1
|
Sugimoto K, Chung DY, Fischer P, Takizawa T, Qin T, Yaseen MA, Sakadžić S, Ayata C. Optogenetic Functional Activation Is Detrimental During Acute Ischemic Stroke in Mice. Stroke 2024; 55:2502-2509. [PMID: 39234742 PMCID: PMC11421960 DOI: 10.1161/strokeaha.124.048032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Functional activation of the focal ischemic brain has been reported to improve outcomes by augmenting collateral blood flow. However, functional activation also increases metabolic demand and might thereby worsen outcomes. Indeed, preclinical and clinical reports have been conflicting. Here, we tested the effect of functional activation during acute ischemic stroke using distal middle cerebral artery occlusion in anesthetized mice. METHODS Using transgenic mice expressing channelrhodopsin-2 in neurons, we delivered functional activation using physiological levels of transcranial optogenetic stimulation of the moderately ischemic cortex (ie, penumbra), identified using real-time full-field laser speckle perfusion imaging during a 1-hour distal microvascular clip of the middle cerebral artery. Neuronal activation was confirmed using evoked field potentials, and infarct volumes were measured in tissue slices 48 hours later. RESULTS Optogenetic stimulation of the penumbra was associated with more than 2-fold larger infarcts than stimulation of the contralateral homotopic region and the sham stimulation group (n=10, 7, and 9; 11.0±5.6 versus 5.1±4.3 versus 4.1±3.7 mm3; P=0.008, 1-way ANOVA). Identical stimulation in wild-type mice that do not express channelrhodopsin-2 did not have an effect. Optogenetic stimulation was associated with a small increase in penumbral perfusion that did not explain enlarged infarcts. CONCLUSIONS Our data suggest that increased neuronal activity during acute focal arterial occlusions can be detrimental, presumably due to increased metabolic demand, and may have implications for the clinical management of hyperacute stroke patients.
Collapse
Affiliation(s)
- Kazutaka Sugimoto
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
- Department of Neurosurgery, Yamaguchi University School of Medicine, Japan
| | - David Y. Chung
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, USA
| | - Paul Fischer
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
- Department of Neurology with Experimental Neurology Charité-Universitätsmedizin Berlin and Berlin Institute of Health at Charité – Universitätsmedizin Berlin,BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin Germany
| | - Tsubasa Takizawa
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Tao Qin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
| | - Mohammad A. Yaseen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Bioengineering Department, Northeastern University, Boston, MA, USA
| | - Sava Sakadžić
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, USA
| |
Collapse
|
2
|
Bhatti MS, Frostig RD. Astrocyte-neuron lactate shuttle plays a pivotal role in sensory-based neuroprotection in a rat model of permanent middle cerebral artery occlusion. Sci Rep 2023; 13:12799. [PMID: 37550353 PMCID: PMC10406860 DOI: 10.1038/s41598-023-39574-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
We have previously demonstrated protection from impending cortical ischemic stroke is achievable by sensory stimulation of the ischemic area in an adult rat model of permanent middle cerebral artery occlusion (pMCAo). We have further demonstrated that a major underpinning mechanism that is necessary for such protection is the system of collaterals among cerebral arteries that results in reperfusion of the MCA ischemic territory. However, since such collateral flow is weak, it may be necessary but not sufficient for protection and therefore we sought other complementary mechanisms that contribute to sensory-based protection. We hypothesized that astrocytes-neuron lactate shuttle (ANLS) activation could be another potential underpinning mechanism that complements collateral flow in the protection process. Supporting our hypothesis, using functional imaging, pharmacological treatments, and postmortem histology, we showed that ANLS played a pivotal role in sensory stimulation-based protection of cortex and therefore serves as the other supporting mechanism underpinning the protection process.
Collapse
Affiliation(s)
- Mehwish S Bhatti
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA.
| | - Ron D Frostig
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, Irvine, CA, USA.
- Center for Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Bhatti M, Frostig RD. Astrocyte-neuron lactate shuttle plays a pivotal role in sensory-based neuroprotection in a rat model of permanent middle cerebral artery occlusion. RESEARCH SQUARE 2023:rs.3.rs-2698138. [PMID: 37034797 PMCID: PMC10081351 DOI: 10.21203/rs.3.rs-2698138/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
We have previously demonstrated protection from impending cortical stroke is achievable by sensory stimulation of the ischemic area in an adult rat model of permanent middle cerebral artery occlusion (pMCAo). We have further demonstrated that a major underpinning mechanism that is necessary for such protection is the system of collaterals among cerebral arteries that results in reperfusion of the MCA ischemic territory. However, since such collateral flow is weak, it may be necessary but not sufficient for protection and therefore we were seeking other complementary mechanisms that contribute to sensory-based protection. We hypothesized that astrocytes-to-neuron shuttle (ANLS) is another potential underpinning mechanism that could complement collateral flow in the protection process. Supporting our hypothesis, using functional imaging, pharmacological treatments, and postmortem histology, we show that ANLS has a pivotal role in sensory-based protection of cortex and therefor serves as the other supporting mechanism underpinning the protection process.
Collapse
|
4
|
Rasheed W, Wodeyar A, Srinivasan R, Frostig RD. Sensory stimulation-based protection from impending stroke following MCA occlusion is correlated with desynchronization of widespread spontaneous local field potentials. Sci Rep 2022; 12:1744. [PMID: 35110588 PMCID: PMC8810838 DOI: 10.1038/s41598-022-05604-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022] Open
Abstract
In a rat model of ischemic stroke by permanent occlusion of the medial cerebral artery (pMCAo), we have demonstrated using continuous recordings by microelectrode array at the depth of the ischemic territory that there is an immediate wide-spread increase in spontaneous local field potential synchrony following pMCAo that was correlated with ischemic stroke damage, but such increase was not seen in control sham-surgery rats. We further found that the underpinning source of the synchrony increase is intermittent bursts of low multi-frequency oscillations. Here we show that such increase in spontaneous LFP synchrony after pMCAo can be reduced to pre-pMCAo baseline level by delivering early (immediately after pMCAo) protective sensory stimulation that reduced the underpinning bursts. However, the delivery of a late (3 h after pMCAo) destructive sensory stimulation had no influence on the elevated LFP synchrony and its underpinning bursts. Histology confirmed both protection for the early stimulation group and an infarct for the late stimulation group. These findings highlight the unexpected importance of spontaneous LFP and its synchrony as a predictive correlate of cerebral protection or stroke infarct during the hyperacute state following pMCAo and the potential clinical relevance of stimulation to reduce EEG synchrony in acute stroke.
Collapse
Affiliation(s)
- Waqas Rasheed
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Anirudh Wodeyar
- Department of Cognitive Science, University of California, Irvine, CA, USA
- Department of Statistics, University of California, Irvine, CA, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Ramesh Srinivasan
- Department of Cognitive Science, University of California, Irvine, CA, USA
- Department of Statistics, University of California, Irvine, CA, USA
| | - Ron D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Wang LC, Wei WY, Ho PC, Wu PY, Chu YP, Tsai KJ. Somatosensory Cortical Electrical Stimulation After Reperfusion Attenuates Ischemia/Reperfusion Injury of Rat Brain. Front Aging Neurosci 2021; 13:741168. [PMID: 34867274 PMCID: PMC8632773 DOI: 10.3389/fnagi.2021.741168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Objective: Ischemic stroke is an important cause of death and disability worldwide. Early reperfusion by thrombolysis or thrombectomy has improved the outcome of acute ischemic stroke. However, the therapeutic window for reperfusion therapy is narrow, and adjuvant therapy for neuroprotection is demanded. Electrical stimulation (ES) has been reported to be neuroprotective in many neurological diseases. In this study, the neuroprotective effect of early somatosensory cortical ES in the acute stage of ischemia/reperfusion injury was evaluated. Methods: In this study, the rat model of transient middle cerebral artery occlusion was used to explore the neuroprotective effect and underlying mechanisms of direct primary somatosensory (S1) cortex ES with an electric current of 20 Hz, 2 ms biphasic pulse, 100 μA for 30 min, starting at 30 min after reperfusion. Results: These results showed that S1 cortical ES after reperfusion decreased infarction volume and improved functional outcome. The number of activated microglia, astrocytes, and cleaved caspase-3 positive neurons after ischemia/reperfusion injury were reduced, demonstrating that S1 cortical ES alleviates inflammation and apoptosis. Brain-derived neurotrophic factor (BDNF) and phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway were upregulated in the penumbra area, suggesting that BDNF/TrkB signals and their downstream PI3K/Akt signaling pathway play roles in ES-related neuroprotection. Conclusion: This study demonstrates that somatosensory cortical ES soon after reperfusion can attenuate ischemia/reperfusion injury and is a promising adjuvant therapy for thrombolytic treatment after acute ischemic stroke. Advanced techniques and devices for high-definition transcranial direct current stimulation still deserve further development in this regard.
Collapse
Affiliation(s)
- Liang-Chao Wang
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yen Wei
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yi Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Ping Chu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Zhu J, Hancock AM, Qi L, Telkmann K, Shahbaba B, Chen Z, Frostig RD. Spatiotemporal dynamics of pial collateral blood flow following permanent middle cerebral artery occlusion in a rat model of sensory-based protection: a Doppler optical coherence tomography study. NEUROPHOTONICS 2019; 6:045012. [PMID: 31824979 PMCID: PMC6903432 DOI: 10.1117/1.nph.6.4.045012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/19/2019] [Indexed: 05/05/2023]
Abstract
There is a growing recognition regarding the importance of pial collateral flow in the protection from impending ischemic stroke both in preclinical and clinical studies. Collateral flow is also a major player in sensory stimulation-based protection from impending ischemic stroke. Doppler optical coherence tomography has been employed to image spatiotemporal patterns of collateral flow within the dorsal branches of the middle cerebral artery (MCA) as it provides a powerful tool for quantitative in vivo flow parameters imaging (velocity, flux, direction of flow, and radius of imaged branches). It was employed prior to and following dorsal permanent MCA occlusion (pMCAo) in rat models of treatment by protective sensory stimulation, untreated controls, or sham surgery controls. Unexpectedly, following pMCAo in the majority of subjects, some MCA branches continued to show anterograde blood flow patterns over time despite severing of the MCA. Further, in the presence of protective sensory stimulation, the anterograde velocity and flux were stronger and lasted longer than in retrograde flow branches, even within different branches of single subjects, but stimulated retrograde branches showed stronger flow parameters at 24 h. Our study suggests that the spatiotemporal patterns of collateral-based dorsal MCA flow are dynamic and provide a detailed description on the differential effects of protective sensory stimulation.
Collapse
Affiliation(s)
- Jiang Zhu
- University of California Irvine, Beckman Laser Institute, Irvine, California, United States
| | - Aneeka M. Hancock
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
| | - Li Qi
- University of California Irvine, Beckman Laser Institute, Irvine, California, United States
| | - Klaus Telkmann
- University of California Irvine, Department of Statistics, Irvine, California, United States
| | - Babak Shahbaba
- University of California Irvine, Department of Statistics, Irvine, California, United States
| | - Zhongping Chen
- University of California Irvine, Beckman Laser Institute, Irvine, California, United States
- University of California Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Ron D. Frostig
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
- University of California Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California Irvine, Center for the Neurobiology of Learning and Memory, Irvine, California, United States
| |
Collapse
|
7
|
Murmu RP, Fordsmann JC, Cai C, Brazhe A, Thomsen KJ, Lauritzen M. Sensory Stimulation-Induced Astrocytic Calcium Signaling in Electrically Silent Ischemic Penumbra. Front Aging Neurosci 2019; 11:223. [PMID: 31496947 PMCID: PMC6712371 DOI: 10.3389/fnagi.2019.00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/07/2019] [Indexed: 11/14/2022] Open
Abstract
Middle cerebral artery occlusion (MCAO) induces ischemia characterized by a densely ischemic focus, and a less densely ischemic penumbral zone in which neurons and astrocytes display age-dependent dynamic variations in spontaneous Ca2+ activities. However, it is unknown whether penumbral nerve cells respond to sensory stimulation early after stroke onset, which is critical for understanding stimulation-induced stroke therapy. In this study, we investigated the ischemic penumbra’s capacity to respond to somatosensory input. We examined adult (3- to 4-month-old) and old (18- to 24-month-old) male mice at 2–4 h after MCAO, using two-photon microscopy to record somatosensory stimulation-induced neuronal and astrocytic Ca2+ signals in the ischemic penumbra. In both adult and old mice, MCAO abolished spontaneous and stimulation-induced electrical activity in the penumbra, and strongly reduced stimulation-induced Ca2+ responses in neuronal somas (35–82%) and neuropil (92–100%) in the penumbra. In comparison, after stroke, stimulation-induced astrocytic Ca2+ responses in the penumbra were only moderately reduced (by 54–62%) in adult mice, and were even better preserved (reduced by 31–38%) in old mice. Our results suggest that somatosensory stimulation evokes astrocytic Ca2+ activity in the ischemic penumbra. We hypothesize that the relatively preserved excitability of astrocytes, most prominent in aged mice, may modulate protection from ischemic infarcts during early somatosensory activation of an ischemic cortical area. Future neuroprotective efforts in stroke may target spontaneous or stimulation-induced activity of astrocytes in the ischemic penumbra.
Collapse
Affiliation(s)
- Reena P Murmu
- Translational Neurobiology Group, Department of Neuroscience, Panum Institute, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Jonas C Fordsmann
- Translational Neurobiology Group, Department of Neuroscience, Panum Institute, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Changsi Cai
- Translational Neurobiology Group, Department of Neuroscience, Panum Institute, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Alexey Brazhe
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Kirsten J Thomsen
- Translational Neurobiology Group, Department of Neuroscience, Panum Institute, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| | - Martin Lauritzen
- Translational Neurobiology Group, Department of Neuroscience, Panum Institute, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
8
|
Hancock AM, Frostig RD. Hypertension prevents a sensory stimulation-based collateral therapeutic from protecting the cortex from impending ischemic stroke damage in a spontaneously hypersensitive rat model. PLoS One 2018; 13:e0206291. [PMID: 30352082 PMCID: PMC6198990 DOI: 10.1371/journal.pone.0206291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 10/10/2018] [Indexed: 12/02/2022] Open
Abstract
Assessing potential stroke treatments in the presence of risk factors can improve screening of treatments prior to clinical trials and is important in testing the efficacy of treatments in different patient populations. Here, we test our noninvasive, nonpharmacological sensory stimulation treatment in the presence of the main risk factor for ischemic stroke, hypertension. Utilizing functional imaging, blood flow imaging, and histology, we assessed spontaneously hypertensive rats (SHRs) pre- and post-permanent middle cerebral artery occlusion (pMCAO). Experimental groups included a treatment SHR group (sensory-stimulated group), control untreated SHR group (no sensory stimulation), and a treated (sensory-stimulated) Wistar-Kyoto normotensive group. Unlike our previous studies, which showed sensory-based complete protection from impending ischemic cortical stroke damage in rats as seen in the treated Wistar-Kyoto group, we found that SHRs at 24hr post-pMCAO lacked evoked cortical activation, had a significant reduction in blood flow within the MCA, and sustained very large infarcts regardless of whether they received stimulation treatment. If translatable, this work highlights a potential need for a combined treatment plan when delivering sensory stimulation treatment in this patient population.
Collapse
Affiliation(s)
- Aneeka M. Hancock
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
| | - Ron D. Frostig
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
9
|
von Bornstädt D, Gertz K, Lagumersindez Denis N, Seners P, Baron JC, Endres M. Sensory stimulation in acute stroke therapy. J Cereb Blood Flow Metab 2018; 38:1682-1689. [PMID: 30073883 PMCID: PMC6168904 DOI: 10.1177/0271678x18791073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/14/2018] [Accepted: 06/17/2018] [Indexed: 02/06/2023]
Abstract
The beneficial effects of cortical activation for functional recovery after ischemic stroke have been well described. However, little is known about the role of early sensory stimulation, i.e. stimulation during first 6 h after stroke onset even during acute treatment. In recent years, various preclinical studies reported significant effects of acute sensory stimulation that range from entire neuroprotection to increased infarct volumes by 30-50%. Systematic knowledge about the effect of acute sensory stimulation on stroke outcome is highly relevant as stroke patients are subject to uncontrolled sensory stimulation during transport, acute treatment, and critical care. This article discusses the current stage of knowledge about acute sensory stimulation and provides directions for future experimental and clinical trials.
Collapse
Affiliation(s)
- Daniel von Bornstädt
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Center for Stroke Research Berlin, Berlin, Germany
| | - Karen Gertz
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
| | - Nielsen Lagumersindez Denis
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
| | - Pierre Seners
- Department of Neurology, Hôpital Sainte-Anne, University Paris Descartes, INSERM U894, France
| | - Jean-Claude Baron
- Department of Neurology, Hôpital Sainte-Anne, University Paris Descartes, INSERM U894, France
| | - Matthias Endres
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site, Berlin, Germany
| |
Collapse
|
10
|
Hancock AM, Frostig RD. Testing the effects of sensory stimulation as a collateral-based therapeutic for ischemic stroke in C57BL/6J and CD1 mouse strains. PLoS One 2017; 12:e0183909. [PMID: 28902897 PMCID: PMC5597132 DOI: 10.1371/journal.pone.0183909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022] Open
Abstract
Utilizing a rat model of ischemic stroke, we have previously shown that sensory stimulation can completely protect rats from impending ischemic damage of cortex if this treatment is delivered within the first two hours post-permanent middle cerebral artery occlusion (pMCAo). The current study sought to extend our findings in rats to mice, which would allow new avenues of research not available in rats. Thus, young adult C57BL/6J and CD1 mice were tested for protection from ischemic stroke with the same protective sensory stimulation-based treatment. Cortical activity and blood flow were assessed with intrinsic signal optical imaging (ISOI) and laser speckle imaging (LSI), respectively, and histological analysis (TTC) was performed at the completion of the experiments. Standing in stark contrast to the positive results observed in rats, in both strains we found that there were no differences between treated and untreated mice at 24 hours post-pMCAo in terms of infarct volume, negative functional imaging results, and major reduction in retrograde collateral blood flow as compared to pre-pMCAo baseline and surgical controls. Also, no differences were found between the strains in terms of theses variables. Potential reasons for the differences between rats and mice are discussed.
Collapse
Affiliation(s)
- Aneeka M. Hancock
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
| | - Ron D. Frostig
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
11
|
Guo T, Li H, Lv Y, Lu H, Niu J, Sun J, Yang GY, Ren C, Tong S. Pulsed Transcranial Ultrasound Stimulation Immediately After The Ischemic Brain Injury is Neuroprotective. IEEE Trans Biomed Eng 2015; 62:2352-7. [PMID: 25935023 DOI: 10.1109/tbme.2015.2427339] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
GOAL We applied a low-intensity pulsed transcranial ultrasound stimulation (pTUS) to the ischemic cortex after a distal middle cerebral artery occlusion (dMCAO) to study whether pTUS is capable of protecting brain from ischemic injury. METHODS Rats were randomly assigned to Sham (n = 6), Control (n = 16), and pTUS (n = 16) groups. The pTUS-treated rats were subjected to 60-min ultrasonic stimulation immediately after the ischemia. After 48 h, the sensorimotor-related behavioral outcomes were assessed by a neurological severity score (NSS), and the permanent brain injury was assessed by the histologic analysis of TTC staining of brain slices. RESULTS pTUS group showed significantly lower NSS (n = 10, 5.5 ± 2.5) than the Control group ( n = 10, 10.5 ±1.4) (p < 0.01). Concordantly, the ischemic lesion was significantly reduced after receiving pTUS immediately after dMCAO. The cortical infarct volume in the control group was more than threefold of the pTUS group (43.39% ± 2.33%, n = 16 versus 13.78% ± 8.18%, n = 16, p < 0.01). Immunohistochemical staining indicated reduction of neutrophils in the affected area, and laser speckle imaging showed significant increase of a cerebral blood flow after pTUS, which consistently supported the neuroprotection of pTUS in ischemic brain injury. CONCLUSION Both behavior and histological results suggested that pTUS on ischemic core immediately after ischemic stroke could be neuroprotective. SIGNIFICANCE The noninvasiveness and high spatiotemporal resolution of pTUS makes it a unique neuromodulation technique in comparison with the current TMS and tDCS.
Collapse
|
12
|
Hancock AM, Lay CC, Davis MF, Frostig RD. Sensory Stimulation-Based Complete Protection from Ischemic Stroke Remains Stable at 4 Months Post-Occlusion of MCA. JOURNAL OF NEUROLOGICAL DISORDERS 2013; 1:135. [PMID: 24634892 PMCID: PMC3952275 DOI: 10.4172/2329-6895.1000135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Previous research from our lab has shown that when using a rodent model of ischemic stroke (permanent middle cerebral artery occlusion), mild sensory stimulation, when delivered within two hours of ischemic onset, completely protects the cortex from impending ischemic stroke damage when assessed 24 hours post-occlusion. However, the long-term stability of this protection remains unclear. Using intrinsic signal optical imaging for assessment of cortical function, laser speckle imaging for assessment of blood flow, a battery of behavioral tests and cresyl violet for histological assessment, the present study examined whether this protection was long-lasting. When assessed 4 months post-occlusion (this length of time being equivalent to 10-15 years in humans), rats receiving sensory stimulation treatment immediately after ischemic onset exhibit normal neuronal and vascular function, and they are behaviorally and histologically equivalent to healthy controls (surgical shams). Thus, the complete neuroprotection due to cortical activation via sensory stimulation remains stable with time. These findings add support to the translational potential of this sensory stimulation-based treatment.
Collapse
Affiliation(s)
- Aneeka M Hancock
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- The Center for the Neurobiology of Learning and Memory, University of California, Irvine, California, USA
| | - Christopher C Lay
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- The Center for the Neurobiology of Learning and Memory, University of California, Irvine, California, USA
- The Center for Hearing Research, University of California, Irvine, California, USA
| | - Melissa F Davis
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- The Center for the Neurobiology of Learning and Memory, University of California, Irvine, California, USA
| | - Ron D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- The Center for the Neurobiology of Learning and Memory, University of California, Irvine, California, USA
- The Center for Hearing Research, University of California, Irvine, California, USA
| |
Collapse
|
13
|
Frostig RD, Lay CC, Davis MF. A rat's whiskers point the way toward a novel stimulus-dependent, protective stroke therapy. Neuroscientist 2013; 19:313-28. [PMID: 23047156 PMCID: PMC3710106 DOI: 10.1177/1073858412462607] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stroke is the fourth leading cause of death in the United States and the leading cause of long-term disability. Ischemic stroke, due to an interruption in blood supply, is particularly prevalent; 87% of all strokes are ischemic. Unfortunately, current options for acute treatment are extremely limited and there is a great need for new treatment strategies. This review will discuss evidence that mild sensory stimulation can completely protect the jeopardized brain from an impending stroke in a rodent model. When delivered within the first 2 hours following ischemic onset, this stimulation results in complete protection, including a full reestablishment of cortical function, sensorimotor capabilities, and blood flow. Identical stimulation, however, initiated 3 hours following ischemic onset, results in an increase in damage compared with untreated animals. The protective effect is not specific to a single sensory modality, anesthesia, or age, and increasing evoked cortical activity by increasing stimulation accelerates recovery. Taken together, these findings demonstrate that cortical activity is a critical factor for protection and suggest a new, exciting potential avenue for the development of acute stroke treatment strategies that may produce a noninvasive, drug-free, equipment-free, and side effect-free means of protecting from ischemic stroke.
Collapse
Affiliation(s)
- Ron D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
14
|
Lay CC, Jacobs N, Hancock AM, Zhou Y, Frostig RD. Early stimulation treatment provides complete sensory-induced protection from ischemic stroke under isoflurane anesthesia. Eur J Neurosci 2013; 38:2445-52. [PMID: 23586641 DOI: 10.1111/ejn.12217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/07/2013] [Accepted: 03/01/2013] [Indexed: 11/30/2022]
Abstract
Using a rodent model of ischemia [permanent middle cerebral artery occlusion (pMCAO)], previous studies demonstrated that whisker stimulation treatment completely protects the cortex from impending stroke when initiated within 2 h following pMCAO. When initiated 3 h post-pMCAO, the identical treatment exacerbates stroke damage. Rats in these studies, however, were anesthetised with sodium pentobarbital, whereas human stroke patients are typically awake. To overcome this drawback, our laboratory has begun to use the anesthetic isoflurane, which allows rats to rapidly recover from pMCAO within minutes, to test stimulation treatment in awake rats and to determine whether isoflurane has an effect upon the pMCAO stroke model. We found no difference in infarct volume between pMCAO in untreated controls under either sodium pentobarbital or isoflurane, and the primary finding was that rats that received treatment immediately post-pMCAO maintain cortical function and no stroke damage, whereas rats that received treatment 3 h post-pMCAO exhibited eliminated cortical activity and extensive stroke damage. The only difference between anesthetics was the broad extent of evoked cortical activity observed during both functional imaging and electrophysiological recording, suggesting that the extent of evoked activity evident under isoflurane anesthesia is supported by underlying neuronal activity. Given the high degree of similarity with previous data, we conclude that the pMCAO stroke model is upheld with the use of isoflurane. This study demonstrated that the isoflurane-anesthetised rat pMCAO model can be used for cerebrovascular studies, and allows for highly detailed investigation of potential novel treatments for ischemic stroke using awake, behaving animals.
Collapse
Affiliation(s)
- Christopher C Lay
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | | | | | | | | |
Collapse
|