1 and MHC-I, intensifying cell-to-cell interaction. Intriguingly, a nucleotide polymorphism in LNK, predisposing towards hypertension, correlates with augmented T cell IFNγ production. Additionally, anti-IFNγ treatment exhibits protective effects against T cell-mediated inflammation during angiotensin II infusion or transverse aortic constriction. Moreover, knockout of the mineralocorticoid receptor in T cells protects against cardiac dysfunction induced by myocardial infarction, correlating with reduced IFNγ and IL-6, decreased macrophage recruitment, and attenuated fibrosis. Interestingly, increased IFNγ production correlates with elevated blood pressure, impacting individuals with type 2 diabetes, nondiabetics, and obese hypertensive patients. SUMMARY These revelations spotlight IFNγ as the critical mediator bridging the initial phase of blood pressure elevation with the sustained and exacerbated pathology. Consequently, blocking IFNγ signaling emerges as a promising therapeutic target to improve the management of this 'silent killer.'
Collapse
Affiliation(s)
- Lance N. Benson
- Heersink School of Medicine: Department of CardioRenal Physiology and Medicine, Division of Nephrology University of Alabama at Birmingham, Birmingham, Alabama
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
6
|
Liberona J, Araos P, Rodríguez M, León P, Stutzin A, Alzamora R, Michea L. Low-Chloride Diet Prevents the Development of Arterial Hypertension and Protects Kidney Function in Angiotensin II-Infused Mice. Kidney Blood Press Res 2024; 49:114-123. [PMID: 38246148 DOI: 10.1159/000535728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION A comprehensive pathophysiological mechanism to explain the relationship between high-salt intake and hypertension remains undefined. Evidence suggests that chloride, as the accompanying anion of sodium in dietary salt, is necessary to develop hypertension. We evaluated whether reducing dietary Cl- while keeping a standard Na+ intake modified blood pressure, cardiac hypertrophy, renal function, and vascular contractility after angiotensin II (AngII) infusion. METHODS C56BL/6J mice fed with standard Cl- diet or a low-Cl- diet (equimolar substitution of Cl- by a mixture of Na+ salts, both diets with standard Na+ content) received AngII (infusion of 1.5 mg/kg/day) or vehicle for 14 days. We measured systolic blood pressure (SBP), glomerular filtration rate (GFR), natriuretic response to acute saline load, and contractility of aortic rings from mice infused with vehicle and AngII, in standard and low-Cl- diet. RESULTS The mice fed the standard diet presented increased SBP and cardiac hypertrophy after AngII infusion. In contrast, low-Cl- diet prevented the increase of SBP and cardiac hypertrophy. AngII-infused mice fed a standard diet presented hampered natriuretic response to saline load, meanwhile the low-Cl- diet preserved natriuretic response in AngII-infused mice, without change in GFR. Aortic rings from mice fed with standard diet or low-Cl- diet and infused with AngII presented a similar contractile response. CONCLUSION We conclude that the reduction in dietary Cl- as the accompanying anion of sodium in salt is protective from AngII pro-hypertensive actions due to a beneficial effect on kidney function and preserved natriuresis.
Collapse
Affiliation(s)
- Jessica Liberona
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile,
| | - Patricio Araos
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Marcelo Rodríguez
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo León
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrés Stutzin
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Rodrigo Alzamora
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Anestesiología y Medicina Perioperatoria, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Michea
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Medicina Interna Norte, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Copur S, Peltek IB, Mutlu A, Tanriover C, Kanbay M. A new immune disease: systemic hypertension. Clin Kidney J 2023; 16:1403-1419. [PMID: 37664577 PMCID: PMC10469084 DOI: 10.1093/ckj/sfad059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Indexed: 09/05/2023] Open
Abstract
Systemic hypertension is the most common medical comorbidity affecting the adult population globally, with multiple associated outcomes including cerebrovascular diseases, cardiovascular diseases, vascular calcification, chronic kidney disease, metabolic syndrome and mortality. Despite advancements in the therapeutic field approximately one in every five adult patients with hypertension is classified as having treatment-resistant hypertension, indicating the need for studies to provide better understanding of the underlying pathophysiology and the need for more therapeutic targets. Recent pre-clinical studies have demonstrated the role of the innate and adaptive immune system including various cell types and cytokines in the pathophysiology of hypertension. Moreover, pre-clinical studies have indicated the potential beneficial effects of immunosuppressant medications in the control of hypertension. Nevertheless, it is unclear whether such pathophysiological mechanisms and therapeutic alternatives are applicable to human subjects, while this area of research is undoubtedly a rapidly growing field.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ibrahim B Peltek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
8
|
DeBerge M, Chaudhary R, Schroth S, Thorp EB. Immunometabolism at the Heart of Cardiovascular Disease. JACC Basic Transl Sci 2023; 8:884-904. [PMID: 37547069 PMCID: PMC10401297 DOI: 10.1016/j.jacbts.2022.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 08/08/2023]
Abstract
Immune cell function among the myocardium, now more than ever, is appreciated to regulate cardiac function and pathophysiology. This is the case for both innate immunity, which includes neutrophils, monocytes, dendritic cells, and macrophages, as well as adaptive immunity, which includes T cells and B cells. This function is fueled by cell-intrinsic shifts in metabolism, such as glycolysis and oxidative phosphorylation, as well as metabolite availability, which originates from the surrounding extracellular milieu and varies during ischemia and metabolic syndrome. Immune cell crosstalk with cardiac parenchymal cells, such as cardiomyocytes and fibroblasts, is also regulated by complex cellular metabolic circuits. Although our understanding of immunometabolism has advanced rapidly over the past decade, in part through valuable insights made in cultured cells, there remains much to learn about contributions of in vivo immunometabolism and directly within the myocardium. Insight into such fundamental cell and molecular mechanisms holds potential to inform interventions that shift the balance of immunometabolism from maladaptive to cardioprotective and potentially even regenerative. Herein, we review our current working understanding of immunometabolism, specifically in the settings of sterile ischemic cardiac injury or cardiometabolic disease, both of which contribute to the onset of heart failure. We also discuss current gaps in knowledge in this context and therapeutic implications.
Collapse
Affiliation(s)
| | | | - Samantha Schroth
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Benson LN, Guo Y, Deck K, Mora C, Liu Y, Mu S. The link between immunity and hypertension in the kidney and heart. Front Cardiovasc Med 2023; 10:1129384. [PMID: 36970367 PMCID: PMC10034415 DOI: 10.3389/fcvm.2023.1129384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Hypertension is the primary cause of cardiovascular disease, which is a leading killer worldwide. Despite the prevalence of this non-communicable disease, still between 90% and 95% of cases are of unknown or multivariate cause ("essential hypertension"). Current therapeutic options focus primarily on lowering blood pressure through decreasing peripheral resistance or reducing fluid volume, but fewer than half of hypertensive patients can reach blood pressure control. Hence, identifying unknown mechanisms causing essential hypertension and designing new treatment accordingly are critically needed for improving public health. In recent years, the immune system has been increasingly implicated in contributing to a plethora of cardiovascular diseases. Many studies have demonstrated the critical role of the immune system in the pathogenesis of hypertension, particularly through pro-inflammatory mechanisms within the kidney and heart, which, eventually, drive a myriad of renal and cardiovascular diseases. However, the precise mechanisms and potential therapeutic targets remain largely unknown. Therefore, identifying which immune players are contributing to local inflammation and characterizing pro-inflammatory molecules and mechanisms involved will provide promising new therapeutic targets that could lower blood pressure and prevent progression from hypertension into renal or cardiac dysfunction.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | | | | | | | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| |
Collapse
|
10
|
Benson LN, Liu Y, Deck K, Mora C, Mu S. IFN- γ Contributes to the Immune Mechanisms of Hypertension. KIDNEY360 2022; 3:2164-2173. [PMID: 36591357 PMCID: PMC9802558 DOI: 10.34067/kid.0001292022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022]
Abstract
Hypertension is the leading cause of cardiovascular disease and the primary risk factor for mortality worldwide. For more than half a century, researchers have demonstrated that immunity plays an important role in the development of hypertension; however, the precise mechanisms are still under investigation. The current body of knowledge indicates that proinflammatory cytokines may play an important role in contributing to immune-related pathogenesis of hypertension. Interferon gamma (IFN-γ), in particular, as an important cytokine that modulates immune responses, has been recently identified as a critical regulator of blood pressure by several groups, including us. In this review, we focus on exploring the role of IFN-γ in contributing to the pathogenesis of hypertension, outlining the various immune producers of this cytokine and described signaling mechanisms involved. We demonstrate a key role for IFN-γ in hypertension through global knockout studies and related downstream signaling pathways that IFN-γ production from CD8+ T cell (CD8T) in the kidney promoting CD8T-stimulated salt retention via renal tubule cells, thereby exacerbating hypertension. We discuss potential activators of these T cells described by the current literature and relay a novel hypothesis for activation.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Yunmeng Liu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Katherine Deck
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Christoph Mora
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
11
|
Goodlett BL, Balasubbramanian D, Navaneethabalakrishnan S, Love SE, Luera EM, Konatham S, Chiasson VL, Wedgeworth S, Rutkowski JM, Mitchell BM. Genetically inducing renal lymphangiogenesis attenuates hypertension in mice. Clin Sci (Lond) 2022; 136:1759-1772. [PMID: 36345993 PMCID: PMC10586591 DOI: 10.1042/cs20220547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hypertension (HTN) is associated with renal proinflammatory immune cell infiltration and increased sodium retention. We reported previously that renal lymphatic vessels, which are responsible for trafficking immune cells from the interstitial space to draining lymph nodes, increase in density under hypertensive conditions. We also demonstrated that augmenting renal lymphatic density can prevent HTN in mice. Whether renal lymphangiogenesis can treat HTN in mice is unknown. We hypothesized that genetically inducing renal lymphangiogenesis after the establishment of HTN would attenuate HTN in male and female mice from three different HTN models. METHODS Mice with inducible kidney-specific overexpression of VEGF-D (KidVD) experience renal lymphangiogenesis upon doxycycline administration. HTN was induced in KidVD+ and KidVD- mice by subcutaneous release of angiotensin II, administration of the nitric oxide synthase inhibitor L-NAME, or consumption of a 4% salt diet following a L-NAME priming and washout period. After a week of HTN stimuli treatment, doxycycline was introduced. Systolic blood pressure (SBP) readings were taken weekly. Kidney function was determined from urine and serum measures. Kidneys were processed for RT-qPCR, flow cytometry, and imaging. RESULTS Mice that underwent renal-specific lymphangiogenesis had significantly decreased SBP and renal proinflammatory immune cells. Additionally, renal lymphangiogenesis was associated with a decrease in sodium transporter expression and increased fractional excretion of sodium, indicating improved sodium handling efficiency. CONCLUSIONS These findings demonstrate that augmenting renal lymphangiogenesis can treat HTN in male and female mice by improving renal immune cell trafficking and sodium handling.
Collapse
Affiliation(s)
- Bethany L Goodlett
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | | | | | - Sydney E Love
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Emily M Luera
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Sunitha Konatham
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Valorie L Chiasson
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Sophie Wedgeworth
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| |
Collapse
|
12
|
Lu X, Crowley SD. Actions of Dendritic Cells in the Kidney during Hypertension. Compr Physiol 2022; 12:4087-4101. [PMID: 35950656 DOI: 10.1002/cphy.c210050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immune response plays a critical role in the pathogenesis of hypertension, and immune cell populations can promote blood pressure elevation via actions in the kidney. Among these cell lineages, dendritic cells (DCs), the most potent antigen-presenting cells, play a central role in regulating immune response during hypertension and kidney disease. DCs have different subtypes, and renal DCs are comprised of the CD103+ CD11b- and CD103- CD11b+ subsets. DCs become mature and express costimulatory molecules on their surface once they encounter antigen. Isolevuglandin-modified proteins function as antigens to activate DCs and trigger them to stimulate T cells. Activated T cells accumulate in the hypertensive kidney, release effector cytokines, promote renal oxidative stress, and promote renal salt and water retention. Individual subsets of activated T cells can secrete tumor necrosis factor-alpha, interleukin-17A, and interferon-gamma, each of which has augmented the elevation of blood pressure in hypertensive models by enhancing renal sodium transport. Fms-like tyrosine kinase 3 ligand-dependent classical DCs are required to sustain the full hypertensive response, but C-X3 -C chemokine receptor 1 positive DCs do not regulate blood pressure. Excess sodium enters the DC through transporters to activate DCs, whereas the ubiquitin editor A20 in dendritic cells constrains blood pressure elevation by limiting T cell activation. By contrast, activation of the salt sensing kinase, serum/glucocorticoid kinase 1 in DCs exacerbates salt-sensitive hypertension. This article discusses recent studies illustrating mechanisms through which DC-T cell interactions modulate levels of pro-hypertensive mediators to regulate blood pressure via actions in the kidney. © 2022 American Physiological Society. Compr Physiol 12:1-15, 2022.
Collapse
Affiliation(s)
- Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| |
Collapse
|
13
|
Frąk W, Wojtasińska A, Lisińska W, Młynarska E, Franczyk B, Rysz J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines 2022; 10:biomedicines10081938. [PMID: 36009488 PMCID: PMC9405799 DOI: 10.3390/biomedicines10081938] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are disorders associated with the heart and circulatory system. Atherosclerosis is its major underlying cause. CVDs are chronic and can remain hidden for a long time. Moreover, CVDs are the leading cause of global morbidity and mortality, thus creating a major public health concern. This review summarizes the available information on the pathophysiological implications of CVDs, focusing on coronary artery disease along with atherosclerosis as its major cause and arterial hypertension. We discuss the endothelium dysfunction, inflammatory factors, and oxidation associated with atherosclerosis. Mechanisms such as dysfunction of the endothelium and inflammation, which have been identified as critical pathways for development of coronary artery disease, have become easier to diagnose in recent years. Relatively recently, evidence has been found indicating that interactions of the molecular and cellular elements such as matrix metalloproteinases, elements of the immune system, and oxidative stress are involved in the pathophysiology of arterial hypertension. Many studies have revealed several important inflammatory and genetic risk factors associated with CVDs. However, further investigation is crucial to improve our knowledge of CVDs progression and, more importantly, accelerate basic research to improve our understanding of the mechanism of pathophysiology.
Collapse
|
14
|
Lu X, Crowley SD. The Immune System in Hypertension: a Lost Shaker of Salt 2021 Lewis K. Dahl Memorial Lecture. Hypertension 2022; 79:1339-1347. [PMID: 35545942 DOI: 10.1161/hypertensionaha.122.18554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The seminal observations of Dr Lewis Dahl regarding renal mechanisms of hypertension remain highly relevant in light of more recent experiments showing that immune system dysfunction contributes to hypertension pathogenesis. Dr Dahl established that inappropriate salt retention in the kidney plays a central role via Ohm's Law in permitting blood pressure elevation. Nevertheless, inflammatory cytokines whose expression is induced in the early stages of hypertension can alter renal blood flow and sodium transporter expression and activity to foster renal sodium retention. By elaborating these cytokines and reactive oxygen species, myeloid cells and T lymphocytes can connect systemic inflammatory signals to aberrant kidney functions that allow sustained hypertension. By activating T lymphocytes, antigen-presenting cells such as dendritic cells represent an afferent sensing mechanism triggering T cell activation, cytokine generation, and renal salt and water reabsorption. Manipulating these inflammatory signals to attenuate hypertension without causing prohibitive systemic immunosuppression will pose a challenge, but disrupting actions of inflammatory mediators locally within the kidney may offer a path through which to target immune-mediated mechanisms of hypertension while capitalizing on Dr Dahl's key recognition of the kidney's importance in blood pressure regulation.
Collapse
Affiliation(s)
- Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC
| |
Collapse
|
15
|
Hengel FE, Benitah JP, Wenzel UO. Mosaic theory revised: inflammation and salt play central roles in arterial hypertension. Cell Mol Immunol 2022; 19:561-576. [PMID: 35354938 PMCID: PMC9061754 DOI: 10.1038/s41423-022-00851-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
The mosaic theory of hypertension was advocated by Irvine Page ~80 years ago and suggested that hypertension resulted from the close interactions of different causes. Increasing evidence indicates that hypertension and hypertensive end-organ damage are not only mediated by the proposed mechanisms that result in hemodynamic injury. Inflammation plays an important role in the pathophysiology and contributes to the deleterious consequences of arterial hypertension. Sodium intake is indispensable for normal body function but can be detrimental when it exceeds dietary requirements. Recent data show that sodium levels also modulate the function of monocytes/macrophages, dendritic cells, and different T-cell subsets. Some of these effects are mediated by changes in the microbiome and metabolome due to high-salt intake. The purpose of this review is to propose a revised and extended version of the mosaic theory by summarizing and integrating recent advances in salt, immunity, and hypertension research. Salt and inflammation are placed in the middle of the mosaic because both factors influence each of the remaining pieces.
Collapse
Affiliation(s)
- Felicitas E Hengel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Pierre Benitah
- Inserm UMR-S 1180, Faculty of Pharmacy, University Paris Saclay, Gif-sur-Yvette, France
| | - Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
16
|
Lu X, Zhang J, Wen Y, Ren J, Griffiths R, Rudemiller NP, Ide S, Souma T, Crowley SD. Type 1 Angiotensin Receptors on CD11c-Expressing Cells Protect Against Hypertension by Regulating Dendritic Cell-Mediated T Cell Activation. Hypertension 2022; 79:1227-1236. [PMID: 35430875 DOI: 10.1161/hypertensionaha.121.18734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Type 1 angiotensin (AT1) receptors are expressed on immune cells, and we previously found that bone marrow-derived AT1 receptors protect against Ang (angiotensin) II-induced hypertension. CD11c is expressed on myeloid cells derived from the bone marrow, including dendritic cells (DCs) that activate T lymphocytes. Here, we examined the role of AT1 receptors on CD11c+ cells in hypertension pathogenesis. METHODS Mice lacking the dominant murine AT1 receptor isoform, AT1a, on CD11c+ cells (dendritic cell [DC] AT1aR knockout [KO]) and wild-type (WT) littermates were subjected to Ang II-induced hypertension. Blood pressures were measured by radiotelemetry. RESULTS DC AT1aR KO mice had exaggerated hypertensive responses to chronic Ang II infusion with enhanced renal accumulation of effector memory T cells and CD40+ DCs. CCL5 (C-C motif chemokine ligand 5) recruits T cells into injured tissues, and CCR7 (C-C motif chemokine receptor 7) facilitates DC and T cell interactions in the kidney lymph node to allow T cell activation. DCs from the hypertensive DC AT1aR KO kidneys expressed higher levels of CCL5 and CCR7. mRNA expressions for CCR7 and tumor necrosis factor-α were increased in CD4+ T cells from the renal lymph nodes of DC AT1aR KO mice. During the second week of Ang II infusion when blood pressures between groups diverged, DC AT1aR KO mice excreted less sodium than WTs. Expressions for epithelial sodium channel subunits were increased in DC AT1aR KO kidneys. CONCLUSIONS Following activation of the renin angiotensin system, AT1aR stimulation on DCs suppresses renal DC maturation and T cell activation with consequent protection from sodium retention and blood pressure elevation.
Collapse
Affiliation(s)
- Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| | - Jiandong Zhang
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill (J.Z.)
| | - Yi Wen
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| | - Jiafa Ren
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| | - Robert Griffiths
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| | - Nathan P Rudemiller
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| | - Shintaro Ide
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., Y.W., J.R., R.G., N.P.R., S.I., T.S., S,D.C.)
| |
Collapse
|
17
|
Higaki A, Mogi M. Dendritic cells as potential initiators of immune-mediated hypertensive disorders. Hypertens Res 2022; 45:527-529. [PMID: 34961789 DOI: 10.1038/s41440-021-00830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Akinori Higaki
- Department of Cardiology, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Masaki Mogi
- Department of Department of Pharmacology, Ehime University Graduate School of Medicine, Tohon, Japan.
| |
Collapse
|
18
|
Theall B, Alcaide P. The heart under pressure: immune cells in fibrotic remodeling. CURRENT OPINION IN PHYSIOLOGY 2022; 25:100484. [PMID: 35224321 PMCID: PMC8881013 DOI: 10.1016/j.cophys.2022.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The complex syndrome of heart failure (HF) is characterized by increased left ventricular pressures. Cardiomyocytes increase in size, cardiac fibroblasts transform and make extracellular matrix, and leukocytes infiltrate the cardiac tissue and alter cardiomyocyte and cardiac fibroblast function. Here we review recent advances in our understanding of the cellular composition of the heart during homeostasis and in response to cardiac pressure overload, with an emphasis on immune cell communication with cardiac fibroblasts and its consequences in cardiac remodeling.
Collapse
Affiliation(s)
- Brandon Theall
- Department of Immunology, Tufts University School of Medicine, Boston, MA,Immunology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA,Immunology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| |
Collapse
|
19
|
Araos P, Amador CA. Neutrophil gelatinase-associated lipocalin as an immunomodulator in endocrine hypertension. Front Endocrinol (Lausanne) 2022; 13:1006790. [PMID: 36387895 PMCID: PMC9640732 DOI: 10.3389/fendo.2022.1006790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022] Open
Abstract
In recent studies, primary aldosteronism (PA) has been reported as the most common etiology for secondary hypertension of endocrine origin, accounting for approximately 10% of cases. In PA, excess aldosterone production can lead to deleterious effects at the cardiovascular (CV) and renal levels by activating mineralocorticoid receptors, which involves an increase in pro-inflammatory and pro-fibrotic mediators. Among these mediators, neutrophil gelatinase-associated lipocalin (NGAL), a secretion glycoprotein belonging to the lipocalin superfamily, has been closely linked to CV and renal damage in several pathological conditions. Because NGAL can be detected in biofluids such as plasma and urine, it has been proposed as a damage biomarker for target tissues and has also been studied for its role in hypertension and associated with PA. NGAL is produced by many different cell types, can be carried on extracellular vesicles, and is modulated by microRNAs, which would support its use as a biomarker for endocrine hypertension due to PA. Over the last decade, studies have shown that NGAL is necessary for the development of aldosterone-induced hypertension and that is associated with end-organ damage. In addition, it has been proposed that some mechanisms are dependent on the activation of immune cells, such as dendritic cells and macrophages, where the release of specific cytokines (i.e., interleukin [IL]-23) or chemokines (i.e., CCL-5) induced by aldosterone would depend on NGAL. Subsequently, this activates the T helper (Th) lymphocytes, such as Th17 and Th2, resulting in CV and renal fibrosis due to the high aldosterone levels. Although the immune system has been closely associated with essential hypertension, its participation in endocrine hypertension has not been fully elucidated. This review discusses the link between NGAL and endocrine hypertension, particularly in the context of PA, and their possible regulators and mechanisms, with a focus on its role as an immunomodulator.
Collapse
Affiliation(s)
- Patricio Araos
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristián A. Amador
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- *Correspondence: Cristián A. Amador,
| |
Collapse
|
20
|
Wenzel UO, Ehmke H, Bode M. Immune mechanisms in arterial hypertension. Recent advances. Cell Tissue Res 2021; 385:393-404. [PMID: 33394136 PMCID: PMC8523494 DOI: 10.1007/s00441-020-03409-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Increasing evidence indicates that hypertension and hypertensive end-organ damage are not only mediated by hemodynamic injury. Inflammation also plays an important role in the pathophysiology and contributes to the deleterious consequences of this disease. Cells of the innate immune system including monocyte/macrophages and dendritic cells can promote blood pressure elevation via effects mostly on kidney and vascular function. Moreover, convincing evidence shows that T and B cells from the adaptive immune system are involved in hypertension and hypertensive end-organ damage. Skin monocyte/macrophages, regulatory T cells, natural killer T cells, and myeloid-derived suppressor cells have been shown to exert blood pressure controlling effects. Sodium intake is undoubtedly indispensable for normal body function but can be detrimental when taken in excess of dietary requirements. Sodium levels also modulate the function of monocyte/macrophages, dendritic cells, and different T cell subsets. Some of these effects are mediated by changes in the microbiome and metabolome that can be found after high salt intake. Modulation of the immune response can reduce severity of blood pressure elevation and hypertensive end-organ damage in several animal models. The purpose of this review is to briefly summarize recent advances in immunity and hypertension as well as hypertensive end-organ damage.
Collapse
Affiliation(s)
- Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| |
Collapse
|
21
|
Madhur MS, Elijovich F, Alexander MR, Pitzer A, Ishimwe J, Van Beusecum JP, Patrick DM, Smart CD, Kleyman TR, Kingery J, Peck RN, Laffer CL, Kirabo A. Hypertension: Do Inflammation and Immunity Hold the Key to Solving this Epidemic? Circ Res 2021; 128:908-933. [PMID: 33793336 PMCID: PMC8023750 DOI: 10.1161/circresaha.121.318052] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevated cardiovascular risk including stroke, heart failure, and heart attack is present even after normalization of blood pressure in patients with hypertension. Underlying immune cell activation is a likely culprit. Although immune cells are important for protection against invading pathogens, their chronic overactivation may lead to tissue damage and high blood pressure. Triggers that may initiate immune activation include viral infections, autoimmunity, and lifestyle factors such as excess dietary salt. These conditions activate the immune system either directly or through their impact on the gut microbiome, which ultimately produces chronic inflammation and hypertension. T cells are central to the immune responses contributing to hypertension. They are activated in part by binding specific antigens that are presented in major histocompatibility complex molecules on professional antigen-presenting cells, and they generate repertoires of rearranged T-cell receptors. Activated T cells infiltrate tissues and produce cytokines including interleukin 17A, which promote renal and vascular dysfunction and end-organ damage leading to hypertension. In this comprehensive review, we highlight environmental, genetic, and microbial associated mechanisms contributing to both innate and adaptive immune cell activation leading to hypertension. Targeting the underlying chronic immune cell activation in hypertension has the potential to mitigate the excess cardiovascular risk associated with this common and deadly disease.
Collapse
Affiliation(s)
- Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew R. Alexander
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - Ashley Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeanne Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin P. Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Thomas R. Kleyman
- Departments of Medicine, Cell Biology, Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justin Kingery
- Center for Global Health, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
| | - Robert N. Peck
- Center for Global Health, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
- Mwanza Intervention Trials Unit (MITU), Mwanza, Tanzania
| | - Cheryl L. Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| |
Collapse
|
22
|
Wenstedt EFE, van Croonenburg TJ, van den Born BJH, Van den Bossche J, Hooijmans CR, Vogt L. The effect of macrophage-targeted interventions on blood pressure - a systematic review and meta-analysis of preclinical studies. Transl Res 2021; 230:123-138. [PMID: 33166696 DOI: 10.1016/j.trsl.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023]
Abstract
An increasing body of evidence shows a role for macrophages and monocytes (as their precursors) in hypertension, but with conflicting results with regard to whether they are protective or harmful. Therefore, we systematically reviewed the effect of macrophage interventions on blood pressure in animal models, to explore which factors determine the blood pressure increasing vs. decreasing effect. A search in PubMED and EMBASE yielded 9620 records, 26 of which were included. Eighteen studies (involving 22 different experiments (k = 22)) performed macrophage depletion, whereas 12 studies specifically deleted certain macrophage proteins. The blood pressure effects of macrophage depletion were highly various and directed toward both directions, as expected, which could not be reduced to differences in animal species or methods of hypertension induction. Prespecified subgroup analysis did reveal a potential role for the route in which the macrophage-depleting agent is being administrated (intraperitoneal vs intravenous subgroup difference of P = 0.07 (k = 22), or P < 0.001 in studies achieving considerable (ie, >50%) depletion (k = 18)). Along with findings from specific macrophage protein deletion studies-showing that deletion of one single macrophage protein (like TonEBP, endothelin-B, EP4, NOX-2 and the angiotensin II type 1 receptor) can alter blood pressure responses to hypertensive stimuli-the indication that each route has its specific depletion pattern regarding targeted tissues and macrophage phenotypes suggests a determinative role for these features. These hypothesis-generating results encourage more detailed depletion characterization of each technique by direct experimental comparisons, providing a chance to obtain more knowledge on which macrophages are beneficial versus detrimental in hypertension development.
Collapse
Affiliation(s)
- Eliane F E Wenstedt
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Thirza J van Croonenburg
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Bert-Jan H van den Born
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jan Van den Bossche
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Carlijn R Hooijmans
- Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Liffert Vogt
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Zhang RM, McNerney KP, Riek AE, Bernal‐Mizrachi C. Immunity and Hypertension. Acta Physiol (Oxf) 2021; 231:e13487. [PMID: 32359222 DOI: 10.1111/apha.13487] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
Abstract
Hypertension is the primary cause of cardiovascular mortality. Despite multiple existing treatments, only half of those with the disease achieve adequate control. Therefore, understanding the mechanisms causing hypertension is essential for the development of novel therapies. Many studies demonstrate that immune cell infiltration of the vessel wall, kidney and central nervous system, as well as their counterparts of oxidative stress, the renal renin-angiotensin system (RAS) and sympathetic tone play a critical role in the development of hypertension. Genetically modified mice lacking components of innate and/or adaptive immunity confirm the importance of chronic inflammation in hypertension and its complications. Depletion of immune cells improves endothelial function, decreases oxidative stress, reduces vascular tone and prevents renal interstitial infiltrates, sodium retention and kidney damage. Moreover, the ablation of microglia or central nervous system perivascular macrophages reduces RAS-induced inflammation and prevents sympathetic nervous system activation and hypertension. Therefore, understanding immune cell functioning and their interactions with tissues that regulate hypertensive responses may be the future of novel antihypertensive therapies.
Collapse
Affiliation(s)
- Rong M. Zhang
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Kyle P. McNerney
- Department of Pediatrics Washington University School of Medicine St. Louis MO USA
| | - Amy E. Riek
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Carlos Bernal‐Mizrachi
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
- Department of Cell Biology and Physiology Washington University School of Medicine St. Louis MO USA
- Department of Medicine VA Medical Center St. Louis MO USA
| |
Collapse
|
24
|
Araos P, Figueroa S, Amador CA. The Role of Neutrophils in Hypertension. Int J Mol Sci 2020; 21:ijms21228536. [PMID: 33198361 PMCID: PMC7697449 DOI: 10.3390/ijms21228536] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
It is well accepted that the immune system and some cells from adaptive and innate immunity are necessary for the initiation/perpetuation of arterial hypertension (AH). However, whether neutrophils are part of this group remains debatable. There is evidence showing that the neutrophil/lymphocyte ratio correlates with AH and is higher in non-dipper patients. On the other hand, the experimental neutrophil depletion in mice reduces basal blood pressure. Nevertheless, their participation in AH is still controversial. Apparently, neutrophils may modulate the microenvironment in blood vessels by increasing oxidative stress, favoring endothelial disfunction. In addition, neutrophils may contribute to the tissue infiltration of immune cells, secreting chemoattractant chemokines/cytokines and promoting the proinflammatory phenotype, leading to AH development. In this work, we discuss the potential role of neutrophils in AH by analyzing different mechanisms proposed from clinical and basic studies, with a perspective on cardiovascular and renal damages relating to the hypertensive phenotype.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Inflammatory processes play a critical role in the pathogenesis of hypertension. Innate and adaptive immune responses participate in blood pressure (BP) elevation and end-organ damage. In this review, we discuss recent studies illustrating mechanisms through which immune cells and cytokines regulate BP via their actions in the kidney. RECENT FINDINGS Cells of the innate immune system, including monocytes, neutrophils, and dendritic cells, can all promote BP elevation via effects on kidney function. These innate immune cells can directly impact oxidative stress and cytokine generation in the kidney and/or present antigens to lymphocytes for the engagement of the adaptive immune system. Once activated by dendritic cells, effector memory T cells accumulate in the hypertensive kidney and facilitate renal salt and water retention. Individual subsets of activated T cells can secrete tumor necrosis factor-alpha (TNF-α), interleukin-17a (IL-17a), and interferon-gamma (IFN-γ), each of which has augmented the elevation of blood pressure in hypertensive models by enhancing renal sodium transport. B cells, regulate blood pressure via vasopressin receptor 2 (V2R)-dependent effects on fluid transport in the kidney. SUMMARY Immune cells of the innate and adaptive immune systems drive sodium retention and blood pressure elevation in part by altering renal solute transport.
Collapse
|
26
|
Dendritic cells are crucial for cardiovascular remodeling and modulate neutrophil gelatinase-associated lipocalin expression upon mineralocorticoid receptor activation. J Hypertens 2020; 37:1482-1492. [PMID: 31033725 DOI: 10.1097/hjh.0000000000002067] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Adaptive immunity is crucial in cardiovascular and renal inflammation/fibrosis upon hyperactivation of mineralocorticoid receptor. We have previously demonstrated that dendritic cells can respond to mineralocorticoid receptor activation, and the neutrophil gelatinase-associated lipocalin (NGAL) in dendritic cells is highly increased during aldosterone (Aldo)/mineralocorticoid receptor-dependent cardiovascular damage. However, the interrelationship among dendritic cells, target organs inflammation/fibrosis induced by mineralocorticoid receptor, and NGAL-dependence remains unknown. OBJECTIVE We studied the role of dendritic cells in mineralocorticoid receptor-dependent tissue remodeling and whether NGAL can modulate the inflammatory response of dendritic cells after mineralocorticoid receptor activation. METHODS Cardiovascular and renal remodeling induced by Aldo and high-salt diet [nephrectomy-Aldo-salt (NAS) model] were analyzed in CD11c.DOG mice, a model which allows dendritic cells ablation by using diphtheria toxin. In addition, in-vitro studies in NGAL-knock out dendritic cells were performed to determine the immunomodulatory role of NGAL upon Aldo treatment. RESULTS The ablation of dendritic cells prevented the development of cardiac hypertrophy, perivascular fibrosis, and the overexpression of NGAL, brain natriuretic peptide, and two profibrotic factors induced by NAS: collagen 1A1 and connective tissue growth factor. We determined that dendritic cells were not required to prevent renal hypertrophy/fibrosis induced by NAS. Between different immune cells analyzed, we observed that NGAL abundance was higher in antigen-presenting cells, while in-vitro studies showed that mineralocorticoid receptor stimulation in dendritic cells favored NGAL and IL-23 expression (p19 and p40 subunits), which are involved in the development of fibrosis and the Th17-driven response, respectively. CONCLUSION NGAL produced by dendritic cells may play a pivotal role in the activation of adaptive immunity that leads to cardiovascular fibrosis during mineralocorticoids excess.
Collapse
|
27
|
Carnevale D, Wenzel P. Mechanical stretch on endothelial cells interconnects innate and adaptive immune response in hypertension. Cardiovasc Res 2020; 114:1432-1434. [PMID: 29912294 DOI: 10.1093/cvr/cvy148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Via dell'Elettronica, Pozzilli, IS, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Philip Wenzel
- Center for Cardiology-Cardiology I, University Medical Center Mainz, Langenbeckstrasse 1, Mainz, Germany.,Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, Langenbeckstrasse 1, Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, Germany
| |
Collapse
|
28
|
Lu X, Rudemiller NP, Privratsky JR, Ren J, Wen Y, Griffiths R, Crowley SD. Classical Dendritic Cells Mediate Hypertension by Promoting Renal Oxidative Stress and Fluid Retention. Hypertension 2019; 75:131-138. [PMID: 31786985 DOI: 10.1161/hypertensionaha.119.13667] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
FLT3L (Fms-like tyrosine kinase 3 ligand) stimulates the development of classical dendritic cells (DCs). Here we tested the hypothesis that classical DCs drive blood pressure elevation by promoting renal fluid retention. FLT3L-deficient (FLT3L-/-) mice that lack classical DCs in the kidney had mean arterial pressures similar to wild-types (WTs) at baseline but had blunted hypertensive responses during 4 weeks of chronic Ang II (angiotensin II) infusion. In FLT3L-/- mice, the proportions of effector memory T cells in the kidney were similar to those in WTs at baseline. However, after Ang II infusion, proportions of effector memory T cells were dramatically lower in the FLT3L-/- kidneys versus WTs, indicating that classical DCs augment the renal accumulation of effector T cells after renin-angiotensin system activation. Consistent with their lower blood pressures, the Ang II-infused FLT3L-/- mice had attenuated cardiac hypertrophy and lower renal mRNA expression for pro-hypertensive cytokines. Moreover, the Ang II-infused FLT3L-/- mice had lower urinary excretion of the oxidative stress marker 8-isoprostane and lower renal mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase 2. In an intraperitoneal saline challenge test at day 7 of Ang II, FLT3L-/- mice excreted higher proportions of the injected volume and sodium than WTs. Consistent with this enhanced diuresis, mRNA expressions for the sodium chloride cotransporter and all 3 subunits of the epithelial sodium channel were diminished by >40% in FLT3L-/- kidneys compared with the WTs. Thus, classical FLT3L-dependent DCs promote renal T-cell activation with consequent oxidative stress, fluid retention, and blood pressure elevation.
Collapse
Affiliation(s)
- Xiaohan Lu
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Nathan P Rudemiller
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Jamie R Privratsky
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Jiafa Ren
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Yi Wen
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Robert Griffiths
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Steven D Crowley
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.).,Department of Immunology, Duke University School of Medicine, Durham, NC (S.D.C.)
| |
Collapse
|
29
|
Mattson DL. Immune mechanisms of salt-sensitive hypertension and renal end-organ damage. Nat Rev Nephrol 2019; 15:290-300. [PMID: 30804523 DOI: 10.1038/s41581-019-0121-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immune mechanisms have been recognized to have a role in the pathogenesis of hypertension, vascular disease and kidney damage in humans and animals for many decades. Contemporary advances in experimentation have permitted a deeper understanding of the mechanisms by which inflammation and immunity participate in cardiovascular disease, and multiple observations have demonstrated strong correlations between the discoveries made in animals and those made in patients with hypertension. Of note, striking phenotypic similarities have been observed in the infiltration of immune cells in the kidney and the development of end-organ damage in patients and animal models with sodium-sensitive hypertension. The available data suggest that an initial salt-induced increase in renal perfusion pressure, which is likely independent of immune mechanisms, induces the infiltration of immune cells into the kidney. The mechanisms mediating immune cell infiltration in the kidney are not well understood but likely involve tissue damage, the direct influence of salt to stimulate immune cell activation, sympathetic nerve stimulation or other factors. The infiltrating cells then release cytokines, free radicals and other factors that contribute to renal damage as well as increased retention of sodium and water and vascular resistance, which lead to the further development of hypertension.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW In recent years, a vast body of evidence has accumulated indicating the role of the immune system in the regulation of blood pressure and modulation of hypertensive pathology. Numerous cells of the immune system, both innate and adaptive immunity, have been indicated to play an important role in the development and maintenance of hypertension. The purpose of this review was to summarize the role of adaptive immunity in experimental models of hypertension (genetic, salt-sensitive, and Angiotensin (Ang) II induced) and in human studies. In particular, the role of T and B cells is discussed. RECENT FINDINGS In response to hypertensive stimuli such as Ang II and high salt, T cells become pro-inflammatory and they infiltrate the brain, blood vessel adventitia and periadventitial fat, heart, and the kidney. Pro-inflammatory T cell-derived cytokines such as IFN-γ and TNF-α (from CD8+ and CD4+Th1) and IL-17A (from the γδ-T cell and CD4+Th17) exacerbate hypertensive responses mediating both endothelial dysfunction and cardiac, renal, and neurodegenerative injury. The modulation of adaptive immune activation in hypertension has been attributed to target organ oxidative stress that leads to the generation of neoantigens, including isolevuglandin-modified proteins. The role of adaptive immunity is sex-specific with much more pronounced mechanisms in males than that in females. Hypertension is also associated with B cell activation and production of autoantibodies (anti-Hsp70, anti-Hsp65, anti-Hsp60, anti-AT1R, anti-α1AR, and anti-β1AR). The hypertensive responses can be inhibited by T regulatory lymphocytes (Tregs) and their anti-inflammatory IL-10. Adaptive immunity and its interface with innate mechanisms may represent valuable targets in the modulation of blood pressure, as well as hypertension-related residual risk.
Collapse
Affiliation(s)
- Tomasz P Mikolajczyk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.
- BHF Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
31
|
Wenzel P. Monocytes as immune targets in arterial hypertension. Br J Pharmacol 2019; 176:1966-1977. [PMID: 29885051 PMCID: PMC6534790 DOI: 10.1111/bph.14389] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
The role of myelomonocytic cells appears to be critical for the initiation, progression and manifestation of arterial hypertension. Monocytes can induce vascular inflammation as well as tissue remodelling and (mal)adaptation by secreting chemokines and cytokines, producing ROS, expressing coagulation factors and transforming into macrophages. A multitude of adhesion molecules promote the infiltration and accumulation of monocytes into the kidney, heart, brain and vasculature in hypertension. All these facets offer the possibility to pharmacologically target monocytes and may represent novel therapeutic ways to treat hypertension, attenuate hypertension-associated end organ damage or prevent the development or worsening of high blood pressure. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Philip Wenzel
- Center for Cardiology ‐ Cardiology IUniversity Medical Center MainzMainzGermany
- Center for Thrombosis and HemostasisUniversity Medical Center MainzMainzGermany
- German Center for Cardiovascular Research (DZHK), partner site Rhine‐Main
| |
Collapse
|
32
|
Bomfim GF, Cau SBA, Bruno AS, Fedoce AG, Carneiro FS. Hypertension: a new treatment for an old disease? Targeting the immune system. Br J Pharmacol 2019; 176:2028-2048. [PMID: 29969833 PMCID: PMC6534786 DOI: 10.1111/bph.14436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/14/2018] [Accepted: 06/24/2018] [Indexed: 12/22/2022] Open
Abstract
Arterial hypertension represents a serious public health problem, being a major cause of morbidity and mortality worldwide. The availability of many antihypertensive therapeutic strategies still fails to adequately treat around 20% of hypertensive patients, who are considered resistant to conventional treatment. In the pathogenesis of hypertension, immune system mechanisms are activated and both the innate and adaptive immune responses play a crucial role. However, what, when and how the immune system is triggered during hypertension development is still largely undefined. In this context, this review highlights scientific advances in the manipulation of the immune system in order to attenuate hypertension and end-organ damage. Here, we discuss the potential use of immunosuppressants and immunomodulators as pharmacological tools to control the activation of the immune system, by non-specific and specific mechanisms, to treat hypertension and improve end-organ damage. Nevertheless, more clinical trials should be performed with these drugs to establish their therapeutic efficacy, safety and risk-benefit ratio in hypertensive conditions. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
| | - Stefany Bruno Assis Cau
- Department of Pharmacology, Institute of Biological ScienceFederal University of Minas GeraisBelo HorizonteMGBrazil
| | - Alexandre Santos Bruno
- Department of Pharmacology, Institute of Biological ScienceFederal University of Minas GeraisBelo HorizonteMGBrazil
| | - Aline Garcia Fedoce
- Department of Pharmacology, Ribeirão Preto Medical SchoolUniversity of São PauloSão PauloBrazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirão Preto Medical SchoolUniversity of São PauloSão PauloBrazil
| |
Collapse
|
33
|
Dingwell LS, Shikatani EA, Besla R, Levy AS, Dinh DD, Momen A, Zhang H, Afroze T, Chen MB, Chiu F, Simmons CA, Billia F, Gommerman JL, John R, Heximer S, Scholey JW, Bolz SS, Robbins CS, Husain M. B-Cell Deficiency Lowers Blood Pressure in Mice. Hypertension 2019; 73:561-570. [DOI: 10.1161/hypertensionaha.118.11828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Luke S. Dingwell
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
- Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre (L.S.D., E.A.S., C.S.R., M.H.), University of Toronto, Canada
- Department of the Institute of Medical Science (L.S.D., M.H.), University of Toronto, Canada
| | - Eric A. Shikatani
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
- Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre (L.S.D., E.A.S., C.S.R., M.H.), University of Toronto, Canada
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
| | - Rickvinder Besla
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
| | - Andrew S. Levy
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| | - Danny D. Dinh
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| | - Abdul Momen
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
| | - Hangjun Zhang
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| | - Talat Afroze
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
| | - Michelle B. Chen
- Department of Mechanical and Industrial Engineering (M.B.C., C.A.S.), University of Toronto, Canada
| | - Felix Chiu
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
| | - Craig A. Simmons
- Department of Mechanical and Industrial Engineering (M.B.C., C.A.S.), University of Toronto, Canada
| | - Filio Billia
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
| | | | - Rohan John
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
| | - Scott Heximer
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| | - James W. Scholey
- Department of Mechanical and Industrial Engineering (M.B.C., C.A.S.), University of Toronto, Canada
| | - Steffen-Sebastian Bolz
- Department of Mechanical and Industrial Engineering (M.B.C., C.A.S.), University of Toronto, Canada
| | - Clinton S. Robbins
- Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre (L.S.D., E.A.S., C.S.R., M.H.), University of Toronto, Canada
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
- Department of Immunology (J.L.G., C.S.R.), University of Toronto, Canada
| | - Mansoor Husain
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
- Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre (L.S.D., E.A.S., C.S.R., M.H.), University of Toronto, Canada
- Department of the Institute of Medical Science (L.S.D., M.H.), University of Toronto, Canada
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| |
Collapse
|
34
|
|
35
|
Abstract
PURPOSE OF REVIEW Low-grade inflammation drives elevations in blood pressure (BP) and consequent target organ damage in diverse experimental models of hypertension. Here, we discuss recent advances elucidating immune-mediated mechanisms of BP elevation and associated target organ damage. RECENT FINDINGS Inflammatory mediators produced by immune cells or target organs act on the kidney, vasculature, skin, and nervous system to modulate hypertension. For example, cells of the innate immune system, including monocytes, neutrophils, and dendritic cells (DCs), can all promote BP elevation via actions in the vasculature and kidney. Macrophages expressing VEGF-C impact non-osmotic sodium storage in the skin that in turn regulates salt sensitivity. Within the adaptive immune system, activated T cells can secrete tumor necrosis factor-alpha (TNF-α), interleukin-17a (IL-17a), and interferon-gamma (IFN-γ), each of which has augmented BP and renal damage in pre-clinical models. Inversely, deficiency of IL-17a in mice blunts the hypertensive response and attenuates renal sodium retention via a serum- and glucocorticoid-regulated kinase 1 (SGK1)-dependent pathway. Linking innate and adaptive immune responses, dendritic cells activated by augmented extracellular sodium concentrations stimulate T lymphocytes to produce pro-hypertensive cytokines. By contrast, regulatory T cells (Tregs) can protect against hypertension and associated kidney injury. Rodent studies reveal diverse mechanisms via which cells of the innate and adaptive immune systems drive blood pressure elevation by altering the inflammatory milieu in the kidney, vasculature, and brain.
Collapse
|
36
|
Caillon A, Paradis P, Schiffrin EL. Role of immune cells in hypertension. Br J Pharmacol 2018; 176:1818-1828. [PMID: 29952002 DOI: 10.1111/bph.14427] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/22/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
Inflammatory processes have been shown to play an important role in the mechanisms involved in the pathogenesis of hypertension. Innate and adaptive immune responses participate in BP elevation and end-organ damage. Here, we discuss recent studies focusing on novel inflammatory and immune mechanisms that play roles in BP elevation. Different subpopulations of cells involved in innate and adaptive immune responses, such as dendritic cells, monocytes/macrophages and NK cells, on the one hand, and B and T lymphocytes, on the other, contribute to the vascular and kidney injury in hypertension. Unconventional innate-like T cells such as γδ T cells also participate in hypertensive mechanisms by priming both innate and adaptive immune cells, contributing to trigger vascular inflammation and BP elevation. These cells exert their effects in part via production of various cytokines including pro-inflammatory IFN-γ and IL-17 and anti-inflammatory IL-10. The present review summarizes some of these immune mechanisms that participate in the pathophysiology of hypertension. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Antoine Caillon
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Pierre Paradis
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
37
|
Wenzel UO, Bode M, Kurts C, Ehmke H. Salt, inflammation, IL-17 and hypertension. Br J Pharmacol 2018; 176:1853-1863. [PMID: 29767465 DOI: 10.1111/bph.14359] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/08/2018] [Accepted: 04/17/2018] [Indexed: 12/18/2022] Open
Abstract
Traditionally, arterial hypertension and subsequent end-organ damage have been attributed to haemodynamic factors, but increasing evidence indicates that inflammation also contributes to the deleterious consequences of this disease. The immune system has evolved to prevent invasion of foreign microorganisms and to promote tissue healing after injury. However, this beneficial activity comes at a cost of collateral damage when the immune system overreacts to internal injury, such as prehypertension. Over the past few years, important findings have revolutionized hypertension research. Firstly, in 2007, a seminal paper showed that adaptive immunity is involved in the pathogenesis of hypertension. Secondly, salt storage in the skin and its consequences for cardiovascular physiology were discovered. Thirdly, after the discovery that salt promotes the differentiation of CD4+ T cells into TH 17 cells, it was demonstrated that salt directly changes several cells of the innate and adaptive immune system and aggravates autoimmune disease but may improve antimicrobial defence. Herein, we will review pathways of activation of immune cells by salt in hypertension as the framework for understanding the multiple roles of salt and immunity in arterial hypertension and autoimmune disease. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Ulrich O Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Bode
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Affiliation(s)
- Sabine Kossmann
- From the Center for Cardiology–Cardiology I (S.K., P.W.) and Center for Thrombosis and Hemostasis Mainz (S.K., P.W.), University Medical Center Mainz, Germany; and German Center for Cardiovascular Research–Partner Site Rhine-Main, Germany (P.W.)
| | - Philip Wenzel
- From the Center for Cardiology–Cardiology I (S.K., P.W.) and Center for Thrombosis and Hemostasis Mainz (S.K., P.W.), University Medical Center Mainz, Germany; and German Center for Cardiovascular Research–Partner Site Rhine-Main, Germany (P.W.)
| |
Collapse
|