1
|
Dong L, Zhou Y, Wang L, Mao X, Wang J, Du Z, Che X, Li Y. Neobavaisoflavone Protects H9c2 Cells Against H 2O 2-Induced Mitochondrial Dysfunction Through ALOX15/PGC1-α Axis. J Biochem Mol Toxicol 2024; 38:e70043. [PMID: 39485322 DOI: 10.1002/jbt.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/18/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Neobavaisoflavone (NBIF) is a natural antioxidant that has a variety of pharmacological activities. To investigate the effects of NBIF on oxidative stress-induced myocardial injury, H9c2 cells were treated with H2O2. Cell counting kit-8 was used to detect cell viability. Intracellular as well as lipid radicals were detected. To measure mitochondrial function, tetramethylrhodamine ethyl ester was used to detect mitochondrial membrane potential. 12- and 15-hydroxyeicosatetraenoic acids (HETE) were measured by LC-MS/MS. ALOX15, which is the upstream protein of 12-, 15-HETE, was also measured by using western blot analysis. The results showed that H2O2 induced lipid peroxidation in cardiomyocytes and caused mitochondrial dysfunction which was relieved by NBIF treatment. Besides, H2O2 significantly increased the production of 12-HETE and 15-HETE and upregulated the expression of ALOX15 while PGC-1α was downregulated and triggered the release of cytochrome c. The treatment of NBIF decreased the expression of ALOX15 and inhibited the activation of caspase-3. NBIF protected mitochondrial membrane integrity through increasing PGC-1α and Nrf1. Our results indicated that NBIF could protect cardiomyocytes against H2O2-induced mitochondrial dysfunction via ALOX15/PGC-1α axis.
Collapse
Affiliation(s)
- Linyue Dong
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Zhou
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liyun Wang
- Department of Clinical Laboratory, Yixing People's Hospital, Wuxi, Jiangsu, China
- Department of Endorinology, Yixing People's Hospital, Wuxi, Jiangsu, China
| | - Xuhua Mao
- Department of Clinical Laboratory, Yixing People's Hospital, Wuxi, Jiangsu, China
| | - Junfang Wang
- Department of Clinical Laboratory, Yixing People's Hospital, Wuxi, Jiangsu, China
- Department of Endorinology, Yixing People's Hospital, Wuxi, Jiangsu, China
| | - Zenan Du
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuyang Che
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Babiker F, Al-Kouh A. Immunoglobulin-Mediated Cardiac Protection From Ischemia/Reperfusion Injury in Diabetic Rats Is Associated With Endothelial Nitric Oxide Synthase/Glucose Transporter-4 Signaling Pathway. J Cardiovasc Pharmacol 2024; 84:319-330. [PMID: 39240727 DOI: 10.1097/fjc.0000000000001586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 09/08/2024]
Abstract
ABSTRACT The role of intravenous immunoglobulin in protecting the diabetic heart from ischemia/reperfusion (I/R) injury is unclear. Hearts isolated from adult diabetic and nondiabetic Wistar rats (n = 8 per group) were treated with intravenous immunoglobulin (IVIG) either 2 hours before euthanasia, before ischemia, or at reperfusion. Hemodynamic data were acquired using the Isoheart software version 1.524-S. Ischemia/reperfusion (I/R) injury was evaluated by 2,3,5-triphenyltetrazolium chloride staining and troponin T levels. The levels of apoptosis markers, caspases-3/8, antioxidant enzymes, superoxide dismutase and catalase, glucose transporters, GLUT-1 and GLUT-4, phosphorylated ERK1/2, and phosphorylated eNOS were estimated by Western blotting. Proinflammatory and anti-inflammatory cytokine levels were evaluated using enzyme-linked immunosorbent assays. Intravenous immunoglobulin administration abolished the effects of I/R injury in hearts subjected to hyperglycemia when infused at reperfusion, before ischemia, or at reperfusion in 4-week diabetic rat hearts and only at reperfusion in 6-week diabetic rat hearts. IVIG infusion resulted in a significant (P < 0.05) recovery of cardiac hemodynamics and decreased infarct size. IVIG also reduced the levels of troponin T, apoptotic enzymes, and proinflammatory cytokines. IVIG significantly (P < 0.05) increased the levels of anti-inflammatory cytokines, antioxidant enzymes, GLUT-4, and phosphorylated eNOS. Intravenous immunoglobulin protected the hearts from I/R injury if infused at reperfusion in the presence of hyperglycemia, in 4- and 6-week diabetic rat hearts, and when infused before ischemia in 4-week diabetic rat hearts. IVIG exerts its cardioprotective effects associated with the upregulated phosphorylated eNOS/GLUT-4 pathway.
Collapse
Affiliation(s)
- Fawzi Babiker
- Department of Physiology, College of Medicine, Kuwait University, Safat, Kuwait
| | | |
Collapse
|
3
|
Wang J, Yang L, Wu L, Li S, Ren C, Ding Y, Wei M, Ji X, Zhao W. Direct Ischemic Postconditioning Following Stroke Thrombectomy: A Promising Therapy for Reperfusion Injury. Neurosci Bull 2024; 40:1017-1020. [PMID: 38856959 PMCID: PMC11250735 DOI: 10.1007/s12264-024-01243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/28/2024] [Indexed: 06/11/2024] Open
Affiliation(s)
- Jing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lu Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Longfei Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Sijie Li
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ming Wei
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300222, China.
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
4
|
Cohen MV, Downey JM. Initial Despair and Current Hope of Identifying a Clinically Useful Treatment of Myocardial Reperfusion Injury: Insights Derived from Studies of Platelet P2Y 12 Antagonists and Interference with Inflammation and NLRP3 Assembly. Int J Mol Sci 2024; 25:5477. [PMID: 38791515 PMCID: PMC11122283 DOI: 10.3390/ijms25105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Myocardial necrosis following the successful reperfusion of a coronary artery occluded by thrombus in a patient presenting with ST-elevation myocardial infarction (STEMI) continues to be a serious problem, despite the multiple attempts to attenuate the necrosis with agents that have shown promise in pre-clinical investigations. Possible reasons include confounding clinical risk factors, the delayed application of protective agents, poorly designed pre-clinical investigations, the possible effects of routinely administered agents that might unknowingly already have protected the myocardium or that might have blocked protection, and the biological differences of the myocardium in humans and experimental animals. A better understanding of the pathobiology of myocardial infarction is needed to stem this reperfusion injury. P2Y12 receptor antagonists minimize platelet aggregation and are currently part of the standard treatment to prevent thrombus formation and propagation in STEMI protocols. Serendipitously, these P2Y12 antagonists also dramatically attenuate reperfusion injury in experimental animals and are presumed to provide a similar protection in STEMI patients. However, additional protective agents are needed to further diminish reperfusion injury. It is possible to achieve additive protection if the added intervention protects by a mechanism different from that of P2Y12 antagonists. Inflammation is now recognized to be a critical factor in the complex intracellular response to ischemia and reperfusion that leads to tissue necrosis. Interference with cardiomyocyte inflammasome assembly and activation has shown great promise in attenuating reperfusion injury in pre-clinical animal models. And the blockade of the executioner protease caspase-1, indeed, supplements the protection already seen after the administration of P2Y12 antagonists. Importantly, protective interventions must be applied in the first minutes of reperfusion, if protection is to be achieved. The promise of such a combination of protective strategies provides hope that the successful attenuation of reperfusion injury is attainable.
Collapse
Affiliation(s)
- Michael V. Cohen
- The Departments of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA;
- The Departments of Medicine, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA
| | - James M. Downey
- The Departments of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA;
| |
Collapse
|
5
|
Andrup S, Andersen GØ, Hoffmann P, Eritsland J, Seljeflot I, Halvorsen S, Vistnes M. Novel cardiac extracellular matrix biomarkers in STEMI: Associations with ischemic injury and long-term mortality. PLoS One 2024; 19:e0302732. [PMID: 38739599 PMCID: PMC11090350 DOI: 10.1371/journal.pone.0302732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND We aimed to determine whether serum levels of proteins related to changes in cardiac extracellular matrix (ECM) were associated with ischemic injury assessed by cardiac magnetic resonance (CMR) and mortality in patients with ST-elevation myocardial infarction (STEMI). METHODS The concentrations of six ECM-related proteins (periostin, osteopontin, syndecan-1, syndecan-4, bone morphogenetic protein 7, and growth differentiation factor (GDF)-15) were measured in serum samples from patients on Day 1 and Month 4 after STEMI (n = 239). Ischemic injury was assessed by myocardial salvage index, microvascular obstruction, infarct size, and left ventricular function measured by CMR conducted during the initial admission (median 2 days after admission) and after 4 months. All-cause mortality was recorded after a median follow-up time of 70 months. RESULTS Levels of periostin increased from Day 1 to Month 4 after hospitalization, while the levels of GDF-15, osteopontin, syndecan-1, and syndecan-4 declined. At both time points, high levels of syndecan-1 were associated with microvascular obstruction, large infarct size, and reduced left ventricular ejection fraction, whereas high levels of syndecan-4 at Month 4 were associated with a higher myocardial salvage index and less dilatation of the left ventricle. Higher mortality rates were associated with periostin levels at both time points, low syndecan-4 levels at Month 4, or high GDF-15 levels at Month 4. CONCLUSIONS In patients with STEMI, we found an association between serum levels of ECM biomarkers and ischemic injury and mortality. The results provide new insight into the role ECM components play in ischemic injury following STEMI and suggests a potential for these biomarkers in prognostication after STEMI.
Collapse
Affiliation(s)
- Simon Andrup
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Geir Ø. Andersen
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Pavel Hoffmann
- Department of Cardiology, Section for Interventional Cardiology, Oslo University Hospital, Oslo, Norway
| | - Jan Eritsland
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Sigrun Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Maria Vistnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Galli M, Niccoli G, De Maria G, Brugaletta S, Montone RA, Vergallo R, Benenati S, Magnani G, D'Amario D, Porto I, Burzotta F, Abbate A, Angiolillo DJ, Crea F. Coronary microvascular obstruction and dysfunction in patients with acute myocardial infarction. Nat Rev Cardiol 2024; 21:283-298. [PMID: 38001231 DOI: 10.1038/s41569-023-00953-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
Despite prompt epicardial recanalization in patients presenting with ST-segment elevation myocardial infarction (STEMI), coronary microvascular obstruction and dysfunction (CMVO) is still fairly common and is associated with poor prognosis. Various pharmacological and mechanical strategies to treat CMVO have been proposed, but the positive results reported in preclinical and small proof-of-concept studies have not translated into benefits in large clinical trials conducted in the modern treatment setting of patients with STEMI. Therefore, the optimal management of these patients remains a topic of debate. In this Review, we appraise the pathophysiological mechanisms of CMVO, explore the evidence and provide future perspectives on strategies to be implemented to reduce the incidence of CMVO and improve prognosis in patients with STEMI.
Collapse
Affiliation(s)
- Mattia Galli
- Department of Cardiology, Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | | | - Gianluigi De Maria
- Oxford Heart Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Salvatore Brugaletta
- Institut Clinic Cardiovascular, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Rocco A Montone
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rocco Vergallo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiology Network, Genova, Italy
| | - Stefano Benenati
- Oxford Heart Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiology Network, Genova, Italy
| | - Giulia Magnani
- Department of Cardiology, University of Parma, Parma, Italy
| | - Domenico D'Amario
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
- Division of Cardiology, Azienda Ospedaliero Universitaria 'Maggiore Della Carita', Novara, Italy
| | - Italo Porto
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiology Network, Genova, Italy
| | - Francesco Burzotta
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular Sciencies, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiology - Heart and Vascular Center, University of Virginia, Charlottesville, VA, USA
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA.
| | - Filippo Crea
- Department of Cardiovascular Sciencies, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
7
|
Buske M, Desch S, Heusch G, Rassaf T, Eitel I, Thiele H, Feistritzer HJ. Reperfusion Injury: How Can We Reduce It by Pre-, Per-, and Postconditioning. J Clin Med 2023; 13:159. [PMID: 38202166 PMCID: PMC10779793 DOI: 10.3390/jcm13010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
While early coronary reperfusion via primary percutaneous coronary intervention (pPCI) is established as the most efficacious therapy for minimizing infarct size (IS) in acute ST-elevation myocardial infarction (STEMI), the restoration of blood flow also introduces myocardial ischemia-reperfusion injury (IRI), leading to cardiomyocyte death. Among diverse methods, ischemic conditioning (IC), achieved through repetitive cycles of ischemia and reperfusion, has emerged as the most promising method to mitigate IRI. IC can be performed by applying the protective stimulus directly to the affected myocardium or indirectly to non-affected tissue, which is known as remote ischemic conditioning (RIC). In clinical practice, RIC is often applied by serial inflations and deflations of a blood pressure cuff on a limb. Despite encouraging preclinical studies, as well as clinical studies demonstrating reductions in enzymatic IS and myocardial injury on imaging, the observed impact on clinical outcome has been disappointing so far. Nevertheless, previous studies indicate a potential benefit of IC in high-risk STEMI patients. Additional research is needed to evaluate the impact of IC in such high-risk cohorts. The objective of this review is to summarize the pathophysiological background and preclinical and clinical data of IRI reduction by IC.
Collapse
Affiliation(s)
- Maria Buske
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, 04289 Leipzig, Germany; (M.B.); (S.D.)
| | - Steffen Desch
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, 04289 Leipzig, Germany; (M.B.); (S.D.)
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45122 Essen, Germany;
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany;
| | - Ingo Eitel
- Medical Clinic II, Clinic for Cardiology, Angiology and Intensive Care Medicine, University Heart Center Lübeck, 23538 Lübeck, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23538 Lübeck, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, 04289 Leipzig, Germany; (M.B.); (S.D.)
| | - Hans-Josef Feistritzer
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, 04289 Leipzig, Germany; (M.B.); (S.D.)
| |
Collapse
|
8
|
Bergman I, Boyle D, Braver O, Gelikas S, Wexler Y, Omelchenko A, Assali A, Nussinovitch U. Ischemic Postconditioning Confers No Benefit to Left Ventricular Systolic Function: A Meta-Analysis of Cardiac Magnetic Resonance Imaging Results. Am J Cardiol 2023; 208:126-133. [PMID: 37837795 DOI: 10.1016/j.amjcard.2023.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/16/2023]
Abstract
Ischemic postconditioning (IPoC) is a technique suggested to reduce reperfusion injury in patients suffering acute ST-elevation myocardial infarction (STEMI), although its use is highly controversial. This meta-analysis aimed to evaluate the effect of IPoC with percutaneous coronary intervention in patients with acute STEMI, as measured by follow-up left ventricular ejection fraction (LVEF) on cardiac magnetic resonance imaging. The investigators searched PubMed, Embase, and Web of Science for all randomized controlled trials published during the last 2 decades. After the removal of duplicates, 2,021 articles from online databases had been identified using relevant search criteria. The included randomized controlled trials had studied patients with acute STEMI and Thrombolysis in Myocardial Infarction flow 0 to 1 at presentation and had measured follow-up LVEF using cardiac magnetic resonance imaging. Overall, 11 studies (n = 1,339 patients) qualified for inclusion. In each study, the control group did not differ significantly from the experimental group. The pooled data from included studies were analyzed using standardized mean difference between IPoC and control groups, and the 95% confidence interval for LVEF; the results were visualized using a forest plot. Bivariate regression analyses and 1-way analyses of LVEF coefficient ratios were done to isolate for various clinical and procedural parameters. An analysis of pooled data of the IPoC (n = 674) and control (n = 665) groups showed that IPoC did not significantly impact follow-up LVEF (using standardized mean difference 0.10, 95% confidence interval 0.00 to 0.21). Further analysis showed that IPoC did not improve follow-up LVEF when isolating for relevant clinical and procedural parameters. In conclusion, the use of IPoC as an adjunctive therapy to percutaneous coronary intervention seemingly provides no benefit to left ventricular systolic function, as quantified with cardiac magnetic resonance imaging, in patients with acute STEMI with Thrombolysis in Myocardial Infarction flow 0 to 1.
Collapse
Affiliation(s)
- Idan Bergman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Rabin Medical Center, Petach Tikva, Israel
| | | | - Omri Braver
- Department of Cardiology, Barzilai Medical Center, Ashkelon, Israel
| | - Shaul Gelikas
- The Trauma and Combat Medicine Branch, Surgeon General's Headquarters, Israel Defense Forces, Ramat Gan, Israel
| | - Yehuda Wexler
- Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexander Omelchenko
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Cardiology, Meir Medical Center, Kfar Saba, Israel
| | - Abid Assali
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Cardiology, Meir Medical Center, Kfar Saba, Israel
| | - Udi Nussinovitch
- Heart Institute at the Edith Wolfson Medical Center, Holon, Israel.
| |
Collapse
|
9
|
Al-Kouh A, Babiker F, Al-Bader M. Renin-Angiotensin System Antagonism Protects the Diabetic Heart from Ischemia/Reperfusion Injury in Variable Hyperglycemia Duration Settings by a Glucose Transporter Type 4-Mediated Pathway. Pharmaceuticals (Basel) 2023; 16:238. [PMID: 37259385 PMCID: PMC9967344 DOI: 10.3390/ph16020238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a risk factor for cardiovascular diseases, specifically, the ischemic heart diseases (IHD). The renin-angiotensin system (RAS) affects the heart directly and indirectly. However, its role in the protection of the heart against I/R injury is not completely understood. The aim of the current study was to evaluate the efficacy of the angiotensin-converting enzyme (ACE) inhibitor and Angiotensin II receptor (AT1R) blocker or a combination thereof in protection of the heart from I/R injury. METHODS Hearts isolated from adult male Wistar rats (n = 8) were subjected to high glucose levels; acute hyperglycemia or streptozotocin (STZ)-induced diabetes were used in this study. Hearts were subjected to I/R injury, treated with Captopril, an ACE inhibitor; Losartan, an AT1R antagonist; or a combination thereof. Hemodynamics data were measured using a suitable software for that purpose. Additionally, infarct size was evaluated using 2,3,5-Triphenyltetrazolium chloride (TTC) staining. The levels of apoptosis markers (caspase-3 and -8), antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), nitric oxide synthase (eNOS), and glucose transporter type 4 (GLUT-4) protein levels were evaluated by Western blotting. Pro-inflammatory and anti-inflammatory cytokines levels were evaluated by enzyme-linked immunosorbent assay (ELISA). RESULTS Captopril and Losartan alone or in combination abolished the effect of I/R injury in hearts subjected to acute hyperglycemia or STZ-induced diabetes. There was a significant (p < 0.05) recovery in hemodynamics, infarct size, and apoptosis markers following the treatment with Captopril, Losartan, or their combination. Treatment with Captopril, Losartan, or their combination significantly (p < 0.05) reduced pro-inflammatory cytokines and increased GLUT-4 protein levels. CONCLUSIONS The blockade of the RAS system protected the diabetic heart from I/R injury. This protection followed a pathway that utilizes GLUT-4 to decrease the apoptosis markers, pro-inflammatory cytokines, and to increase the anti-inflammatory cytokines. This protection seems to employ a pathway which is not involving ERK1/2 and eNOS.
Collapse
Affiliation(s)
| | - Fawzi Babiker
- Department of Physiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Kuwait City 13110, Kuwait
| | | |
Collapse
|
10
|
Fontaine MAC, Jin H, Gagliardi M, Rousch M, Wijnands E, Stoll M, Li X, Schurgers L, Reutelingsperger C, Schalkwijk C, van den Akker NMS, Molin DG, Gullestad L, Eritsland J, Hoffman P, Skjelland M, Andersen GØ, Aukrust P, Karel J, Smirnov E, Halvorsen B, Temmerman L, Biessen EA. Blood Milieu in Acute Myocardial Infarction Reprograms Human Macrophages for Trauma Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203053. [PMID: 36526599 PMCID: PMC9929255 DOI: 10.1002/advs.202203053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Acute myocardial infarction (AMI) is accompanied by a systemic trauma response that impacts the whole body, including blood. This study addresses whether macrophages, key players in trauma repair, sense and respond to these changes. For this, healthy human monocyte-derived macrophages are exposed to 20% human AMI (n = 50) or control (n = 20) serum and analyzed by transcriptional and multiparameter functional screening followed by network-guided data interpretation and drug repurposing. Results are validated in an independent cohort at functional level (n = 47 AMI, n = 25 control) and in a public dataset. AMI serum exposure results in an overt AMI signature, enriched in debris cleaning, mitosis, and immune pathways. Moreover, gene networks associated with AMI and with poor clinical prognosis in AMI are identified. Network-guided drug screening on the latter unveils prostaglandin E2 (PGE2) signaling as target for clinical intervention in detrimental macrophage imprinting during AMI trauma healing. The results demonstrate pronounced context-induced macrophage reprogramming by the AMI systemic environment, to a degree decisive for patient prognosis. This offers new opportunities for targeted intervention and optimized cardiovascular disease risk management.
Collapse
|
11
|
Xia Z, Chen B, Zhou C, Wang Y, Ren J, Yao X, Yang Y, Wan Q, Lian Z. Protective effect of ischaemic postconditioning combined with nicorandil on myocardial ischaemia‒reperfusion injury in diabetic rats. BMC Cardiovasc Disord 2022; 22:518. [PMID: 36460963 PMCID: PMC9719207 DOI: 10.1186/s12872-022-02967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The diabetic heart exhibits a high sensitivity to ischaemia/reperfusion (I/R) injury. Diabetes mellitus (DM) can affect the efficacy of cardioprotective interventions and reduce the therapeutic potential of existing treatment options. This study aimed to investigate the feasibility of shifting from monotherapy to combination therapy in diabetic myocardial I/R injury. METHODS 6-8 week rats were randomized into 10 groups: sham, I/R, ischaemia postconditioning (I-Post), nicorandil (Nic), combination therapy (I-Post + Nic), DM sham, DM I/R, DM I-Post, DM Nic and DM I-Post + Nic. The extent of myocardial injury was clarified by measuring CK-MB and NO levels in plasma, ROS content in myocardial tissues, and TTC/Evans Blue staining to assess the area of myocardial infarction. Pathological staining of cardiac tissue sections were performed to clarify the structural changes in myocardial histopathology. Finally, Western blotting was performed to detect the phosphorylation levels of some key proteins in the PI3K/Akt signalling pathway in myocardial tissues. RESULTS We confirms that myocardial injury in diabetic I/R rats remained at a high level after treatment with I-Post or nicorandil alone. I-Post combined with nicorandil showed better therapeutic effects in diabetic I/R rats, and the combined treatment further reduced the area of myocardial injury in diabetic I/R rats compared with I-Post or nicorandil treatment alone (P < 0.001), as well as the levels of the myocardial injury markers CK-MB and ROS (P < 0.001); it also significantly increased plasma NO levels. Pathological staining also showed that diabetic rats benefited significantly from the combination therapy. Further mechanistic studies confirmed this finding. The protein phosphorylation levels of PI3K/Akt signalling pathway in the heart tissue of diabetic I/R rats were significantly higher after the combination treatment than after one treatment alone (all P < 0.05). CONCLUSION I-Post combined with nicorandil treatment maintains effective cardioprotection against diabetic myocardial I/R injury by activating the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Zongyi Xia
- grid.412521.10000 0004 1769 1119Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Bing Chen
- grid.412521.10000 0004 1769 1119Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Chi Zhou
- grid.412521.10000 0004 1769 1119Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Yitian Wang
- grid.412521.10000 0004 1769 1119Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Jinyang Ren
- grid.410645.20000 0001 0455 0905Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao, 266071 Shandong China
| | - Xujin Yao
- grid.410645.20000 0001 0455 0905Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao, 266071 Shandong China
| | - Yifan Yang
- grid.410645.20000 0001 0455 0905Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Street, Qingdao, 266071 Shandong China
| | - Qi Wan
- grid.410645.20000 0001 0455 0905Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao, 266071 Shandong China
| | - Zhexun Lian
- grid.412521.10000 0004 1769 1119Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003 Shandong China
| |
Collapse
|
12
|
Discrepancy between the Actions of Glucagon-like Peptide-1 Receptor Ligands in the Protection of the Heart against Ischemia Reperfusion Injury. Pharmaceuticals (Basel) 2022; 15:ph15060720. [PMID: 35745639 PMCID: PMC9228343 DOI: 10.3390/ph15060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Tirzepatide is a dual glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist and a promising therapy for type 2 diabetes mellitus (T2DM). GLP-1 is an incretin hormone with therapeutic potential beyond type 2 diabetes mellitus. However, GLP-1 is rapidly degraded by dipeptdyl peptidase-IV (DPP-IV) to GLP-1 (9-36). Exendin-4 (Ex-4) is a DPP-IV-resistant GLP-1 receptor agonist which, when truncated to Ex-4 (9-39), acts as a GLP-1 receptor antagonist. In the present study, hearts isolated from Wistar rats (n = 8 per group) were perfused with a modified Langendorff preparation. Left ventricular (LV) contractility and cardiovascular hemodynamics were evaluated by a data acquisition program and infarct size was evaluated by 2,3,5-Triphenyl-2H-tetrazolium chloride (TTC) staining and cardiac enzyme levels. Hearts were subjected to 30 min regional ischemia, produced by ligation of the left anterior descending (LAD) coronary artery followed by 30 min reperfusion. Hearts were treated during reperfusion with either the non-lipidated precursor of tirzepatide (NLT), GLP-1, GLP-1 (9-36), or Ex-4 in the presence or absence of Ex-4 (9-39). Infusion of GLP-1 (9-36) or Ex-4 protected the heart against I/R injury (p > 0.01) by normalizing cardiac hemodynamic and enzyme levels. Neither GLP-1, NLT, nor Ex-4 (9-39) showed any protection. Interestingly, Ex-4 (9-39) blocked Ex-4-mediated protection but not that of GLP-1 (9-36). These data suggest that Ex-4-mediated protection is GLP-1-receptor-dependent but GLP-1 (9-36)-mediated protection is not.
Collapse
|
13
|
Ye R, Jneid H, Alam M, Uretsky BF, Atar D, Kitakaze M, Davidson SM, Yellon DM, Birnbaum Y. Do We Really Need Aspirin Loading for STEMI? Cardiovasc Drugs Ther 2022; 36:1221-1238. [PMID: 35171384 DOI: 10.1007/s10557-022-07327-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
Aspirin loading (chewable or intravenous) as soon as possible after presentation is a class I recommendation by current ST elevation myocardial infarction (STEMI) guidelines. Earlier achievement of therapeutic antiplatelet effects by aspirin loading has long been considered the standard of care. However, the effects of the loading dose of aspirin (alone or in addition to a chronic maintenance oral dose) have not been studied. A large proportion of myocardial cell death occurs upon and after reperfusion (reperfusion injury). Numerous agents and interventions have been shown to limit infarct size in animal models when administered before or immediately after reperfusion. However, these interventions have predominantly failed to show significant protection in clinical studies. In the current review, we raise the hypothesis that aspirin loading may be the culprit. Data obtained from animal models consistently show that statins, ticagrelor, opiates, and ischemic postconditioning limit myocardial infarct size. In most of these studies, aspirin was not administered. However, when aspirin was administered before reperfusion (as is the case in the majority of studies enrolling STEMI patients), the protective effects of statin, ticagrelor, morphine, and ischemic postconditioning were attenuated, which can be plausibly attributable to aspirin loading. We therefore suggest studying the effects of aspirin loading before reperfusion on the infarct size limiting effects of statins, ticagrelor, morphine, and/ or postconditioning in large animal models using long reperfusion periods (at least 24 h). If indeed aspirin attenuates the protective effects, clinical trials should be conducted comparing aspirin loading to alternative antiplatelet regimens without aspirin loading in patients with STEMI undergoing primary percutaneous coronary intervention.
Collapse
Affiliation(s)
- Regina Ye
- University of Texas at Austin, Austin, TX, USA
| | - Hani Jneid
- Department of Medicine Baylor College of Medicine, 7200 Cambridge Street Houston, Texas, 77030, USA
| | - Mahboob Alam
- Department of Medicine Baylor College of Medicine, 7200 Cambridge Street Houston, Texas, 77030, USA
| | - Barry F Uretsky
- University of Arkansas for Medical Sciences, Central Arkansas Veterans Health System, Little Rock, AR, USA
| | - Dan Atar
- Department of Cardiology, Oslo University Hospital Ulleval, Oslo, Norway, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Masafumi Kitakaze
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Yochai Birnbaum
- Department of Medicine Baylor College of Medicine, 7200 Cambridge Street Houston, Texas, 77030, USA.
| |
Collapse
|
14
|
Tøllefsen IM, Shetelig C, Seljeflot I, Eritsland J, Hoffmann P, Andersen GØ. High levels of interleukin-6 are associated with final infarct size and adverse clinical events in patients with STEMI. Open Heart 2021; 8:openhrt-2021-001869. [PMID: 34933964 PMCID: PMC8693166 DOI: 10.1136/openhrt-2021-001869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Inflammation has emerged as a new treatment target in patients with coronary artery disease and inflammation seems to play an important role in ischaemia/reperfusion injury that follows ST-elevation myocardial infarction (STEMI). We aimed to explore the role of acute and sustained interleukin 6 (IL-6) signalling, including soluble IL-6 receptor (IL-6R), with regard to infarct size, adverse remodelling and future cardiovascular events in patients with STEMI. Methods We included 269 patients with first-time STEMI, symptom duration <6 hours and treated with percutaneous coronary intervention. Blood sampling and cardiac MRI were performed in the acute phase and after 4 months. Clinical events and all-cause mortality were registered during 12-month and 70-month follow-up, respectively. Results IL-6 levels above median at all sampling points were significantly associated with increased infarct size and reduced left ventricular ejection fraction (LVEF). IL-6 levels in the highest quartile were at all sampling points associated with an increased risk of having an adverse clinical event during the first 12 months and with long-term all-cause mortality. IL-6R was not associated with infarct size, LVEF, myocardial salvage or long-term all-cause mortality. Conclusion Acute and sustained elevation of IL-6 measured 4 months after STEMI were associated with larger infarct size, reduced LVEF and adverse clinical events including all-cause mortality. The results add important information to the sustained role of inflammation in patients with STEMI and IL-6 as a potential target for long-term intervention. Trial registration number NCT00922675.
Collapse
Affiliation(s)
| | - Christian Shetelig
- Department of Cardiology, Oslo University Hospital Ulleval, Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway
| | - Jan Eritsland
- Department of Cardiology, Oslo University Hospital Ulleval, Oslo, Norway
| | - Pavel Hoffmann
- Section of Interventional Cardiology, Oslo universitetssykehus Ulleval, Oslo, Norway
| | | |
Collapse
|
15
|
Vidal-Calés P, Cepas-Guillén PL, Brugaletta S, Sabaté M. New Interventional Therapies beyond Stenting to Treat ST-Segment Elevation Acute Myocardial Infarction. J Cardiovasc Dev Dis 2021; 8:jcdd8090100. [PMID: 34564118 PMCID: PMC8469769 DOI: 10.3390/jcdd8090100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
Myocardial infarction remains the principal cause of death in Europe. In patients with ST-segment-elevation myocardial infarction (STEMI), a promptly revascularization with primary percutaneous intervention (PCI) has transformed prognosis in the last decades. However, despite increasing successful PCI procedures, mortality has remained unchanged in recent years. Also, due to an unsatisfactory reperfusion, some patients have significant myocardial damage and suffer left ventricular adverse remodeling with reduced function—all that resulting in the onset of heart failure with all its inherent clinical and socioeconomic burden. As a consequence of longer ischemic times, distal thrombotic embolization, ischemia-reperfusion injury and microvascular dysfunction, the resultant myocardial infarct size is the major prognostic determinant in STEMI patients. The improved understanding of all the pathophysiology underlying these events has derived to the development of several novel therapies aiming to reduce infarct size and to improve clinical outcomes in these patients. In this article, based on the mechanisms involved in myocardial infarction prognosis, we review the new interventional strategies beyond stenting that may solve the suboptimal results that STEMI patients still experience.
Collapse
Affiliation(s)
- Pablo Vidal-Calés
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (P.V.-C.); (P.L.C.-G.); (S.B.)
| | - Pedro L. Cepas-Guillén
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (P.V.-C.); (P.L.C.-G.); (S.B.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Salvatore Brugaletta
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (P.V.-C.); (P.L.C.-G.); (S.B.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Manel Sabaté
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (P.V.-C.); (P.L.C.-G.); (S.B.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV) CB16/11/00411, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-932-275-519
| |
Collapse
|
16
|
Mir T, Uddin M, Changal KH, Perveiz E, Kaur J, Sattar Y, Ullah W, Sheikh M. Long-term outcomes of ischemic post-conditioning primary PCI and conventional primary PCI in acute STEMI: a meta-analysis of randomized trials. Expert Rev Cardiovasc Ther 2021; 19:673-680. [PMID: 34115566 DOI: 10.1080/14779072.2021.1941874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Data regarding ischemic postconditioning during percutaneous coronary intervention (PCI) as compared conventional PCI alone has yielded conflicting results. METHODS Online databases comparing use of ischemic postconditioning percutaneous coronary intervention (ICP-PPCI) in STEMI patients with conventional PPCI were selected. Mortality, heart failure (HF), myocardial infarction (MI), and major adverse cardiac events (MACE) were evaluated. The primary outcome was composite of HF, MI, and mortality. Pooled risk ratio (RR) with 95% confidence interval (CI) were computed using random-effects model. RESULTS Eight studies consisting of 2,566 patients (ICP-PPCI n = 1,228; PPCI n = 1,278) were included. The mean age for PPCI group was 61.38 ± 7.86 years (51% men) and for PCI 59.83 ± 8.94 years (47% men). There were no differences in outcome between ICP-PPCI and PPCI in terms of HF (RR 0.87 95% CI0.51-1.48; p = 0.29), MI (RR 1.28, 95%CI0.74-2.20; p = 0.20), mortality (RR 0.93, 95%CI0.64-1.34; p = 0.58), and MACE (RR 0.89, 95%CI0.74-1.07; p = 0.22). The results for composite event for the ICP-PPCI and PPIC procedures, at ≥1 year follow-up duration, were comparable (RR 1.00 95%CI0.82-1.22; p = 1). CONCLUSION Ischemic postconditioning post percutaneous coronary intervention in STEMI patients has no long-term benefits over conventional PCI.
Collapse
Affiliation(s)
- Tanveer Mir
- Internal Medicine, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| | - Mohammed Uddin
- Internal Medicine, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| | | | - Eskara Perveiz
- Internal Medicine, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| | - Jasmeet Kaur
- Department of Internal Medicine, Saint Joseph Mercy Oakland, Pontiac, MI, USA
| | - Yasar Sattar
- Internal Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Waqas Ullah
- Internal Medicine, Abington Jefferson Health, Abington, PA, USA
| | - Mujeeb Sheikh
- Department of Cardiovascular Medicine and Interventional Cardiology, Promedica Toledo Hospital, Ohio, USA
| |
Collapse
|
17
|
Therapies to prevent post-infarction remodelling: From repair to regeneration. Biomaterials 2021; 275:120906. [PMID: 34139506 DOI: 10.1016/j.biomaterials.2021.120906] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
Myocardial infarction is the first cause of worldwide mortality, with an increasing incidence also reported in developing countries. Over the past decades, preclinical research and clinical trials continually tested the efficacy of cellular and acellular-based treatments. However, none of them resulted in a drug or device currently used in combination with either percutaneous coronary intervention or coronary artery bypass graft. Inflammatory, proliferation and remodelling phases follow the ischaemic event in the myocardial tissue. Only recently, single-cell sequencing analyses provided insights into the specific cell populations which determine the final fibrotic deposition in the affected region. In this review, ischaemia, inflammation, fibrosis, angiogenesis, cellular stress and fundamental cellular and molecular components are evaluated as therapeutic targets. Given the emerging evidence of biomaterial-based systems, the increasing use of injectable hydrogels/scaffolds and epicardial patches is reported both as acellular and cellularised/functionalised treatments. Since several variables influence the outcome of any experimented treatment, we return to the pathological basis with an unbiased view towards any specific process or cellular component. Thus, by evaluating the benefits and limitations of the approaches based on these targets, the reader can weigh the rationale of each of the strategies that reached the clinical trials stage. As recent studies focused on the relevance of the extracellular matrix in modulating ischaemic remodelling and enhancing myocardial regeneration, we aim to portray current trends in the field with this review. Finally, approaches towards feasible translational studies that are as yet unexplored are also suggested.
Collapse
|
18
|
Chen W, Deng M, Wang H, Wang Y, Zhou W, Yu T. ROS‑associated mechanism of different concentrations of pinacidil postconditioning in the rat cardiac Nrf2‑ARE signaling pathway. Mol Med Rep 2021; 23:433. [PMID: 33846798 PMCID: PMC8060791 DOI: 10.3892/mmr.2021.12072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 02/25/2021] [Indexed: 01/06/2023] Open
Abstract
Previous studies have confirmed that 50 µmol/l pinacidil postconditioning (PPC) activates the nuclear factor-E2 related factor 2 (Nrf2)-antioxidant responsive element (ARE) pathway, which protects the myocardium from ischemia-reperfusion (IR) injury; however, whether this is associated with reactive oxygen species (ROS) generation remains unclear. In the present study, a Langendorff rat model of isolated myocardial IR was established to investigate the mechanism of PPC at different concentrations, as well as the association between the rat myocardial Nrf2-ARE signaling pathway and ROS. A total of 48 rats were randomly divided into the following six groups (n=8 per group): i) Normal; ii) IR iii) 10 µmol/l PPC (P10); iv) 30 µmol/l PPC (P30); v) 50 µmol/l PPC (P50); and vi) N-(2-mercaptopropionyl)-glycine (MPG; a ROS scavenger) + 50 µmol/l pinacidil (P50 + MPG). At the end of reperfusion (T3), compared with the IR group, the P10, P30 and P50 groups exhibited improved cardiac function, such as left ventricular development pressure, heart rate, left ventricular end-diastolic pressure, +dp/dtmax, myocardial cell ultrastructure and mitochondrial Flameng score. Furthermore, the P10 and P50 groups demonstrated the weakest and most marked improvements, respectively. Additionally, in the P10, P30 and P50 groups, the residual ROS content at the end of reperfusion was highly negatively correlated with relative expression levels of Nrf2 gene and protein. Higher pinacidil concentration was associated with higher ROS generation at 5 min post-reperfusion (T2), although this was significantly lower compared with the IR group, as well as with increased expression levels of antioxidant proteins and phase II detoxification enzymes downstream of the Nrf2 and Nrf2-ARE pathways. This result was associated with a stronger ability to scavenge ROS during reperfusion, leading to lower levels of ROS at the end of reperfusion (T3) and less myocardial damage. The optimal myocardial protective effect was achieved by 50 mmol/l pinacidil. However, cardiac function of the P50 + MPG group was significantly decreased, ultrastructure of cardiomyocytes was significantly impaired and the relative expression levels of genes and proteins in the Nrf2-ARE pathway were decreased. The aforementioned results confirmed that different PPC concentrations promoted early generation of ROS and activated the Nrf2-ARE signaling pathway following reperfusion, regulated expression levels of downstream antioxidant proteins and alleviated myocardial IR injury in rats. Treatment with 50 mmol/l pinacidil resulted in the best myocardial protection.
Collapse
Affiliation(s)
- Wei Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Mengyuan Deng
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Haiying Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Ying Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Wenjing Zhou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Tian Yu
- Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
19
|
Comparison of infarction size, complete ST-segment resolution incidence, mortality and re-infarction and target vessel revascularization between remote ischemic conditioning and ischemic postconditioning in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2020; 16:278-286. [PMID: 33597992 PMCID: PMC7863805 DOI: 10.5114/aic.2020.99262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/06/2020] [Indexed: 11/30/2022] Open
Abstract
Introduction Due to higher morbidity and mortality, ST-segment elevation myocardial infarction (STEMI) causes many public health problems. Aim To observe effects of remote ischemic conditioning (RIC) and ischemic postconditioning (IPC) on patients diagnosed as STEMI undergoing primary percutaneous coronary intervention (pPCI). Material and methods This meta-analysis was conducted using indirect comparison by conducting a network meta-analysis (NMA). We conducted searches by utilizing PubMed and the other databases to identify randomized controlled trials (RCTs) that described IPC or RIC treated patients diagnosed with STEMI during processes of pPCI. Enzymatic infarct size and infarction size were evaluated and cardiac events were assessed during the follow-up. Results Pooled results showed that lower enzymatic infarction size was associated with the RIC group compared to the IPC group (IPC vs. RIC: standardized mean difference (SMD) = 1.126; 95% confidence interval (CI): 0.756–1.677). Compared with IPC, RIC significantly reduced infarction size, which was assessed using cardiac magnetic resonance (CMR) (SMD = 1.113; 95% CI: 0.674–1.837). We noted a potential toward greater complete ST-segment resolution in RIC patients compared with IPC patients (odds ratio (OR) = 0.821; 95% CI: 0.166–4.051). No significant difference existed in all-cause mortality (OR = 2.211; 95% CI: 0.845–5.784), Target vessel revascularization (TVR) (OR = 0.045; 95% CI: 0.001–.662) or re-infarction (OR = 1.763; 95% CI: 0.741–4.193). Conclusions This meta-analysis suggested RIC was correlated with significantly smaller infarction size compared to IPC. No significant superiority between RIC and IPC has been observed in this study on cSTR incidence, mortality and re-infarction or TVR.
Collapse
|
20
|
Ciofani JL, Allahwala UK, Scarsini R, Ekmejian A, Banning AP, Bhindi R, De Maria GL. No-reflow phenomenon in ST-segment elevation myocardial infarction: still the Achilles' heel of the interventionalist. Future Cardiol 2020; 17:383-397. [PMID: 32915083 DOI: 10.2217/fca-2020-0077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Improvements in systems, technology and pharmacotherapy have significantly changed the prognosis over recent decades in patients presenting with ST-segment elevation myocardial infarction. These clinical achievements have, however, begun to plateau and it is becoming increasingly necessary to consider novel strategies to further improve outcomes. Approximately a third of patients treated by primary percutaneous coronary intervention for ST-segment elevation myocardial infarction will suffer from coronary no-reflow (NR), a condition characterized by poor myocardial perfusion despite patent epicardial arteries. The presence of NR impacts significantly on clinical outcomes including left ventricular dysfunction, heart failure and death, yet conventional management algorithms neither assess the risk of NR nor treat NR. This review will provide a contemporary overview on the pathogenesis, diagnosis and treatment of NR.
Collapse
Affiliation(s)
- Jonathan L Ciofani
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia.,Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Usaid K Allahwala
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Roberto Scarsini
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK.,Division of Cardiology, University of Verona, Verona, Italy
| | - Avedis Ekmejian
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Adrian P Banning
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Ravinay Bhindi
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Giovanni Luigi De Maria
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
21
|
Abstract
Despite the increasing use and success of interventional coronary reperfusion strategies, morbidity and mortality from acute myocardial infarction are still substantial. Myocardial infarct size is a major determinant of prognosis in these patients. Therefore, cardioprotective strategies aim to reduce infarct size. However, a perplexing gap exists between the many preclinical studies reporting infarct size reduction with mechanical and pharmacological interventions and the poor translation into better clinical outcomes in patients. This Review revisits the pathophysiology of myocardial ischaemia-reperfusion injury, including the role of autophagy and forms of cell death such as necrosis, apoptosis, necroptosis and pyroptosis. Other cellular compartments in addition to cardiomyocytes are addressed, notably the coronary microcirculation. Preclinical and clinical research developments in mechanical and pharmacological approaches to induce cardioprotection, and their signal transduction pathways, are discussed. Additive cardioprotective interventions are advocated. For clinical translation into treatments for patients with acute myocardial infarction, who typically are of advanced age, have comorbidities and are receiving several medications, not only infarct size reduction but also attenuation of coronary microvascular obstruction, as well as longer-term targets including infarct repair and reverse remodelling, must be considered to improve patient outcomes. Future clinical trials must focus on patients who really need adjunct cardioprotection, that is, those with severe haemodynamic alterations.
Collapse
|
22
|
Babiker F, Benter IF, Akhtar S. Nanotoxicology of Dendrimers in the Mammalian Heart: ex vivo and in vivo Administration of G6 PAMAM Nanoparticles Impairs Recovery of Cardiac Function Following Ischemia-Reperfusion Injury. Int J Nanomedicine 2020; 15:4393-4405. [PMID: 32606684 PMCID: PMC7310973 DOI: 10.2147/ijn.s255202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 01/30/2023] Open
Abstract
Aim The effects of polyamidoamine (PAMAM) dendrimers on the mammalian heart are not completely understood. In this study, we have investigated the effects of a sixth-generation cationic dendrimer (G6 PAMAM) on cardiac function in control and diabetic rat hearts following ischemia-reperfusion (I/R) injury. Methods Isolated hearts from healthy non-diabetic (Ctr) male Wistar rats were subjected to ischemia and reperfusion (I/R). LV contractility and hemodynamics data were computed digitally whereas cardiac damage following I/R injury was assessed by measuring cardiac enzymes. For ex vivo acute exposure experiments, G6 PAMAM was administered during the first 10 mins of reperfusion in Ctr animals. In chronic in vivo studies, nondiabetic rats (Ctr) received either vehicle or daily i.p. injections of G6 PAMAM (40 mg/kg) for 4 weeks. Diabetic (D) animals received either vehicle or daily i.p. injections of G6 PAMAM (10, 20 or 40 mg/kg) for 4 weeks. The impact of G6 PAMAM on pacing-postconditioning (PPC) was also studied in Ctr and D rats. Results In ex vivo studies, acute administration of G6 PAMAM to isolated Ctr hearts during reperfusion dose-dependently impaired recovery of cardiac hemodynamics and vascular dynamics parameters following I/R injury. Chronic daily i.p. injections of G6 PAMAM significantly (P<0.01) impaired recovery of cardiac function following I/R injury in nondiabetic animals but this was not generally observed in diabetic animals except for CF which was impaired by about 50%. G6 PAMAM treatment completely blocked the protective effects of PPC in the Ctr animals. Conclusion Acute ex vivo or chronic in vivo treatment with naked G6 PAMAM dendrimer can significantly compromise recovery of non-diabetic hearts from I/R injury and can further negate the beneficial effects of PPC. Our findings are therefore extremely important in the nanotoxicological evaluation of G6 PAMAM dendrimers for potential clinical applications in physiological and pathological settings.
Collapse
Affiliation(s)
- Fawzi Babiker
- Department of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Kuwait City, Kuwait
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus, Republic of Cyprus
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
23
|
Li J, Sun D, Li Y. Novel Findings and Therapeutic Targets on Cardioprotection of Ischemia/ Reperfusion Injury in STEMI. Curr Pharm Des 2020; 25:3726-3739. [PMID: 31692431 DOI: 10.2174/1381612825666191105103417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Acute ST-segment elevation myocardial infarction (STEMI) remains a leading cause of morbidity and mortality around the world. A large number of STEMI patients after the infarction gradually develop heart failure due to the infarcted myocardium. Timely reperfusion is essential to salvage ischemic myocardium from the infarction, but the restoration of coronary blood flow in the infarct-related artery itself induces myocardial injury and cardiomyocyte death, known as ischemia/reperfusion injury (IRI). The factors contributing to IRI in STEMI are complex, and microvascular obstruction, inflammation, release of reactive oxygen species, myocardial stunning, and activation of myocardial cell death are involved. Therefore, additional cardioprotection is required to prevent the heart from IRI. Although many mechanical conditioning procedures and pharmacological agents have been identified as effective cardioprotective approaches in animal studies, their translation into the clinical practice has been relatively disappointing due to a variety of reasons. With new emerging data on cardioprotection in STEMI over the past few years, it is mandatory to reevaluate the effectiveness of "old" cardioprotective interventions and highlight the novel therapeutic targets and new treatment strategies of cardioprotection.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Danghui Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Stiermaier T, Jensen JO, Rommel KP, de Waha-Thiele S, Fuernau G, Desch S, Thiele H, Eitel I. Combined Intrahospital Remote Ischemic Perconditioning and Postconditioning Improves Clinical Outcome in ST-Elevation Myocardial Infarction. Circ Res 2020; 124:1482-1491. [PMID: 30929570 DOI: 10.1161/circresaha.118.314500] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Remote ischemic conditioning (RIC) or ischemic postconditioning (PostC) may protect the myocardium from ischemia-reperfusion injury in patients with ST-segment-elevation myocardial infarction. OBJECTIVE To determine whether combined intrahospital RIC and PostC or PostC alone in addition to primary percutaneous coronary intervention (PCI) reduce long-term clinical events after ST-segment-elevation myocardial infarction. METHODS AND RESULTS The present study is a post hoc analysis of a prospective trial which randomized 696 ST-segment-elevation myocardial infarction patients with symptoms <12 hours 1:1:1 to either combined RIC and PostC in addition to primary PCI, PostC alone in addition to primary PCI, or conventional PCI (control). Three cycles of RIC were performed by inflation of an upper arm blood pressure cuff for 5 minutes followed by deflation for 5 minutes. PostC was performed after primary PCI via 4 cycles of 30 seconds balloon occlusions followed by 30 seconds of reperfusion. Major adverse cardiac events consisting of cardiac death, reinfarction, and new congestive heart failure were assessed during long-term follow-up. Follow-up data were obtained in 97% of patients in median 3.6 years after the index event (interquartile range, 2.9-4.2 years). Major adverse cardiac events occurred in 10.2% of patients in the combined RIC and PostC group and in 16.9% in the control group (odds ratio, 0.56; 95% CI, 0.32-0.97; P=0.04). The difference was driven by a significantly reduced rate of new congestive heart failure in the RIC and PostC group (2.7% versus 7.8%; odds ratio, 0.32; 95% CI, 0.13-0.84; P=0.02). In contrast, PostC alone did not reduce major adverse cardiac events compared with controls (14.1% versus 16.9%; odds ratio, 0.81; 95% CI, 0.48-1.35; P=0.41), and the reduction of new congestive heart failure was not statistically significant (3.5% versus 7.8%; odds ratio, 0.43; 95% CI, 0.18-1.03; P=0.05). CONCLUSIONS Cardioprotection by combined intrahospital RIC and PostC in addition to primary PCI significantly reduced the rate of major adverse cardiac events and new congestive heart failure after ST-segment-elevation myocardial infarction. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov . Unique identifier: NCT02158468.
Collapse
Affiliation(s)
- Thomas Stiermaier
- From the University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), Germany (T.S., J.-O.J., S.d.W.-T., G.F., I.E.).,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany (T.S., J.-O.J., S.d.W.-T., G.F., S.D., I.E.)
| | - Jan-Oluf Jensen
- From the University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), Germany (T.S., J.-O.J., S.d.W.-T., G.F., I.E.).,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany (T.S., J.-O.J., S.d.W.-T., G.F., S.D., I.E.)
| | - Karl-Philipp Rommel
- Heart Center Leipzig, University Hospital, Department of Internal Medicine/Cardiology, Germany (K.-P.R., S.D., H.T.)
| | - Suzanne de Waha-Thiele
- From the University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), Germany (T.S., J.-O.J., S.d.W.-T., G.F., I.E.).,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany (T.S., J.-O.J., S.d.W.-T., G.F., S.D., I.E.)
| | - Georg Fuernau
- From the University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), Germany (T.S., J.-O.J., S.d.W.-T., G.F., I.E.).,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany (T.S., J.-O.J., S.d.W.-T., G.F., S.D., I.E.)
| | - Steffen Desch
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany (T.S., J.-O.J., S.d.W.-T., G.F., S.D., I.E.).,Heart Center Leipzig, University Hospital, Department of Internal Medicine/Cardiology, Germany (K.-P.R., S.D., H.T.)
| | - Holger Thiele
- Heart Center Leipzig, University Hospital, Department of Internal Medicine/Cardiology, Germany (K.-P.R., S.D., H.T.)
| | - Ingo Eitel
- From the University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), Germany (T.S., J.-O.J., S.d.W.-T., G.F., I.E.).,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany (T.S., J.-O.J., S.d.W.-T., G.F., S.D., I.E.)
| |
Collapse
|
25
|
Koyama T, Munakata M, Akima T, Kanki H. Reduced Plasma NT-proBNP Levels Months after Myocardial Infarction Postconditioned with Lactate-Enriched Blood. Cardiology 2020; 145:199-202. [DOI: 10.1159/000505903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/10/2020] [Indexed: 11/19/2022]
Abstract
Background: We recently reported a new approach, namely postconditioning with lactate-enriched blood (PCLeB), for cardioprotection in patients with ST-segment elevation myocardial infarction (STEMI). Objectives: We examined the effects of PCLeB on plasma NT-proBNP levels months after myocardial infarction (MI). Methods: The study included consecutive patients (n = 31) undergoing percutaneous coronary intervention (PCI) for anterior STEMI within 12 h of symptom onset in our hospital between March 2014 and August 2018. We retrospectively compared plasma NT-proBNP levels several months after MI in these patients with those in historical control patients (n = 32). The control patients included consecutive patients who underwent successful PCI without PCLeB for anterior STEMI within 12 h of symptom onset in our hospital between March 2009 and February 2014. We compared the highest plasma NT-proBNP values 6–10 months after MI in the postconditioned patients with the lowest plasma NT-proBNP values 6–10 months after MI in the control patients. In the PCLeB protocol, the duration of each brief reperfusion was increased stepwise from 10 to 60 s. Lactated Ringer’s solution (30 mL) was injected directly in the culprit coronary artery at the end of each brief reperfusion. Each ischemic episode lasted 60 s. Results: Plasma NT-proBNP levels in the postconditioned patients months after MI (211 ± 207 pg/mL) were significantly lower than those in the control patients (516 ± 598 pg/mL; p < 0.0001). Conclusion: PCLeB was associated with reduced plasma NT-proBNP levels months after MI.
Collapse
|
26
|
Traverse JH, Swingen CM, Henry TD, Fox J, Wang YL, Chavez IJ, Lips DL, Lesser JR, Pedersen WR, Burke NM, Pai A, Lindberg JL, Garberich RF. NHLBI-Sponsored Randomized Trial of Postconditioning During Primary Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction. Circ Res 2019; 124:769-778. [PMID: 30602360 DOI: 10.1161/circresaha.118.314060] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RATIONALE Postconditioning at the time of primary percutaneous coronary intervention (PCI) for ST-segment-elevation myocardial infarction may reduce infarct size and improve myocardial salvage. However, clinical trials have shown inconsistent benefit. OBJECTIVE We performed the first National Heart, Lung, and Blood Institute-sponsored trial of postconditioning in the United States using strict enrollment criteria to optimize the early benefits of postconditioning and assess its long-term effects on left ventricular (LV) function. METHODS AND RESULTS We randomized 122 ST-segment-elevation myocardial infarction patients to postconditioning (4, 30 seconds PTCA [percutaneous transluminal coronary angioplasty] inflations/deflations)+PCI (n=65) versus routine PCI (n=57). All subjects had an occluded major epicardial artery (thrombolysis in myocardial infarction=0) with ischemic times between 1 and 6 hours with no evidence of preinfarction angina or collateral blood flow. Cardiac magnetic resonance imaging measured at 2 days post-PCI showed no difference between the postconditioning group and control in regards to infarct size (22.5±14.5 versus 24.0±18.5 g), myocardial salvage index (30.3±15.6% versus 31.5±23.6%), or mean LV ejection fraction. Magnetic resonance imaging at 12 months showed a significant recovery of LV ejection fraction in both groups (61.0±11.4% and 61.4±9.1%; P<0.01). Subjects randomized to postconditioning experienced more favorable remodeling over 1 year (LV end-diastolic volume =157±34 to 150±38 mL) compared with the control group (157±40 to 165±45 mL; P<0.03) and reduced microvascular obstruction ( P=0.05) on baseline magnetic resonance imaging and significantly less adverse LV remodeling compared with control subjects with microvascular obstruction ( P<0.05). No significant adverse events were associated with the postconditioning protocol and all patients but one (hemorrhagic stroke) survived through 1 year of follow-up. CONCLUSIONS We found no early benefit of postconditioning on infarct size, myocardial salvage index, and LV function compared with routine PCI. However, postconditioning was associated with improved LV remodeling at 1 year of follow-up, especially in subjects with microvascular obstruction. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov . Unique identifier: NCT01324453.
Collapse
Affiliation(s)
- Jay H Traverse
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.).,Cardiovascular Division, The University of Minnesota School of Medicine, Minneapolis (J.H.T., C.M.S.)
| | - Cory M Swingen
- Cardiovascular Division, The University of Minnesota School of Medicine, Minneapolis (J.H.T., C.M.S.)
| | - Timothy D Henry
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Jane Fox
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Yale L Wang
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Ivan J Chavez
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Daniel L Lips
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - John R Lesser
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Wesley R Pedersen
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Nicholas M Burke
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Akila Pai
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Jana L Lindberg
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Ross F Garberich
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| |
Collapse
|
27
|
Lunde NN, Gregersen I, Ueland T, Shetelig C, Holm S, Kong XY, Michelsen AE, Otterdal K, Yndestad A, Broch K, Gullestad L, Nyman TA, Bendz B, Eritsland J, Hoffmann P, Skagen K, Gonçalves I, Nilsson J, Grenegård M, Poreba M, Drag M, Seljeflot I, Sporsheim B, Espevik T, Skjelland M, Johansen HT, Solberg R, Aukrust P, Björkbacka H, Andersen GØ, Halvorsen B. Legumain is upregulated in acute cardiovascular events and associated with improved outcome - potentially related to anti-inflammatory effects on macrophages. Atherosclerosis 2019; 296:74-82. [PMID: 31870625 DOI: 10.1016/j.atherosclerosis.2019.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/20/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS We have previously found increased levels of the cysteine protease legumain in plasma and plaques from patients with carotid atherosclerosis. This study further investigated legumain during acute cardiovascular events. METHODS Circulating levels of legumain from patients and legumain released from platelets were assessed by enzyme-linked-immunosorbent assay. Quantitative PCR and immunoblotting were used to study expression, while localization was visualized by immunohistochemistry. RESULTS In the SUMMIT Malmö cohort (n = 339 with or without type 2 diabetes and/or cardiovascular disease [CVD], and 64 healthy controls), the levels of circulating legumain were associated with the presence of CVD in non-diabetics, with no relation to outcome. In symptomatic carotid plaques and in samples from both coronary and intracerebral thrombi obtained during acute cardiovascular events, legumain was co-localized with macrophages in the same regions as platelets. In vitro, legumain was shown to be present in and released from platelets upon activation. In addition, THP-1 macrophages exposed to releasate from activated platelets showed increased legumain expression. Interestingly, primary peripheral blood mononuclear cells stimulated with recombinant legumain promoted anti-inflammatory responses. Finally, in a STEMI population (POSTEMI; n = 272), patients had significantly higher circulating legumain before and immediately after percutaneous coronary intervention compared with healthy controls (n = 67), and high levels were associated with improved outcome. CONCLUSIONS Our data demonstrate for the first time that legumain is upregulated during acute cardiovascular events and is associated with improved outcome.
Collapse
Affiliation(s)
- Ngoc Nguyen Lunde
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Christian Shetelig
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Lars Gullestad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Tuula A Nyman
- Proteomics Core Facility, Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Bjørn Bendz
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jan Eritsland
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Pavel Hoffmann
- Section of Interventional Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Karolina Skagen
- Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Isabel Gonçalves
- Experimental Cardiovascular Research Unit, Dept. of Clinical Sciences, Malmö Lund University, Malmö, Sweden; Department of Cardiology, Skåne University Hospital, Sweden
| | - Jan Nilsson
- Experimental Cardiovascular Research Unit, Dept. of Clinical Sciences, Malmö Lund University, Malmö, Sweden
| | | | - Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Bjørnar Sporsheim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mona Skjelland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Harald Thidemann Johansen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Rigmor Solberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Harry Björkbacka
- Experimental Cardiovascular Research Unit, Dept. of Clinical Sciences, Malmö Lund University, Malmö, Sweden
| | - Geir Øystein Andersen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Neutrophil Extracellular Trap Components Associate with Infarct Size, Ventricular Function, and Clinical Outcome in STEMI. Mediators Inflamm 2019; 2019:7816491. [PMID: 31772506 PMCID: PMC6854936 DOI: 10.1155/2019/7816491] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
Background The relevance of neutrophil extracellular traps (NETs) in acute ST-elevation myocardial infarction (STEMI) is unclear. We explored the temporal profile of circulating NET markers and their associations to myocardial injury and function and to adverse clinical events in STEMI patients. Methods and Results In 259 patients, blood samples were drawn before and after PCI, on day 1, and after 4 months. Double-stranded deoxyribonucleic acid (dsDNA) and myeloperoxidase-DNA (MPO-DNA) were measured in serum by a nucleic acid stain and ELISA. Cardiac magnetic resonance imaging assessed microvascular obstruction (MVO), area at risk, infarct size, myocardial salvage index, left ventricular ejection fraction (LVEF), and change in indexed left ventricular end-diastolic volume (LVEDVi). Clinical events were registered after 12 months. dsDNA and MPO-DNA levels were highest before PCI, with reduced levels thereafter (all p ≤ 0.02). Patients with high vs. low day 1 dsDNA levels (>median; 366 ng/ml) more frequently had MVO, larger area at risk, larger infarct size acutely and after 4 months, and lower myocardial salvage index (all p < 0.03). Moreover, they had lower LVEF acutely and after 4 months, and larger change in LVEDVi (all p ≤ 0.014). High day 1 dsDNA levels also associated with risk of having a large infarct size (>75th percentile) and low LVEF (≤49%) after 4 months when adjusted for gender, time from symptoms to PCI, and infarct localization (OR 2.3 and 3.0, both p < 0.021), and patients with high day 1 dsDNA levels were more likely to experience an adverse clinical event, also when adjusting for peak troponin T (hazard ratio 5.1, p = 0.012). No such observations were encountered for MPO-DNA. Conclusions High day 1 dsDNA levels after STEMI were associated with myocardial infarct size, adverse left ventricular remodeling, and clinical outcome. Although the origin of dsDNA could be discussed, these observations indicate a potential role for dsDNA in acute myocardial ischemia. This trial is registered with S-08421d, 2008/10614 (Regional Committee for Medical Research Ethics in South-East Norway (2008)).
Collapse
|
29
|
Kumar J, O’Connor CT, Kumar R, Arnous SK, Kiernan TJ. Coronary no-reflow in the modern era: a review of advances in diagnostic techniques and contemporary management. Expert Rev Cardiovasc Ther 2019; 17:605-623. [DOI: 10.1080/14779072.2019.1653187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jathinder Kumar
- Department of Cardiology University Hospital Limerick, GEMS, University of Limerick, Limerick, Ireland
| | - Cormac T O’Connor
- Department of Cardiology University Hospital Limerick, GEMS, University of Limerick, Limerick, Ireland
| | - Rajesh Kumar
- Department of Cardiology University Hospital Limerick, GEMS, University of Limerick, Limerick, Ireland
| | - Samer Khalil Arnous
- Department of Cardiology University Hospital Limerick, GEMS, University of Limerick, Limerick, Ireland
| | - Thomas J. Kiernan
- Department of Cardiology University Hospital Limerick, GEMS, University of Limerick, Limerick, Ireland
| |
Collapse
|
30
|
Xing Z, Tang L, Huang J, Peng X, Hu X. Effects of ischaemic postconditioning on outcomes of patients with ST-segment elevation myocardial infarction who underwent primary percutaneous coronary intervention: a meta-analysis. BMJ Open 2019; 9:e022509. [PMID: 30904835 PMCID: PMC6475223 DOI: 10.1136/bmjopen-2018-022509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The aim of this meta-analysis was to evaluate the effects of ischaemic postconditioning (IPC) therapy on hard clinical endpoints in ST-segment elevation myocardial infarction (STEMI) patients who underwent primary percutaneous coronary intervention (PPCI). DESIGN Systematic review and meta-analysis to evaluate the effects of IPC on the outcomes of patients with STEMI. DATA SOURCES PubMed, Embase and the Cochrane Library were systematically searched for relevant articles published prior to May 1, 2018. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Randomised trials comparing conventional PPCI to PPCI combined with IPC in STEMI patients were included. The primary endpoint was heart failure. Secondary endpoints were all-cause mortality and major adverse cardiac events (MACE), including cardiac death, heart failure and MI. The Cochrane Reviewer's Handbook 4.2 was used to assess the risk of bias. DATA EXTRACTION AND SYNTHESIS Relevant data were extracted by two independent investigators. We derived pooled risk ratios (RRs) with random effects models. Sensitivity and subgroup analyses were performed. RESULTS Ten studies that had enrolled 3137 patients were included. PPCI combined with IPC failed to reduce heart failure (RR: 0.88, 95% CI: 0.61 to 1.26, p=0.47; absolute risk: 3.64% in the IPC group and 4.11% in the PPCI only group), all-cause mortality (RR: 0.94, 95% CI: 0.69 to 1.27, p=0.68; absolute risk: 5.07% in the IPC group and 5.27% in the PPCI onlygroup), MACE (RR: 1.05, 95% CI: 0.83 to 1.32, p=0.69; absolute risk: 9.37% in the IPC group and 8.93% in the PPCI only group), cardiac death (RR: 1.28, 95% CI: 0.85 to 1.93, p=0.24; absolute risk: 4.28% in the IPC group and 3.25% in the PPCI only group) and MI (RR: 1.08, 95% CI: 0.38 to 3.12, p=0.88; absolute risk: 3.61% in the IPC group and 3.44% in the PPCI only group). CONCLUSIONS IPC combined with PPCI does not reduce heart failure, MACE and all-cause mortality compared with traditional PPCI in patients with STEMI. TRIAL REGISTRATION NUMBER CRD42017063959.
Collapse
Affiliation(s)
- Zhenhua Xing
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Changsha, Hunan, China
| | - Liang Tang
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Changsha, Hunan, China
| | - Jiabing Huang
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Changsha, Hunan, China
| | - Xiaofan Peng
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Changsha, Hunan, China
| | - Xinqun Hu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
31
|
Chen T, Vunjak-Novakovic G. Human Tissue-Engineered Model of Myocardial Ischemia-Reperfusion Injury. Tissue Eng Part A 2018; 25:711-724. [PMID: 30311860 DOI: 10.1089/ten.tea.2018.0212] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT Reducing ischemia-reperfusion injury would significantly improve patient survival. Current preclinical models are inadequate because they rely on animals, which do not emulate human physiology and the clinical setting. We developed a human tissue platform that allowed us to assess the human cardiac response, and demonstrated the platform's utility by measuring injury during ischemia-reperfusion and the effects of cardioprotective strategies. The model provides a foundation for future studies on how patient-specific backgrounds may affect response to therapeutic strategies. These steps will be necessary to help translate therapies into the clinical setting.
Collapse
Affiliation(s)
- Timothy Chen
- 1 Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York
| | - Gordana Vunjak-Novakovic
- 1 Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York.,2 Department of Medicine, Columbia University in the City of New York, New York, New York
| |
Collapse
|
32
|
Bethke A, Shanmuganathan L, Shetelig C, Swanson D, Andersen GØ, Eritsland J, Kløw NE, Hoffmann P. MR findings of microvascular perfusion in infarcted and remote myocardium early after successful primary PCI. PLoS One 2018; 13:e0206723. [PMID: 30412607 PMCID: PMC6226160 DOI: 10.1371/journal.pone.0206723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/09/2018] [Indexed: 02/03/2023] Open
Abstract
Objectives The aim of the study was to evaluate CMR myocardial first-pass perfusion in the injured region as well as the non-infarcted area in ST-elevation myocardial infarction (STEMI) patients few days after successful primary percutaneous coronary intervention (PCI). Materials and methods 220 patients with first time STEMI successfully treated with PCI (with or without postconditioning) were recruited from the Postconditioning in STEMI study. Contrast enhanced CMR was performed at a 1.5 T scanner 2 (1–5) days after PCI. On myocardial first-pass perfusion imaging signal intensity (SI) was measured in the injured area and in the remote myocardium and maximum contrast enhancement index (MCE) was calculated. MCE = (peak SI after contrast—SI at baseline) / SI at baseline x 100. Results There were no significant differences in first-pass perfusion between patients treated with standard PCI and patients treated with additional postconditioning. The injured myocardium showed a significantly lower MCE compared to remote myocardium (94 ± 55 vs. 113 ± 49; p < 0.001). When patients were divided into four quartiles of MCE in the injured myocardium (MCE injured myocardium), patients with low MCE injured myocardium had: significantly lower ejection fraction (EF) than patients with high MCE injured myocardium, larger infarct size and area at risk, smaller myocardial salvage and more frequent occurrence of microvascular obstruction on late gadolinium enhancement. MCE in the remote myocardium revealed that patients with larger infarction also had significantly decreased MCE in the non-infarcted, remote area. Conclusion CMR first-pass perfusion can be impaired in both injured and remote myocardium in STEMI patients treated with primary PCI. These findings indicate that CMR first-pass perfusion may be a feasible method to evaluate myocardial injury after STEMI in addition to conventional CMR parameters.
Collapse
Affiliation(s)
- Anne Bethke
- Department of Radiology and Nuclear Medicine, Division of Diagnostics and Intervention, Oslo University Hospital, Ullevål, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Limalanathan Shanmuganathan
- Feiring Heart Clinic, Feiring, Norway
- Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Christian Shetelig
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway
- Center for Heart Failure Research, Oslo, Norway
- Center for Clinical Heart Research, Oslo University Hospital, Oslo, Norway
| | - David Swanson
- Institute of Basic Medical Sciences, Department of Biostatistics, University of Oslo, Oslo, Norway
| | | | | | - Nils Einar Kløw
- Department of Radiology and Nuclear Medicine, Division of Diagnostics and Intervention, Oslo University Hospital, Ullevål, Oslo, Norway
- Center for Clinical Heart Research, Oslo University Hospital, Oslo, Norway
| | - Pavel Hoffmann
- Section for Interventional Cardiology, Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway
| |
Collapse
|
33
|
Luo H, Li X, Li T, Zhao L, He J, Zha L, Qi Q, Yu Z. microRNA-423-3p exosomes derived from cardiac fibroblasts mediates the cardioprotective effects of ischaemic post-conditioning. Cardiovasc Res 2018; 115:1189-1204. [PMID: 30202848 DOI: 10.1093/cvr/cvy231] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 08/19/2018] [Accepted: 09/08/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Hui Luo
- Department of Cardiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Department of Cardiology, The First Hospital of Changsha, Hunan Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Tangzhiming Li
- Department of Cardiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Lin Zhao
- Department of Cardiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Jingni He
- Department of Cardiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Lihuang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Qiangqiang Qi
- Department of Cardiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| |
Collapse
|
34
|
Microvascular perfusion in infarcted and remote myocardium after successful primary PCI: angiographic and CMR findings. Eur Radiol 2018; 29:941-950. [DOI: 10.1007/s00330-018-5588-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 01/11/2023]
|
35
|
Orrem HL, Shetelig C, Ueland T, Limalanathan S, Nilsson PH, Husebye T, Aukrust P, Seljeflot I, Hoffmann P, Eritsland J, Mollnes TE, Andersen GØ, Yndestad A. Soluble IL-1 receptor 2 is associated with left ventricular remodelling in patients with ST-elevation myocardial infarction. Int J Cardiol 2018; 268:187-192. [PMID: 29853279 DOI: 10.1016/j.ijcard.2018.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/24/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND The inflammatory response following myocardial infarction (MI) is prerequisite for proper healing of infarcted tissue, but can also have detrimental effects on cardiac function. Interleukin (IL)-1α and IL-1β are potent inflammatory mediators and their bioactivity is tightly regulated by IL-1 receptor antagonist (IL-1ra) and soluble (s) IL-1 receptors (R). We aimed to examine whether levels of soluble regulators of IL-1 signalling are changed during ST-elevation MI (STEMI) and their associations with parameters of cardiac injury and ventricular remodelling. METHODS Plasma levels of IL-1Ra, sIL-1R1, sIL-1R2 and sIL-1R accessory protein (sIL-1RAcP) were measured by immunoassays in repeated samples from patients with STEMI (n = 255) and compared to healthy controls (n = 65). RESULTS IL-1Ra, sIL-1R1 and sIL-1R2 levels were all significantly elevated after STEMI, while levels of sIL-1RAcP were lower compared to controls. sIL-1R2 levels (at different time points) correlated positively with C-reactive protein, myocardial infarct size and change in indexed left ventricular end-diastolic and end-systolic volume (LVEDVi and LVESVi) measured by cardiac MR acutely and after 4 months, and negatively with LV ejection fraction. Patients with >median levels of sIL-1R2 in the acute phase were more likely to have increased change in LVEDVi and LVESVi. Importantly, sIL-1R2 remained significantly associated with change in LVEDVi and LVESVi also after adjustment for clinical covariates. CONCLUSION Levels of sIL-1R2 are independently associated with parameters of LV adverse remodelling following STEMI.
Collapse
Affiliation(s)
- Hilde L Orrem
- Department of Immunology, Oslo University Hospital Rikshospitalet, Norway; Department of Anesthesiology, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Christian Shetelig
- Institute of Clinical Medicine, University of Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Norway; Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| | - Shanmuganathan Limalanathan
- Department of Cardiology, Oslo University Hospital Ullevål, Norway; Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway; Feiring Heart Clinic, Feiring, Norway
| | - Per H Nilsson
- K.G. Jebsen Inflammatory Research Centre, University of Oslo, Norway; Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Trygve Husebye
- Department of Cardiology, Oslo University Hospital Ullevål, Norway; Center of Heart Failure Research, University of Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; K.G. Jebsen Inflammatory Research Centre, University of Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Norway
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, University of Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Norway; Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway; Center of Heart Failure Research, University of Oslo, Norway
| | - Pavel Hoffmann
- Institute of Clinical Medicine, University of Oslo, Norway; Section of Interventional Cardiology, Oslo University Hospital Ullevål, Norway
| | - Jan Eritsland
- Department of Cardiology, Oslo University Hospital Ullevål, Norway; Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway
| | - Tom E Mollnes
- Department of Immunology, Oslo University Hospital Rikshospitalet, Norway; K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway; K.G. Jebsen Inflammatory Research Centre, University of Oslo, Norway; Research Laboratory, Nordland Hospital, Bodø, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science, Trondheim, Norway
| | - Geir Øystein Andersen
- Department of Cardiology, Oslo University Hospital Ullevål, Norway; Center for Clinical Heart Research, Oslo University Hospital Ullevål, Norway; Center of Heart Failure Research, University of Oslo, Norway
| | - Arne Yndestad
- Institute of Clinical Medicine, University of Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; K.G. Jebsen Inflammatory Research Centre, University of Oslo, Norway; Center of Heart Failure Research, University of Oslo, Norway.
| |
Collapse
|
36
|
Abstract
Rapid admission and acute interventional treatment combined with modern antithrombotic pharmacologic therapy have improved outcomes in patients with ST elevation myocardial infarction. The next major target to further advance outcomes needs to address ischemia-reperfusion injury, which may contribute significantly to the final infarct size and hence mortality and postinfarction heart failure. Mechanical conditioning strategies including local and remote ischemic pre-, per-, and postconditioning have demonstrated consistent cardioprotective capacities in experimental models of acute ischemia-reperfusion injury. Their translation to the clinical scenario has been challenging. At present, the most promising mechanical protection strategy of the heart seems to be remote ischemic conditioning, which increases myocardial salvage beyond acute reperfusion therapy. An additional aspect that has gained recent focus is the potential of extended conditioning strategies to improve physical rehabilitation not only after an acute ischemia-reperfusion event such as acute myocardial infarction and cardiac surgery but also in patients with heart failure. Experimental and preliminary clinical evidence suggests that remote ischemic conditioning may modify cardiac remodeling and additionally enhance skeletal muscle strength therapy to prevent muscle waste, known as an inherent component of a postoperative period and in heart failure. Blood flow restriction exercise and enhanced external counterpulsation may represent cardioprotective corollaries. Combined with exercise, remote ischemic conditioning or, alternatively, blood flow restriction exercise may be of aid in optimizing physical rehabilitation in populations that are not able to perform exercise practice at intensity levels required to promote optimal outcomes.
Collapse
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital , Aarhus , Denmark
| | | | | |
Collapse
|
37
|
Heusch G, Gersh BJ. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J 2018; 38:774-784. [PMID: 27354052 DOI: 10.1093/eurheartj/ehw224] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/12/2016] [Indexed: 12/15/2022] Open
Abstract
The incidence of ST segment elevation myocardial infarction (STEMI) has decreased over the last two decades in developed countries, but mortality from STEMI despite widespread access to reperfusion therapy is still substantial as is the development of heart failure, particularly among an expanding older population. In developing countries, the incidence of STEMI is increasing and interventional reperfusion is often not available. We here review the pathophysiology of acute myocardial infarction and reperfusion, notably the temporal and spatial evolution of ischaemic and reperfusion injury, the different modes of cell death, and the resulting coronary microvascular dysfunction. We then go on to briefly characterize the cardioprotective phenomena of ischaemic preconditioning, ischaemic postconditioning, and remote ischaemic conditioning and their underlying signal transduction pathways. We discuss in detail the attempts to translate conditioning strategies and drug therapy into the clinical setting. Most attempts have failed so far to reduce infarct size and improve clinical outcomes in STEMI patients, and we discuss potential reasons for such failure. Currently, it appears that remote ischaemic conditioning and a few drugs (atrial natriuretic peptide, exenatide, metoprolol, and esmolol) reduce infarct size, but studies with clinical outcome as primary endpoint are still underway.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Hufelandstr. 55, 45122 Essen, Germany
| | - Bernard J Gersh
- Division of Cardiovascular Diseases, Mayo Clinic and Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
38
|
Lou B, Cui Y, Gao H, Chen M. Meta-analysis of the effects of ischemic postconditioning on structural pathology in ST-segment elevation acute myocardial infarction. Oncotarget 2018; 9:8089-8099. [PMID: 29487717 PMCID: PMC5814284 DOI: 10.18632/oncotarget.23450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023] Open
Abstract
In this meta-analysis, we assessed cardiac magnetic resonance imaging data to determine the effects of local and remote ischemic postconditioning (LPoC and RPoC, respectively) on structural pathology in ST-segmentel elevation acute myocardial infarction (STEMI). We searched the Pubmed, Embase and Cochrane Library databases up to May 2017 and included 12 randomized controlled trials (10 LPoC and 2 RPoC)containing 1069 study subjects with thrombolysis in myocardial infarction flow grade 0~1. Weighed mean difference (WMD), standardized mean difference (SMD), and odds ratio (OR) were used for the pooled analysis. Random-effect model was used for the potential clinical inconsistency. LPoC and RPoC increased the myocardial salvage index (n = 5; weighted mean difference (WMD) = 5.52; P = 0.005; I2 = 76.0%), and decreased myocardial edema (n = 7; WMD = -3.35; P = 0.0009; I2 = 18.0%). However, LPoC and RPoC did not reduce the final infarct size (n = 10; WMD = -1.01; P > 0.05; I2 = 68.0%), left ventricular volume (n = 10; standardized mean difference = 0.23; P > 0.05; I2 = 93.0%), the incidence of microvascular obstruction (n = 6; OR = 0.99; P > 0.05; I2 = 0.0%) or the extent of microvascular obstruction (n = 3; WMD = -0.09; P > 0.05; I2 = 6.0%). This meta-analysis shows that LPoC and/or RPoC improves myocardial salvage and decreases myocardial edema in STEMI patients without affecting final infarct size, left ventricular volume or microvascular obstruction.
Collapse
Affiliation(s)
- Baohui Lou
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yadong Cui
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Haiyang Gao
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
39
|
Zhang Y, Yang Y. Arctigenin exerts protective effects against myocardial infarction via regulation of iNOS, COX‑2, ERK1/2 and HO‑1 in rats. Mol Med Rep 2018; 17:4839-4845. [PMID: 29328478 DOI: 10.3892/mmr.2018.8420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 09/05/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine the protective effects of arctigenin against myocardial infarction (MI), and its effects on oxidative stress and inflammation in rats. Left anterior coronary arteries of Sprague‑Dawley rats were ligated, in order to generate an acute MI (AMI) model. Arctigenin was administered to AMI rats at 0, 50, 100 or 200 µmol/kg. Western blotting and ELISAs were performed to analyze protein expression and enzyme activity. Arctigenin was demonstrated to effectively inhibit the levels of alanine transaminase, creatine kinase‑MB and lactate dehydrogenase, and to reduce infarct size in AMI rats. In addition, the activity levels of malondialdehyde, interleukin (IL)‑1β and IL‑6 were significantly suppressed, and the levels of glutathione peroxidase, catalase and superoxide dismutase were significantly increased by arctigenin treatment. Arctigenin treatment also suppressed the protein expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX‑2) and heme oxygenase 1 (HO‑1), and increased the protein expression levels of phosphorylated‑extracellular signal‑regulated kinase 1/2 (p‑ERK1/2) in AMI rats. Overall, the results of the present study suggest that arctigenin may inhibit MI, and exhibits antioxidative and anti‑inflammatory effects through regulation of the iNOS, COX‑2, ERK1/2 and HO‑1 pathways in a rat model of AMI.
Collapse
Affiliation(s)
- Yanmin Zhang
- Department of Emergency, Liaocheng People's Hospital of Shandong, Liaocheng, Shandong 252000, P.R. China
| | - Yong Yang
- Department of Cardiology, Liaocheng People's Hospital of Shandong, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
40
|
Blusztein DI, Brooks MJ, Andrews DT. A systematic review and meta-analysis evaluating ischemic conditioning during percutaneous coronary intervention. Future Cardiol 2017; 13:579-592. [PMID: 29076346 DOI: 10.2217/fca-2017-0042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM A systematic review and meta-analysis, evaluating ischemic conditioning during percutaneous coronary intervention (PCI). METHODS & RESULTS A database search of randomized trials of ischemic conditioning in PCI created three subgroups for meta-analysis: mortality in elective PCI with remote ischemic preconditioning (RIPreC; subgroup 1a, n = 3) - no outcome difference between RIPreC and control (odds ratio: 0.34; 95% CI: 0.08-1.56), myocardial salvage index in ST-elevation myocardial infarction (STEMI) with RIPreC (subgroup 1b, n = 2) - favored RIPreC (mean difference: 0.13; 95% CI: 0.07-0.19), and infarct size in STEMI with local ischemic postconditioning (LIPostC) (subgroup 4b, n = 12) - favored LIPostC (mean difference: -4.13 g.m-2; 95% CI: -7.36 to -0.90 g.m-2). CONCLUSION RIPreC and LIPostC improve myocardial salvage index and myocardial infarct size respectively in PCI for STEMI. No mortality benefit detected with RIPreC in elective PCI.
Collapse
Affiliation(s)
- David I Blusztein
- Cardiology Registrar, Department of Cardiology, The Royal Melbourne Hospital, 300 Grattan St, Parkville, Victoria 3050, Australia
| | - Matthew J Brooks
- Cardiologist, Department of Cardiology, The Royal Melbourne Hospital, 300 Grattan St, Parkville, Victoria 3050, Australia
| | - David T Andrews
- Honorary Clinical Associate Professor, Department of Anesthesia, Perioperative & Pain Medicine Unit, The University of Melbourne, Grattan St, Parkville, 3052, Australia.,Visiting Anesthetist, Department of Anesthesia & Pain Management, The Royal Melbourne Hospital, 300 Grattan St, Parkville, Victoria 3050, Australia
| |
Collapse
|
41
|
Cohen MV, Downey JM. The impact of irreproducibility and competing protection from P2Y12 antagonists on the discovery of cardioprotective interventions. Basic Res Cardiol 2017; 112:64. [DOI: 10.1007/s00395-017-0653-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
|
42
|
Evaluation of circulating levels of CCN2/connective tissue growth factor in patients with ST-elevation myocardial infarction. Sci Rep 2017; 7:11945. [PMID: 28931920 PMCID: PMC5607271 DOI: 10.1038/s41598-017-12372-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/07/2017] [Indexed: 11/17/2022] Open
Abstract
CCN2/Connective tissue growth factor seems to be involved in development of cardiac hypertrophy and fibrosis, but a possible cardioprotective role in left ventricular (LV) remodelling following myocardial infarction has also been suggested. The main objectives of the study were therefore to investigate whether circulating CCN2 levels were associated with infarct size, LV function, adverse remodelling or clinical outcome in two cohorts of patients with ST-elevation myocardial infarction (STEMI). CCN2 was measured in 988 patients 18 hours after PCI and clinical events were recorded after 55 months in the BAMI cohort. In the POSTEMI trial, serial measurements of CCN2 were performed in 258 STEMI patients during index hospitalisation and cardiac magnetic resonance imaging was performed in the acute phase and after 4 months. Clinical events were also recorded. There were no significant associations between levels of CCN2 and infarct size, LV ejection fraction, changes in LV end-diastolic or end-systolic volume, myocardial salvage or microvascular obstruction. There were no significant associations between CCN2 levels and clinical events including mortality, in either of the study cohorts. In conclusion, circulating levels of CCN2 measured in the acute phase of STEMI were not associated with final infarct size, left ventricular function or new clinical events.
Collapse
|
43
|
Koyama T. Lactated Ringer's solution for preventing myocardial reperfusion injury. IJC HEART & VASCULATURE 2017; 15:1-8. [PMID: 28616565 PMCID: PMC5458128 DOI: 10.1016/j.ijcha.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/31/2017] [Indexed: 11/30/2022]
Abstract
Reperfusion of ischemic myocardium is crucial for salvaging myocardial cells from ischemic cell death. However, reperfusion itself induces various deleterious effects on the ischemic myocardium. These effects, known collectively as reperfusion injury, comprise stunned myocardium, reperfusion-induced arrhythmia, microvascular reperfusion injury, and lethal reperfusion injury. No approach has proven successful in preventing any of these injuries in the clinical setting. My colleagues and I recently proposed a new postconditioning protocol, postconditioning with lactate-enriched blood (PCLeB), for the prevention of reperfusion injury. This new approach consists of intermittent reperfusion and timely coronary injections of lactated Ringer's solution, aiming to achieve controlled reperfusion with cellular oxygenation and minimal lactate washout from the cells. This approach appeared to be effective in preventing all types of reperfusion injury in patients with ST-segment elevation myocardial infarction (STEMI), and we have already reported excellent in-hospital outcomes of patients with STEMI treated using PCLeB. In this review article, I discuss a possible mechanism of reperfusion injury, which we believe to be valid and which we targeted using this new approach, and I report how the approach worked in preventing each type of reperfusion injury.
Collapse
Key Words
- CAG, coronary angiography
- CK, creatine kinase
- CRP, C-reactive protein
- ECG, electrocardiography
- Lactate
- MI, myocardial infarction
- MPT, mitochondrial permeability transition
- No-reflow phenomenon
- PCI, percutaneous coronary intervention
- PCLeB, postconditioning with lactate-enriched blood
- PVC, premature ventricular contraction
- Postconditioning
- Reperfusion arrhythmia
- ST-segment elevation myocardial infarction
- STEMI, ST-segment elevation myocardial infarction
- Stunning
- TIMI, thrombolysis in myocardial infarction
- VF, ventricular fibrillation
- VT, ventricular tachycardia
Collapse
Affiliation(s)
- Takashi Koyama
- Cardiology Department, Saitama Municipal Hospital, 2460 Mimuro, Midori-ku, Saitama City, Saitama 336-8522, Japan
| |
Collapse
|
44
|
Ndrepepa G, Kastrati A. Mechanical strategies to enhance myocardial salvage during primary percutaneous coronary intervention in patients with STEMI. EUROINTERVENTION 2017; 12:319-28. [PMID: 27320426 DOI: 10.4244/eijv12i3a52] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Primary percutaneous coronary intervention (PPCI) has become the mainstay of reperfusion therapy in patients with ST-segment elevation myocardial infarction (STEMI). Despite timely reperfusion by PPCI and restoration of epicardial blood flow in up to 95% of patients, tissue reperfusion remains suboptimal in a sizeable proportion of patients with STEMI. Over the years mechanical and pharmacological strategies to enhance myocardial salvage during PPCI have been developed and used in patients with STEMI. The most common mechanical strategies used in the setting of PPCI include: coronary stenting, direct stenting, mesh-covered stents, self-expanding stents, deferred stenting, thrombectomy, distal protection devices, intra-aortic balloon pumping, left ventricular assist devices and ischaemic conditioning. These strategies are thought to enhance myocardial salvage via improving acute procedural success, attenuation of distal embolisation, microvascular obstruction and reperfusion injury, and providing haemodynamic support. Coronary (direct) stenting is almost the default approach of reperfusion during PPCI procedures. Evidence on the use of mesh-covered stents, self-expanding stents, deferred stenting or left ventricular assist devices is scant and their use in the setting of PPCI remains limited. Mechanical thrombectomy, distal protection devices or routine intra-aortic balloon counterpulsation seem to offer no clinical benefit when used in the setting of PPCI. Although manual aspiration may improve indices of tissue reperfusion, recent research showed no clinical benefit of routine use of this strategy in patients with STEMI undergoing PPCI. Ischaemic conditioning, although promising, remains at an investigational stage and needs further research.
Collapse
Affiliation(s)
- Gjin Ndrepepa
- Deutsches Herzzentrum München, Technische Universität, Munich, Germany
| | | |
Collapse
|
45
|
Wang YY, Li T, Liu YW, Wang Y, Hu XM, Gao WQ, Wu P, Li X, Peng WJ, Gao W, Yu GD, Liu BJ. Ischemic Postconditioning Before Percutaneous Coronary Intervention for Acute ST-Segment Elevation Myocardial Infarction Reduces Contrast-induced Nephropathy and Improves Long-term Prognosis. Arch Med Res 2017; 47:483-488. [PMID: 27986129 DOI: 10.1016/j.arcmed.2016.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 09/29/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Contrast-induced nephropathy (CIN) after percutaneous coronary intervention (PCI) is one of the major adverse outcomes affecting the prognosis of patients with acute ST-segment elevation myocardial infarction (STEMI). Ischemic postconditioning prior to PCI (pre-PCI) in patients with STEMI is hypothesized to be protective against CIN after PCI. METHODS A total of 251 patients with STEMI were randomized into two groups: ischemic postconditioning group (n = 123, age, 61.1 ± 12.5 years) who underwent ischemic postconditioning prior to PCI; control group (n = 128; age, 64.1 ± 12.1 years) who underwent only PCI. Ischemic postconditioning was administered by three cycles of deflation and inflation of the balloon (1-min ischemia and 1-min reperfusion) starting 1 min after infarct-related artery (IRA) opening. Diagnostic criterion for CIN was: increase in serum creatinine level by ≥0.5 mg/dL or by ≥25% increase from preoperative level within 48 h of surgery. All patients were followed for 1 year for incidence of major cardiovascular events (MACE). RESULTS The incidence of postoperative CIN in the ischemic postconditioning group was 5.69% as compared to 14.06% in the control group (p <0.05). At one year, the MACE incidence in the ischemic postconditioning group was 7.32% as compared to 15.63% in the control group (p <0.05). CONCLUSIONS Pre-PCI ischemic postconditioning in STEMI patients significantly reduces the post-PCI incidence of CIN and improves long-term prognosis.
Collapse
Affiliation(s)
- Yun-Yun Wang
- Cardiac Center, Third Central Hospital of Tian Jin, Tianjin, China
| | - Tong Li
- Cardiac Center, Third Central Hospital of Tian Jin, Tianjin, China.
| | - Ying-Wu Liu
- Cardiac Center, Third Central Hospital of Tian Jin, Tianjin, China
| | - Yu Wang
- Cardiac Center, Third Central Hospital of Tian Jin, Tianjin, China
| | - Xiao-Min Hu
- Cardiac Center, Third Central Hospital of Tian Jin, Tianjin, China
| | - Wen-Qing Gao
- Cardiac Center, Third Central Hospital of Tian Jin, Tianjin, China
| | - Peng Wu
- Cardiac Center, Third Central Hospital of Tian Jin, Tianjin, China
| | - Xin Li
- Cardiac Center, Third Central Hospital of Tian Jin, Tianjin, China
| | - Wen-Jin Peng
- Cardiac Center, Third Central Hospital of Tian Jin, Tianjin, China
| | - Wei Gao
- Cardiac Center, Third Central Hospital of Tian Jin, Tianjin, China
| | - Guang-Dong Yu
- Cardiac Center, Third Central Hospital of Tian Jin, Tianjin, China
| | - Bo-Jiang Liu
- Cardiac Center, Third Central Hospital of Tian Jin, Tianjin, China
| |
Collapse
|
46
|
Verouhis D, Sörensson P, Gourine A, Henareh L, Persson J, Saleh N, Settergren M, Sundqvist M, Tornvall P, Witt N, Böhm F, Pernow J. Reply to comment by Elbadawi et al. Am Heart J 2017; 187:e7-e8. [PMID: 28454817 DOI: 10.1016/j.ahj.2017.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Mentias A, Mahmoud AN, Elgendy IY, Elgendy AY, Barakat AF, Abuzaid AS, Saad M, Kapadia SR. Ischemic postconditioning during primary percutaneous coronary intervention. Catheter Cardiovasc Interv 2017; 90:1059-1067. [PMID: 28296005 DOI: 10.1002/ccd.26965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/10/2016] [Accepted: 01/16/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Although some studies have shown potential benefit for ischemic postconditioning (IPoC) during primary percutaneous coronary intervention (PCI) in improving surrogate markers of reperfusion and infarction size, the benefit of this approach on clinical outcomes remains unknown. METHODS AND RESULTS Electronic databases were searched for randomized clinical trials that compared IPoC versus conventional treatment during primary PCI. Random effects DerSimonian-Laird risk ratios (RR) were calculated for different clinical and surrogate outcomes. The main outcome of this analysis was all-cause mortality. A total of 25 trials involving 3,619 patients were included in the analysis. At a mean follow up of 14 months (95% confidence interval (CI) 8.6-19.4 months), the incidence of all-cause mortality was 4.9% [95% CI 3.8-6.0%] in the IPoC group versus 3.8% [95% CI 1.9-5.7%] in the control group (RR 0.92, 95% CI 0.68-1.24, P = 0.74). The risk of reinfarction (2.7% [95% CI 1.1-4.3%] vs. 2.3% [0.6-4.0%]; RR 1.29, 95% CI 0.62-2.68, P = 0.72), heart failure (3.6% [95% CI 2.0-5.1%] vs. 5.7% [95% CI 3.3-8.2%]; RR 0.77, 95% CI 0.58-1.06, P = 0.24), target vessel revascularization (3.2% [95% CI 1.7-4.7%] vs. 2.4% [95% CI 1.4-3.3%]; RR 1.40, 95% CI 0.90-2.20, P = 0.20), and stent thrombosis (2.4% [95% CI 1.1-3.8%] vs. 1.8% [95% CI 0.5-3.2%]); RR 1.50, 95% CI 0.60-3.70, P = 0.40) was similar in both groups. CONCLUSIONS IPoC does not appear to reduce the risk of clinical adverse events in patients with ST-elevation myocardial infarction undergoing primary PCI. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amgad Mentias
- Department of Medicine, Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Ahmed N Mahmoud
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Islam Y Elgendy
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Akram Y Elgendy
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Amr F Barakat
- Department of Internal Medicine, Cleveland Clinic, Cleveland, Ohio
| | - A Sami Abuzaid
- Division of Cardiovascular medicine, Sidney Kimmel Medical College at Thomas Jefferson University/Christiana Care Health System, Newark, Delaware
| | - Marwan Saad
- Department of Medicine, Division of cardiovascular diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Samir R Kapadia
- Cleveland Clinic, Heart and Vascular Institute, Cleveland, Ohio
| |
Collapse
|
48
|
Osteoprotegerin levels in ST-elevation myocardial infarction: Temporal profile and association with myocardial injury and left ventricular function. PLoS One 2017; 12:e0173034. [PMID: 28253327 PMCID: PMC5333871 DOI: 10.1371/journal.pone.0173034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/13/2017] [Indexed: 11/19/2022] Open
Abstract
Background Elevated levels of osteoprotegerin (OPG) have been associated with adverse outcomes in ST-elevation myocardial infarction (STEMI). However, the role of OPG in myocardial injury and adverse remodeling in STEMI patients remains unclear. The aims of this observational cohort study were to evaluate: 1) the temporal profile of OPG during STEMI, 2) possible associations between OPG measured acutely and after 4 months, with infarct size, adverse left ventricular (LV) remodeling, microvascular obstruction (MVO) and myocardial salvage and 3) the effect of heparin administration on OPG levels. Methods Blood samples were drawn repeatedly from 272 STEMI patients treated with primary percutaneous coronary intervention (PCI). Cardiac magnetic resonance imaging (CMR) was performed in the acute phase and after 4 months. The effect of heparin administration on OPG levels was studied in 20 patients referred to elective coronary angiography. Results OPG levels measured acutely were significantly higher than Day 1 and during follow-up. OPG levels were correlated with age. No association was found between early OPG levels and CMR measurements at 4 months. Patients with >median OPG levels measured at Day 1 had larger final infarct size, lower LV ejection fraction (LVEF) at 4 months and higher frequency of MVO. There were no associations between OPG and change in end-diastolic volume or myocardial salvage. OPG remained associated with infarct size and LVEF after adjustment for relevant covariates, except peak troponin T and CRP. A 77% increase in OPG levels following heparin administration was found in patients undergoing elective coronary angiography. Conclusions OPG was found to be associated with myocardial injury, but not with LV remodeling or myocardial salvage. The use of OPG as a biomarker in STEMI patients seems to be limited by a strong association with age, confounding effect of heparin administration, and little additive value to established biomarkers.
Collapse
|
49
|
Understanding pacing postconditioning-mediated cardiac protection: a role of oxidative stress and a synergistic effect of adenosine. J Physiol Biochem 2016; 73:175-185. [PMID: 27864790 DOI: 10.1007/s13105-016-0535-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022]
Abstract
We and others have demonstrated a protective role for pacing postconditioning (PPC) against ischemia/reperfusion (I/R) injury in the heart; however, the underlying mechanisms behind these protective effects are not completely understood. In this study, we wanted to further characterize PPC-mediated cardiac protection, specifically identify optimal pacing sites; examine the role of oxidative stress; and test the existence of a potential synergistic effect between PPC and adenosine. Isolated rat hearts were subjected to coronary occlusion followed by reperfusion. PPC involved three, 30 s, episodes of alternating left ventricular (LV) and right atrial (RA) pacing. Multiple pacing protocols with different pacing electrode locations were used. To test the involvement of oxidative stress, target-specific agonists or antagonists were infused at the beginning of reperfusion. Hemodynamic data were digitally recorded, and cardiac enzymes, oxidant, and antioxidant status were chemically measured. Pacing at the LV or RV but not at the heart apex or base significantly (P < 0.001) protected against ischemia-reperfusion injury. PPC-mediated protection was completely abrogated in the presence of reactive oxygen species (ROS) scavenger, ebselen; peroxynitrite (ONOO-) scavenger, uric acid; and nitric oxide synthase inhibitor, L-NAME. Nitric oxide (NO) donor, snap, however significantly (P < 0.05) protected the heart against I/R injury in the absence of PPC. The protective effects of PPC were significantly improved by adenosine. PPC-stimulated protection can be achieved by alternating LV and RA pacing applied at the beginning of reperfusion. NO, ROS, and the product of their interaction ONOO- play a significant role in PPC-induced cardiac protection. Finally, the protective effects of PPC can be synergized with adenosine.
Collapse
|
50
|
Babiker F, Al-Jarallah A, Joseph S. The Interplay between the Renin Angiotensin System and Pacing Postconditioning Induced Cardiac Protection. PLoS One 2016; 11:e0165777. [PMID: 27814397 PMCID: PMC5096684 DOI: 10.1371/journal.pone.0165777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 10/18/2016] [Indexed: 01/20/2023] Open
Abstract
Background Accumulating evidence suggests a cardioprotective role of pacing postconditioning (PPC) maneuvers in animal models and more recently in humans. The procedure however remains to be optimized and its interaction with physiological systems remains to be further explored. The renin angiotensin system (RAS) plays a dual role in ischemia/reperfusion (I/R) injury. The interaction between RAS and PPC induced cardiac protection is however not clearly understood. We have recently demonstrated that angiotensin (1–7) via Mas receptor played a significant role in PPC mediated cardiac protection against I/R injury. Objective The objective of this study was to investigate the role of angiotensin converting enzyme (ACE)—chymase—angiotensin II (Ang II)—angiotensin receptor 1 (AT1) axes of RAS in PPC mediated cardiac protection. Methods Isolated rat hearts were subjected to I/R (control) or PPC in the presence or absence of Ang II, chymostatin (inhibitor of locally produced Ang II), ACE blocker (captopril) or AT1 antagonist (irbesartan). Hemodynamics data was computed digitally and infarct size was determined histologically using TTC staining and biochemically by measuring creatine kinase (CK) and lactate dehydrogenase levels. Results Cardiac hemodynamics were significantly (P<0.001) improved and infarct size and cardiac enzymes were significantly (P<0.001) reduced in hearts subjected to PPC relative to hearts subjected to I/R injury. Exogenous administration of Ang II did not affect I/R injury or PPC mediated protection. Nonetheless inhibition of endogenously synthesized Ang II protected against I/R induced cardiac damage yet did not block or augment the protective effects of PPC. The administration of AT1 antagonist did not alleviate I/R induced damage. Interestingly it abrogated PPC induced cardiac protection in isolated rat hearts. Finally, PPC induced protection and blockade of locally produced Ang II involved enhanced activation of ERK1/2 and Akt components of the reperfusion injury salvage kinase (RISK) pathway. Conclusions This study demonstrate a novel role of endogenously produced Ang II in mediating I/R injury and highlights the significance of AT1 signaling in PPC mediated cardiac protection in isolated rodents hearts ex vivo. The interaction between Ang II-AT1 and PPC appears to involve alterations in the activation state of ERK1/2 and Akt components of the RISK pathway.
Collapse
Affiliation(s)
- Fawzi Babiker
- Departments of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
- * E-mail:
| | - Aishah Al-Jarallah
- Department of Biochemistry, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
| | - Shaji Joseph
- Departments of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
| |
Collapse
|