1
|
Kaur S, Rubal, Kaur S, Kaur A, Kaur S, Gupta S, Mittal S, Dhiman M. A cross-sectional study to correlate antioxidant enzymes, oxidative stress and inflammation with prevalence of hypertension. Life Sci 2023; 313:121134. [PMID: 36544300 DOI: 10.1016/j.lfs.2022.121134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 09/19/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
AIMS Hypertension a multifactorial consequence of environmental factors, life style and genetics is the well-recognized risk factor contributing to coronary heart diseases. The antioxidant imbalance, excessive reactive oxygen species (ROS) leads to oxidative stress which is pivotal in progression of hypertension. The present study aims to understand the complex interaction between oxidative stress, inflammation and antioxidant system which is crucial to maintain cellular homeostasis which further can exaggerate hypertension pathophysiology. MATERIALS AND METHODS The metabolic profile of hypertensive and normotensive subjects from Malwa region, Punjab was compared by estimating lipid profile, cardiac, hepatic and renal markers. The oxidative stress markers (protein carbonyls and lipid peroxidation), inflammatory markers (Nitric oxide, Myeloperoxidase and advanced oxygen protein products), and antioxidant enzymes (Superoxide Dismutase, Catalase, and Total Antioxidant Capacity) were analyzed. KEY FINDINGS It is observed that the metabolic markers are altered in hypertensive subjects which further these subjects showed increased oxidative, inflammatory profile and compromised antioxidant status when compared with normotensive subjects. Co-relation analysis validated the involvement of inflammation and oxidative stress in impaired endothelial function and vital organ damage. SIGNIFICANCE OF STUDY These markers may act as early indicators of hypertension which usually do not show any physical symptoms, thus can be diagnosed and treated at the earliest. The current study suggests that disturbed homeostasis, a consequence of altered interaction between antioxidant system and inflammatory events raises the oxidative stress levels which eventually leads to hypertension and associated complications. These indicators can serve as early indicators of future chronic complications of hypertension.
Collapse
Affiliation(s)
- Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Rubal
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Satveer Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Amandeep Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Sandeep Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Sushil Gupta
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India
| | - Sunil Mittal
- Department of Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab Bathinda, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab Bathinda, India.
| |
Collapse
|
2
|
Choudhuri S, Garg NJ. Platelets, Macrophages, and Thromboinflammation in Chagas Disease. J Inflamm Res 2022; 15:5689-5706. [PMID: 36217453 PMCID: PMC9547606 DOI: 10.2147/jir.s380896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Chagas disease (CD) is a major health problem in the Americas and an emerging health problem in Europe and other nonendemic countries. Several studies have documented persistence of the protozoan parasite Trypanosoma cruzi, and oxidative and inflammatory stress are major pathogenic factor. Mural and cardiac thrombi, cardiac arrhythmias, and cardiomyopathy are major clinical features of CD. During T. cruzi infection, parasite-released factors induce endothelial dysfunction along with platelet (PLT) and immune-cell activation. PLTs have a fundamental role in maintaining hemostasis and preventing bleeding after vascular injury. Excessive activation of PLTs and coagulation cascade can result in thrombosis and thromboembolic events, which are recognized to occur in seropositive individuals in early stages of CD when clinically symptomatic heart disease is not apparent. Several host and parasite factors have been identified to signal hypercoagulability and increase the risk of ischemic stroke in early phases of CD. Further, PLT interaction with immune cells and their role in host defense against pathogens and inflammatory processes have only recently been recognized and evolving. In the context of parasitic diseases, PLTs function in directly responding to T. cruzi infection, and PLT interactions with immune cells in shaping the proinflammatory or immunoregulatory function of monocytes, macrophages, and neutrophils remains elusive. How T. cruzi infection alters systemic microenvironment conditions to influence PLT and immune-cell interactions is not understood. In this review, we discuss the current literature, and extrapolate the mechanistic situations to explain how PLT and innate immune cell (especially monocytes and macrophages) interactions might be sustaining hypercoagulability and thromboinflammation in chronic CD.
Collapse
Affiliation(s)
- Subhadip Choudhuri
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Nisha J Garg
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
3
|
Gupta KB, Dhiman M, Mantha AK. Gliadin induced oxidative stress and altered cellular responses in human intestinal cells: An in‐vitro study to understand the cross‐talk between the transcription factor Nrf‐2 and multifunctional APE1 enzyme. J Biochem Mol Toxicol 2022; 36:e23096. [DOI: 10.1002/jbt.23096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Kunj Bihari Gupta
- Department of Microbiology, School of Biological Sciences Central University of Punjab Bathinda Punjab India
| | - Monisha Dhiman
- Department of Microbiology, School of Biological Sciences Central University of Punjab Bathinda Punjab India
| | - Anil Kumar Mantha
- Department of Zoology, School of Biological Sciences Central University of Punjab Bathinda Punjab India
| |
Collapse
|
4
|
Use of a small molecule integrin activator as a systemically administered vaccine adjuvant in controlling Chagas disease. NPJ Vaccines 2021; 6:114. [PMID: 34497271 PMCID: PMC8426359 DOI: 10.1038/s41541-021-00378-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/13/2021] [Indexed: 01/07/2023] Open
Abstract
The development of suitable safe adjuvants to enhance appropriate antigen-driven immune responses remains a challenge. Here we describe the adjuvant properties of a small molecule activator of the integrins αLβ2 and α4β1, named 7HP349, which can be safely delivered systemically independent of antigen. 7HP349 directly activates integrin cell adhesion receptors crucial for the generation of an immune response. When delivered systemically in a model of Chagas disease following immunization with a DNA subunit vaccine encoding candidate T. cruzi antigens, TcG2 and TcG4, 7HP349 enhanced the vaccine efficacy in both prophylactic and therapeutic settings. In a prophylactic setting, mice immunized with 7HP349 adjuvanted vaccine exhibited significantly improved control of acute parasite burden in cardiac and skeletal muscle as compared to vaccination alone. When administered with vaccine therapeutically, parasite burden was again decreased, with the greatest adjuvant effect of 7HP349 being noted in skeletal muscle. In both settings, adjuvantation with 7HP349 was effective in decreasing pathological inflammatory infiltrate, improving the integrity of tissue, and controlling tissue fibrosis in the heart and skeletal muscle of acutely and chronically infected Chagas mice. The positive effects correlated with increased splenic frequencies of CD8+T effector cells and an increase in the production of IFN-γ and cytolytic molecules (perforin and granzyme) by the CD4+ and CD8+ effector and central memory subsets in response to challenge infection. This demonstrates that 7HP349 can serve as a systemically administered adjuvant to enhance T cell-mediated immune responses to vaccines. This approach could be applied to numerous vaccines with no reformulation of existing stockpiles.
Collapse
|
5
|
Wan X, Garg NJ. Sirtuin Control of Mitochondrial Dysfunction, Oxidative Stress, and Inflammation in Chagas Disease Models. Front Cell Infect Microbiol 2021; 11:693051. [PMID: 34178728 PMCID: PMC8221535 DOI: 10.3389/fcimb.2021.693051] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi is a digenetic parasite that requires triatomines and mammalian host to complete its life cycle. T. cruzi replication in mammalian host induces immune-mediated cytotoxic proinflammatory reactions and cellular injuries, which are the common source of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during the acute parasitemic phase. Mitochondrial dysfunction of electron transport chain has been proposed as a major source of superoxide release in the chronic phase of infection, which renders myocardium exposed to sustained oxidative stress and contributes to Chagas disease pathology. Sirtuin 1 (SIRT1) is a class III histone deacetylase that acts as a sensor of redox changes and shapes the mitochondrial metabolism and inflammatory response in the host. In this review, we discuss the molecular mechanisms by which SIRT1 can potentially improve mitochondrial function and control oxidative and inflammatory stress in Chagas disease.
Collapse
Affiliation(s)
- Xianxiu Wan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
6
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
7
|
Kaur M, Gupta KB, Thakur S, Kaur S, Dhiman M. Parthenium hysterophorus mediated inflammation and hyper-responsiveness via NF-κB pathway in human A549 lung cancer cell line. ENVIRONMENTAL TOXICOLOGY 2020; 35:1241-1250. [PMID: 32686900 DOI: 10.1002/tox.22989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Being one of the notorious weed P. hysterophorus has invaded almost every part India and is the lead cause of skin allergies and severe dermatitis among farmers and rural population. It is an invasive obnoxious weed capable of surviving extreme environmental conditions and various parts of this plant are reported to cause severe contact allergies in humans due to the presence of high concentrations of toxic sesquiterpene lactones viz. parthenin. It can stimulate numerous cellular and immune responses that may translate into Oxidative stress, allergies, and inflammation. The effect of P. hysterophorus flower extract was evaluated on cell viability, oxidative stress and inflammation in A549 lung cancer cell line by spectrophotometric and reverse transcriptase-polymerase chain reaction methods. Schrodinger software based docking was performed for possible interactions studies. The A549 cells treated with P. hysterophorus flower extract favors increase in cell viability, reactive oxygen species generation. The mRNA expression of proinflammatory cytokines such as IFN-γ, TNF-α, and IL-1β was significantly increased whereas no change in IL-18 expression was observed. Significant increase in protein expression of NF-κB was observed, suggesting the role of NF-κB signalling in allergic responses. The docking studies demonstrated the potential interaction between Parthenin and NF-κB/IL-1β/IL-18 suggesting their activation leading to inflammation. The current study emphasize that P. hysterophorus mediates oxidative stress, and inflammatory process via alterations in expression of proinflammatory cytokines such as IL-1β, IFN-γ through NF-κB activation which was also confirmed in docking studies. Cellular and molecular mechanisms involved in pathogenesis of allergic/chronic inflammation and severe dermatitis need to be further investigated to identify specific binding partners responsible for severe inflammation which can provide some leads in developing effective targets against severe dermatitis and skin allergies.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Kunj Bihari Gupta
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Shweta Thakur
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
8
|
Upadhyay S, Mantha AK, Dhiman M. Glycyrrhiza glabra (Licorice) root extract attenuates doxorubicin-induced cardiotoxicity via alleviating oxidative stress and stabilising the cardiac health in H9c2 cardiomyocytes. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112690. [PMID: 32105749 DOI: 10.1016/j.jep.2020.112690] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Doxorubicin (DOX) is an effective anti-neoplastic drug, however; it has downside effects on cardiac health and other vital organs. The herbal remedies used in day to day life may have a beneficial effect without disturbing the health of the vital organs. Glycyrrhiza glabra L. is a ligneous perennial shrub belonging to Leguminosae/Fabaceae/Papilionaceae family growing in Mediterranean region and Asia and widespread in Turkey, Italy, Spain, Russia, Syria, Iran, China, India and Israel. Commonly known as mulaithi in north India, G. glabra has glycyrrhizin, glycyrrhetic acid, isoliquiritin, isoflavones, etc., which have been reported for several pharmacological activities such as anti-demulcent, anti-ulcer, anti-cancer, anti-inflammatory and anti-diabetic. AIM OF THE STUDY The objective of the present study is to investigate the interaction between the molecular factors like PPAR-α/γ and SIRT-1 during cardiac failure arbitrated by DOX under in vitro conditions and role of Glycyrrhiza glabra (Gg) root extract in alleviating these affects. MATERIALS AND METHODS In the present study, we have examined the DOX induced responses in H9c2 cardiomyocytes and investigated the role of phytochemical Glycyrrhiza glabra in modulating these affects. MTT assay was done to evaluate the cell viability, Reactive Oxygen Species (ROS)/Reactive Nitrogen Species (RNS) levels, mitochondrial ROS, mitochondrial membrane potential was estimated using fluorescent probes. The oxidative stress in terms of protein carbonylation, lipid peroxidation and DNA damage was detected via spectrophotometric methods and immune-fluorescence imaging. The cardiac markers and interaction between SIRT-1 and PPAR-α/γ was measured using Real-Time PCR, Western blotting and Co-immunoprecipitation based studies. RESULTS The Glycyrrhiza glabra (Gg) extracts maintained the membrane integrity and improved the lipid homeostasis and stabilized cytoskeletal element actin. Gg phytoextracts attenuated aggravated ROS level, repaired the antioxidant status and consequently, assisted in repairing the DNA damage and mitochondrial function. Further, the expression of hypertrophic markers in the DOX treated cardiomyocytes reconciled the expression factors both at the transcriptional and translational levels after Gg treatment. SIRT-1 mediated pathway and its downstream activator PPARs are significant in maintaining the cellular functions. It was observed that the Gg extract allows regaining the nuclear SIRT-1 and PPAR-γ level which was otherwise reduced with DOX treatment in H9c2 cardiomyocytes. The co-immunoprecipitation (Co-IP) documented that SIRT-1 interacts with PPAR-α in the untreated control H9c2 cardiomyocytes whereas DOX treatment interferes and diminishes this interaction however the Gg treatment maintains this interaction. Knocking down SIRT-1 also downregulated expression of PPAR-α and PPAR-γ in DOX treated cells and Gg treatment was able to enhance the expression of PPAR-α and PPAR-γ in SIRT-1 knocked down cardiomyocytes. CONCLUSIONS The antioxidant property of Gg defend the cardiac cells against the DOX induced toxicity via; 1) reducing the oxidative stress, 2) maintaining the mitochondrial functions, 3) regulating lipid homeostasis and cardiac metabolism through SIRT-1 pathway, and 4) conserving the cardiac hypertrophy and hence preserving the cardiomyocytes health. Therefore, Gg can be recommended as a healthy supplement with DOX towards cancer therapeutics associated cardiotoxicity.
Collapse
Affiliation(s)
- Shishir Upadhyay
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, Punjab, India.
| |
Collapse
|
9
|
Rios L, Campos EE, Menon R, Zago MP, Garg NJ. Epidemiology and pathogenesis of maternal-fetal transmission of Trypanosoma cruzi and a case for vaccine development against congenital Chagas disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165591. [PMID: 31678160 PMCID: PMC6954953 DOI: 10.1016/j.bbadis.2019.165591] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Trypanos o ma cruzi (T. cruzi or Tc) is the causative agent of Chagas disease (CD). It is common for patients to suffer from non-specific symptoms or be clinically asymptomatic with acute and chronic conditions acquired through various routes of transmission. The expecting women and their fetuses are vulnerable to congenital transmission of Tc. Pregnant women face formidable health challenges because the frontline antiparasitic drugs, benznidazole and nifurtimox, are contraindicated during pregnancy. However, it is worthwhile to highlight that newborns can be cured if they are diagnosed and given treatment in a timely manner. In this review, we discuss the pathogenesis of maternal-fetal transmission of Tc and provide a justification for the investment in the development of vaccines against congenital CD.
Collapse
Affiliation(s)
- Lizette Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - E Emanuel Campos
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - M Paola Zago
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina.
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
10
|
Lokugamage N, Choudhuri S, Davies C, Chowdhury IH, Garg NJ. Antigen-Based Nano-Immunotherapy Controls Parasite Persistence, Inflammatory and Oxidative Stress, and Cardiac Fibrosis, the Hallmarks of Chronic Chagas Cardiomyopathy, in A Mouse Model of Trypanosoma cruzi Infection. Vaccines (Basel) 2020; 8:vaccines8010096. [PMID: 32098116 PMCID: PMC7157635 DOI: 10.3390/vaccines8010096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Chagas cardiomyopathy is caused by Trypanosoma cruzi (Tc). We identified two candidate antigens (TcG2 and TcG4) that elicit antibodies and T cell responses in naturally infected diverse hosts. In this study, we cloned TcG2 and TcG4 in a nanovector and evaluated whether nano-immunotherapy (referred as nano2/4) offers resistance to chronic Chagas disease. For this, C57BL/6 mice were infected with Tc and given nano2/4 at 21 and 42 days post-infection (pi). Non-infected, infected, and infected mice treated with pcDNA3.1 expression plasmid encoding TcG2/TcG4 (referred as p2/4) were used as controls. All mice responded to Tc infection with expansion and functional activation of splenic lymphocytes. Flow cytometry showed that frequency of splenic, poly-functional CD4+ and CD8+ T cells expressing interferon-γ, perforin, and granzyme B were increased by immunotherapy (Tc.nano2/4 > Tc.p2/4) and associated with 88%–99.7% decline in cardiac and skeletal (SK) tissue levels of parasite burden (Tc.nano2/4 > Tc.p2/4) in Chagas mice. Subsequently, Tc.nano2/4 mice exhibited a significant decline in peripheral and tissues levels of oxidative stress (e.g., 4-hydroxynonenal, protein carbonyls) and inflammatory infiltrate that otherwise were pronounced in Chagas mice. Further, nano2/4 therapy was effective in controlling the tissue infiltration of pro-fibrotic macrophages and established a balanced environment controlling the expression of collagens, metalloproteinases, and other markers of cardiomyopathy and improving the expression of Myh7 (encodes β myosin heavy chain) and Gsk3b (encodes glycogen synthase kinase 3) required for maintaining cardiac contractility in Chagas heart. We conclude that nano2/4 enhances the systemic T cell immunity that improves the host’s ability to control chronic parasite persistence and Chagas cardiomyopathy.
Collapse
Affiliation(s)
- Nandadeva Lokugamage
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
| | - Subhadip Choudhuri
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
| | - Carolina Davies
- Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta 4400, Argentina;
| | - Imran Hussain Chowdhury
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
- Institute for Human Infections and Immunity, UTMB, Galveston, TX 77555, USA
- Correspondence: ; Tel.: +1-409-747-6865
| |
Collapse
|
11
|
Rios LE, Vázquez-Chagoyán JC, Pacheco AO, Zago MP, Garg NJ. Immunity and vaccine development efforts against Trypanosoma cruzi. Acta Trop 2019; 200:105168. [PMID: 31513763 PMCID: PMC7409534 DOI: 10.1016/j.actatropica.2019.105168] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/28/2022]
Abstract
Trypanosoma cruzi (T. cruzi) is the causative agent for Chagas disease (CD). There is a critical lack of methods for prevention of infection or treatment of acute infection and chronic disease. Studies in experimental models have suggested that the protective immunity against T. cruzi infection requires the elicitation of Th1 cytokines, lytic antibodies and the concerted activities of macrophages, T helper cells, and cytotoxic T lymphocytes (CTLs). In this review, we summarize the research efforts in vaccine development to date and the challenges faced in achieving an efficient prophylactic or therapeutic vaccine against human CD.
Collapse
Affiliation(s)
- Lizette E Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Antonio Ortega Pacheco
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - M Paola Zago
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
12
|
Wen JJ, Garg NJ. Manganese superoxide dismutase deficiency exacerbates the mitochondrial ROS production and oxidative damage in Chagas disease. PLoS Negl Trop Dis 2018; 12:e0006687. [PMID: 30044789 PMCID: PMC6078326 DOI: 10.1371/journal.pntd.0006687] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/06/2018] [Accepted: 07/13/2018] [Indexed: 02/04/2023] Open
Abstract
In this study, we have investigated the effects of manganese superoxide dismutase (SOD2 or MnSOD) deficiency on mitochondrial function and oxidative stress during Chagas disease. For this, C57BL/6 wild type (WT) and MnSOD+/- mice were infected with Trypanosoma cruzi (Tc), and evaluated at 150 days’ post-infection that corresponded to chronic disease phase. Genetic deletion of SOD2 decreased the expression and activity of MnSOD, but it had no effect on the expression of other members of the SOD family. The myocardial expression and activity of MnSOD were significantly decreased in chronically infected WT mice, and it was further worsened in MnSOD+/- mice. Chronic T. cruzi infection led to a decline in mitochondrial complex I and complex II driven, ADP-coupled respiration and ATP synthesis in the myocardium of WT mice. The baseline oxidative phosphorylation (OXPHOS) capacity in MnSOD+/- mice was decreased, and it had an additive effect on mitochondrial dysregulation of ATP synthesis capacity in chagasic myocardium. Further, MnSOD deficiency exacerbated the mitochondrial rate of reactive oxygen species (ROS) production and myocardial oxidative stress (H2O2, protein carbonyls, malondialdehyde, and 4-hydroxynonenal) in Chagas disease. Peripheral and myocardial parasite burden and inflammatory response (myeloperoxidase, IL-6, lactate dehydrogenase, inflammatory infiltrate) were increased in all chagasic WT and MnSOD+/- mice. We conclude that MnSOD deficiency exacerbates the loss in mitochondrial function and OXPHOS capacity and enhances the myocardial oxidative damage in chagasic cardiomyopathy. Mitochondria targeted, small molecule mitigators of MnSOD deficiency will offer potential benefits in averting the mitochondrial dysfunction and chronic oxidative stress in Chagas disease. Infection by Trypanosoma cruzi parasitic protozoan remains endemic in Latin America. After acute parasitemia phase is controlled by host immune system, infected individuals remain clinically silent but manifest a number of micro and macro cardiac injuries for several years. Eventually many of the infected individuals develop chronic cardiomyopathy that leads to heart failure and sudden death. Cardiac muscle cells are rich in mitochondria and manganese superoxide dismutase (MnSOD) is the chief superoxide scavenging enzyme in the mitochondria. In this study, we show that a deficiency of MnSOD exacerbates the T. cruzi induced mitochondrial dysfunction of the electron transport chain and energy production in the heart. Further, MnSOD deficiency resulted in increased mitochondrial release of oxidants and caused excessive oxidative damage in the chagasic heart. Our results suggest that small molecule agonists of MnSOD will have potential utility as adjuvant therapy in preventing the development of chronic Chagas disease in infected individuals.
Collapse
Affiliation(s)
- Jake J. Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Department of Pathology, UTMB, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, UTMB, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
The activation of macrophage respiratory burst in response to infection with Trypanosoma cruzi inflicts oxidative damage to the host’s tissues. For decades, the role of reactive oxygen species (ROS) in the elimination of T. cruzi was taken for granted, but recent evidence suggests parasite growth is stimulated in oxidative environments. It is still a matter of debate whether indeed oxidative environments provide ideal conditions (e.g., iron availability in macrophages) for T. cruzi growth and whether indeed ROS signals directly to stimulate growth. Nitric oxide (NO) and ROS combine to form peroxynitrite, participating in the killing of phagocytosed parasites by activated macrophages. In response to infection, mitochondrial ROS are produced by cardiomyocytes. They contribute to oxidative damage that persists at the chronic stage of infection and is involved in functional impairment of the heart. In this review, we discuss how oxidative stress helps parasite growth during the acute stage and how it participates in the development of cardiomyopathy at the chronic stage.
Collapse
|
14
|
Wen JJ, Porter C, Garg NJ. Inhibition of NFE2L2-Antioxidant Response Element Pathway by Mitochondrial Reactive Oxygen Species Contributes to Development of Cardiomyopathy and Left Ventricular Dysfunction in Chagas Disease. Antioxid Redox Signal 2017; 27:550-566. [PMID: 28132522 PMCID: PMC5567598 DOI: 10.1089/ars.2016.6831] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS We investigated the effects of mitochondrial reactive oxygen species (mtROS) on nuclear factor (erythroid 2)-like 2 (NFE2L2) transcription factor activity during Trypanosoma cruzi (Tc) infection and determined whether enhancing the mtROS scavenging capacity preserved the heart function in Chagas disease. RESULTS C57BL/6 wild type (WT, female) mice infected with Tc exhibited myocardial loss of mitochondrial membrane potential, complex II (CII)-driven coupled respiration, and ninefold increase in mtROS production. In vitro and in vivo studies showed that Tc infection resulted in an ROS-dependent decline in the expression, nuclear translocation, antioxidant response element (ARE) binding, and activity of NFE2L2, and 35-99% decline in antioxidants' (gamma-glutamyl cysteine synthase [γGCS], heme oxygenase-1 [HO1], glutamate-cysteine ligase modifier subunit [GCLM], thioredoxin (Trx), glutathione S transferase [GST], and NAD(P)H dehydrogenase, quinone 1 [NQO1]) expression. An increase in myocardial and mitochondrial oxidative adducts, myocardial interventricular septum thickness, and left ventricle (LV) mass, a decline in LV posterior wall thickness, and disproportionate synthesis of collagens (COLI/COLIII), αSMA, and SM22α were noted in WT.Tc mice. Overexpression of manganese superoxide dismutase (MnSOD) in cultured cells (HeLa or cardiomyocytes) and MnSODtg mice preserved the NFE2L2 transcriptional activity and antioxidant/oxidant balance, and cardiac oxidative and fibrotic pathology were significantly decreased in MnSODtg.Tc mice. Importantly, echocardiography finding of a decline in LV systolic (stroke volume, cardiac output, ejection fraction) and diastolic (early/late peak filling ratio, myocardial performance index) function in WT.Tc mice was abolished in MnSODtg.Tc mice. Innovation and Conclusion: The mtROS inhibition of NFE2L2/ARE pathway constitutes a key mechanism in signaling the fibrotic gene expression and evolution of chronic cardiomyopathy. Preserving the NFE2L2 activity arrested the mitochondrial and cardiac oxidative stress, cardiac fibrosis, and heart failure in Chagas disease. Antioxid. Redox Signal. 27, 550-566.
Collapse
Affiliation(s)
- Jake Jianjun Wen
- 1 Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB) , Galveston, Texas
| | - Craig Porter
- 2 Metabolism Unit, Shriners Hospital for Children , Galveston, Texas.,3 Department of Surgery, University of Texas Medical Branch (UTMB) , Galveston, Texas
| | - Nisha Jain Garg
- 1 Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB) , Galveston, Texas.,4 Department of Pathology, University of Texas Medical Branch (UTMB) , Galveston, Texas.,5 Institute for Human Infections and Immunity, University of Texas Medical Branch (UTMB) , Galveston, Texas
| |
Collapse
|
15
|
Nonsteroidal anti-inflammatory is more effective than anti-oxidant therapy in counteracting oxidative/nitrosative stress and heart disease in T. cruzi-infected mice. Parasitology 2017; 144:904-916. [PMID: 28134069 DOI: 10.1017/s0031182016002675] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We compared the relevance of ibuprofen, vitamins C and E to control oxidative/nitrosative stress and heart disease in mice infected by Trypanosoma cruzi. Swiss mice were randomized into five groups: control, uninfected; infected without treatment; and infected treated with vitamins C, E or ibuprofen. Animals were inoculated with 2000 trypomastigote forms of T. cruzi. After 20 days, infected mice presented reduced vitamin C and E tissue levels, high cytokines (interferon gamma, tumour necrosis factor-α, interleukin 10 and chemokine ligand 2), prostaglandin F2α (PGF2α ) and nitric oxide (NO) cardiac production, intense myocarditis and reactive tissue damage, which was directly correlated with the intensity of the inflammatory infiltrate and the degree of pathological cardiac remodelling. Vitamins C and E supplementation were irrelevant to counteract reactive tissue damage and myocarditis in infected animals. Conversely, ibuprofen reduced tissue levels of cytokines, PGF2α and NO, as well as lipid and protein oxidation, antioxidant enzyme activity and the cardiac damage, without interfering with heart parasitism. Our results do not support the applicability of vitamin C and E supplementation in the management of acute Chagas cardiomyopathy. By controlling the inflammatory infiltrate, anti-inflammatory-based therapy proved to be a more rational strategy than a direct antioxidant therapy in attenuating oxidative/nitrosative stress and cardiac damage.
Collapse
|
16
|
Chowdhury IH, Koo SJ, Gupta S, Liang LY, Bahar B, Silla L, Nuñez-Burgos J, Barrientos N, Zago MP, Garg NJ. Gene Expression Profiling and Functional Characterization of Macrophages in Response to Circulatory Microparticles Produced during Trypanosoma cruzi Infection and Chagas Disease. J Innate Immun 2016; 9:203-216. [PMID: 27902980 DOI: 10.1159/000451055] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chronic inflammation and oxidative stress are hallmarks of chagasic cardiomyopathy (CCM). In this study, we determined if microparticles (MPs) generated during Trypanosoma cruzi (Tc) infection carry the host's signature of the inflammatory/oxidative state and provide information regarding the progression of clinical disease. METHODS MPs were harvested from supernatants of human peripheral blood mononuclear cells in vitro incubated with Tc (control: LPS treated), plasma of seropositive humans with a clinically asymptomatic (CA) or symptomatic (CS) disease state (vs. normal/healthy [NH] controls), and plasma of mice immunized with a protective vaccine before challenge infection (control: unvaccinated/infected). Macrophages (mφs) were incubated with MPs, and we probed the gene expression profile using the inflammatory signaling cascade and cytokine/chemokine arrays, phenotypic markers of mφ activation by flow cytometry, cytokine profile by means of an ELISA and Bioplex assay, and oxidative/nitrosative stress and mitotoxicity by means of colorimetric and fluorometric assays. RESULTS Tc- and LPS-induced MPs stimulated proliferation, inflammatory gene expression profile, and nitric oxide (∙NO) release in human THP-1 mφs. LPS-MPs were more immunostimulatory than Tc-MPs. Endothelial cells, T lymphocytes, and mφs were the major source of MPs shed in the plasma of chagasic humans and experimentally infected mice. The CS and CA (vs. NH) MPs elicited >2-fold increase in NO and mitochondrial oxidative stress in THP-1 mφs; however, CS (vs. CA) MPs elicited a more pronounced and disease-state-specific inflammatory gene expression profile (IKBKB, NR3C1, and TIRAP vs. CCR4, EGR2, and CCL3), cytokine release (IL-2 + IFN-γ > GCSF), and surface markers of mφ activation (CD14 and CD16). The circulatory MPs of nonvaccinated/infected mice induced 7.5-fold and 40% increases in ∙NO and IFN-γ production, respectively, while these responses were abolished when RAW264.7 mφs were incubated with circulatory MPs of vaccinated/infected mice. CONCLUSION Circulating MPs reflect in vivo levels of an oxidative, nitrosative, and inflammatory state, and have potential utility in evaluating disease severity and the efficacy of vaccines and drug therapies against CCM.
Collapse
Affiliation(s)
- Imran H Chowdhury
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wan X, Wen JJ, Koo SJ, Liang LY, Garg NJ. SIRT1-PGC1α-NFκB Pathway of Oxidative and Inflammatory Stress during Trypanosoma cruzi Infection: Benefits of SIRT1-Targeted Therapy in Improving Heart Function in Chagas Disease. PLoS Pathog 2016; 12:e1005954. [PMID: 27764247 PMCID: PMC5072651 DOI: 10.1371/journal.ppat.1005954] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022] Open
Abstract
Chronic chagasic cardiomyopathy (CCM) is presented by increased oxidative/inflammatory stress and decreased mitochondrial bioenergetics. SIRT1 senses the redox changes and integrates mitochondrial metabolism and inflammation; and SIRT1 deficiency may be a major determinant in CCM. To test this, C57BL/6 mice were infected with Trypanosoma cruzi (Tc), treated with SIRT1 agonists (resveratrol or SRT1720), and monitored during chronic phase (~150 days post-infection). Resveratrol treatment was partially beneficial in controlling the pathologic processes in Chagas disease. The 3-weeks SRT1720 therapy provided significant benefits in restoring the left ventricular (LV) function (stroke volume, cardiac output, ejection fraction etc.) in chagasic mice, though cardiac hypertrophy presented by increased thickness of the interventricular septum and LV posterior wall, increased LV mass, and disproportionate synthesis of collagens was not controlled. SRT1720 treatment preserved the myocardial SIRT1 activity and PGC1α deacetylation (active-form) that were decreased by 53% and 9-fold respectively, in chagasic mice. Yet, SIRT1/PGC1α-dependent mitochondrial biogenesis (i.e., mitochondrial DNA content, and expression of subunits of the respiratory complexes and mtDNA replication machinery) was not improved in chronically-infected/SRT1720-treated mice. Instead, SRT1720 therapy resulted in 2-10-fold inhibition of Tc-induced oxidative (H2O2 and advanced oxidation protein products), nitrosative (inducible nitric oxide synthase, 4-hydroxynonenal, 3-nitrotyrosine), and inflammatory (IFNγ, IL1β, IL6 and TNFα) stress and inflammatory infiltrate in chagasic myocardium. These benefits were delivered through SIRT1-dependent inhibition of NFκB transcriptional activity. We conclude that Tc inhibition of SIRT1/PGC1α activity was not a key mechanism in mitochondrial biogenesis defects during Chagas disease. SRT1720-dependent SIRT1 activation led to suppression of NFκB transcriptional activity, and subsequently, oxidative/nitrosative and inflammatory pathology were subdued, and antioxidant status and LV function were enhanced in chronic chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Xianxiu Wan
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Jian-jun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Sue-Jie Koo
- Department of Pathology, UTMB, Galveston, Texas
| | - Lisa Yi Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
- Department of Pathology, UTMB, Galveston, Texas
- Institute for Human Infections and Immunity, UTMB, Galveston, Texas
- * E-mail:
| |
Collapse
|
18
|
Tanowitz HB, Garg NJ. Editorial commentary: Targeting Chagas disease. Trends Cardiovasc Med 2016; 27:92-94. [PMID: 27686273 DOI: 10.1016/j.tcm.2016.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Herbert B Tanowitz
- Department of Pathology and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461.
| | - Nisha Jain Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555-1070
| |
Collapse
|
19
|
Wen JJ, Wan X, Thacker J, Garg NJ. Chemotherapeutic efficacy of phosphodiesterase inhibitors in chagasic cardiomyopathy. JACC Basic Transl Sci 2016; 1:235-250. [PMID: 27747306 PMCID: PMC5065248 DOI: 10.1016/j.jacbts.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular mechanisms of Trypanosoma cruzi (Tc)-induced Chagasic cardiomyopathy (CCM) are not well understood. The NO-cGMP-PKG1α pathway maintains cardiac homeostasis and inotropy and may be disturbed due to phosphodiesterase (PDE5)-mediated cGMP catabolism in CCM. To test this, C57BL/6 mice were infected with T. cruzi, and after the control of acute parasitemia (∼45 days post-infection), given sildenafil (SIL) (1 mg/kg) treatment for 3 weeks that ended long before the chronic disease phase (∼150 days post-infection). The PDE5 was increased and cGMP/PKG activity was decreased in chagasic myocardium. Transthoracic echocardiography revealed left ventricular (LV) systolic function, that is, stroke volume, cardiac output, and ejection fraction, was significantly decreased in chagasic mice. SIL treatment resulted in normal levels of PDE5 and cGMP/PKG activity and preserved the LV function. The cardioprotective effects of SIL were provided through inhibition of cardiac collagenosis and chronic inflammation that otherwise were pronounced in CCM. Further, SIL treatment restored the mitochondrial DNA–encoded gene expression, complex I–dependent (but not complex II–dependent) ADP-coupled respiration, and oxidant/antioxidant balance in chagasic myocardium. In vitro studies in cardiomyocytes verified that SIL conserved the redox metabolic state and cellular health via maintaining the antioxidant status that otherwise was compromised in response to T. cruzi infection. We conclude that SIL therapy was useful in controlling the LV dysfunction and chronic pathology in CCM. Mice infected with T. cruzi control acute parasitemia but develop chronic chagasic cardiomyopathy. Treatment with SIL (a phosphodiesterase inhibitor) during a therapeutic window of indeterminate phase provided powerful cardioprotective effects against chronic development of cardiomyopathy and LV dysfunction. SIL normalized the cGMP-dependent protein kinase activity and mitochondrial oxidative metabolism, and established the oxidant/antioxidant balance in chagasic myocardium. SIL prevented the oxidative/inflammatory adducts that precipitate cardiomyocytes death and cardiac remodeling in CCM.
Collapse
Affiliation(s)
- Jian-Jun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Xianxiu Wan
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - John Thacker
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas; Department of Pathology, UTMB, Galveston, TX; Institute for Human Infections and Immunity, UTMB, Galveston, TX
| |
Collapse
|
20
|
Tanowitz HB, Machado FS, Spray DC, Friedman JM, Weiss OS, Lora JN, Nagajyothi J, Moraes DN, Garg NJ, Nunes MCP, Ribeiro ALP. Developments in the management of Chagas cardiomyopathy. Expert Rev Cardiovasc Ther 2015; 13:1393-409. [PMID: 26496376 DOI: 10.1586/14779072.2015.1103648] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over 100 years have elapsed since the discovery of Chagas disease and there is still much to learn regarding pathogenesis and treatment. Although there are antiparasitic drugs available, such as benznidazole and nifurtimox, they are not totally reliable and often toxic. A recently released negative clinical trial with benznidazole in patients with chronic Chagas cardiomyopathy further reinforces the concerns regarding its effectiveness. New drugs and new delivery systems, including those based on nanotechnology, are being sought. Although vaccine development is still in its infancy, the reality of a therapeutic vaccine remains a challenge. New ECG methods may help to recognize patients prone to developing malignant ventricular arrhythmias. The management of heart failure, stroke and arrhythmias also remains a challenge. Although animal experiments have suggested that stem cell based therapy may be therapeutic in the management of heart failure in Chagas cardiomyopathy, clinical trials have not been promising.
Collapse
Affiliation(s)
- Herbert B Tanowitz
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA.,b Department of Medicine , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Fabiana S Machado
- c Department of Biochemistry and Immunology, Institute of Biological Science , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - David C Spray
- b Department of Medicine , Albert Einstein College of Medicine , Bronx , NY , USA.,e Dominick P. Purpura Department of Neuroscience , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Joel M Friedman
- f Department of Physiology & Biophysics , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Oren S Weiss
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jose N Lora
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jyothi Nagajyothi
- g Public Health Research Institute, New Jersey Medical School , Rutgers University , Newark , NJ , USA
| | - Diego N Moraes
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Nisha Jain Garg
- i Department of Microbiology & Immunology and Institute for Human Infections and Immunity , University of Texas Medical Branch , Galveston , TX , USA
| | - Maria Carmo P Nunes
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Antonio Luiz P Ribeiro
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
21
|
Gupta S, Smith C, Auclair S, Delgadillo ADJ, Garg NJ. Therapeutic Efficacy of a Subunit Vaccine in Controlling Chronic Trypanosoma cruzi Infection and Chagas Disease Is Enhanced by Glutathione Peroxidase Over-Expression. PLoS One 2015; 10:e0130562. [PMID: 26075398 PMCID: PMC4468200 DOI: 10.1371/journal.pone.0130562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/22/2015] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma cruzi-induced oxidative and inflammatory responses are implicated in chagasic cardiomyopathy. In this study, we examined the therapeutic utility of a subunit vaccine against T. cruzi and determined if glutathione peroxidase (GPx1, antioxidant) protects the heart from chagasic pathogenesis. C57BL/6 mice (wild-type (WT) and GPx1 transgenic (GPxtg) were infected with T. cruzi and at 45 days post-infection (dpi), immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach. The plasma and tissue-sections were analyzed on 150 dpi for parasite burden, inflammatory and oxidative stress markers, inflammatory infiltrate and fibrosis. WT mice infected with T. cruzi had significantly more blood and tissue parasite burden compared with infected/GPxtg mice (n = 5-8, p<0.01). Therapeutic vaccination provided >15-fold reduction in blood and tissue parasites in both WT and GPxtg mice. The increase in plasma levels of myeloperoxidase (MPO, 24.7%) and nitrite (iNOS activity, 45%) was associated with myocardial increase in oxidant levels (3-4-fold) and non-responsive antioxidant status in chagasic/WT mice; and these responses were not controlled after vaccination (n = 5-7). The GPxtg mice were better equipped than the WT mice in controlling T. cruzi-induced inflammatory and oxidative stress markers. Extensive myocardial and skeletal tissue inflammation noted in chagasic/WT mice, was significantly more compared with chagasic/GPxtg mice (n = 4-6, p<0.05). Vaccination was equally effective in reducing the chronic inflammatory infiltrate in the heart and skeletal tissue of infected WT and GPxtg mice (n = 6, p<0.05). Hypertrophy (increased BNP and ANP mRNA) and fibrosis (increased collagen) of the heart were extensively present in chronically-infected WT and GPxtg mice and notably decreased after therapeutic vaccination. We conclude the therapeutic delivery of D/P vaccine was effective in arresting the chronic parasite persistence and chagasic pathology; and GPx1 over-expression provided additive benefits in reducing the parasite burden, inflammatory/oxidative stress and cardiac remodeling in Chagas disease.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (SG); (NG)
| | - Charity Smith
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sarah Auclair
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anahi De Jesus Delgadillo
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity and the Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Galveston, Texas, United States of America
- * E-mail: (SG); (NG)
| |
Collapse
|
22
|
Davies C, Dey N, Negrette OS, Parada LA, Basombrio MA, Garg NJ. Hepatotoxicity in mice of a novel anti-parasite drug candidate hydroxymethylnitrofurazone: a comparison with Benznidazole. PLoS Negl Trop Dis 2014; 8:e3231. [PMID: 25329323 PMCID: PMC4199569 DOI: 10.1371/journal.pntd.0003231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/31/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Treatment of Chagas disease, caused by Trypanosoma cruzi, relies on nifurtimox and benznidazole (BZL), which present side effects in adult patients, and natural resistance in some parasite strains. Hydroxymethylnitrofurazone (NFOH) is a new drug candidate with demonstrated trypanocidal activity; however, its safety is not known. METHODS HepG2 cells dose response to NFOH and BZL (5-100 µM) was assessed by measurement of ROS, DNA damage and survival. Swiss mice were treated with NFOH or BZL for short-term (ST, 21 d) or long-term (LT, 60 d) periods. Sera levels of cellular injury markers, liver inflammatory and oxidative stress, and fibrotic remodeling were monitored. RESULTS HepG2 cells exhibited mild stress, evidenced by increased ROS and DNA damage, in response to NFOH, while BZL at 100 µM concentration induced >33% cell death in 24 h. In mice, NFOH ST treatment resulted in mild-to-no increase in the liver injury biomarkers (GOT, GPT), and liver levels of inflammatory (myeloperoxidase, TNF-α), oxidative (lipid peroxides) and nitrosative (3-nitrotyrosine) stress. These stress responses in NFOH LT treated mice were normalized to control levels. BZL-treated mice exhibited a >5-fold increase in GOT, GPT and TNF-α (LT) and a 20-40% increase in liver levels of MPO activity (ST and LT) in comparison with NFOH-treated mice. The liver inflammatory infiltrate was noted in the order of BZL>vehicle≥NFOH and BZL>NFOH≥vehicle, respectively, after ST and LT treatments. Liver fibrotic remodeling, identified after ST treatment, was in the order of BZL>vehicle>NFOH; lipid deposits, indicative of mitochondrial dysfunction and in the order of NFOH>vehicle>BZL were evidenced after LT treatment. CONCLUSIONS NFOH induces mild ST hepatotoxicity that is normalized during LT treatment in mice. Our results suggest that additional studies to determine the efficacy and toxicity of NFOH are warranted.
Collapse
Affiliation(s)
- Carolina Davies
- Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Argentina
| | - Nilay Dey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Olga Sanchez Negrette
- Cátedra de Quimica Biológica, Facultad de Ciencias Exactas, Universidad Nacional de Salta, Argentina
| | - Luis Antonio Parada
- Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Argentina
| | - Miguel A. Basombrio
- Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Argentina
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
High fat diet modulates Trypanosoma cruzi infection associated myocarditis. PLoS Negl Trop Dis 2014; 8:e3118. [PMID: 25275627 PMCID: PMC4183439 DOI: 10.1371/journal.pntd.0003118] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the causative agent of Chagas disease, has high affinity for lipoproteins and adipose tissue. Infection results in myocarditis, fat loss and alterations in lipid homeostasis. This study was aimed at analyzing the effect of high fat diet (HFD) on regulating acute T. cruzi infection-induced myocarditis and to evaluate the effect of HFD on lipid metabolism in adipose tissue and heart during acute T. cruzi infection. METHODOLOGY/PRINCIPAL FINDINGS CD1 mice were infected with T. cruzi (Brazil strain) and fed either a regular control diet (RD) or HFD for 35 days following infection. Serum lipid profile, tissue cholesterol levels, blood parasitemia, and tissue parasite load were analyzed to evaluate the effect of diet on infection. MicroPET and MRI analysis were performed to examine the morphological and functional status of the heart during acute infection. qPCR and immunoblot analysis were carried out to analyze the effect of diet on the genes involved in the host lipid metabolism during infection. Oil red O staining of the adipose tissue demonstrated reduced lipolysis in HFD compared to RD fed mice. HFD reduced mortality, parasitemia and cardiac parasite load, but increased parasite load in adipocytes. HFD decreased lipolysis during acute infection. Both qPCR and protein analysis demonstrated alterations in lipid metabolic pathways in adipose tissue and heart in RD fed mice, which were further modulated by HFD. Both microPET and MRI analyses demonstrated changes in infected RD murine hearts which were ameliorated by HFD. CONCLUSION/SIGNIFICANCE These studies indicate that Chagasic cardiomyopathy is associated with a cardiac lipidpathy and that both cardiac lipotoxicity and adipose tissue play a role in the pathogenesis of Chagas disease. HFD protected mice from T. cruzi infection-induced myocardial damage most likely due to the effects of HFD on both adipogenesis and T. cruzi infection-induced cardiac lipidopathy.
Collapse
|
24
|
Machado FS, Tanowitz HB, Ribeiro AL. Pathogenesis of chagas cardiomyopathy: role of inflammation and oxidative stress. J Am Heart Assoc 2013; 2:e000539. [PMID: 24152984 PMCID: PMC3835267 DOI: 10.1161/jaha.113.000539] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fabiana S Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|