1
|
Yang C, Camargo Tavares L, Lee HC, Steele JR, Ribeiro RV, Beale AL, Yiallourou S, Carrington MJ, Kaye DM, Head GA, Schittenhelm RB, Marques FZ. Faecal metaproteomics analysis reveals a high cardiovascular risk profile across healthy individuals and heart failure patients. Gut Microbes 2025; 17:2441356. [PMID: 39709554 DOI: 10.1080/19490976.2024.2441356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
The gut microbiota is a crucial link between diet and cardiovascular disease (CVD). Using fecal metaproteomics, a method that concurrently captures human gut and microbiome proteins, we determined the crosstalk between gut microbiome, diet, gut health, and CVD. Traditional CVD risk factors (age, BMI, sex, blood pressure) explained < 10% of the proteome variance. However, unsupervised human protein-based clustering analysis revealed two distinct CVD risk clusters (low-risk and high-risk) with different blood pressure (by 9 mmHg) and sex-dependent dietary potassium and fiber intake. In the human proteome, the low-risk group had lower angiotensin-converting enzymes, inflammatory proteins associated with neutrophil extracellular trap formation and auto-immune diseases. In the microbial proteome, the low-risk group had higher expression of phosphate acetyltransferase that produces SCFAs, particularly in fiber-fermenting bacteria. This model identified severity across phenotypes in heart failure patients and long-term risk of cardiovascular events in a large population-based cohort. These findings underscore multifactorial gut-to-host mechanisms that may underlie risk factors for CVD.
Collapse
Affiliation(s)
- Chaoran Yang
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
| | - Leticia Camargo Tavares
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
| | - Han-Chung Lee
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Joel R Steele
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | | | - Anna L Beale
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
| | - Stephanie Yiallourou
- Preclinical Disease and Prevention Unit, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Melinda J Carrington
- Preclinical Disease and Prevention Unit, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - David M Kaye
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
- School of Translational Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Pharmacology, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Victorian Heart Institute, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Tsiavos A, Antza C, Trakatelli C, Kotsis V. The Microbial Perspective: A Systematic Literature Review on Hypertension and Gut Microbiota. Nutrients 2024; 16:3698. [PMID: 39519531 PMCID: PMC11547301 DOI: 10.3390/nu16213698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Understanding the causes of hypertension is important in order to prevent the disease. Gut microbiota (GM) seems to play an important role, but the detailed physiology remains elusive, with alpha diversity being the most studied indicator. OBJECTIVES This review aimed to systematically synthesize data on gut microbiota (alpha diversity) and hypertension. METHODS Databases, including MEDLINE/PubMed, Scopus, and EMBASE, and citations were systematically queried. We retrieved articles reporting the association between gut microbiota and hypertension. A valid critical appraisal tool was also used to investigate the quality of the included studies. RESULTS Eighteen eligible studies met our inclusion criteria. In this report, we focused on the following indices of alpha diversity: Shannon, Chao1, Simpson, and Abundance-based Coverage Estimator (ACE) indices. Several studies observed a significantly lower Shannon index in hypertensive patients compared to the healthy control group. Nevertheless, no statistically significant difference was found for the Chao1, Simpson, and ACE indices between hypertensive patients and controls. A higher Firmicutes-to-Bacteroidetes ratio (F/B ratio) was consistently observed in hypertensive patients compared to healthy controls, indicating potential dysbiosis in the gut microbiota. CONCLUSIONS Our systematic review indicates that hypertensive patients may exhibit an imbalance in gut microbiota, evidenced by decreased alpha diversity and an elevated F/B ratio. However, the absence of statistically significant differences in secondary diversity indices (Chao1, Simpson, and ACE) highlights the need for further research. Well-designed, large-scale studies are necessary to clarify these associations and explore the role of gut microbiota in hypertension development.
Collapse
Affiliation(s)
- Alexandros Tsiavos
- 3rd Department of Internal Medicine, Aristotle University, Hypertension-24 h Ambulatory Blood Pressure Monitoring Center, Papageorgiou Hospital, 56429 Thessaloniki, Greece
| | - Christina Antza
- 3rd Department of Internal Medicine, Aristotle University, Hypertension-24 h Ambulatory Blood Pressure Monitoring Center, Papageorgiou Hospital, 56429 Thessaloniki, Greece
| | - Christina Trakatelli
- 3rd Department of Internal Medicine, Aristotle University, Hypertension-24 h Ambulatory Blood Pressure Monitoring Center, Papageorgiou Hospital, 56429 Thessaloniki, Greece
| | - Vasilios Kotsis
- 3rd Department of Internal Medicine, Aristotle University, Hypertension-24 h Ambulatory Blood Pressure Monitoring Center, Papageorgiou Hospital, 56429 Thessaloniki, Greece
| |
Collapse
|
3
|
Reis A, Rocha BS, Laranjinha J, de Freitas V. Dietary (poly)phenols as modulators of the biophysical properties in endothelial cell membranes: its impact on nitric oxide bioavailability in hypertension. FEBS Lett 2024; 598:2190-2210. [PMID: 38281810 DOI: 10.1002/1873-3468.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Hypertension is a major contributor to premature death, owing to the associated increased risk of damage to the heart, brain and kidneys. Although hypertension is manageable by medication and lifestyle changes, the risk increases with age. In an increasingly aged society, the incidence of hypertension is escalating, and is expected to increase the prevalence of (cerebro)vascular events and their associated mortality. Adherence to plant-based diets improves blood pressure and vascular markers in individuals with hypertension. Food flavonoids have an inhibitory effect towards angiotensin-converting enzyme (ACE1) and although this effect is greatly diminished upon metabolization, their microbial metabolites have been found to improve endothelial nitric oxide synthase (eNOS) activity. Considering the transmembrane location of ACE1 and eNOS, the ability of (poly)phenols to interact with membrane lipids modulate the cell membrane's biophysical properties and impact on nitric oxide (·NO) synthesis and bioavailability, remain poorly studied. Herein, we provide an overview of the current knowledge on the lipid remodeling of endothelial membranes with age, its impact on the cell membrane's biophysical properties and ·NO permeability across the endothelial barrier. We also discuss the potential of (poly)phenols and other plant-based compounds as key players in hypertension management, and address the caveats and challenges in adopted methodologies.
Collapse
Affiliation(s)
- Ana Reis
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Barbara S Rocha
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Polo das Ciências da Saúde, Portugal
| | - João Laranjinha
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Polo das Ciências da Saúde, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| |
Collapse
|
4
|
Yu Y, Zhu J, Fu R, Guo L, Chen T, Xu Z, Zhang J, Chen W, Chen L, Yang X. Unique intestinal microflora and metabolic profile in different stages of hypertension reveal potential biomarkers for early diagnosis and prognosis. J Med Microbiol 2024; 73. [PMID: 39213028 DOI: 10.1099/jmm.0.001839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Introduction. Hypertension is the most prevalent chronic disease and a major risk factor for cardiovascular and cerebrovascular diseases.Gap statement. However, there has been no substantial breakthrough in aetiology, new drug targets, and drug development of hypertension in recent 50 years.Research aim. Therefore, this study was to screen unique intestinal microbiome and serum metabolic biomarkers which can early diagnose and track the prognosis of hypertension patients in different periods, and analyse its underlying mechanisms and functions.Methods. Four groups of stool and serum samples, including healthy controls (HCs), prehypertension (PHT), hypertension (HT), and hypertension-related complications (HTC), were collected. Microbial diversity assessed using 16S rRNA sequencing. The metabolites in serum samples were detected through LC-MS/MS analysis.Results. The composition of gut microbiota in patients exhibited dissimilarities compared to that in healthy subjects, which was distinguished by Prevotella, Slackia, Enterococcus, Bifidobacterium, and Lactobacillales may be potential markers for tracking the progression of hypertension, and Bifidobacterium, Butyricimonas, Adlercreutzia, Faecalibacterium, Lactobacillus, Ruminococcus, Clostridium, and Acidaminococcus demonstrated diagnostic value. Meanwhile, tracking the dynamic changes of deoxycholic acid, 4-oxododecanedioic acid, and l-arginine can serve as biomarkers for early diagnosis, and investigation into the mechanism by which the intestinal microbiome influences the onset and progression of hypertension. In terms of pathogenesis, the findings revealed that Bifidobacterium may caused the changes of AST, indirect bilirubin, ALT, triglyceride and uric acid by affecting metabolites cis-7-hexadecenoic acid methyl ester and N1-acetylspermidine. Additionally, Coprococcus may cause changes in albumin through the influence of androsterone enanthate.Conclusions. These findings highlight that the unique intestinal microbiome and serum metabolic profile in different periods of hypertension will provide valuable insight for timely diagnosis and prognosis tracking in hypertension patients with promising clinical applications.
Collapse
Affiliation(s)
- Yaren Yu
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Jiayi Zhu
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Ruixue Fu
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Lina Guo
- Clinical Nutrition Department, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade RD, Guangzhou 510030, PR China
| | - Tao Chen
- Research and Development Department, Guangdong Longsee Biomedical Corporation, No. 83 Ruihe RD, Guangzhou, Guangdong 510700, PR China
| | - Zhaoyan Xu
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Jianyu Zhang
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Wensheng Chen
- Arrhythmia Department, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade RD, Guangzhou 510030, PR China
| | - Lushi Chen
- Health Medical Center, Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Xili Yang
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| |
Collapse
|
5
|
Dinakis E, O'Donnell JA, Marques FZ. The gut-immune axis during hypertension and cardiovascular diseases. Acta Physiol (Oxf) 2024; 240:e14193. [PMID: 38899764 DOI: 10.1111/apha.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/04/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
The gut-immune axis is a relatively novel phenomenon that provides mechanistic links between the gut microbiome and the immune system. A growing body of evidence supports it is key in how the gut microbiome contributes to several diseases, including hypertension and cardiovascular diseases (CVDs). Evidence over the past decade supports a causal link of the gut microbiome in hypertension and its complications, including myocardial infarction, atherosclerosis, heart failure, and stroke. Perturbations in gut homeostasis such as dysbiosis (i.e., alterations in gut microbial composition) may trigger immune responses that lead to chronic low-grade inflammation and, ultimately, the development and progression of these conditions. This is unsurprising, as the gut harbors one of the largest numbers of immune cells in the body, yet is a phenomenon not entirely understood in the context of cardiometabolic disorders. In this review, we discuss the role of the gut microbiome, the immune system, and inflammation in the context of hypertension and CVD, and consolidate current evidence of this complex interplay, whilst highlighting gaps in the literature. We focus on diet as one of the major modulators of the gut microbiota, and explain key microbial-derived metabolites (e.g., short-chain fatty acids, trimethylamine N-oxide) as potential mediators of the communication between the gut and peripheral organs such as the heart, arteries, kidneys, and the brain via the immune system. Finally, we explore the dual role of both the gut microbiome and the immune system, and how they work together to not only contribute, but also mitigate hypertension and CVD.
Collapse
Affiliation(s)
- Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Li Y, Yao M, Xie F, Qiu Y, Zhao X, Li R. Gut microbiota as a residual risk factor causally influencing cardiac structure and function: Mendelian randomization analysis and biological annotation. Front Microbiol 2024; 15:1410272. [PMID: 39132134 PMCID: PMC11316272 DOI: 10.3389/fmicb.2024.1410272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Background The gut microbiota (GM) is widely acknowledged to have a significant impact on cardiovascular health and may act as a residual risk factor affecting cardiac structure and function. However, the causal relationship between GM and cardiac structure and function remains unclear. Objective This study aims to employ a two-sample Mendelian randomization (MR) approach to investigate the causal association between GM and cardiac structure and function. Methods Data on 119 GM genera were sourced from a genome-wide association study (GWAS) meta-analysis (13,266 European participants) conducted by the MiBioGen consortium, while data on 16 parameters of cardiac structure and function were obtained from the UK Biobank's GWAS of cardiac magnetic resonance imaging (up to 41,135 European participants). Inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods were utilized for causal association assessments, with sensitivity analyses conducted to reinforce the findings. Finally, biological annotation was performed on the GWAS data of GM and cardiac phenotypes with causal associations to explore potential mechanisms. Results The MR analysis, predominantly based on the IVW model, revealed 93 causal associations between the genetically predicted abundance of 44 GM genera and 16 cardiac structure and function parameters. These associations maintained consistent directions in MR-Egger and WM models, with no evidence of pleiotropy detected. Biological annotations suggest that GM may influence cardiac structure and function through pathways involved in myocardial cell development, cardiac contractility, and apoptosis. Conclusion The MR analysis supports a causal association between certain abundances of genetically predicted GM and cardiac structure and function, suggesting that GM could be a residual risk factor impacting cardiac phenotypes.
Collapse
Affiliation(s)
- Yihua Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meidan Yao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- National Key Laboratory of Chinese Medicine Evidence, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fei Xie
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yijun Qiu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinjun Zhao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Guan Y, Zhao S, Li J, Zhang W, Guo Z, Luo Y, Jiang X, Li J, Liu J, Chen X, Zhao Z, Zhang Z. Insights from metagenomics into gut microbiome associated with acute coronary syndrome therapy. Front Microbiol 2024; 15:1369478. [PMID: 39035441 PMCID: PMC11258018 DOI: 10.3389/fmicb.2024.1369478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024] Open
Abstract
Acute coronary syndrome (ACS) is a predominant cause of mortality, and the prompt and precise identification of this condition is crucial to minimize its impact. Recent research indicates that gut microbiota is associated with the onset, progression, and treatment of ACS. To investigate its role, we sequenced the gut microbiota of 38 ACS patients before and after percutaneous coronary intervention and statin therapy at three time points, examining differential species and metabolic pathways. We observed a decrease in the abundance of Parabacteroides, Escherichia, and Blautia in patients after treatment and an increase in the abundance of Gemalla, Klebsiella variicola, Klebsiella pneumoniae, and others. Two pathways related to sugar degradation were more abundant in patients before treatment, possibly correlated with disorders of sugar metabolism and risk factors, such as hyperglycemia, insulin resistance, and insufficient insulin secretion. Additionally, seven pathways related to the biosynthesis of vitamin K2 and its homolog were reduced after treatment, suggesting that ACS patients may gradually recover after therapy. The gut microbiota of patients treated with different statins exhibited notable differences after treatment. Rosuvastatin appeared to promote the growth of anti-inflammatory bacteria while reducing pro-inflammatory bacteria, whereas atorvastatin may have mixed effects on pro-inflammatory and anti-inflammatory bacteria while increasing the abundance of Bacteroides. Our research will provide valuable insights and enhance comprehension of ACS, leading to better patient diagnosis and therapy.
Collapse
Affiliation(s)
- Yuee Guan
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Shuru Zhao
- Shenzhen Byoryn Technology Co., Ltd., Shenzhen, China
| | - Jing Li
- University of Science and Technology of China, Hefei, China
| | - Wenqian Zhang
- Department of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi'an, China
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, China
| | - Zhonghao Guo
- School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Yi Luo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaofei Jiang
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jun Li
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jianxiong Liu
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Xi Chen
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Zicheng Zhao
- Shenzhen Byoryn Technology Co., Ltd., Shenzhen, China
| | - Zhe Zhang
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
- Department of Cardiology, The Zhuhai National Hi-tech Industrial Development District People’s Hospital (Zhuhai People’s Hospital Medical Group, High-tech Zone), Zhuhai, China
| |
Collapse
|
8
|
Jama HA, Snelson M, Schutte AE, Muir J, Marques FZ. Recommendations for the Use of Dietary Fiber to Improve Blood Pressure Control. Hypertension 2024; 81:1450-1459. [PMID: 38586958 DOI: 10.1161/hypertensionaha.123.22575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
According to several international, regional, and national guidelines on hypertension, lifestyle interventions are the first-line treatment to lower blood pressure (BP). Although diet is one of the major lifestyle modifications described in hypertension guidelines, dietary fiber is not specified. Suboptimal intake of foods high in fiber, such as in Westernized diets, is a major contributing factor to mortality and morbidity of noncommunicable diseases due to higher BP and cardiovascular disease. In this review, we address this deficiency by examining and advocating for the incorporation of dietary fiber as a key lifestyle modification to manage elevated BP. We explain what dietary fiber is, review the existing literature that supports its use to lower BP and prevent cardiovascular disease, describe the mechanisms involved, propose evidence-based target levels of fiber intake, provide examples of how patients can achieve the recommended targets, and discuss outstanding questions in the field. According to the evidence reviewed here, the minimum daily dietary fiber for adults with hypertension should be >28 g/day for women and >38 g/day for men, with each extra 5 g/day estimated to reduce systolic BP by 2.8 mm Hg and diastolic BP by 2.1 mm Hg. This would support a healthy gut microbiota and the production of gut microbiota-derived metabolites called short-chain fatty acids that lower BP. Awareness about dietary fiber targets and how to achieve them will guide medical teams on better educating patients and empowering them to increase their fiber intake and, as a result, lower their BP and cardiovascular disease risk.
Collapse
Affiliation(s)
- Hamdi A Jama
- Hypertension Research Laboratory, School of Biological Sciences (H.A.J., M.S., F.Z.M.), Monash University, Melbourne, VIC, Australia
| | - Matthew Snelson
- Hypertension Research Laboratory, School of Biological Sciences (H.A.J., M.S., F.Z.M.), Monash University, Melbourne, VIC, Australia
- Victorian Heart Institute (M.S., F.Z.M.), Monash University, Melbourne, VIC, Australia
| | - Aletta E Schutte
- School of Population Health, University of New South Wales, Sydney, Australia (A.E.S.)
- George Institute for Global Health, Sydney, NSW, Australia (A.E.S.)
- Hypertension in Africa Research Team, MRC Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa (A.E.S.)
| | - Jane Muir
- Department of Gastroenterology, School of Translational Medicine (J.M.), Monash University, Melbourne, VIC, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences (H.A.J., M.S., F.Z.M.), Monash University, Melbourne, VIC, Australia
- Victorian Heart Institute (M.S., F.Z.M.), Monash University, Melbourne, VIC, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (F.Z.M.)
| |
Collapse
|
9
|
Yang X, Zhangyi Z, Yu A, Zhou Q, Xia A, Qiu J, Cai M, Chu X, Li L, Feng Z, Luo Z, Sun G, Zhang J, Geng M, Chen S, Xie Z. GV-971 attenuates the progression of neuromyelitis optica in murine models and reverses alterations in gut microbiota and associated peripheral abnormalities. CNS Neurosci Ther 2024; 30:e14847. [PMID: 38973196 PMCID: PMC11228355 DOI: 10.1111/cns.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
AIMS Growing evidence suggests that an imbalanced gut microbiota composition plays a crucial role in the development of neuromyelitis optica spectrum disorders (NMOSD), an inflammatory demyelinating disease primarily affecting the optic nerves and central nervous system (CNS). In light of this, we explored the potential therapeutic benefits of GV-971 in NMOSD. GV-971 is a drug used for treating mild-to-moderate Alzheimer's disease, which targets the gut-brain axis and reduces neuroinflammation. METHODS To evaluate GV-971's effects, we employed the experimental autoimmune encephalomyelitis (EAE) mouse model to establish NMOSD animal models. This was achieved by injecting NMO-IgG into aged mice (11 months old) or using NMO-IgG along with complement injection and microbubble-enhanced low-frequency ultrasound (MELFUS) techniques in young mice (7 weeks old). We assessed the impact of GV-971 on incidence rate, clinical scores, body weight, and survival, with methylprednisolone serving as a positive control. In NMOSD models of young mice, we analyzed spinal cord samples through H&E staining, immunohistochemistry, and Luxol Fast Blue staining. Fecal samples collected at different time points underwent 16S rRNA gene sequencing, while plasma samples were analyzed using cytokine array and untargeted metabolomics analysis. RESULTS Our findings indicated that GV-971 significantly reduced the incidence of NMOSD, alleviated symptoms, and prolonged survival in NMOSD mouse models. The NMOSD model exhibited substantial neuroinflammation and injury, accompanied by imbalances in gut microbiota, peripheral inflammation, and metabolic disorders, suggesting a potentially vicious cycle that accelerates disease pathogenesis. Notably, GV-971 effectively reduces neuroinflammation and injury, and restores gut microbiota composition, as well as ameliorates peripheral inflammation and metabolic disorders. CONCLUSIONS GV-971 attenuates the progression of NMOSD in murine models and reduces neuroinflammation and injury, likely through its effects on remodeling gut microbiota and peripheral inflammation and metabolic disorders.
Collapse
Affiliation(s)
- Xinying Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Zhongheng Zhangyi
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aisong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aihua Xia
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Ji Qiu
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Meixiang Cai
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Xingkun Chu
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Liang Li
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Zhengnan Feng
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Zhiyu Luo
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Guangqiang Sun
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Jing Zhang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Guo J, Jia P, Gu Z, Tang W, Wang A, Sun Y, Li Z. Altered gut microbiota and metabolite profiles provide clues in understanding resistant hypertension. J Hypertens 2024; 42:1212-1225. [PMID: 38690877 DOI: 10.1097/hjh.0000000000003716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
BACKGROUND Resistant hypertension is a severe phenotype in hypertension that may be driven by interactions between genetic and environmental factors. Specific changes in gut microbiota and metabolites have been shown to influence cardiovascular disease progression. However, microbial and metabolomic changes associated with resistant hypertension remain elusive. METHODS In this study, the gut microbiome of 30 participants with resistant hypertension, 30 with controlled hypertension, and 30 nonhypertension was characterized using 16S rRNA amplicon sequencing. In addition, the serum metabolome of the same population was assessed by untargeted metabolomics. RESULTS The alpha diversity of microbiome in the resistant hypertension decreased, and changes were also observed in the composition of the gut microbiota. The resistant hypertension group was characterized by elevated levels of Actinobacteitia and Proteobacteria. Twenty-three genera were found to have significantly different abundances between resistant hypertension and controlled hypertension, as well as 55 genera with significantly different abundances between resistant hypertension and nonhypertension. Compared with the controlled hypertension group, the genera Rothia and Sharpea in resistant hypertension were more abundant. Compared with the nonhypertension group, the genera Escherichia-Shigella , Lactobacillus , Enterococcus were more abundant. Untargeted metabolomics provided distinctly different serum metabolic profiles for the three groups and identified a range of differential metabolites. These metabolites were mainly associated with the pathway of glycerophospholipid metabolism. Furthermore, correlation analysis provided evidence of new interactions between gut microbiota and metabolites in the resistant hypertension. CONCLUSION In conclusion, our study provides a comprehensive understanding of the resistant hypertension gut microbiota and metabolites, suggesting that treatment resistance in resistant hypertension patients may be related to the gut microbiota and serum metabolites.
Collapse
Affiliation(s)
- Jiuqi Guo
- Department of Cardiology, the First Hospital of China Medical University, Shenyang
| | - Pengyu Jia
- Department of Cardiology, the First Hospital of China Medical University, Shenyang
| | - Zhilin Gu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang
| | - Wenyi Tang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang
| | - Ai Wang
- Department of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, Shenyang
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, Shenyang
| |
Collapse
|
11
|
Martins D, Silva C, Ferreira AC, Dourado S, Albuquerque A, Saraiva F, Batista AB, Castro P, Leite-Moreira A, Barros AS, Miranda IM. Unravelling the Gut Microbiome Role in Cardiovascular Disease: A Systematic Review and a Meta-Analysis. Biomolecules 2024; 14:731. [PMID: 38927134 PMCID: PMC11201797 DOI: 10.3390/biom14060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
A notable shift in understanding the human microbiome's influence on cardiovascular disease (CVD) is underway, although the causal association remains elusive. A systematic review and meta-analysis were conducted to synthesise current knowledge on microbial taxonomy and metabolite variations between healthy controls (HCs) and those with CVD. An extensive search encompassing three databases identified 67 relevant studies (2012-2023) covering CVD pathologies from 4707 reports. Metagenomic and metabolomic data, both qualitative and quantitative, were obtained. Analysis revealed substantial variability in microbial alpha and beta diversities. Moreover, specific changes in bacterial populations were shown, including increased Streptococcus and Proteobacteria and decreased Faecalibacterium in patients with CVD compared with HC. Additionally, elevated trimethylamine N-oxide levels were reported in CVD cases. Biochemical parameter analysis indicated increased fasting glucose and triglycerides and decreased total cholesterol and low- and high-density lipoprotein cholesterol levels in diseased individuals. This study revealed a significant relationship between certain bacterial species and CVD. Additionally, it has become clear that there are substantial inconsistencies in the methodologies employed and the reporting standards adhered to in various studies. Undoubtedly, standardising research methodologies and developing extensive guidelines for microbiome studies are crucial for advancing the field.
Collapse
Affiliation(s)
- Diana Martins
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Cláudia Silva
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - António Carlos Ferreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sara Dourado
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana Albuquerque
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Francisca Saraiva
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana Beatriz Batista
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Pedro Castro
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Neurology, São João Hospital Center, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - António S. Barros
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Isabel M. Miranda
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
12
|
Moore BN, Medcalf AD, Muir RQ, Xu C, Marques FZ, Pluznick JL. Commensal microbiota regulate aldosterone. Am J Physiol Renal Physiol 2024; 326:F1032-F1038. [PMID: 38634136 PMCID: PMC11381011 DOI: 10.1152/ajprenal.00051.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
The gut microbiome regulates many important host physiological processes associated with cardiovascular health and disease; however, the impact of the gut microbiome on aldosterone is unclear. Investigating whether gut microbiota regulate aldosterone can offer novel insights into how the microbiome affects blood pressure. In this study, we aimed to determine whether gut microbiota regulate host aldosterone. We used enzyme-linked immunosorbent assays (ELISAs) to assess plasma aldosterone and plasma renin activity (PRA) in female and male mice in which gut microbiota are intact, suppressed, or absent. In addition, we examined urinary aldosterone. Our findings demonstrated that when the gut microbiota is suppressed following antibiotic treatment, there is an increase in plasma and urinary aldosterone in both female and male mice. In contrast, an increase in PRA is seen only in males. We also found that when gut microbiota are absent (germ-free mice), plasma aldosterone is significantly increased compared with conventional animals (in both females and males), but PRA is not. Understanding how gut microbiota influence aldosterone levels could provide valuable insights into the development and treatment of hypertension and/or primary aldosteronism. This knowledge may open new avenues for therapeutic interventions, such as probiotics or dietary modifications to help regulate blood pressure via microbiota-based changes to aldosterone.NEW & NOTEWORTHY We explore the role of the gut microbiome in regulating aldosterone, a hormone closely linked to blood pressure and cardiovascular disease. Despite the recognized importance of the gut microbiome in host physiology, the relationship with circulating aldosterone remains largely unexplored. We demonstrate that suppression of gut microbiota leads to increased levels of plasma and urinary aldosterone. These findings underscore the potential of the gut microbiota to influence aldosterone regulation, suggesting new possibilities for treating hypertension.
Collapse
Affiliation(s)
- Brittni N Moore
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Alexandra D Medcalf
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Rachel Q Muir
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Chudan Xu
- School of Biological Sciences, Faculty of Medicine, Monash University, Clayton, Victoria, Australia
| | - Francine Z Marques
- School of Biological Sciences, Faculty of Medicine, Monash University, Clayton, Victoria, Australia
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
13
|
Weiner CM, Khan SE, Leong C, Ranadive SM, Campbell SC, Howard JT, Heffernan KS. Association of enterolactone with blood pressure and hypertension risk in NHANES. PLoS One 2024; 19:e0302254. [PMID: 38743749 PMCID: PMC11093351 DOI: 10.1371/journal.pone.0302254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/30/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiome may affect overall cardiometabolic health. Enterolactone is an enterolignan reflective of dietary lignan intake and gut microbiota composition and diversity that can be measured in the urine. The purpose of this study was to examine the association between urinary enterolactone concentration as a reflection of gut health and blood pressure/risk of hypertension in a large representative sample from the US population. This analysis was conducted using data from the National Health and Nutrition Examination Survey (NHANES) collected from January 1999 through December 2010. Variables of interest included participant characteristics (including demographic, anthropometric and social/environmental factors), resting blood pressure and hypertension history, and urinary enterolactone concentration. 10,637 participants (45 years (SE = 0.3), 51.7% (SE = 0.6%) were female) were included in analyses. In multivariable models adjusted for demographic, socioeconomic and behavioral/environmental covariates, each one-unit change in log-transformed increase in enterolactone was associated with a 0.738 point (95% CI: -0.946, -0.529; p<0.001) decrease in systolic blood pressure and a 0.407 point (95% CI: -0.575, -0.239; p<0.001) decrease in diastolic blood pressure. Moreover, in fully adjusted models, each one-unit change in log-transformed enterolactone was associated with 8.2% lower odds of hypertension (OR = 0.918; 95% CI: 0.892, 0.944; p<0.001). Urinary enterolactone, an indicator of gut microbiome health, is inversely associated with blood pressure and hypertension risk in a nationally representative sample of U.S. adults.
Collapse
Affiliation(s)
- Cynthia M. Weiner
- Department of Kinesiology, University of Maryland, College Park, Maryland, United States of America
| | - Shannon E. Khan
- Department of Kinesiology, University of Maryland, College Park, Maryland, United States of America
| | - Caleb Leong
- Department of Public Health, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, United States of America
| | - Sushant M. Ranadive
- Department of Kinesiology, University of Maryland, College Park, Maryland, United States of America
| | - Sara C. Campbell
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Jeffrey T. Howard
- Department of Public Health, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, United States of America
| | - Kevin S. Heffernan
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States of America
| |
Collapse
|
14
|
Yuan Y, Li S, Yan M, Yang Y, Zhong C, Hu Y. Genetically determined gut microbiota associates with pulmonary arterial hypertension: a Mendelian randomization study. BMC Pulm Med 2024; 24:235. [PMID: 38745167 PMCID: PMC11094871 DOI: 10.1186/s12890-024-02877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/24/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Emerging evidences have demonstrated that gut microbiota composition is associated with pulmonary arterial hypertension (PAH). However, the underlying causality between intestinal dysbiosis and PAH remains unresolved. METHOD An analysis using the two-sample Mendelian randomization (MR) approach was conducted to examine the potential causal relationship between gut microbiota and PAH. To assess exposure data, genetic variants associated with 196 bacterial traits were extracted from the MiBioGen consortium, which included a sample size of 18,340 individuals. As for the outcomes, summary statistics for PAH were obtained from the NHGRI-EBI GWAS Catalog, which conducted a meta-analysis of four independent studies comprising a total of 11,744 samples. Causal effects were estimated employing various methods, including inverse variance weighted (IVW), MR-Egger, weighted median, weight mode and simple mode, with sensitivity analyses also being implemented with Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis, and funnel plots. RESULTS Following false discovery rate (FDR) correction, the genetically predicted genus Eubacterium fissicatena group (odds ratio (OR) 1.471, 95% confidence interval (CI) 1.178-1.837, q = 0.076) exhibited a causal association with PAH. In addition, the genus LachnospiraceaeUCG004 (OR 1.511, 95% CI 1.048-2.177) and genus RuminococcaceaeUCG002 (OR 1.407, 95% CI 1.040-1.905) showed a suggestive increased risk of PAH, while genus Eubacterium eligens group (OR 0.563, 95% CI 0.344-0.922), genus Phascolarctobacterium (OR 0.692, 95% CI 0.487-0.982), genus Erysipelatoclostridium (OR 0.757, 95% CI 0.579-0.989) and genus T-yzzerella3 (OR 0.768, 95% CI 0.624-0.945) were found to have nominal protective effect against PAH. CONCLUSION The findings from our MR study have revealed a potential causal relationship between gut microbiota and PAH. Specifically, we have identified four types of gut microbiota that exhibit a protective effect on PAH, as well as three types that have a detrimental impact on PAH, thereby offering valuable insights for future mechanistic and clinical investigations in the field of PAH.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Shan Li
- Department of Hepatobiliary and Pancreatic Tumor Center, Chongqing University Cancer Hospital, 181, Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Manrong Yan
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Yan Yang
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Changming Zhong
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Yijie Hu
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
15
|
Durgan DJ, Zubcevic J, Vijay-Kumar M, Yang T, Manandhar I, Aryal S, Muralitharan RR, Li HB, Li Y, Abais-Battad JM, Pluznick JL, Muller DN, Marques FZ, Joe B. Prospects for Leveraging the Microbiota as Medicine for Hypertension. Hypertension 2024; 81:951-963. [PMID: 38630799 DOI: 10.1161/hypertensionaha.124.21721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Affiliation(s)
- David J Durgan
- Department of Integrative Physiology and Anesthesiology, Baylor College of Medicine, Houston, TX (D.J.D.)
| | - Jasenka Zubcevic
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Matam Vijay-Kumar
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Tao Yang
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Ishan Manandhar
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Sachin Aryal
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Victorian Heart Institute, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Baker Heart and Diabetes Institute, Melbourne, Australia (R.R.M., F.Z.M.)
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, PR China (H.-B.L., Y.L.)
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, PR China (H.-B.L., Y.L.)
| | | | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD (J.L.P.)
| | - Dominik N Muller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (D.N.M.)
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Germany (D.N.M.)
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (D.N.M.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (D.N.M.)
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Victorian Heart Institute, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Baker Heart and Diabetes Institute, Melbourne, Australia (R.R.M., F.Z.M.)
| | - Bina Joe
- Department of Integrative Physiology and Anesthesiology, Baylor College of Medicine, Houston, TX (D.J.D.)
| |
Collapse
|
16
|
Yin X, Duan C, Zhang L, Zhu Y, Qiu Y, Shi K, Wang S, Zhang X, Zhang H, Hao Y, Yuan F, Tian Y. Microbiota-derived acetate attenuates neuroinflammation in rostral ventrolateral medulla of spontaneously hypertensive rats. J Neuroinflammation 2024; 21:101. [PMID: 38632579 PMCID: PMC11025215 DOI: 10.1186/s12974-024-03061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Increased neuroinflammation in brain regions regulating sympathetic nerves is associated with hypertension. Emerging evidence from both human and animal studies suggests a link between hypertension and gut microbiota, as well as microbiota-derived metabolites short-chain fatty acids (SCFAs). However, the precise mechanisms underlying this gut-brain axis remain unclear. METHODS The levels of microbiota-derived SCFAs in spontaneously hypertensive rats (SHRs) were determined by gas chromatography-mass spectrometry. To observe the effect of acetate on arterial blood pressure (ABP) in rats, sodium acetate was supplemented via drinking water for continuous 7 days. ABP was recorded by radio telemetry. The inflammatory factors, morphology of microglia and astrocytes in rostral ventrolateral medulla (RVLM) were detected. In addition, blood-brain barrier (BBB) permeability, composition and metabolomics of the gut microbiome, and intestinal pathological manifestations were also measured. RESULTS The serum acetate levels in SHRs are lower than in normotensive control rats. Supplementation with acetate reduces ABP, inhibits sympathetic nerve activity in SHRs. Furthermore, acetate suppresses RVLM neuroinflammation in SHRs, increases microglia and astrocyte morphologic complexity, decreases BBB permeability, modulates intestinal flora, increases fecal flora metabolites, and inhibits intestinal fibrosis. CONCLUSIONS Microbiota-derived acetate exerts antihypertensive effects by modulating microglia and astrocytes and inhibiting neuroinflammation and sympathetic output.
Collapse
Affiliation(s)
- Xiaopeng Yin
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Changhao Duan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Lin Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yufang Zhu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yueyao Qiu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Kaiyi Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Sen Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoguang Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, 050017, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yinchao Hao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Province Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China.
| | - Yanming Tian
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Province Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China.
| |
Collapse
|
17
|
Xie Z, Huang J, Sun G, He S, Luo Z, Zhang L, Li L, Yao M, Du C, Yu W, Feng Y, Yang D, Zhang J, Ge C, Li H, Geng M. Integrated multi-omics analysis reveals gut microbiota dysbiosis and systemic disturbance in major depressive disorder. Psychiatry Res 2024; 334:115804. [PMID: 38417224 DOI: 10.1016/j.psychres.2024.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/18/2023] [Accepted: 02/17/2024] [Indexed: 03/01/2024]
Abstract
Major depressive disorder (MDD) involves systemic changes in peripheral blood and gut microbiota, but the current understanding is incomplete. Herein, we conducted a multi-omics analysis of fecal and blood samples obtained from an observational cohort including MDD patients (n = 99) and healthy control (HC, n = 50). 16S rRNA sequencing of gut microbiota showed structural alterations in MDD, as characterized by increased Enterococcus. Metagenomics sequencing of gut microbiota showed substantial functional alterations including upregulation in the superpathway of the glyoxylate cycle and fatty acid degradation and downregulation in various metabolic pathways in MDD. Plasma metabolomics revealed decreased amino acids and bile acids, together with increased sphingolipids and cholesterol esters in MDD. Notably, metabolites involved in arginine and proline metabolism were decreased while sphingolipid metabolic pathway were increased. Mass cytometry analysis of blood immune cell subtypes showed rises in proinflammatory immune subsets and declines in anti-inflammatory immune subsets in MDD. Furthermore, our findings revealed disease severity-related factors of MDD. Interestingly, we classified MDD into two immune subtypes that were highly correlated with disease relapse. Moreover, we established discriminative signatures that differentiate MDD from HC. These findings contribute to a comprehensive understanding of the MDD pathogenesis and provide valuable resources for the discovery of biomarkers.
Collapse
Affiliation(s)
- Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingjing Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Guangqiang Sun
- Green Valley (shanghai) pharmaceutical technology Co., Ltd., Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Shen He
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhiyu Luo
- Green Valley (shanghai) pharmaceutical technology Co., Ltd., Shanghai 201203, China
| | - Linna Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Liang Li
- Green Valley (shanghai) pharmaceutical technology Co., Ltd., Shanghai 201203, China
| | - Min Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Du
- Green Valley (shanghai) pharmaceutical technology Co., Ltd., Shanghai 201203, China
| | - Wenjuan Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yuan Feng
- Green Valley (shanghai) pharmaceutical technology Co., Ltd., Shanghai 201203, China
| | - Dabing Yang
- Green Valley (shanghai) pharmaceutical technology Co., Ltd., Shanghai 201203, China
| | - Jing Zhang
- Green Valley (shanghai) pharmaceutical technology Co., Ltd., Shanghai 201203, China
| | - Changrong Ge
- Green Valley (shanghai) pharmaceutical technology Co., Ltd., Shanghai 201203, China
| | - Huafang Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| |
Collapse
|
18
|
Cardoso AM. Microbial influence on blood pressure: unraveling the complex relationship for health insights. MICROBIOME RESEARCH REPORTS 2024; 3:22. [PMID: 38841410 PMCID: PMC11149090 DOI: 10.20517/mrr.2023.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 06/07/2024]
Abstract
Hypertension, a critical global health concern, is characterized by persistent high blood pressure and is a major cause of cardiovascular events. This perspective explores the multifaceted implications of hypertension, its association with cardiovascular diseases, and the emerging role of the gut microbiota. The gut microbiota, a dynamic community in the gastrointestinal tract, plays a pivotal role in hypertension by influencing blood pressure through the generation of antioxidant, anti-inflammatory, and short-chain fatty acids metabolites, and the conversion of nitrates into nitric oxide. Antihypertensive medications interact with the gut microbiota, impacting drug pharmacokinetics and efficacy. Prebiotics and probiotics present promising avenues for hypertension management, with prebiotics modulating blood pressure through lipid and cholesterol modulation, and probiotics exhibiting a general beneficial effect. Personalized choices based on individual factors are crucial for optimizing prebiotic and probiotic interventions. In conclusion, the gut microbiota's intricate influence on blood pressure regulation offers innovative perspectives in hypertension therapeutics, with targeted strategies proving valuable for holistic blood pressure management and health promotion.
Collapse
|
19
|
Saleem M, Masenga SK, Ishimwe JA, Demirci M, Ahmad T, Jamison S, Albritton CF, Mwesigwa N, Porcia Haynes A, White J, Neikirk K, Vue Z, Hinton A, Arshad S, Desta S, Kirabo A. Recent Advances in Understanding Peripheral and Gut Immune Cell-Mediated Salt-Sensitive Hypertension and Nephropathy. Hypertension 2024; 81:436-446. [PMID: 38164753 PMCID: PMC10922672 DOI: 10.1161/hypertensionaha.123.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Hypertension is the primary modifiable risk factor for cardiovascular, renal, and cerebrovascular diseases and is considered the main contributing factor to morbidity and mortality worldwide. Approximately 50% of hypertensive and 25% of normotensive people exhibit salt sensitivity of blood pressure, which is an independent risk factor for cardiovascular disease. Human and animal studies demonstrate that the immune system plays an important role in the etiology and pathogenesis of salt sensitivity of blood pressure, kidney damage, and vascular diseases. Antigen-presenting and adaptive immune cells are implicated in salt-sensitive hypertension and salt-induced renal and vascular injury. Elevated sodium activates antigen-presenting cells to release proinflammatory cytokines including IL (interleukin) 6, tumor necrosis factor-α, IL-1β, and accumulate isolevuglandin-protein adducts. In turn, these activate T cells release prohypertensive cytokines including IL-17A. Moreover, high-salt intake is associated with gut dysbiosis, leading to inflammation, oxidative stress, and blood pressure elevation but the mechanistic contribution to salt-sensitivity of blood pressure is not clearly understood. Here, we discuss recent advances in research investigating the cause, potential biomarkers, and therapeutic targets for salt-sensitive hypertension as they pertain to the gut microbiome, immunity, and inflammation.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sepiso K Masenga
- Mulungushi University, School of Medicine and Health Sciences, HAND Research Group, Livingstone, Zambia
| | - Jeanne A Ishimwe
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mert Demirci
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Sydney Jamison
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Claude F. Albritton
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Naome Mwesigwa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jalyn White
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Spelman College Department of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Suha Arshad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
20
|
Miao C, Xu X, Huang S, Kong L, He Z, Wang Y, Chen K, Xiao L. The Causality between Gut Microbiota and Hypertension and Hypertension-related Complications: A Bidirectional Two-Sample Mendelian Randomization Analysis. Hellenic J Cardiol 2024:S1109-9666(24)00026-5. [PMID: 38336261 DOI: 10.1016/j.hjc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Recent studies have highlighted a connection between gut microbiota and hypertension, yet the precise nature of this relationship remains unclear. OBJECTIVE This research aims to analyze the causal link between gut microbiota and hypertension, along with associated complications, utilizing two-sample bidirectional Mendelian randomization (MR). MATERIALS AND METHODS Summary data from genome-wide association studies (GWAS) meta-analyses, including gut microbiota GWAS data from 24 cohorts, and the latest GWAS data for hypertension-related conditions were acquired. Employing various MR methods, including Inverse-variance weighted (IVW), MR-Egger, Weighted Median, Simple Mode, and Weighted Mode, we investigated the association between gut microbiota and hypertension-related conditions. Sensitivity analyses were conducted for result stability, and reverse MR analysis assessed the potential for reverse causality. RESULTS The Mendelian randomization analysis involving 199 microbial taxa and four phenotypes identified 46 microbial taxa with potential causal links to hypertension and its complications. Following Bonferroni correction, genus.Victivallis showed a robust causal relationship with hypertension (OR = 1.08, 95% CI = 1.04-1.12, P = 9.82e-5). This suggests an 8% increased risk of hypertension with each unit rise in genus.Victivallis abundance. CONCLUSION In conclusion, this study establishes a causal connection between gut microbiota and hypertension, along with common associated complications. The findings unveil potential targets and evidence for future hypertension and complication treatment through gut microbiota interventions, offering a novel avenue for therapeutic exploration.
Collapse
Affiliation(s)
- Changhong Miao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyi Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuoxuan Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lingyi Kong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhiwei He
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yihan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kuang Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lu Xiao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
21
|
Wang W, Fan Z, Yan Q, Pan T, Luo J, Wei Y, Li B, Fang Z, Lu W. Gut microbiota determines the fate of dietary fiber-targeted interventions in host health. Gut Microbes 2024; 16:2416915. [PMID: 39418223 PMCID: PMC11487953 DOI: 10.1080/19490976.2024.2416915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Epidemiological investigation confirmed that the intake of dietary fiber (DF) is closely related to human health, and the most important factor affecting the physiological function of DF, besides its physicochemical properties, is the gut microbiota. This paper mainly summarizes the interaction between DF and gut microbiota, including the influence of DF on the colonization of gut microbiota based on its different physicochemical properties, and the physiological role of gut microbiota in destroying the complex molecular structure of DF by encoding carbohydrate-active enzymes, thus producing small molecular products that affect the metabolism of the host. Taking cardiovascular disease (Atherosclerosis and hypertension), liver disease, and immune diseases as examples, it is confirmed that some DF, such as fructo-oligosaccharide, galactooligosaccharide, xylo-oligosaccharide, and inulin, have prebiotic-like physiological effects. These effects are dependent on the metabolites produced by the gut microbiota. Therefore, this paper further explores how DF affects the gut microbiota's production of substances such as short-chain fatty acids, bile acids, and tryptophan metabolites, and provides a preliminary explanation of the mechanisms associated with their impact on host health. Finally, based on the structural properties of DF and the large heterogeneity in the composition of the population gut microbiota, it may be a future trend to utilize DF and the gut microbiota to correlate host health for precision nutrition by combining the information from population disease databases.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Zhexin Fan
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Qingqing Yan
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Tong Pan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Luo
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Yijiang Wei
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Baokun Li
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhifeng Fang
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Song W, Wu F, Yan Y, Li Y, Wang Q, Hu X, Li Y. Gut microbiota landscape and potential biomarker identification in female patients with systemic lupus erythematosus using machine learning. Front Cell Infect Microbiol 2023; 13:1289124. [PMID: 38169617 PMCID: PMC10758415 DOI: 10.3389/fcimb.2023.1289124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Objectives Systemic Lupus Erythematosus (SLE) is a complex autoimmune disease that disproportionately affects women. Early diagnosis and prevention are crucial for women's health, and the gut microbiota has been found to be strongly associated with SLE. This study aimed to identify potential biomarkers for SLE by characterizing the gut microbiota landscape using feature selection and exploring the use of machine learning (ML) algorithms with significantly dysregulated microbiotas (SDMs) for early identification of SLE patients. Additionally, we used the SHapley Additive exPlanations (SHAP) interpretability framework to visualize the impact of SDMs on the risk of developing SLE in females. Methods Stool samples were collected from 54 SLE patients and 55 Negative Controls (NC) for microbiota analysis using 16S rRNA sequencing. Feature selection was performed using Elastic Net and Boruta on species-level taxonomy. Subsequently, four ML algorithms, namely logistic regression (LR), Adaptive Boosting (AdaBoost), Random Forest (RF), and eXtreme gradient boosting (XGBoost), were used to achieve early identification of SLE with SDMs. Finally, the best-performing algorithm was combined with SHAP to explore how SDMs affect the risk of developing SLE in females. Results Both alpha and beta diversity were found to be different in SLE group. Following feature selection, 68 and 21 microbiota were retained in Elastic Net and Boruta, respectively, with 16 microbiota overlapping between the two, i.e., SDMs for SLE. The four ML algorithms with SDMs could effectively identify SLE patients, with XGBoost performing the best, achieving Accuracy, Sensitivity, Specificity, Positive Predictive Value, Negative Predictive Value, and AUC values of 0.844, 0.750, 0.938, 0.923, 0.790, and 0.930, respectively. The SHAP interpretability framework showed a complex non-linear relationship between the relative abundance of SDMs and the risk of SLE, with Escherichia_fergusonii having the largest SHAP value. Conclusions This study revealed dysbiosis in the gut microbiota of female SLE patients. ML classifiers combined with SDMs can facilitate early identification of female patients with SLE, particularly XGBoost. The SHAP interpretability framework provides insight into the impact of SDMs on the risk of SLE and may inform future scientific treatment for SLE.
Collapse
Affiliation(s)
- Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Feng Wu
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Yan Yan
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Yaheng Li
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, Shanxiuan, China
| | - Qian Wang
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, Shanxiuan, China
| | - Xueli Hu
- Department of Nephrology, Hejin People’s Hospital, Yuncheng, Shanxi, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, Shanxiuan, China
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
23
|
Cai M, Lin L, Jiang F, Peng Y, Li S, Chen L, Lin Y. Gut microbiota changes in patients with hypertension: A systematic review and meta-analysis. J Clin Hypertens (Greenwich) 2023; 25:1053-1068. [PMID: 37853925 PMCID: PMC10710550 DOI: 10.1111/jch.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 10/20/2023]
Abstract
Hypertension is a major public health issue worldwide. The imbalance of gut microbiota is thought to play an important role in the pathogenesis of hypertension. The authors conducted the systematic review and meta-analysis to clarify the relationship between gut microbiota and hypertension through conducting an electronic search in six databases. Our meta-analysis included 19 studies and the results showed that compared with healthy controls, Shannon significantly decreased in hypertension [SMD = -0.13, 95%CI (-0.22, -0.04), p = .007]; however, Simpson [SMD = -0.01, 95%CI (-0.14, 0.12), p = .87], ACE [SMD = 0.18, 95%CI (-0.06, 0.43), p = .14], and Chao1 [SMD = 0.11, 95%CI (-0.01, 0.23), p = .08] did not differ significantly between hypertension and healthy controls. The F/B ratio significantly increased in hypertension [SMD = 0.84, 95%CI (0.10, 1.58), p = .03]. In addition, Shannon index was negatively correlated with hypertension [r = -0.12, 95%CI (-0.19, -0.05)], but had no significant correlation with SBP [r = 0.10, 95%CI (-0.19, 0.37)] and DBP [r = -0.39, 95%CI (-0.73, 0.12)]. At the phylum level, the relative abundance of Firmicutes [SMD = -0.01, 95%CI (-0.37, 0.34), p = .94], Bacteroidetes [SMD = -0.15, 95%CI (-0.44, 0.14), p = .30], Proteobacteria [SMD = 0.25, 95%CI (-0.01, 0.51), p = .06], and Actinobacteria [SMD = 0.21, 95%CI (-0.11, 0.53), p = .21] did not differ significantly between hypertension and healthy controls. At the genus level, compared with healthy controls, the relative abundance of Faecalibacterium decreased significantly [SMD = -0.16, 95%CI (-0.28, -0.04), p = .01], while the Streptococcus [SMD = 0.20, 95%CI (0.08, 0.32), p = .001] and Enterococcus [SMD = 0.20, 95%CI (0.08, 0.33), p = .002] significantly increased in hypertension. Available evidence suggests that hypertensive patients may have an imbalance of gut microbiota. However, it still needs further validation by large sample size studies of high quality.
Collapse
Affiliation(s)
- Meiling Cai
- Department of NursingFujian Medical University Union HospitalFuzhouChina
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouChina
- Fujian Provincial Special Reserve Talents LaboratoryFujian Medical University Union HospitalFuzhouChina
| | - Lingyu Lin
- Department of NursingFujian Medical University Union HospitalFuzhouChina
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouChina
| | - Fei Jiang
- Department of NursingFujian Medical University Union HospitalFuzhouChina
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouChina
- Fujian Provincial Special Reserve Talents LaboratoryFujian Medical University Union HospitalFuzhouChina
| | - Yanchun Peng
- Department of NursingFujian Medical University Union HospitalFuzhouChina
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouChina
| | - Sailan Li
- Department of NursingFujian Medical University Union HospitalFuzhouChina
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouChina
| | - Liangwan Chen
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouChina
- Fujian Provincial Special Reserve Talents LaboratoryFujian Medical University Union HospitalFuzhouChina
| | - Yanjuan Lin
- Department of NursingFujian Medical University Union HospitalFuzhouChina
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouChina
- Fujian Provincial Special Reserve Talents LaboratoryFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
24
|
Weinzierl A, Coerper M, Harder Y, Menger MD, Laschke MW. Caloric Restriction: A Novel Conditioning Strategy to Improve the Survival of Ischemically Challenged Musculocutaneous Random Pattern Flaps. Nutrients 2023; 15:4076. [PMID: 37764859 PMCID: PMC10536342 DOI: 10.3390/nu15184076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Caloric restriction (CR) is a cost-effective and easy-to-perform approach to counteracting surgical stress. The present study therefore evaluates the tissue-protective effects of a 30% CR in musculocutaneous flaps undergoing ischemia. For this purpose, a well-established murine dorsal skinfold chamber model, in combination with random pattern musculocutaneous flaps, was used. C57BL/6N mice were divided at random into a CR group (n = 8) and a control group with unrestricted access to standard chow (n = 8). The CR animals were subjected to a 30% reduction in caloric intake for 10 days before flap elevation. Intravital fluorescence microscopy was carried out on days 1, 3, 5, 7 and 10 after flap elevation to assess the nutritive blood perfusion, angiogenesis and flap necrosis. Subsequently, the flap tissue was harvested for additional histological and immunohistochemical analyses. The CR-treated animals exhibited a significantly higher functional capillary density and more newly formed microvessels within the flap tissue when compared to the controls; this was associated with a significantly higher flap survival rate. Immunohistochemical analyses showed a decreased invasion of myeloperoxidase-positive neutrophilic granulocytes into the flap tissue of the CR-treated mice. Moreover, the detection of cleaved caspase-3 revealed fewer cells undergoing apoptosis in the transition zone between the vital and necrotic tissue in the flaps of the CR-treated mice. These results demonstrate that a CR of 30% effectively prevents flap necrosis by maintaining microperfusion on a capillary level and inhibiting inflammation under ischemic stress. Hence, CR represents a promising novel conditioning strategy for improving the survival of musculocutaneous flaps with random pattern perfusion.
Collapse
Affiliation(s)
- Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Maximilian Coerper
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
25
|
Thomas AM, Fidelle M, Routy B, Kroemer G, Wargo JA, Segata N, Zitvogel L. Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. Nat Rev Clin Oncol 2023; 20:583-603. [PMID: 37365438 PMCID: PMC11258874 DOI: 10.1038/s41571-023-00785-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/28/2023]
Abstract
Oncogenesis is associated with intestinal dysbiosis, and stool shotgun metagenomic sequencing in individuals with this condition might constitute a non-invasive approach for the early diagnosis of several cancer types. The prognostic relevance of antibiotic intake and gut microbiota composition urged investigators to develop tools for the detection of intestinal dysbiosis to enable patient stratification and microbiota-centred clinical interventions. Moreover, since the advent of immune-checkpoint inhibitors (ICIs) in oncology, the identification of biomarkers for predicting their efficacy before starting treatment has been an unmet medical need. Many previous studies addressing this question, including a meta-analysis described herein, have led to the description of Gut OncoMicrobiome Signatures (GOMS). In this Review, we discuss how patients with cancer across various subtypes share several GOMS with individuals with seemingly unrelated chronic inflammatory disorders who, in turn, tend to have GOMS different from those of healthy individuals. We discuss findings from the aforementioned meta-analysis of GOMS patterns associated with clinical benefit from or resistance to ICIs across different cancer types (in 808 patients), with a focus on metabolic and immunological surrogate markers of intestinal dysbiosis, and propose practical guidelines to incorporate GOMS in decision-making for prospective clinical trials in immuno-oncology.
Collapse
Affiliation(s)
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Pharmacology Department, Gustave Roussy, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Equipe labellisée - Ligue Nationale contre le cancer, Université de Paris, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Platform for Innovative Microbiome and Translational Research (PRIME-TR), MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France.
- Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
26
|
Muralitharan RR, Snelson M, Meric G, Coughlan MT, Marques FZ. Guidelines for microbiome studies in renal physiology. Am J Physiol Renal Physiol 2023; 325:F345-F362. [PMID: 37440367 DOI: 10.1152/ajprenal.00072.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023] Open
Abstract
Gut microbiome research has increased dramatically in the last decade, including in renal health and disease. The field is moving from experiments showing mere association to causation using both forward and reverse microbiome approaches, leveraging tools such as germ-free animals, treatment with antibiotics, and fecal microbiota transplantations. However, we are still seeing a gap between discovery and translation that needs to be addressed, so that patients can benefit from microbiome-based therapies. In this guideline paper, we discuss the key considerations that affect the gut microbiome of animals and clinical studies assessing renal function, many of which are often overlooked, resulting in false-positive results. For animal studies, these include suppliers, acclimatization, baseline microbiota and its normalization, littermates and cohort/cage effects, diet, sex differences, age, circadian differences, antibiotics and sweeteners, and models used. Clinical studies have some unique considerations, which include sampling, gut transit time, dietary records, medication, and renal phenotypes. We provide best-practice guidance on sampling, storage, DNA extraction, and methods for microbial DNA sequencing (both 16S rRNA and shotgun metagenome). Finally, we discuss follow-up analyses, including tools available, metrics, and their interpretation, and the key challenges ahead in the microbiome field. By standardizing study designs, methods, and reporting, we will accelerate the findings from discovery to translation and result in new microbiome-based therapies that may improve renal health.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Victoria, Australia
- Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Guillaume Meric
- Cambridge-Baker Systems Genomics Initiative, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Shen Y, Wang P, Yang X, Chen M, Dong Y, Li J. A cross-sectional study identifying disparities in serum metabolic profiles among hypertensive patients with ISH, IDH and SDH subtypes. Front Cardiovasc Med 2023; 10:1102754. [PMID: 37215555 PMCID: PMC10192909 DOI: 10.3389/fcvm.2023.1102754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Background It has been well acknowledged that disordered intestinal microflora and their fermented products play crucial role during the development of hypertension (HTN). Aberrant profiles of fecal bacteria have been documented in subjects with isolated systolic HTN (ISH) and isolated diastolic HTN (IDH) previously. Nevertheless, evidence regarding the association of metabolic products in the bloodstream with ISH, IDH and combined systolic and diastolic HTN (SDH) remains scarce. Methods We performed a cross-sectional study and conducted untargeted liquid chromatography-mass spectrometry (LC/MS) analysis on serum samples of 119 participants, including 13 subjects with normotension (SBP < 120/DBP < 80 mm Hg), 11 individuals with ISH (SBP ≥ 130/DBP < 80 mm Hg), 27 patients with IDH (SBP < 130/DBP ≥ 80 mm Hg), and 68 SDH patients (SBP ≥ 130, DBP ≥ 80 mm Hg). Results Here, the results showed clearly separated clusters in PLS-DA and OPLS-DA score plots for patients suffering from ISH, IDH and SDH when compared with normotension controls. The ISH group was characterized by elevated levels of 3,5-tetradecadien carnitine and notable reduction of maleic acid. While IDH patients were enriched with metabolites in L-lactic acid and depleted in citric acid. Stearoylcarnitine was identified to be specifically enriched in SDH group. The differentially abundant metabolites between ISH and controls were involved in tyrosine metabolism pathways, and in biosynthesis of phenylalanine for those between SDH and controls. Potential linkages between the gut microbial and serum metabolic signatures were detected within ISH, IDH and SDH groups. Furthermore, we found the association of discriminatory metabolites with the characteristics of patients. Conclusion Our findings demonstrate disparate blood metabolomics signatures across ISH, IDH and SDH, with differentially enriched metabolites and potential functional pathways identified, reveal the underlying microbiome and metabolome network in HTN subtypes, and provide potential targets for disease classification and therapeutic strategy in clinical practice.
Collapse
Affiliation(s)
- Yang Shen
- Department of Nephrology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pan Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinchun Yang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mulei Chen
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Abstract
A large body of evidence has emerged in the past decade supporting a role for the gut microbiome in the regulation of blood pressure. The field has moved from association to causation in the last 5 years, with studies that have used germ-free animals, antibiotic treatments and direct supplementation with microbial metabolites. The gut microbiome can regulate blood pressure through several mechanisms, including through gut dysbiosis-induced changes in microbiome-associated gene pathways in the host. Microbiota-derived metabolites are either beneficial (for example, short-chain fatty acids and indole-3-lactic acid) or detrimental (for example, trimethylamine N-oxide), and can activate several downstream signalling pathways via G protein-coupled receptors or through direct immune cell activation. Moreover, dysbiosis-associated breakdown of the gut epithelial barrier can elicit systemic inflammation and disrupt intestinal mechanotransduction. These alterations activate mechanisms that are traditionally associated with blood pressure regulation, such as the renin-angiotensin-aldosterone system, the autonomic nervous system, and the immune system. Several methodological and technological challenges remain in gut microbiome research, and the solutions involve minimizing confounding factors, establishing causality and acting globally to improve sample diversity. New clinical trials, precision microbiome medicine and computational methods such as Mendelian randomization have the potential to enable leveraging of the microbiome for translational applications to lower blood pressure.
Collapse
|
29
|
Key Stratification of Microbiota Taxa and Metabolites in the Host Metabolic Health-Disease Balance. Int J Mol Sci 2023; 24:ijms24054519. [PMID: 36901949 PMCID: PMC10003303 DOI: 10.3390/ijms24054519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Human gut microbiota seems to drive the interaction with host metabolism through microbial metabolites, enzymes, and bioactive compounds. These components determine the host health-disease balance. Recent metabolomics and combined metabolome-microbiome studies have helped to elucidate how these substances could differentially affect the individual host pathophysiology according to several factors and cumulative exposures, such as obesogenic xenobiotics. The present work aims to investigate and interpret newly compiled data from metabolomics and microbiota composition studies, comparing controls with patients suffering from metabolic-related diseases (diabetes, obesity, metabolic syndrome, liver and cardiovascular diseases, etc.). The results showed, first, a differential composition of the most represented genera in healthy individuals compared to patients with metabolic diseases. Second, the analysis of the metabolite counts exhibited a differential composition of bacterial genera in disease compared to health status. Third, qualitative metabolite analysis revealed relevant information about the chemical nature of metabolites related to disease and/or health status. Key microbial genera were commonly considered overrepresented in healthy individuals together with specific metabolites, e.g., Faecalibacterium and phosphatidylethanolamine; and the opposite, Escherichia and Phosphatidic Acid, which is converted into the intermediate Cytidine Diphosphate Diacylglycerol-diacylglycerol (CDP-DAG), were overrepresented in metabolic-related disease patients. However, it was not possible to associate most specific microbiota taxa and metabolites according to their increased and decreased profiles analyzed with health or disease. Interestingly, positive association of essential amino acids with the genera Bacteroides were observed in a cluster related to health, and conversely, benzene derivatives and lipidic metabolites were related to the genera Clostridium, Roseburia, Blautia, and Oscillibacter in a disease cluster. More studies are needed to elucidate the microbiota species and their corresponding metabolites that are key in promoting health or disease status. Moreover, we propose that greater attention should be paid to biliary acids and to microbiota-liver cometabolites and its detoxification enzymes and pathways.
Collapse
|
30
|
Kadyan S, Park G, Singh P, Arjmandi B, Nagpal R. Prebiotic mechanisms of resistant starches from dietary beans and pulses on gut microbiome and metabolic health in a humanized murine model of aging. Front Nutr 2023; 10:1106463. [PMID: 36824174 PMCID: PMC9941547 DOI: 10.3389/fnut.2023.1106463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Dietary pulses, being a rich source of fiber and proteins, offer an ideal and inexpensive food choice for older adults to promote gut and metabolic health. However, the prebiotic effects of dietary pulses-derived resistant starches (RS), compared to RS from cereals and tubers, remain relatively underexplored, particularly in context to their gut modulatory potential in old age. We herein investigate the prebiotic effects of pulses-derived RS on the gut microbiome and intestinal health in aged (60-week old) mice colonized with human microbiota. C57B6/J mice were fed for 20 weeks with either a western-style high-fat diet (control; CTL) or CTL diet supplemented (5% w/w) with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin (INU; reference control). We find that the RS supplementation modulates gut microbiome in a sex-dependent manner. For instance, CKP enriched α-diversity only in females, while β-diversity deviated for both sexes. Further, different RS groups exhibited distinct microbiome differences at bacterial phyla and genera levels. Notably, LEN fostered Firmicutes and depleted Proteobacteria abundance, whereas Bacteroidota was promoted by CKP and INU. Genus Dubosiella increased dominantly in males for all groups except PTB, whilst Faecalibaculum decreased in females by CKP and INU groups. Linear discriminant analysis effect size (LEfSe) and correlational analyzes reveal RS-mediated upregulation of key bacterial genera associated with short-chain fatty acids (butyrate) production and suppression of specific pathobionts. Subsequent machine-learning analysis validate decreased abundance of notorious genera, namely, Enterococcus, Odoribacter, Desulfovibrio, Alistipes and Erysipelatoclostridium among RS groups. CKP and LEN groups partly protected males against post-prandial glycemia. Importantly, RS ameliorated high-fat diet-induced gut hyperpermeability and enhanced expression of tight-junction proteins (claudin-1 and claudin-4), which were more pronounced for LEN. In addition, IL10 upregulation was more prominent for LEN, while TNF-α was downregulated by LEN, CKP, and INU. Together, these findings demonstrate that RS supplementation beneficially modulates the gut microbiome with a reduction in gut leakiness and inflammation, indicating their prebiotic potential for functional food and nutritional applications.
Collapse
Affiliation(s)
- Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Prashant Singh
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | | |
Collapse
|
31
|
Lacto-Fermented and Unfermented Soybean Differently Modulate Serum Lipids, Blood Pressure and Gut Microbiota during Hypertension. FERMENTATION 2023. [DOI: 10.3390/fermentation9020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Soy consumption may reduce hypertension but the impact of food processing on the antihypertensive effect is unclear. Hence, we ascertained the effects of lacto-fermented (FSB) and unfermented soybean (USB) consumption on serum atherogenic lipids, hypertension and gut microbiota of spontaneous hypertensive rats (SHR). FSB displayed a strong in vitro angiotensin converting enzyme (ACE) inhibitory ability of 70 ± 5% while USB inhibited 5 ± 3% of the enzyme activity. Consumption of USB reduced serum ACE activity by 19.8 ± 12.85 U while FSB reduced the enzyme activity by 47.6 ± 11.35 U, respectively. FSB significantly improved cholesterol levels and reduced systolic and diastolic blood pressures by 14 ± 3 mmHg and 10 ± 3 mmHg, respectively, while USB only had a marginal impact on blood pressure. Analysis of FSB showed the abundance of ACE inhibitory peptides EGEQPRPFPFP and AIPVNKP (which were absent in USB) and 30 phenolic compounds (only 12 were abundant in USB). Feeding SHR with FSB promoted the growth of Akkermansia, Bacteroides, Intestinimonas, Phocaeicola, Lactobacillus and Prevotella (short chain fatty acid producers) while USB promoted only Prevotellamassilia, Prevotella and Intestimonas levels signifying the prebiotic ability of FSB. Our results show that, relative to USB, FSB are richer in bioactive compounds that reduce hypertension by inhibiting ACE, improving cholesterol levels and mitigating gut dysbiosis.
Collapse
|
32
|
Zhang Q, Meng N, Liu Y, Zhao H, Zhao Z, Hao D, Li R, Han K, Li H, Ma J, Yu X, Qi Z, Li Q. Protection effect of gut microbiota composition and acetate absorption against hypertension-induced damages on the longevity population in Guangxi, China. Front Nutr 2023; 9:1070223. [PMID: 36726815 PMCID: PMC9884688 DOI: 10.3389/fnut.2022.1070223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Recent evidence supports a role for the gut microbe-metabolites in longevity. However, the phenomenon of hypertension is more common in the longevity area and whether hypertension is associated with longevity remains unclear. Here, we hypothesize that the levels of gut microbiota, SCFAs, and urine metabolites were different between hypertension elderly and hypertension longevity. Methods We recruited 46 elderly volunteers from Donglan County, Guangxi, and 32 were selected and included in the experiment. The subjects with hypertension were divided into two groups according to age, Hypertension Elderly (HTE, aged 70.5 ± 8.59, n = 19) and Hypertension Longevity (HTL, aged 100 ± 5.72, n = 13). The gut microbiota, SCFAs, and urine metabolites were determined by three-generation 16S rRNA full-length sequencing, GC-MS, and 1H-NMR, respectively. Results Compared with the HTL group, the HTE group had higher levels of hypertension-related genera Klebsiella and Streptococcus, while having lower levels of the SCFA-producing genera Bacteroides, Faecalibacterium, and Alistipes. Based on LEFse analysis, Klebsiella pneumoniae, Lactobacillus gasseri, Streptococcus salivarius, Ruminococcus, Actinomyces, Rikenellaceae, f_Saccharimonadaceae, Clostridium perfringens, and Bacteroids, Faecalibacterium prausnitzii, Parabacteroides, Alistipes were biomarkers that showed significant differences between the groups. In addition, the microbial pathways associated with K. pneumoniae and E. coli may promote hypertension, while A. muciniphila may play a role in reversing the development of hypertension in long-lived elderly. Metabolomics revealed that HTL contained a lower concentration of fecal acetate and propionate than HTE, while it contained a higher concentration of serum acetate and urine acetate. Furthermore, their immune cells exhibited no significant changes in SCFAs receptors. Conclusion Although long-lived elderly have extremely high systolic blood pressure, their unique gut microbiota composition and efficient acetate absorption in the colon may offset the damages caused by hypertension and maintain healthy homeostasis.
Collapse
Affiliation(s)
- Qinren Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ning Meng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning, China
| | - Haiyan Zhao
- Medical College, Guangxi University, Nanning, China
| | - Zhengtao Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Dan Hao
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Ruiding Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Kunchen Han
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - He Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jinke Ma
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xiaohan Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China,Zhongquan Qi,
| | - Quanyang Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China,*Correspondence: Quanyang Li,
| |
Collapse
|
33
|
Gut microbial metabolites lower blood pressure in patients with hypertension. NATURE CARDIOVASCULAR RESEARCH 2023; 2:18-19. [PMID: 36688212 PMCID: PMC9838414 DOI: 10.1038/s44161-022-00204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supplementation with the gut microbial-derived metabolites acetate and butyrate has been shown to lower blood pressure in experimental models of hypertension. However, the translational potential of these metabolites has been unexplored. We provide clinical evidence that acetate and butyrate lower blood pressure in untreated patients with hypertension.
Collapse
|
34
|
Iodomethylcholine Inhibits Trimethylamine-N-Oxide Production and Averts Maternal Chronic Kidney Disease-Programmed Offspring Hypertension. Int J Mol Sci 2023; 24:ijms24021284. [PMID: 36674799 PMCID: PMC9866155 DOI: 10.3390/ijms24021284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Chronic kidney disease (CKD) affects 10% of the global population, including pregnant women. Adverse maternal conditions determine the developmental programming of many diseases later in life. We previously demonstrated that adult rat offspring born to dams with CKD developed hypertension and renal hypertrophy. Trimethylamine-N-oxide (TMAO), a uremic toxin derived from the gut microbiota, has been linked to hypertension. This study assesses the effects of TMAO inhibition by iodomethylcholine (IMC) treatment on offspring hypertension programmed by maternal CKD. Female rats were fed either a control or a 0.5% adenine diet before conception, with or without IMC treatment during pregnancy and lactation. Maternal IMC treatment averted maternal CKD-primed offspring hypertension and renal hypertrophy in 12-week-old offspring. Offspring hypertension is associated with increases in the plasma TMAO concentration and oxidative stress and shifts in gut microbiota. The beneficial effects of IMC are related to a reduction in TMAO; increases in genera Acetatifactor, Bifidobacterium, and Eubacterium; and decreases in genera Phocacecola and Bacteroides. Our findings afford insights into the targeting of the gut microbiota to deplete TMAO production, with therapeutic potential for the prevention of offspring hypertension programmed by maternal CKD, although these results still need further clinical translation.
Collapse
|
35
|
Diab A, Dastmalchi LN, Gulati M, Michos ED. A Heart-Healthy Diet for Cardiovascular Disease Prevention: Where Are We Now? Vasc Health Risk Manag 2023; 19:237-253. [PMID: 37113563 PMCID: PMC10128075 DOI: 10.2147/vhrm.s379874] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Purpose of Review The relationship between cardiovascular health and diet is evolving. Lifestyle modifications including diet changes are the primary approach in managing cardiometabolic risk factors. Thus, understanding different diets and their impact on cardiovascular health is important in guiding primary and secondary prevention of cardiovascular disease (CVD). Yet, there are many barriers and limitations to adopting a heart healthy diet. Recent Findings Diets rich in fruits, vegetables, legumes, whole grains, and lean protein sources, with minimization/avoidance of processed foods, trans-fats, and sugar sweetened beverages, are recommended by prevention guidelines. The Mediterranean, DASH, and plant-based diets have all proven cardioprotective in varying degrees and are endorsed by professional healthcare societies, while other emerging diets such as the ketogenic diet and intermittent fasting require more long-term study. The effects of diet on the gut microbiome and on cardiovascular health have opened a new path for precision medicine to improve cardiometabolic risk factors. The effects of certain dietary metabolites, such as trimethylamine N-oxide, on cardiometabolic risk factors, along with the changes in the gut microbiome diversity and gene pathways in relation to CVD management, are being explored. Summary In this review, we provide a comprehensive up-to-date overview on established and emerging diets in cardiovascular health. We discuss the effectiveness of various diets and most importantly the approaches to nutritional counseling where traditional and non-traditional approaches are being practiced, helping patients adopt heart healthy diets. We address the limitations to adopting a heart healthy diet regarding food insecurity, poor access, and socioeconomic burden. Lastly, we discuss the need for a multidisciplinary team-based approach, including the role of a nutrition specialist, in implementing culturally-tailored dietary recommendations. Understanding the limitations and finding ways to overcome the barriers in implementing heart-healthy diets will take us miles in the path to CVD prevention and management.
Collapse
Affiliation(s)
- Alaa Diab
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, Greater Baltimore Medical Center, Baltimore, MD, USA
| | - L Nedda Dastmalchi
- Division of Cardiology, Temple University Hospital, Philadelphia, PA, USA
| | - Martha Gulati
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, LA, USA
| | - Erin D Michos
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Correspondence: Erin D Michos, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Blalock 524-B, 600 N. Wolfe Street, Baltimore, MD, 21287, USA, Tel +410-502-6813, Email
| |
Collapse
|
36
|
Shen Y, Wang P, Yang X, Chen M, Dong Y, Li J. Untargeted metabolomics unravel serum metabolic alterations in smokers with hypertension. Front Physiol 2023; 14:1127294. [PMID: 36935758 PMCID: PMC10018148 DOI: 10.3389/fphys.2023.1127294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Cigarette smoking is an important environmental risk factor for cardiovascular events of hypertension (HTN). Existing studies have provided evidence supporting altered gut microbiota by cigarette smoking, especially in hypertensive patients. Metabolic biomarkers play a central role in the functional potentials of the gut microbiome but are poorly characterized in hypertensive smokers. To explore whether serum metabolomics signatures and compositions of HTN patients were varied in smokers, and investigate their connecting relationship to gut microbiota, the serum metabolites were examined in untreated hypertensive patients using untargeted liquid chromatography-mass spectrometry (LC/MS) analysis. Results: A dramatic difference and clear separation in community features of circulating metabolomics members were seen in smoking HTN patients compared with the non-smoking controls, according to partial least squares discrimination analysis (PLS-DA) and orthogonal partial least squares discrimination analysis (OPLS-DA). Serum metabolic profiles and compositions of smoking patients with HTN were significantly distinct from the controls, and were characterized by enrichment of 12-HETE, 7-Ketodeoxycholic acid, Serotonin, N-Stearoyl tyrosine and Deoxycholic acid glycine conjugate, and the depletion of Tetradecanedioic acid, Hippuric acid, Glyceric acid, 20-Hydroxyeicosatetraenoic acid, Phenylpyruvic acid and Capric acid. Additionally, the metabolome displayed prominent functional signatures, with a majority proportion of the metabolites identified to be discriminating between groups distributed in Starch and sucrose metabolism, Caffeine metabolism, Pyruvate metabolism, Glycine, serine and threonine metabolism, and Phenylalanine metabolic pathways. Furthermore, the observation of alterations in metabolites associated with intestinal microbial taxonomy indicated that these metabolic members might mediate the effects of gut microbiome on the smoking host. Indeed, the metabolites specific to smoking HTNs were strongly organized into co-abundance networks, interacting with an array of clinical parameters, including uric acid (UA), low-denstiy lipoprotein cholesterol (LDLC) and smoking index. Conclusions: In conclusion, we demonstrated disparate circulating blood metabolome composition and functional potentials in hypertensive smokers, showing a linkage between specific metabolites in blood and the gut microbiome.
Collapse
Affiliation(s)
- Yang Shen
- Department of Nephrology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinchun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mulei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ying Dong, ; Jing Li,
| | - Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ying Dong, ; Jing Li,
| |
Collapse
|
37
|
Jama HA, Rhys-Jones D, Nakai M, Yao CK, Climie RE, Sata Y, Anderson D, Creek DJ, Head GA, Kaye DM, Mackay CR, Muir J, Marques FZ. Prebiotic intervention with HAMSAB in untreated essential hypertensive patients assessed in a phase II randomized trial. NATURE CARDIOVASCULAR RESEARCH 2023; 2:35-43. [PMID: 39196205 DOI: 10.1038/s44161-022-00197-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/23/2022] [Indexed: 08/29/2024]
Abstract
Fibers remain undigested until they reach the colon, where some are fermented by gut microbiota, producing metabolites called short-chain fatty acids (SCFAs), such as acetate and butyrate1. SCFAs lower blood pressure in experimental models2-5, but their translational potential is unknown. Here we present the results of a phase II, randomized, placebo-controlled, double-blind cross-over trial (Australian New Zealand Clinical Trials Registry ACTRN12619000916145) using prebiotic acetylated and butyrylated high-amylose maize starch (HAMSAB) supplementation6. Twenty treatment-naive participants with hypertension were randomized to 40 g per day of HAMSAB or placebo, completing each arm for 3 weeks, with a 3-week washout period between them. The primary endpoint was a reduction in ambulatory systolic blood pressure. Secondary endpoints included changes to circulating cytokines, immune markers and gut microbiome modulation. Patients receiving the HAMSAB treatment showed a clinically relevant reduction in 24-hour systolic blood pressure independent of age, sex and body mass index without any adverse effects. HAMSAB increased levels of acetate and butyrate, shifted the microbial ecosystem and expanded the prevalence of SCFA producers. In summary, a prebiotic intervention with HAMSAB could represent a promising option to deliver SCFAs and lower blood pressure in patients with essential hypertension.
Collapse
Affiliation(s)
- Hamdi A Jama
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, Australia
| | - Dakota Rhys-Jones
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, Australia
- Department of Gastroenterology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Michael Nakai
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, Australia
| | - Chu K Yao
- Department of Gastroenterology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rachel E Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Sports Cardiology Laboratory, Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Yusuke Sata
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Charles R Mackay
- Department of Microbiology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health, Monash University, Clayton, VIC, Australia
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jane Muir
- Department of Gastroenterology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, Australia.
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
38
|
Gallic acid ameliorates atherosclerosis and vascular senescence and remodels the microbiome in a sex-dependent manner in ApoE -/- mice. J Nutr Biochem 2022; 110:109132. [PMID: 36028099 DOI: 10.1016/j.jnutbio.2022.109132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023]
Abstract
Polyphenols found in fruits and vegetables are associated with a reduced incidence of cardiovascular disease (CVD), the leading cause of death in the USA. Our lab demonstrated that blackberry supplementation reduces atherosclerosis in male, but not in female mice. The current study investigates whether gallic acid (GA), a polyphenol abundant in blackberry, decreases plaque and whether its effect is also sex-dependent. In vitro work using vascular smooth muscle cells (VSMCs) demonstrated that GA reduced cell signaling associated with proliferation, migration, and senescence. ApoE-/- male and female mice were treated with and without 0.2% GA in drinking water and fed a chow diet (2 weeks), then switched to high-fat diet (HFD) (5 weeks) with the same GA regimen. Similar to the blackberry study, GA reduced atherosclerosis only in males. This GA-induced plaque reduction was independent of plasma cholesterol, triglycerides (TG), LDL, or HDL but corresponded with indices of lower inflammation. Males showed reduced spleen weight and serum IL3 and IL12 levels, and gut health improvement. In females, GA increased anti-atherogenic (HDL and IL10) molecules, while upregulating several pro-inflammatory cytokines and chemokines, including tumor necrosis factor α (TNFα). A major sex-dependent effect of GA was the almost complete disappearance of Eubacterium fissicatena and Turicibacter induced by HFD in males, a finding not seen in females. This study provides novel insights into how GA can improve gut microbiota alterations associated with CVD and suggests that males suffering from atherosclerosis may benefit from GA supplementation, as this polyphenol partially restored microbiome dysbiosis.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW To discuss the interplay behind how a high-fibre diet leads to lower blood pressure (BP) via the gut microbiome. RECENT FINDINGS Compelling evidence from meta-analyses support dietary fibre prevents the development of cardiovascular disease and reduces BP. This relation is due to gut microbial metabolites, called short-chain fatty acids (SCFAs), derived from fibre fermentation. The SCFAs acetate, propionate and butyrate lower BP in independent hypertensive models. Mechanisms are diverse but still not fully understood-for example, they include G protein-coupled receptors, epigenetics, immune cells, the renin-angiotensin system and vasculature changes. Lack of dietary fibre leads to changes to the gut microbiota that drive an increase in BP. The mechanisms involved are unknown. The intricate interplay between fibre, the gut microbiota and SCFAs may represent novel therapeutic approaches for high BP. Other gut microbiota-derived metabolites, produced when fibre intake is low, may hold potential therapeutic applications. Further translational evidence is needed.
Collapse
Affiliation(s)
- Chudan Xu
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia.
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
40
|
Short-Chain Fatty Acids in Gut-Heart Axis: Their Role in the Pathology of Heart Failure. J Pers Med 2022; 12:jpm12111805. [PMID: 36579524 PMCID: PMC9695649 DOI: 10.3390/jpm12111805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Heart failure (HF) is a syndrome with global clinical and socioeconomic burden worldwide owing to its poor prognosis. Accumulating evidence has implicated the possible contribution of gut microbiota-derived metabolites, short-chain fatty acids (SCFAs), on the pathology of a variety of diseases. The changes of SCFA concentration were reported to be observed in various cardiovascular diseases including HF in experimental animals and humans. HF causes hypoperfusion and/or congestion in the gut, which may lead to lowered production of SCFAs, possibly through the pathological changes of the gut microenvironment including microbiota composition. Recent studies suggest that SCFAs may play a significant role in the pathology of HF, possibly through an agonistic effect on G-protein-coupled receptors, histone deacetylases (HDACs) inhibition, restoration of mitochondrial function, amelioration of cardiac inflammatory response, its utilization as an energy source, and remote effect attributable to a protective effect on the other organs. Collectively, in the pathology of HF, SCFAs might play a significant role as a key mediator in the gut-heart axis. However, these possible mechanisms have not been entirely clarified and need further investigation.
Collapse
|
41
|
Luo J, Chen Y, Tang G, Li Z, Yang X, Shang X, Huang T, Huang G, Wang L, Han Y, Zhou Y, Wang C, Wu B, Guo Q, Gong B, Li M, Wang R, Yang J, Cui W, Zhong J, Zhong LL, Guo J. Gut microbiota composition reflects disease progression, severity and outcome, and dysfunctional immune responses in patients with hypertensive intracerebral hemorrhage. Front Immunol 2022; 13:869846. [PMID: 36439158 PMCID: PMC9699794 DOI: 10.3389/fimmu.2022.869846] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/08/2022] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE In this study, we aimed to explore the alterations in gut microbiota composition and cytokine responses related to disease progression, severity, and outcomes in patients with hypertensive intracerebral hemorrhage (ICH). METHODS Fecal microbiota communities of 64 patients with ICH, 46 coronary heart disease controls, and 23 healthy controls were measured by sequencing the V3-V4 region of the 16S ribosomal RNA (16S rRNA) gene. Serum concentrations of a broad spectrum of cytokines were examined by liquid chips and ELISA. Relationships between clinical phenotypes, microbiotas, and cytokine responses were analyzed in the group with ICH and stroke-associated pneumonia (SAP), the major complication of ICH. RESULTS In comparison with the control groups, the gut microbiota of the patients with ICH had increased microbial richness and diversity, an expanded spectrum of facultative anaerobes and opportunistic pathogens, and depletion of anaerobes. Enterococcus enrichment and Prevotella depletion were more significant in the ICH group and were associated with the severity and functional outcome of ICH. Furthermore, Enterococcus enrichment and Prevotella depletion were also noted in the SAP group in contrast to the non-SAP group. Enterococci were also promising factors in the prognosis of ICH. The onset of ICH induced massive, rapid activation of the peripheral immune system. There were 12 cytokines (Eotaxin, GM-CSF, IL-8, IL-9, IL-10, IL-12p70, IL-15, IL-23, IL-1RA, IP-10, RANTES, and TNF-α) changed significantly with prolongation of ICH, and the Th2 responses correlated with the 90-day outcomes. Cytokines TNF-α, IP-10, IL-1RA, IL-8, IL-18, and MIP-1β in SAP group significantly differed from non-SAP group. Among these cytokines, only IP-10 levels decreased in the SAP group. Enterococcus was positively associated with IL-1RA and negatively associated with IP-10, while Prevotella was inversely associated in both the ICH and SAP groups. CONCLUSION This study revealed that gut dysbiosis with enriched Enterococcus and depleted Prevotella increased the risk of ICH and subsequently SAP. The altered gut microbiota composition and serum cytokine profiles are potential biomarkers that reflect the inciting physiologic insult/stress involved with ICH.
Collapse
Affiliation(s)
- Jielian Luo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghai Tang
- Department of Neurology, Shenyang Second Hospital of Traditional Chinese Medicine, Shenyang, China
| | - Zhuo Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Genetic Testing Lab, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobo Yang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Xiaoxiao Shang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gan Huang
- Department of Neurology, Yangjiang Hospital of Traditional Chinese Medicine, Yangjiang, China
| | - Lixin Wang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Han
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuexiang Zhou
- Department of Community Healthcare Service, Shenzhen FuYong People’s Hospital, Shenzhen, China
| | - Chuyang Wang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Wu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Genetic Testing Lab, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qihua Guo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Baoying Gong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Mengzhen Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ruihua Wang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- The Fourth Affiliated Hospital of Guangzhou Medical University Research Team of Traditional Chinese Medicine for the Prevention and Treatment of Cerebral Hemorrhage, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiecong Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wanzhen Cui
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jianbin Zhong
- Department of Neurology, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linda Ld Zhong
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jianwen Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
42
|
Naik SS, Ramphall S, Rijal S, Prakash V, Ekladios H, Mulayamkuzhiyil Saju J, Mandal N, Kham NI, Shahid R, Venugopal S. Association of Gut Microbial Dysbiosis and Hypertension: A Systematic Review. Cureus 2022; 14:e29927. [PMID: 36381851 PMCID: PMC9642844 DOI: 10.7759/cureus.29927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/04/2022] [Indexed: 01/25/2023] Open
Abstract
Hypertension (HTN) is one of the most prevalent and dangerous cardiovascular diseases worldwide. Recently, its direct or indirect association with gut dysbiosis has been an interest of study for many. It also includes the metabolomic and functional gene changes in hypertensives compared with healthy individuals. This systematic review aims to study quantitative and qualitative interactions between the two and re-defining the heart-gut axis. We have strictly followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), 2020, guidelines. We conducted an in-depth search of databases such as PubMed, PubMed Central (PMC), Medline, and ScienceDirect to find relevant studies for our topic of interest. After the final quality check, we included eight articles in the systematic review. A significant difference in richness and diversity in gut microbiota was observed in hypertensive patients compared with healthy controls. There was an increased abundance of many bacteria such as Catabacter, Robinsoleilla, Serratia, Enterobacteriaceae, Ruminococcus torques, Parasutterella, Escherichia, Shigella, and Klebsiella, while a decreased abundance of Sporobacter, Roseburia hominis, Romboutsia spp., and Roseburia. Alteration of the composition also varied based on diet, age, ethnicity, and severity of HTN. Short-chain fatty acids (SCFAs)-producing bacteria are found to be on the lower side in hypertensives owing to the protective property of SCFAs against inflammation, especially butyric acid. From the perspective of metabolomic changes, harmful metabolites for cardiovascular health such as intestinal fatty acid binding protein (I-FABP), lipopolysaccharides (LPSs), zonulin, sphingomyelins, acylcarnitines, and trimethylamine N-oxide (TMAO) were found to be increased in hypertensives. Changes in these biomarkers further establish the relation between gut epithelial health and high blood pressure (BP). Participants affected by diseases have an overall lower rate of acquiring new genes, which results in a low richness of genes in them compared with healthy individuals. There is increased expression of the choline utilization (cutC) gene and reduced expression of genes associated with biosynthesis and transport of amino acids in high-BP participants. The unique changes in the composition of the microbiota, functional changes in genes, and metabolome collectively help for a better understanding of the pathogenesis of HTN and also suggest the gut as a promising new therapeutic target for HTN. To establish a further causal relationship between the two, more research is required.
Collapse
Affiliation(s)
- Shaili S Naik
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Surat Municipal Institute of Medical Education and Research (SMIMER) Hospital and Medical College, Surat, IND
| | - Shivana Ramphall
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Research, American University of Antigua, Osbourn, ATG
| | - Swarnima Rijal
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Vishakh Prakash
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Government Medical College Kozhikode, Kozhikode, IND
| | - Heba Ekladios
- Department of Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jiya Mulayamkuzhiyil Saju
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Sree Narayana Institute of Medical Sciences, Ernakulam, IND
- General Surgery, Government Medical College, Thiruvananthapuram, Trivandrum, IND
| | - Naishal Mandal
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Surat Municipal Institute of Medical Education and Research (SMIMER) Hospital and Medical College, Surat, IND
| | - Nang I Kham
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rabia Shahid
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sathish Venugopal
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
43
|
Xu J, Moore BN, Pluznick JL. Short-Chain Fatty Acid Receptors and Blood Pressure Regulation: Council on Hypertension Mid-Career Award for Research Excellence 2021. Hypertension 2022; 79:2127-2137. [PMID: 35912645 PMCID: PMC9458621 DOI: 10.1161/hypertensionaha.122.18558] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The gut microbiome influences host physiology and pathophysiology through several pathways, one of which is microbial production of chemical metabolites which interact with host signaling pathways. Short-chain fatty acids (SCFAs) are a class of gut microbial metabolites known to activate multiple signaling pathways in the host. Growing evidence indicates that the gut microbiome is linked to blood pressure, that SCFAs modulate blood pressure regulation, and that delivery of exogenous SCFAs lowers blood pressure. Given that hypertension is a key risk factor for cardiovascular disease, the examination of novel contributors to blood pressure regulation has the potential to lead to novel approaches or treatments. Thus, this review will discuss SCFAs with a focus on their host G protein-coupled receptors including GPR41 (G protein-coupled receptor 41), GPR43, and GPR109A, as well as OLFR78 (olfactory receptor 78) and OLFR558. This includes a discussion of the ligand profiles, G protein coupling, and tissue distribution of each receptor. We will also review phenotypes relevant to blood pressure regulation which have been reported to date for Gpr41, Gpr43, Gpr109a, and Olfr78 knockout mice. In addition, we will consider how SCFA signaling influences physiology at baseline, and, how SCFA signaling may contribute to blood pressure regulation in settings of hypertension. In sum, this review will integrate current knowledge regarding how SCFAs and their receptors regulate blood pressure.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Brittni N. Moore
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
44
|
Dinakis E, Nakai M, Gill P, Ribeiro R, Yiallourou S, Sata Y, Muir J, Carrington M, Head GA, Kaye DM, Marques FZ. Association Between the Gut Microbiome and Their Metabolites With Human Blood Pressure Variability. Hypertension 2022; 79:1690-1701. [PMID: 35674054 DOI: 10.1161/hypertensionaha.122.19350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Blood pressure (BP) variability is an independent risk factor for cardiovascular events. Recent evidence supports a role for the gut microbiota in BP regulation. However, whether the gut microbiome is associated with BP variability is yet to be determined. Here, we aimed to investigate the interplay between the gut microbiome and their metabolites in relation to BP variability. METHODS Ambulatory BP monitoring was performed in 69 participants from Australia (55.1% women; mean±SD, 59.8±7.26 years; body mass index, 25.2±2.83 kg/m2). These data were used to determine nighttime dipping, morning BP surge (MBPS) and BP variability as SD. The gut microbiome was determined by 16S ribosomal RNA (rRNA) sequencing and metabolite levels by gas chromatography. RESULTS We identified specific taxa associated with systolic BP variability, nighttime dipping, and MBPS. Notably, Alistipesfinegoldii and Lactobacillus spp. were only present in participants within the normal ranges of BP variability, MBPS and dipping, while Prevotella spp. and Clostridium spp., were found to be present in extreme dippers and the highest quartiles of BP SD and MBPS. There was a negative association between MBPS and microbial α-diversity (r=-0.244, P=0.046). MBPS was also negatively associated with plasma levels of microbial metabolites called short-chain fatty acids (r=-0.305, P=0.020), particularly acetate (r=-0.311, P=0.017). CONCLUSIONS Gut microbiome diversity, levels of microbial metabolites, and the bacteria Alistipesfinegoldii and Lactobacillus were associated with lower BP variability and Clostridium and Prevotella with higher BP variability. Thus, our findings suggest the gut microbiome and metabolites may be involved in the regulation of BP variability.
Collapse
Affiliation(s)
- Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences (E.D., M.N., F.Z.M), Monash University, Melbourne, Australia
| | - Michael Nakai
- Hypertension Research Laboratory, School of Biological Sciences (E.D., M.N., F.Z.M), Monash University, Melbourne, Australia
| | - Paul Gill
- Department of Gastroenterology (P.G., J.M.), Monash University, Melbourne, Australia
| | - Rosilene Ribeiro
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Australia (R.R.)
| | - Stephanie Yiallourou
- Central Clinical School, Faculty of Medicine Nursing and Health Sciences (Y.S., D.M.K.), Monash University, Melbourne, Australia.,Preclinical Disease and Prevention (S.Y., M.C.), Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Cardiology, Alfred Hospital, Melbourne, Australia (Y.S., D.M.K.)
| | - Yusuke Sata
- Neuropharmacology Laboratory (Y.S., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Jane Muir
- Department of Gastroenterology (P.G., J.M.), Monash University, Melbourne, Australia
| | - Melinda Carrington
- Preclinical Disease and Prevention (S.Y., M.C.), Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Geoffrey A Head
- Department of Pharmacology, Faculty of Medicine Nursing and Health Sciences (G.A.H.), Monash University, Melbourne, Australia.,Neuropharmacology Laboratory (Y.S., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, Australia
| | - David M Kaye
- Central Clinical School, Faculty of Medicine Nursing and Health Sciences (Y.S., D.M.K.), Monash University, Melbourne, Australia.,Heart Failure Research Group (D.M.K., F.Z.M.), Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Cardiology, Alfred Hospital, Melbourne, Australia (Y.S., D.M.K.)
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences (E.D., M.N., F.Z.M), Monash University, Melbourne, Australia.,Heart Failure Research Group (D.M.K., F.Z.M.), Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
45
|
Yang T, Mei X, Tackie-Yarboi E, Akere MT, Kyoung J, Mell B, Yeo JY, Cheng X, Zubcevic J, Richards EM, Pepine CJ, Raizada MK, Schiefer IT, Joe B. Identification of a Gut Commensal That Compromises the Blood Pressure-Lowering Effect of Ester Angiotensin-Converting Enzyme Inhibitors. Hypertension 2022; 79:1591-1601. [PMID: 35538603 PMCID: PMC9278702 DOI: 10.1161/hypertensionaha.121.18711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: Despite the availability of various classes of antihypertensive medications, a large proportion of hypertensive individuals remain resistant to treatments. The reason for what contributes to low efficacy of antihypertensive medications in these individuals is elusive. The knowledge that gut microbiota is involved in pathophysiology of hypertension and drug metabolism led us to hypothesize that gut microbiota catabolize antihypertensive medications and compromised their blood pressure (BP)-lowering effects. Methods and Results: To test this hypothesis, we examined the BP responses to a representative ACE (angiotensin-converting enzyme) inhibitor quinapril in spontaneously hypertensive rats (SHR) with or without antibiotics. BP-lowering effect of quinapril was more pronounced in the SHR+antibiotics, indicating that gut microbiota of SHR lowered the antihypertensive effect of quinapril. Depletion of gut microbiota in the SHR+antibiotics was associated with decreased gut microbial catabolism of quinapril as well as significant reduction in the bacterial genus Coprococcus. C. comes, an anaerobic species of Coprococcus, harbored esterase activity and catabolized the ester quinapril in vitro. Co-administration of quinapril with C. comes reduced the antihypertensive effect of quinapril in the SHR. Importantly, C. comes selectively reduced the antihypertensive effects of ester ramipril but not nonester lisinopril. Conclusions: Our study revealed a previously unrecognized mechanism by which human commensal C. comes catabolizes ester ACE inhibitors in the gut and lowers its antihypertensive effect.
Collapse
Affiliation(s)
- Tao Yang
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH.,UT Microbiome Consortium, Center for Hypertension and Precision Medicine (T.Y., X.M., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| | - Xue Mei
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH.,UT Microbiome Consortium, Center for Hypertension and Precision Medicine (T.Y., X.M., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| | - Ethel Tackie-Yarboi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences (E.T.-Y., M.T.A., I.T.S.), University of Toledo, OH.,Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences (E.T.-Y., M.T.A., I.T.S.), University of Toledo, OH
| | - Millicent Tambari Akere
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences (E.T.-Y., M.T.A., I.T.S.), University of Toledo, OH.,Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences (E.T.-Y., M.T.A., I.T.S.), University of Toledo, OH
| | - Jun Kyoung
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| | - Blair Mell
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH.,UT Microbiome Consortium, Center for Hypertension and Precision Medicine (T.Y., X.M., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| | - Ji-Youn Yeo
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH.,UT Microbiome Consortium, Center for Hypertension and Precision Medicine (T.Y., X.M., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| | - Xi Cheng
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH.,UT Microbiome Consortium, Center for Hypertension and Precision Medicine (T.Y., X.M., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH.,UT Microbiome Consortium, Center for Hypertension and Precision Medicine (T.Y., X.M., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| | - Elaine M Richards
- Department of Physiology and Functional Genomics (E.M.R., M.K.R.), University of Florida College of Medicine, Gainesville
| | - Carl J Pepine
- Division of Cardiovascular Medicine (C.J.P.), University of Florida College of Medicine, Gainesville
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics (E.M.R., M.K.R.), University of Florida College of Medicine, Gainesville
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences (E.T.-Y., M.T.A., I.T.S.), University of Toledo, OH.,Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences (E.T.-Y., M.T.A., I.T.S.), University of Toledo, OH
| | - Bina Joe
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences (T.Y., X.M., J.K., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH.,UT Microbiome Consortium, Center for Hypertension and Precision Medicine (T.Y., X.M., B.M., J.-Y.Y., X.C., J.Z., B.J.), University of Toledo, OH
| |
Collapse
|
46
|
Anderson EM, Rozowsky JM, Fazzone BJ, Schmidt EA, Stevens BR, O’Malley KA, Scali ST, Berceli SA. Temporal Dynamics of the Intestinal Microbiome Following Short-Term Dietary Restriction. Nutrients 2022; 14:2785. [PMID: 35889742 PMCID: PMC9318361 DOI: 10.3390/nu14142785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
Short-term dietary restriction has been proposed as an intriguing pre-operative conditioning strategy designed to attenuate the surgical stress response and improve outcomes. However, it is unclear how this nutritional intervention influences the microbiome, which is known to modulate the systemic condition. Healthy individuals were recruited to participate in a four-day, 70% protein-restricted, 30% calorie-restricted diet, and stool samples were collected at baseline, after the restricted diet, and after resuming normal food intake. Taxonomy and functional pathway analysis was performed via shotgun metagenomic sequencing, prevalence filtering, and differential abundance analysis. High prevalence species were altered by the dietary intervention but quickly returned to baseline after restarting a regular diet. Composition and functional changes after the restricted diet included the decreased relative abundance of commensal bacteria and a catabolic phenotype. Notable species changes included Faecalibacterium prausnitzii and Roseburia intestinalis, which are major butyrate producers within the colon and are characteristically decreased in many disease states. The macronutrient components of the diet might have influenced these changes. We conclude that short-term dietary restriction modulates the ecology of the gut microbiome, with this modulation being characterized by a relative dysbiosis.
Collapse
Affiliation(s)
- Erik M. Anderson
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA; (E.M.A.); (J.M.R.); (B.J.F.); (E.A.S.); (K.A.O.); (S.T.S.)
- Department of Surgery, Malcolm Randall Veteran Affairs Medical Center, 1601 SW Archer Rd., Gainesville, FL 32610, USA
| | - Jared M. Rozowsky
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA; (E.M.A.); (J.M.R.); (B.J.F.); (E.A.S.); (K.A.O.); (S.T.S.)
- Department of Surgery, Malcolm Randall Veteran Affairs Medical Center, 1601 SW Archer Rd., Gainesville, FL 32610, USA
| | - Brian J. Fazzone
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA; (E.M.A.); (J.M.R.); (B.J.F.); (E.A.S.); (K.A.O.); (S.T.S.)
- Department of Surgery, Malcolm Randall Veteran Affairs Medical Center, 1601 SW Archer Rd., Gainesville, FL 32610, USA
| | - Emilie A. Schmidt
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA; (E.M.A.); (J.M.R.); (B.J.F.); (E.A.S.); (K.A.O.); (S.T.S.)
- Department of Surgery, Malcolm Randall Veteran Affairs Medical Center, 1601 SW Archer Rd., Gainesville, FL 32610, USA
| | - Bruce R. Stevens
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA;
| | - Kerri A. O’Malley
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA; (E.M.A.); (J.M.R.); (B.J.F.); (E.A.S.); (K.A.O.); (S.T.S.)
- Department of Surgery, Malcolm Randall Veteran Affairs Medical Center, 1601 SW Archer Rd., Gainesville, FL 32610, USA
| | - Salvatore T. Scali
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA; (E.M.A.); (J.M.R.); (B.J.F.); (E.A.S.); (K.A.O.); (S.T.S.)
- Department of Surgery, Malcolm Randall Veteran Affairs Medical Center, 1601 SW Archer Rd., Gainesville, FL 32610, USA
| | - Scott A. Berceli
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA; (E.M.A.); (J.M.R.); (B.J.F.); (E.A.S.); (K.A.O.); (S.T.S.)
- Department of Surgery, Malcolm Randall Veteran Affairs Medical Center, 1601 SW Archer Rd., Gainesville, FL 32610, USA
| |
Collapse
|
47
|
Abstract
Hypertension is a worldwide problem with major impacts on health including morbidity and mortality, as well as consumption of health care resources. Nearly 50% of American adults have high blood pressure, and this rate is rising. Even with multiple antihypertensive drugs and aggressive lifestyle modifications, blood pressure is inadequately controlled in about 1 of 5 hypertensive individuals. This review highlights a hypothesis for hypertension that suggests alternative mechanisms for blood pressure elevation and maintenance. A better understanding of these mechanisms could open avenues for more successful treatments. The hypothesis accounts for recent understandings of the involvement of gut physiology, gut microbiota, and neuroinflammation in hypertension. It includes bidirectional communication between gut microbiota and gut epithelium in the gut-brain axis that is involved in regulation of autonomic nervous system activity and blood pressure control. Dysfunction of this gut-brain axis, including dysbiosis of gut microbiota, gut epithelial dysfunction, and deranged input to the brain, contributes to hypertension via inflammatory mediators, metabolites, bacteria in the circulation, afferent information alterations, etc resulting in neuroinflammation and unbalanced autonomic nervous system activity that elevates blood pressure. This in turn negatively affects gut function and its microbiota exacerbating the problem. We focus this review on the gut-brain axis hypothesis for hypertension and possible contribution to racial disparities in hypertension. A novel idea, that immunoglobulin A-coated bacteria originating in the gut with access to the brain could be involved in hypertension, is raised. Finally, minocycline, with its anti-inflammatory and antimicrobial properties, is evaluated as a potential antihypertensive drug acting on this axis.
Collapse
Affiliation(s)
- Elaine M Richards
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jing Li
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Bruce R Stevens
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
48
|
Callender C, Attaye I, Nieuwdorp M. The Interaction between the Gut Microbiome and Bile Acids in Cardiometabolic Diseases. Metabolites 2022; 12:65. [PMID: 35050187 PMCID: PMC8778259 DOI: 10.3390/metabo12010065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Cardio-metabolic diseases (CMD) are a spectrum of diseases (e.g., type 2 diabetes, atherosclerosis, non-alcohol fatty liver disease (NAFLD), and metabolic syndrome) that are among the leading causes of morbidity and mortality worldwide. It has long been known that bile acids (BA), which are endogenously produced signalling molecules from cholesterol, can affect CMD risk and progression and directly affect the gut microbiome (GM). Moreover, studies focusing on the GM and CMD risk have dramatically increased in the past decade. It has also become clear that the GM can function as a "new" endocrine organ. BA and GM have a complex and interdependent relationship with several CMD pathways. This review aims to provide a comprehensive overview of the interplay between BA metabolism, the GM, and CMD risk and progression.
Collapse
Affiliation(s)
- Cengiz Callender
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.A.); (M.N.)
| | - Ilias Attaye
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.A.); (M.N.)
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.A.); (M.N.)
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
49
|
Mirzayi C, Renson A, Zohra F, Elsafoury S, Geistlinger L, Kasselman LJ, Eckenrode K, van de Wijgert J, Loughman A, Marques FZ, MacIntyre DA, Arumugam M, Azhar R, Beghini F, Bergstrom K, Bhatt A, Bisanz JE, Braun J, Bravo HC, Buck GA, Bushman F, Casero D, Clarke G, Collado MC, Cotter PD, Cryan JF, Demmer RT, Devkota S, Elinav E, Escobar JS, Fettweis J, Finn RD, Fodor AA, Forslund S, Franke A, Furlanello C, Gilbert J, Grice E, Haibe-Kains B, Handley S, Herd P, Holmes S, Jacobs JP, Karstens L, Knight R, Knights D, Koren O, Kwon DS, Langille M, Lindsay B, McGovern D, McHardy AC, McWeeney S, Mueller NT, Nezi L, Olm M, Palm N, Pasolli E, Raes J, Redinbo MR, Rühlemann M, Balfour Sartor R, Schloss PD, Schriml L, Segal E, Shardell M, Sharpton T, Smirnova E, Sokol H, Sonnenburg JL, Srinivasan S, Thingholm LB, Turnbaugh PJ, Upadhyay V, Walls RL, Wilmes P, Yamada T, Zeller G, Zhang M, Zhao N, Zhao L, Bao W, Culhane A, Devanarayan V, Dopazo J, Fan X, Fischer M, Jones W, Kusko R, Mason CE, Mercer TR, Sansone SA, Scherer A, Shi L, Thakkar S, Tong W, Wolfinger R, Hunter C, Segata N, Huttenhower C, Dowd JB, Jones HE, Waldron L. Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med 2021; 27:1885-1892. [PMID: 34789871 PMCID: PMC9105086 DOI: 10.1038/s41591-021-01552-x] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 09/23/2021] [Indexed: 12/18/2022]
Abstract
The particularly interdisciplinary nature of human microbiome research makes the organization and reporting of results spanning epidemiology, biology, bioinformatics, translational medicine and statistics a challenge. Commonly used reporting guidelines for observational or genetic epidemiology studies lack key features specific to microbiome studies. Therefore, a multidisciplinary group of microbiome epidemiology researchers adapted guidelines for observational and genetic studies to culture-independent human microbiome studies, and also developed new reporting elements for laboratory, bioinformatics and statistical analyses tailored to microbiome studies. The resulting tool, called 'Strengthening The Organization and Reporting of Microbiome Studies' (STORMS), is composed of a 17-item checklist organized into six sections that correspond to the typical sections of a scientific publication, presented as an editable table for inclusion in supplementary materials. The STORMS checklist provides guidance for concise and complete reporting of microbiome studies that will facilitate manuscript preparation, peer review, and reader comprehension of publications and comparative analysis of published results.
Collapse
Affiliation(s)
- Chloe Mirzayi
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | - Audrey Renson
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fatima Zohra
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | - Shaimaa Elsafoury
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | - Ludwig Geistlinger
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | - Lora J Kasselman
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | - Kelly Eckenrode
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | - Janneke van de Wijgert
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Amy Loughman
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Victoria, Australia
| | - David A MacIntyre
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rimsha Azhar
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | | | - Kirk Bergstrom
- Department of Biology, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| | - Ami Bhatt
- Division of Hematology and Division of Bone Marrow Transplantation, Department of Medicine, and Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Jonathan Braun
- Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Gregory A Buck
- Center for Microbiome Engineering and Data Analysis, Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - David Casero
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council, Valencia, Spain
| | - Paul D Cotter
- Teagasc Food Research Centre-Moorepark, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Ryan T Demmer
- School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Microbiome and Cancer Division, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Jennifer Fettweis
- Center for Microbiome Engineering and Data Analysis, Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Sofia Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité University Hospital, Berlin, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | | | - Jack Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Elizabeth Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Scott Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela Herd
- McCourt School of Public Policy, Georgetown University, Washington, DC, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Jonathan P Jacobs
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lisa Karstens
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, USA
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Douglas S Kwon
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Morgan Langille
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Brianna Lindsay
- University of Maryland School of Medicine, Institute of Human Virology, Baltimore, MD, USA
| | - Dermot McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alice C McHardy
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Brunswick, Germany
| | | | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luigi Nezi
- Department of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Europeo di Oncologia, Milan, Italy
| | - Matthew Olm
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Noah Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega institute, KU Leuven and VIB Center for Microbiology, Leuven, Belgium
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick D Schloss
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Lynn Schriml
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Eran Segal
- Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel
| | - Michelle Shardell
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Thomas Sharpton
- Department of Microbiology and Department of Statistics, Oregon State University, Corvallis, OR, USA
| | - Ekaterina Smirnova
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Harry Sokol
- Gastroenterology Department, Centre de Recherche Saint-Antoine, INSERM, Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Sorbonne Université, Paris, France
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Louise B Thingholm
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Vaibhav Upadhyay
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | | | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Takuji Yamada
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mingyu Zhang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Wenjun Bao
- JMP Life Sciences, SAS Institute, Cary, NC, USA
| | - Aedin Culhane
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Joaquin Dopazo
- Clinical Bioinformatics Area, Hospital Virgen del Rocio, Sevilla, Spain
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Matthias Fischer
- Experimental Pediatric Oncology, University Children's Hospital, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | | | | | | | - Tim R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Susanna-Assunta Sansone
- Oxford e-Research Centre, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Andreas Scherer
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shraddha Thakkar
- Office of Computational Science, Office of Translational Sciences, Center for Drug Evaluation and Research, Washington, DC, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Food & Drug Administration, Jefferson, AR, USA
| | - Russ Wolfinger
- Scientific Discovery and Genomics, SAS Institute, Cary, NC, USA
| | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- Department of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Europeo di Oncologia, Milan, Italy
| | | | - Jennifer B Dowd
- Department of Sociology, Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK
| | - Heidi E Jones
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | - Levi Waldron
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA.
| |
Collapse
|
50
|
Innate immunity and clinical hypertension. J Hum Hypertens 2021; 36:503-509. [PMID: 34689174 DOI: 10.1038/s41371-021-00627-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023]
Abstract
Emerging evidence has supported a role of inflammation and immunity in the genesis of hypertension. In humans and experimental models of hypertension, cells of the innate and adaptive immune system enter target tissues, including vessels and the kidney, and release powerful mediators including cytokines, matrix metalloproteinases and reactive oxygen species that cause tissue damage, fibrosis and dysfunction. These events augment the blood pressure elevations in hypertension and promote end-organ damage. Factors that activate immune cells include sympathetic outflow, increased sodium within microenvironments where these cells reside, and signals received from the vasculature. In particular, the activated endothelium releases reactive oxygen species and interleukin (IL)-6 which in turn stimulate transformation of monocytes to become antigen presenting cells and produce cytokines like IL-1β and IL-23, which further affect T cell function to produce IL-17A. Genetic deletion or neutralization of these cytokines ameliorates hypertension and end-organ damage. In this review, we will consider in depth features of the hypertensive milieu that lead to these events and consider new treatment approaches to limit the untoward effects of inflammation in hypertension.
Collapse
|