1
|
Mensah IK, Gowher H. Epigenetic Regulation of Mammalian Cardiomyocyte Development. EPIGENOMES 2024; 8:25. [PMID: 39051183 PMCID: PMC11270418 DOI: 10.3390/epigenomes8030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The heart is the first organ formed during mammalian development and functions to distribute nutrients and oxygen to other parts of the developing embryo. Cardiomyocytes are the major cell types of the heart and provide both structural support and contractile function to the heart. The successful differentiation of cardiomyocytes during early development is under tight regulation by physical and molecular factors. We have reviewed current studies on epigenetic factors critical for cardiomyocyte differentiation, including DNA methylation, histone modifications, chromatin remodelers, and noncoding RNAs. This review also provides comprehensive details on structural and morphological changes associated with the differentiation of fetal and postnatal cardiomyocytes and highlights their differences. A holistic understanding of all aspects of cardiomyocyte development is critical for the successful in vitro differentiation of cardiomyocytes for therapeutic purposes.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Jang J, Accornero F, Li D. Epigenetic determinants and non-myocardial signaling pathways contributing to heart growth and regeneration. Pharmacol Ther 2024; 257:108638. [PMID: 38548089 DOI: 10.1016/j.pharmthera.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Congenital heart disease is the most common birth defect worldwide. Defective cardiac myogenesis is either a major presentation or associated with many types of congenital heart disease. Non-myocardial tissues, including endocardium and epicardium, function as a supporting hub for myocardial growth and maturation during heart development. Recent research findings suggest an emerging role of epigenetics in nonmyocytes supporting myocardial development. Understanding how growth signaling pathways in non-myocardial tissues are regulated by epigenetic factors will likely identify new disease mechanisms for congenital heart diseases and shed lights for novel therapeutic strategies for heart regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| | - Federica Accornero
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| |
Collapse
|
3
|
Wadgaonkar P, Wang Z, Chen F. Endoplasmic reticulum stress responses and epigenetic alterations in arsenic carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123565. [PMID: 38373625 DOI: 10.1016/j.envpol.2024.123565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/21/2023] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Arsenic is a well-known human carcinogen whose environmental exposure via drinking water, food, and air impacts millions of people across the globe. Various mechanisms of arsenic carcinogenesis have been identified, ranging from damage caused by excessive production of free radicals and epigenetic alterations to the generation of cancer stem cells. A growing body of evidence supports the critical involvement of the endoplasmic stress-activated unfolded protein response (UPR) in promoting as well as suppressing cancer development/progression. Various in vitro and in vivo models have also demonstrated that arsenic induces the UPR via activation of the PERK, IRE1α, and ATF6 proteins. In this review, we discuss the mechanisms of arsenic-induced endoplasmic reticulum stress and the role of each UPR pathway in the various cancer types with a focus on the epigenetic regulation and function of the ATF6 protein. The importance of UPR in arsenic carcinogenesis and cancer stem cells is a relatively new area of research that requires additional investigations via various omics-based and computational tools. These approaches will provide interesting insights into the mechanisms of arsenic-induced cancers for prospective target identification and development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Ziwei Wang
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA; Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
4
|
Wilsdon A, Loughna S. Human Genetics of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:57-75. [PMID: 38884704 DOI: 10.1007/978-3-031-44087-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Congenital heart diseases (or congenital heart defects/disorders; CHDs) are structural abnormalities of the heart and/or great vessels that are present at birth. CHDs include an extensive range of defects that may be minor and require no intervention or may be life-limiting and require complex surgery shortly after birth. This chapter reviews the current knowledge on the genetic causes of CHD.
Collapse
Affiliation(s)
- Anna Wilsdon
- School of Life Sciences, University of Nottingham, Nottingham, UK.
- Clinical Geneticist at Nottingham Clinical Genetics Department, Nottingham University Hospitals, City Hospital, Nottingham, UK.
| | - Siobhan Loughna
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Sun X, Jin K, Ding X, Ruan Z, Xu P. DNA methylation cooperates with H3K9me2 at HCN4 promoter to regulate the differentiation of bone marrow mesenchymal stem cells into pacemaker-like cells. PLoS One 2023; 18:e0289510. [PMID: 37643180 PMCID: PMC10464974 DOI: 10.1371/journal.pone.0289510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
Sick sinus syndrome (SSS) is a a life-threatening disease, and biological pacemakers derived from bone marrow mesenchymal stem cells (BMSCs) have practical clinical applications. Previous studies demonstrated that epigenetics plays an important role in the differentiation of BMSCs into pacemaker-like cells. However, the underlying mechanisms remain unclear. In the present study, we investigated the role of DNA methylation and histone methylation in pacemaker cells formation and found that changes in DNA and H3K9 methylation occur in the promoter region of the pacemaker cell-specific gene HCN4. In addition, the combined addition of methylation inhibitors was able to improve the efficiency of transduction of Tbx18 in inducing the differentiation of BMSCs into pacemaker-like cells. In vitro experiments have shown that inhibition of DNA methylation and H3K9 methylation can enhance the activity of the HCN4 promoter activity, and both can affect the binding of the transcription factor NKx2.5to the HCN4 promoter region. Further research on the interaction mechanism between DNA methylation and H3K9me2 in the HCN4 promoter region revealed that the two may be coupled, and that the methylesterase G9a and DNMT1 may directly interact to bind as a complex that affects DNA methylation and H3K9me2 regulation of HCN4 transcription. In conclusion, our studies suggest that the mutual coupling of DNA and H3K9 methylation plays a critical role in regulating the differentiation of BMSCs into pacemaker-like cells from the perspective of interactions between epigenetic modifications, and combined methylation is a promising strategy to optimise pacemaker-like cells for in vitro applications.
Collapse
Affiliation(s)
- XiaoLin Sun
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, The People’s Republic of China
| | - Kai Jin
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, The People’s Republic of China
| | - Xiangwei Ding
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, The People’s Republic of China
| | - Zhongbao Ruan
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, The People’s Republic of China
| | - Pei Xu
- Department of Haematology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, The People’s Republic of China
| |
Collapse
|
6
|
Singh P, Zhou L, Shah DA, Cejas RB, Crossman DK, Jouni M, Magdy T, Wang X, Sharafeldin N, Hageman L, McKenna DE, Horvath S, Armenian SH, Balis FM, Hawkins DS, Keller FG, Hudson MM, Neglia JP, Ritchey AK, Ginsberg JP, Landier W, Burridge PW, Bhatia S. Identification of novel hypermethylated or hypomethylated CpG sites and genes associated with anthracycline-induced cardiomyopathy. Sci Rep 2023; 13:12683. [PMID: 37542143 PMCID: PMC10403495 DOI: 10.1038/s41598-023-39357-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
Anthracycline-induced cardiomyopathy is a leading cause of late morbidity in childhood cancer survivors. Aberrant DNA methylation plays a role in de novo cardiovascular disease. Epigenetic processes could play a role in anthracycline-induced cardiomyopathy but remain unstudied. We sought to examine if genome-wide differential methylation at 'CpG' sites in peripheral blood DNA is associated with anthracycline-induced cardiomyopathy. This report used participants from a matched case-control study; 52 non-Hispanic White, anthracycline-exposed childhood cancer survivors with cardiomyopathy were matched 1:1 with 52 survivors with no cardiomyopathy. Paired ChAMP (Chip Analysis Methylation Pipeline) with integrated reference-based deconvolution of adult peripheral blood DNA methylation was used to analyze data from Illumina HumanMethylation EPIC BeadChip arrays. An epigenome-wide association study (EWAS) was performed, and the model was adjusted for GrimAge, sex, interaction terms of age at enrollment, chest radiation, age at diagnosis squared, and cardiovascular risk factors (CVRFs: diabetes, hypertension, dyslipidemia). Prioritized genes were functionally validated by gene knockout in human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) using CRISPR/Cas9 technology. DNA-methylation EPIC array analyses identified 32 differentially methylated probes (DMP: 15 hyper-methylated and 17 hypo-methylated probes) that overlap with 23 genes and 9 intergenic regions. Three hundred and fifty-four differential methylated regions (DMRs) were also identified. Several of these genes are associated with cardiac dysfunction. Knockout of genes EXO6CB, FCHSD2, NIPAL2, and SYNPO2 in hiPSC-CMs increased sensitivity to doxorubicin. In addition, EWAS analysis identified hypo-methylation of probe 'cg15939386' in gene RORA to be significantly associated with anthracycline-induced cardiomyopathy. In this genome-wide DNA methylation profile study, we observed significant differences in DNA methylation at the CpG level between anthracycline-exposed childhood cancer survivors with and without cardiomyopathy, implicating differential DNA methylation of certain genes could play a role in pathogenesis of anthracycline-induced cardiomyopathy.
Collapse
Affiliation(s)
- Purnima Singh
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Liting Zhou
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Disheet A Shah
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Romina B Cejas
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Tarek Magdy
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Department of Pathology and Translational Pathobiology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Xuexia Wang
- Department of Biostatistics, Florida International University, Miami, FL, USA
| | - Noha Sharafeldin
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald E McKenna
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Saro H Armenian
- Department of Population Sciences, City of Hope, Duarte, CA, USA
| | - Frank M Balis
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Frank G Keller
- Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | | | | | - A Kim Ritchey
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | - Wendy Landier
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Miller RG, Mychaleckyj JC, Onengut-Gumuscu S, Feingold E, Orchard TJ, Costacou T. DNA methylation and 28-year cardiovascular disease risk in type 1 diabetes: the Epidemiology of Diabetes Complications (EDC) cohort study. Clin Epigenetics 2023; 15:122. [PMID: 37533055 PMCID: PMC10394855 DOI: 10.1186/s13148-023-01539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/22/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The potential for DNA methylation (DNAm) as an early marker for cardiovascular disease (CVD) and how such an association might differ by glycemic exposure has not been examined in type 1 diabetes, a population at increased CVD risk. We thus performed a prospective epigenome-wide association study of blood leukocyte DNAm (EPIC array) and time to CVD incidence over 28 years in a childhood-onset (< 17 years) type 1 diabetes cohort, the Pittsburgh Epidemiology of Diabetes Complications (EDC) study (n = 368 with DNA and no CVD at baseline), both overall and separately by glycemic exposure, as measured by HbA1c at baseline (split at the median: < 8.9% and ≥ 8.9%). We also assessed whether DNAm-CVD associations were independent of established cardiometabolic risk factors, including body mass index, estimated glucose disposal rate, cholesterol, triglycerides, blood pressure, pulse rate, albumin excretion rate, and estimated glomerular filtration rate. RESULTS CVD (first instance of CVD death, myocardial infarction, coronary revascularization, ischemic ECG, angina, or stroke) developed in 172 participants (46.7%) over 28 years. Overall, in Cox regression models for time to CVD, none of the 683,597 CpGs examined reached significance at a false discovery rate (FDR) ≤ 0.05. In participants with HbA1c < 8.9% (n = 180), again none reached FDR ≤ 0.05, but three were associated at the a priori nominal significance level FDR ≤ 0.10: cg07147033 in MIB2, cg12324048 (intergenic, chromosome 3), and cg15883830 (intergenic, chromosome 1). In participants with HbA1c ≥ 8.9% (n = 188), two CpGs in loci involved in calcium channel activity were significantly associated with CVD (FDR ≤ 0.05): cg21823999 in GPM6A and cg23621817 in CHRNA9; four additional CpGs were nominally associated (FDR ≤ 0.10). In participants with HbA1c ≥ 8.9%, DNAm-CVD associations were only modestly attenuated after cardiometabolic risk factor adjustment, while attenuation was greater in those with HbA1c < 8.9%. No pathways were enriched in those with HbA1c < 8.9%, while pathways for calcium channel activity and integral component of synaptic membrane were significantly enriched in those with HbA1c ≥ 8.9%. CONCLUSIONS These results provide novel evidence that DNAm at loci involved in calcium channel activity and development may contribute to long-term CVD risk beyond known risk factors in type 1 diabetes, particularly in individuals with greater glycemic exposure, warranting further study.
Collapse
Affiliation(s)
- Rachel G Miller
- Department of Epidemiology, University of Pittsburgh, 130 N. Bellefield Avenue, Suite 339, Pittsburgh, PA, 15213, USA.
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Trevor J Orchard
- Department of Epidemiology, University of Pittsburgh, 130 N. Bellefield Avenue, Suite 339, Pittsburgh, PA, 15213, USA
| | - Tina Costacou
- Department of Epidemiology, University of Pittsburgh, 130 N. Bellefield Avenue, Suite 339, Pittsburgh, PA, 15213, USA
| |
Collapse
|
8
|
DNMT3B rs2424913 as a Risk Factor for Congenital Heart Defects in Down Syndrome. Genes (Basel) 2023; 14:genes14030576. [PMID: 36980848 PMCID: PMC10048502 DOI: 10.3390/genes14030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Impairments of the genes that encode enzymes that are involved in one-carbon metabolism because of the presence of gene polymorphisms can affect the methylation pattern. The altered methylation profiles of the genes involved in cardiogenesis may result in congenital heart defects (CHDs). The aim of this study was to investigate the association between the MTHFR rs1801133, MTHFR rs1801131, MTRR rs1801394, DNMT1 rs2228611, DNMT3A rs1550117, DNMT3B rs1569686, and DNMT3B rs2424913 gene polymorphisms and congenital heart defects in Down syndrome (DS) individuals. The study was conducted on 350 participants, including 134 DS individuals with CHDs (DSCHD+), 124 DS individuals without CHDs (DSCHD−), and 92 individuals with non-syndromic CHD. The genotyping was performed using the PCR–RFLP method. A statistically significant higher frequency of the DNMT3B rs2424913 TT in the DSCHD+ individuals was observed. The DNMT3B rs2424913 TT genotype, as well as the T allele, had significantly higher frequencies in the individuals with DS and atrial septal defects (ASDs) in comparison with the individuals with DS and other CHDs. Furthermore, our results indicate a statistically significant effect of the DNMT3B rs1569686 TT genotype in individuals with non-syndromic CHDs. The results of the study suggest that the DNMT3B rs2424913 TT genotypes may be a possible predisposing factor for CHDs in DS individuals, and especially those with ASDs.
Collapse
|
9
|
Prodan N, Ershad F, Reyes-Alcaraz A, Li L, Mistretta B, Gonzalez L, Rao Z, Yu C, Gunaratne PH, Li N, Schwartz RJ, McConnell BK. Direct reprogramming of cardiomyocytes into cardiac Purkinje-like cells. iScience 2022; 25:105402. [PMID: 36388958 PMCID: PMC9646947 DOI: 10.1016/j.isci.2022.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Currently, there are no treatments that ameliorate cardiac cell death, the underlying basis of cardiovascular disease. An unexplored cell type in cardiac regeneration is cardiac Purkinje cells; specialized cells from the cardiac conduction system (CCS) responsible for propagating electrical signals. Purkinje cells have tremendous potential as a regenerative treatment because they may intrinsically integrate with the CCS of a recipient myocardium, resulting in more efficient electrical conduction in diseased hearts. This study is the first to demonstrate an effective protocol for the direct reprogramming of human cardiomyocytes into cardiac Purkinje-like cells using small molecules. The cells generated were genetically and functionally similar to native cardiac Purkinje cells, where expression of key cardiac Purkinje genes such as CNTN2, ETV1, PCP4, IRX3, SCN5a, HCN2 and the conduction of electrical signals with increased velocity was observed. This study may help to advance the quest to finding an optimized cell therapy for heart regeneration.
Collapse
Affiliation(s)
- Nicole Prodan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
| | - Faheem Ershad
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Arfaxad Reyes-Alcaraz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
| | - Luge Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brandon Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, UH-Sequencing & Gene Editing Core, University of Houston, Houston, TX 77204, USA
| | - Lei Gonzalez
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Zhoulyu Rao
- Department of Mechanical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Cunjiang Yu
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
- Department of Mechanical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Preethi H. Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, UH-Sequencing & Gene Editing Core, University of Houston, Houston, TX 77204, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert J. Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
10
|
Nana L, Lu L, Zhen L, Ying D, Meixian W, Zhao J, Zeng S, Hong K, Yanping W, Jun Z, Jianxin Z, Ping Y. The effect of maternal polycyclic aromatic hydrocarbons exposure and methylation levels of CHDs-candidate genes on the risk of congenital heart diseases. Prenat Diagn 2022; 42:1142-1154. [PMID: 35556253 DOI: 10.1002/pd.6167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/27/2022] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To evaluate the impact of maternal exposure to polycyclic aromatic hydrocarbons (PAHs) and methylation levels of CHDs-candidate genes on the risk of congenital heart diseases (CHDs), and the effect of PAHs exposure on DNA methylation states. METHODS A case-control study involving 60 mother -fetus pairs was performed by measuring 1-OHPG concentration in maternal urine and methylation levels of 20 CHDs-candidate genes in cord bloods. Logistic regression models were applied to determine the effect of maternal PAHs exposure and fetal methylation levels on the risk of CHDs. Spearman correlation was performed to correlate PAHs exposure and methylation levels. RESULTS Maternal higher PAHs exposure was associated with the risk of CHDs (aOR = 3.245, 95% CI: 1.060, 9.937) or some subtypes. The methylation levels of 23 amplicons within 11 genes exhibited significant differences between CHDs and controls. Higher methylation of NKX2-5_M1 was associated with decreased risk of CHDs (aOR=0.182, 95% CI:0.034, 0.983). No significant correlations were found between 1-OHPG concentration and methylation levels of NKX2-5_M1. CONCLUSIONS Maternal PAHs exposure was linked with CHDs. Higher methylation of the upstream sequence of NKX2-5 promoter decreased the risk of CHDs. There was no correlation between maternal PAHs exposure and the methylation level of NKX2-5. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Li Nana
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Li Lu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Liu Zhen
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Deng Ying
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Wang Meixian
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jinju Zhao
- Department of Gynecology and Obstetrics, Xichang people's Hospital, Xichang, China
| | - Shengli Zeng
- Department of Gynecology and Obstetrics, Rongchang Maternal and Child care Hospital, Chongqing, China
| | - Kang Hong
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Wang Yanping
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Zhu Jun
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Zhao Jianxin
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yu Ping
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Cuomo M, Florio E, Della Monica R, Costabile D, Buonaiuto M, Di Risi T, De Riso G, Sarnataro A, Cocozza S, Visconti R, Chiariotti L. Epigenetic remodelling of Fxyd1 promoters in developing heart and brain tissues. Sci Rep 2022; 12:6471. [PMID: 35440736 PMCID: PMC9018693 DOI: 10.1038/s41598-022-10365-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
FXYD1 is a key protein controlling ion channel transport. FXYD1 exerts its function by regulating Na+/K+-ATPase activity, mainly in brain and cardiac tissues. Alterations of the expression level of the FXYD1 protein cause diastolic dysfunction and arrhythmias in heart and decreased neuronal dendritic tree and spine formation in brain. Moreover, FXYD1, a target of MeCP2, plays a crucial role in the pathogenesis of the Rett syndrome, a neurodevelopmental disorder. Thus, the amount of FXYD1 must be strictly controlled in a tissue specific manner and, likely, during development. Epigenetic modifications, particularly DNA methylation, represent the major candidate mechanism that may regulate Fxyd1 expression. In the present study, we performed a comprehensive DNA methylation analysis and mRNA expression level measurement of the two Fxyd1 transcripts, Fxyd1a and Fxyd1b, in brain and heart tissues during mouse development. We found that DNA methylation at Fxyd1a increased during brain development and decreased during heart development along with coherent changes in mRNA expression levels. We also applied ultra-deep methylation analysis to detect cell to cell methylation differences and to identify possible distinct methylation profile (epialleles) distribution between heart and brain and in different developmental stages. Our data indicate that the expression of Fxyd1 transcript isoforms inversely correlates with DNA methylation in developing brain and cardiac tissues suggesting the existence of a temporal-specific epigenetic program. Moreover, we identified a clear remodeling of epiallele profiles which were distinctive for single developmental stage both in brain and heart tissues.
Collapse
Affiliation(s)
- Mariella Cuomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy. .,CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.
| | - Ermanno Florio
- Department of Medicine, University of California, San Diego UCSD, Gilman Dr, La Jolla, CA, 95000, USA
| | - Rosa Della Monica
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Davide Costabile
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,SEMM-European School of Molecular Medicine, University of Naples, "Federico II", 80131, Naples, Italy
| | - Michela Buonaiuto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Teodolinda Di Risi
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Department of Public Health, University of Naples "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - Giulia De Riso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Antonella Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Sergio Cocozza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Roberta Visconti
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, Italian National Council of Research, Via S. Pansini 5, 80131, Naples, Italy
| | - Lorenzo Chiariotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy. .,CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy. .,SEMM-European School of Molecular Medicine, University of Naples, "Federico II", 80131, Naples, Italy.
| |
Collapse
|
12
|
Halawa S, Latif N, Tseng YT, Ibrahim AM, Chester AH, Moustafa A, Aguib Y, Yacoub MH. Profiling Genome-Wide DNA Methylation Patterns in Human Aortic and Mitral Valves. Front Cardiovasc Med 2022; 9:840647. [PMID: 35463757 PMCID: PMC9019152 DOI: 10.3389/fcvm.2022.840647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/11/2022] [Indexed: 12/05/2022] Open
Abstract
Cardiac valves exhibit highly complex structures and specialized functions that include dynamic interactions between cells, extracellular matrix (ECM) and their hemodynamic environment. Valvular gene expression is tightly regulated by a variety of mechanisms including epigenetic factors such as histone modifications, RNA-based mechanisms and DNA methylation. To date, methylation fingerprints of non-diseased human aortic and mitral valves have not been studied. In this work we analyzed the differential methylation profiles of 12 non-diseased aortic and mitral valve tissue samples (in matched pairs). Analysis of methylation data [reduced representation bisulfite sequencing (RRBS)] of 16,101 promoters genome-wide revealed 584 differentially methylated (DM) promoters, of which 13 were reported in endothelial mesenchymal trans-differentiation (EMT), 37 in aortic and mitral valve disease and 7 in ECM remodeling. Both functional classification as well as network analysis showed that the genes associated with the DM promoters were enriched for WNT-, Cadherin-, Endothelin-, PDGF-, HIF-1 and VEGF- signaling implicated in valvular physiology and pathophysiology. Additional enrichment was detected for TGFB-, NOTCH- and Integrin- signaling involved in EMT as well as ECM remodeling. This data provides the first insight into differential regulation of human aortic and mitral valve tissue and identifies candidate genes linked to DM promoters. Our work will improve the understanding of valve biology, valve tissue engineering approaches and contributes to the identification of relevant drug targets.
Collapse
Affiliation(s)
- Sarah Halawa
- Aswan Heart Centre, Aswan, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
- Sarah Halawa
| | - Najma Latif
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Yuan-Tsan Tseng
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Ayman M. Ibrahim
- Aswan Heart Centre, Aswan, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Adrian H. Chester
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Ahmed Moustafa
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
- Department of Biology, American University in Cairo, New Cairo, Egypt
| | - Yasmine Aguib
- Aswan Heart Centre, Aswan, Egypt
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- Yasmine Aguib
| | - Magdi H. Yacoub
- Aswan Heart Centre, Aswan, Egypt
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- *Correspondence: Magdi H. Yacoub
| |
Collapse
|
13
|
Abstract
Embryonic heart development is an intricate process that mainly involves morphogens, transcription factors, and cardiac genes. The precise spatiotemporal expression of these genes during different developmental stages underlies normal heart development. Thus, mutation or aberrant expression of these genes may lead to congenital heart disease (CHD). However, evidence demonstrates that the mutation of genes accounts for only a small portion of CHD cases, whereas the aberrant expression regulated by epigenetic modification plays a predominant role in the pathogenesis of CHD. In this review, we provide essential knowledge on the aberrant epigenetic modification involved in the pathogenesis of CHD. Then, we discuss recent advances in the identification of novel epigenetic biomarkers. Last, we highlight the epigenetic roles in some adverse intrauterine environment‐related CHD, which may help the prevention, diagnosis, and treatment of these kinds of CHD.
Collapse
Affiliation(s)
- Guanglei Wang
- Department of Obstetrics, Gynecology, & Reproductive Sciences University of Maryland School of Medicine Baltimore MD
| | - Bingbing Wang
- Department of Obstetrics, Gynecology, & Reproductive Sciences University of Maryland School of Medicine Baltimore MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, & Reproductive Sciences University of Maryland School of Medicine Baltimore MD
- Department of Biochemistry & Molecular Biology University of Maryland School of Medicine Baltimore MD
| |
Collapse
|
14
|
Joshi RO, Kukshal P, Chellappan S, Guhathakurta S. "The study of expression levels of DNA methylation regulators in patients affected with congenital heart defects (CHDs)". Birth Defects Res 2022; 114:228-237. [PMID: 35191222 DOI: 10.1002/bdr2.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Congenial heart defects (CHDs) have multifactorial etiology with complex interplay of genetic and environmental factors. Environmental impact can have epigenetic mechanism of CHD development. Many studies have reported the causal association between CHD and distinct DNA methylation profile which is one of the key epigenetic events, which has vital role in normal embryonic development. The products of DNMT1, DNMT3A, DNMT3B, and MBD2 are important regulators of DNA methylation process. Changes in the expression of these genes are implicated in congenital structural cardiac defects. Hence, in this proof-of-concept study, we have compared the expression levels of these genes in the blood samples of healthy controls and CHD cases while investigating the etiology of CHD. METHODS In this study with 48 CHD cases and 47 healthy controls, total RNA was isolated from the whole blood samples using TRI reagent. Quantitative RT PCR (qRT-PCR) was used to analyze the mRNA levels of DNMT1, DNMT3A, DNMT3B, and MBD2. The expression levels have been analyzed by relative quantification. RESULTS We observed that DNMT3B (fold change = -2.563; p = .0018) and DNMT3A (fold change = -2.169; p = .05) were significantly downregulated in CHD patients, whereas the expression of DNMT1 and MBD2 was not significantly different between cases and controls. CONCLUSIONS Lower expression of de novo methyltransferases, namely, DNMT3B and DNMT3A in CHD cases, may be an important contributor to the mechanism of CHD pathogenesis. Further studies with age-matched controls and analysis of global DNA methylation profile are required to investigate the proposed causal association.
Collapse
Affiliation(s)
- Radha O Joshi
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, India
| | - Prachi Kukshal
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, India
| | - Subramanian Chellappan
- Department of Anaesthesia, Sri Sathya Sai Sanjeevani International Centre for Child Heart Care and Research, Palwal, India
| | - Soma Guhathakurta
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, India
| |
Collapse
|
15
|
Cai GP, Liu YL, Luo LP, Xiao Y, Jiang TJ, Yuan J, Wang M. Alkbh1-mediated DNA N6-methyladenine modification regulates bone marrow mesenchymal stem cell fate during skeletal aging. Cell Prolif 2022; 55:e13178. [PMID: 35018683 PMCID: PMC8828262 DOI: 10.1111/cpr.13178] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/25/2021] [Indexed: 12/17/2022] Open
Abstract
Objectives DNA N6‐methyladenine (N6‐mA) demethylase Alkbh1 participates in regulating osteogenic differentiation of mesenchymal stem cell (MSCs) and vascular calcification. However, the role of Alkbh1 in bone metabolism remains unclear. Materials and Methods Bone marrow mesenchymal stem cells (BMSCs)‐specific Alkbh1 knockout mice were used to investigate the role of Alkbh1 in bone metabolism. Western blot, qRT‐PCR, and immunofluorescent staining were used to evaluate the expression of Alkbh1 or optineurin (optn). Micro‐CT, histomorphometric analysis, and calcein double‐labeling assay were used to evaluate bone phenotypes. Cell staining and qRT‐PCR were used to evaluate the osteogenic or adipogenic differentiation of BMSCs. Dot blotting was used to detect the level of N6‐mA in genomic DNA. Chromatin immunoprecipitation (Chip) assays were used to identify critical targets of Alkbh1. Alkbh1 adeno‐associated virus was used to overexpress Alkbh1 in aged mice. Results Alkbh1 expression in BMSCs declined during aging. Knockout of Alkbh1 promoted adipogenic differentiation of BMSCs while inhibited osteogenic differentiation. BMSC‐specific Alkbh1 knockout mice exhibited reduced bone mass and increased marrow adiposity. Mechanistically, we identified optn as the downstream target through which Alkbh1‐mediated DNA m6A modification regulated BMSCs fate. Overexpression of Alkbh1 attenuated bone loss and marrow fat accumulation in aged mice. Conclusions Our findings demonstrated that Alkbh1 regulated BMSCs fate and bone‐fat balance during skeletal aging and provided a potential target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Guang-Ping Cai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P. R. China
| | - Ya-Lin Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P. R. China
| | - Li-Ping Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P. R. China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P. R. China
| | - Tie-Jian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P. R. China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Min Wang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P. R. China
| |
Collapse
|
16
|
Longenecker JZ, Gilbert CJ, Golubeva VA, Martens CR, Accornero F. Epitranscriptomics in the Heart: a Focus on m 6A. Curr Heart Fail Rep 2021; 17:205-212. [PMID: 32813261 DOI: 10.1007/s11897-020-00473-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Post-transcriptional modifications are key regulators of gene expression that allow the cell to respond to environmental stimuli. The most abundant internal mRNA modification is N6-methyladenosine (m6A), which has been shown to be involved in the regulation of RNA splicing, localization, translation, and decay. It has also been implicated in a wide range of diseases, and here, we review recent evidence of m6A's involvement in cardiac pathologies and processes. RECENT FINDINGS Studies have primarily relied on gain and loss of function models for the enzymes responsible for adding and removing the m6A modification. Results have revealed a multifaceted role for m6A in the heart's response to myocardial infarction, pressure overload, and ischemia/reperfusion injuries. Genome-wide analyses of mRNAs that are differentially methylated during cardiac stress have highlighted the importance of m6A in regulating the translation of specific categories of transcripts implicated in pathways such as calcium handling, cell growth, autophagy, and adrenergic signaling in cardiomyocytes. Regulation of gene expression by m6A is critical for cardiomyocyte homeostasis and stress responses, suggesting a key role for this modification in cardiac pathophysiology.
Collapse
Affiliation(s)
- Jacob Z Longenecker
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Christopher J Gilbert
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Volha A Golubeva
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Colton R Martens
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
17
|
George RM, Firulli AB. Epigenetics and Heart Development. Front Cell Dev Biol 2021; 9:637996. [PMID: 34026751 PMCID: PMC8136428 DOI: 10.3389/fcell.2021.637996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/26/2021] [Indexed: 11/24/2022] Open
Abstract
Epigenetic control of gene expression during cardiac development and disease has been a topic of intense research in recent years. Advances in experimental methods to study DNA accessibility, transcription factor occupancy, and chromatin conformation capture technologies have helped identify regions of chromatin structure that play a role in regulating access of transcription factors to the promoter elements of genes, thereby modulating expression. These chromatin structures facilitate enhancer contacts across large genomic distances and function to insulate genes from cis-regulatory elements that lie outside the boundaries for the gene of interest. Changes in transcription factor occupancy due to changes in chromatin accessibility have been implicated in congenital heart disease. However, the factors controlling this process and their role in changing gene expression during development or disease remain unclear. In this review, we focus on recent advances in the understanding of epigenetic factors controlling cardiac morphogenesis and their role in diseases.
Collapse
Affiliation(s)
- Rajani M George
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
18
|
Wu Y, Jin X, Zhang Y, Zheng J, Yang R. Genetic and epigenetic mechanisms in the development of congenital heart diseases. WORLD JOURNAL OF PEDIATRIC SURGERY 2021; 4:e000196. [DOI: 10.1136/wjps-2020-000196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Congenital heart disease (CHD) is the most common of congenital cardiovascular malformations associated with birth defects, and it results in significant morbidity and mortality worldwide. The classification of CHD is still elusive owing to the complex pathogenesis of CHD. Advances in molecular medicine have revealed the genetic basis of some heart anomalies. Genes associated with CHD might be modulated by various epigenetic factors. Thus, the genetic and epigenetic factors are gradually accepted as important triggers in the pathogenesis of CHD. However, few literatures have comprehensively elaborated the genetic and epigenetic mechanisms of CHD. This review focuses on the etiology of CHD from genetics and epigenetics to discuss the role of these factors in the development of CHD. The interactions between genetic and epigenetic in the pathogenesis of CHD are also elaborated. Chromosome abnormalities and gene mutations in genetics, and DNA methylations, histone modifications and on-coding RNAs in epigenetics are summarized in detail. We hope the summative knowledge of these etiologies may be useful for improved diagnosis and further elucidation of CHD so that morbidity and mortality of children with CHD can be reduced in the near future.
Collapse
|
19
|
The role of DNA methylation in syndromic and non-syndromic congenital heart disease. Clin Epigenetics 2021; 13:93. [PMID: 33902696 PMCID: PMC8077695 DOI: 10.1186/s13148-021-01077-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Congenital heart disease (CHD) is a common structural birth defect worldwide, and defects typically occur in the walls and valves of the heart or enlarged blood vessels. Chromosomal abnormalities and genetic mutations only account for a small portion of the pathogenic mechanisms of CHD, and the etiology of most cases remains unknown. The role of epigenetics in various diseases, including CHD, has attracted increased attention. The contributions of DNA methylation, one of the most important epigenetic modifications, to CHD have not been illuminated. Increasing evidence suggests that aberrant DNA methylation is related to CHD. Here, we briefly introduce DNA methylation and CHD and then review the DNA methylation profiles during cardiac development and in CHD, abnormalities in maternal genome-wide DNA methylation patterns are also described. Whole genome methylation profile and important differentially methylated genes identified in recent years are summarized and clustered according to the sample type and methodologies. Finally, we discuss the novel technology for and prospects of CHD-related DNA methylation.
Collapse
|
20
|
Tao H, Xu W, Qu W, Gao H, Zhang J, Cheng X, Liu N, Chen J, Xu GL, Li X, Shu Q. Loss of ten-eleven translocation 2 induces cardiac hypertrophy and fibrosis through modulating ERK signaling pathway. Hum Mol Genet 2021; 30:865-879. [PMID: 33791790 DOI: 10.1093/hmg/ddab046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 01/25/2023] Open
Abstract
The ten-eleven translocation (Tet) family of dioxygenases convert 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Previous studies have shown that 5hmC-mediated epigenetic modifications play essential roles in diverse biological processes and diseases. Here, we show that Tet proteins and 5hmC display dynamic features during postnatal cardiac development and that Tet2 is the predominant dioxygenase present in heart. Tet2 knockout results in abnormal cardiac function, progressive cardiac hypertrophy and fibrosis. Mechanistically, Tet2 deficiency leads to reduced hydroxymethylation in the cardiac genome and alters the cardiac transcriptome. Mechanistically, Tet2 loss leads to a decrease of Hspa1b expression, a regulator of the extracellular signal-regulated protein kinase (Erk) signaling pathway, which leads to over-activation of Erk signaling. Acute Hspa1b knock down (KD) increased the phosphorylation of Erk and induced hypertrophy of cardiomyocytes, which could be blocked by Erk signaling inhibitor. Consistently, ectopic expression of Hspa1b was able to rescue the deficits of cardiomyocytes induced by Tet2 depletion. Taken together, our study's results reveal the important roles of Tet2-mediated DNA hydroxymethylation in cardiac development and function.
Collapse
Affiliation(s)
- Huikang Tao
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Weize Xu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Wenzheng Qu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Hui Gao
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jinyu Zhang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xuejun Cheng
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ning Liu
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Jinghai Chen
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Guo-Liang Xu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.,Laboratory of Medical Epigenetics, Institute of Biomedical Sciences, Medical College of Fudan University, Chinese Academy of Medical Sciences (RU069), Shanghai 200032, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Qiang Shu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
21
|
Joshi RO, Chellappan S, Kukshal P. Exploring the Role of Maternal Nutritional Epigenetics in Congenital Heart Disease. Curr Dev Nutr 2020; 4:nzaa166. [PMID: 33294766 PMCID: PMC7703391 DOI: 10.1093/cdn/nzaa166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD) is one of the major debilitating birth defects resulting in significant impact on neonatal and child mortality globally. The etiology of CHD is complex and multifactorial. Many causative genes responsible for CHDs have been identified from the familial forms previously. Still, the non-Mendelian inheritance and predominant sporadic cases have stimulated research to understand the epigenetic basis and environmental impact on the incidence of CHD. The fetal epigenetic programming affecting cardiac development is susceptible to the availability of key dietary factors during the crucial periconceptional period. This article highlights the need and importance of in-depth research in the new emerging area of maternal nutritional epigenetics and CHD. It summarizes the current research and underlines the limitations in these types of studies. This review will benefit the future research on nutrition as a modifiable environmental factor to decrease the incidence of CHD.
Collapse
Affiliation(s)
- Radha O Joshi
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India
| | - Subramanian Chellappan
- Department of Anesthesia, Sri Sathya Sai Sanjeevani International Centre for Child Heart Care and Research, Palwal, Haryana, India
| | - Prachi Kukshal
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India
| |
Collapse
|
22
|
Wang Y, Tar MT, Davies KP. Hyperglycemic memory in the rat bladder detrusor is associated with a persistent hypomethylated state. Physiol Rep 2020; 8:e14614. [PMID: 33200530 PMCID: PMC7670302 DOI: 10.14814/phy2.14614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemic memory is associated with several complications of diabetes. Although there is some physiological evidence that this phenomenon occurs with diabetic bladder dysfunction (DBD), there have been no studies in bladder that provide evidence of hyperglycemic memory at the molecular/biochemical level. In the present studies, we determined the effects of long-term diabetes on the metabolome of bladder detrusor in a rat model of streptozotocin-induced type-1-diabetes and the ability of insulin treatment to normalize metabolic changes. These studies demonstrated that although insulin reversed a majority of the metabolic changes caused by diabetes, with long-term diabetes there was a persistent decrease in the methylation index (indicated by a reduced ratio of S-adenosylmethionine to S-adenosyl homocysteine) after insulin treatment. We confirmed a "hypomethylated environment" develops in diabetic detrusor by demonstrating an overall reduction in methylated detrusor DNA that is only partially reversed with glycemic control. Furthermore, we confirmed that this hypomethylated environment is associated with epigenetic changes in the detrusor genome, which are again mostly, but not completely, reversed with glycemic control. Overall our studies provide strong molecular evidence for a mechanism by which diabetes alters methylation status and gene expression in the detrusor genome, and that these epigenetic modifications contribute to hyperglycemic memory. Our work suggests novel treatment strategies for diabetic patients who have attained glycemic control but continue to experience DBD. For example, epigenomic data can be used to identify "actionable gene targets" for its treatment and would also support a rationale for approaches that target the hypomethylation index.
Collapse
Affiliation(s)
- Yi Wang
- Department of UrologyAlbert Einstein College of MedicineBronxNYUSA
| | - Moses T. Tar
- Department of UrologyAlbert Einstein College of MedicineBronxNYUSA
| | - Kelvin P. Davies
- Department of UrologyAlbert Einstein College of MedicineBronxNYUSA
- Department of Physiology and BiophysicsAlbert Einstein College of MedicineBronxNYUSA
| |
Collapse
|
23
|
Duddu S, Chakrabarti R, Ghosh A, Shukla PC. Hematopoietic Stem Cell Transcription Factors in Cardiovascular Pathology. Front Genet 2020; 11:588602. [PMID: 33193725 PMCID: PMC7596349 DOI: 10.3389/fgene.2020.588602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Transcription factors as multifaceted modulators of gene expression that play a central role in cell proliferation, differentiation, lineage commitment, and disease progression. They interact among themselves and create complex spatiotemporal gene regulatory networks that modulate hematopoiesis, cardiogenesis, and conditional differentiation of hematopoietic stem cells into cells of cardiovascular lineage. Additionally, bone marrow-derived stem cells potentially contribute to the cardiovascular cell population and have shown potential as a therapeutic approach to treat cardiovascular diseases. However, the underlying regulatory mechanisms are currently debatable. This review focuses on some key transcription factors and associated epigenetic modifications that modulate the maintenance and differentiation of hematopoietic stem cells and cardiac progenitor cells. In addition to this, we aim to summarize different potential clinical therapeutic approaches in cardiac regeneration therapy and recent discoveries in stem cell-based transplantation.
Collapse
Affiliation(s)
| | | | | | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
24
|
Fu W, Yue Y, Miao K, Xi G, Zhang C, Wang W, An L, Tian J. Repression of FGF signaling is responsible for Dnmt3b inhibition and impaired de novo DNA methylation during early development of in vitro fertilized embryos. Int J Biol Sci 2020; 16:3085-3099. [PMID: 33061820 PMCID: PMC7545699 DOI: 10.7150/ijbs.51607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/12/2020] [Indexed: 12/30/2022] Open
Abstract
Well-orchestrated epigenetic modifications during early development are essential for embryonic survival and postnatal growth. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, DNA methylation defects are of great concern. Despite the critical role of DNA methylation in determining embryonic development potential, the mechanisms underlying IVF-associated DNA methylation defects, however, remains largely elusive. We reported herein that repression of fibroblast growth factor (FGF) signaling as the main reason for IVF-associated DNA methylation defects. Comparative methylome analysis by postimplantation stage suggested that IVF mouse embryos undergo impaired de novo DNA methylation during implantation stage. Further analyses indicated that Dnmt3b, the main de novo DNA methyltransferase, was consistently inhibited during the transition from the blastocyst to postimplantation stage (Embryonic day 7.5, E7.5). Using blastocysts and embryonic stem cells (ESCs) as the model, we showed repression of FGF signaling is responsible for Dnmt3b inhibition and global hypomethylation during early development, and MEK/ERK-SP1 pathway plays an essential mediating role in FGF signaling-induced transcriptional activation of Dnmt3b. Supplementation of FGF2, which was exclusively produced in the maternal oviduct, into embryo culture medium significantly rescued Dnmt3b inhibition. Our study, using mouse embryos as the model, not only identifies FGF signaling as the main target for correcting IVF-associated epigenetic errors, but also highlights the importance of oviductal paracrine factors in supporting early embryonic development and improving in vitro culture system.
Collapse
Affiliation(s)
- Wei Fu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yuan Yue
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Kai Miao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Guangyin Xi
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Chao Zhang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Wenjuan Wang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Lei An
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
25
|
Liu T, Zhang G, Wang Y, Rao M, Zhang Y, Guo A, Wang M. Identification of Circular RNA-MicroRNA-Messenger RNA Regulatory Network in Atrial Fibrillation by Integrated Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8037273. [PMID: 33062700 PMCID: PMC7545447 DOI: 10.1155/2020/8037273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Circular RNA (circRNA) is a noncoding RNA that forms a closed-loop structure, and its abnormal expression may cause disease. We aimed to find potential network for circRNA-related competitive endogenous RNA (ceRNA) in atrial fibrillation (AF). METHODS The circRNA, miRNA, and mRNA expression profiles in the heart tissue from AF patients were retrieved from the Gene Expression Omnibus database and analyzed comprehensively. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were identified, followed by the establishment of DEcircRNA-DEmiRNA-DEmRNA regulatory network. Functional annotation analysis of host gene of DEcircRNAs and DEmRNAs in ceRNA regulatory network was performed. In vitro experiment and electronic validation were used to validate the expression of DEcircRNAs, DEmiRNAs, and DEmRNAs. RESULTS A total of 1611 DEcircRNAs, 51 DEmiRNAs, and 1250 DEmRNAs were identified in AF. The DEcircRNA-DEmiRNA-DEmRNA network contained 62 circRNAs, 14 miRNAs, and 728 mRNAs. Among which, two ceRNA regulatory pairs of hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 were identified. In addition, six miRNA-mRNA regulatory pairs including hsa-miR-34c-5p-INMT, hsa-miR-1253-DDIT4L, hsa-miR-508-5p-SMOC2, hsa-miR-943-ACTA1, hsa-miR-338-3p-WIPI1, and hsa-miR-199a-3p-RAP1GAP2 were also obtained. MTOR was a significantly enriched signaling pathway of host gene of DEcircRNAs. In addition, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, and hypertrophic cardiomyopathy were remarkably enriched signaling pathways of DEmRNAs in DEcircRNA-DEmiRNA-DEmRNA regulatory network. The expression validation of hsa-circRNA-402565, hsa-miR-34c-5p, hsa-miR-188-5p, SPON1, DDIT4L, SMOC2, and WIPI1 was consistent with the integrated analysis. CONCLUSION We speculated that hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 interaction pairs may be involved in AF.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Guoru Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yaling Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Mingyue Rao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yang Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Anjun Guo
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Mei Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
26
|
Zhu Y, Ye M, Xu H, Gu R, Ma X, Chen M, Li X, Sheng W, Huang G. Methylation status of CpG sites in the NOTCH4 promoter region regulates NOTCH4 expression in patients with tetralogy of Fallot. Mol Med Rep 2020; 22:4412-4422. [PMID: 33000281 PMCID: PMC7533461 DOI: 10.3892/mmr.2020.11535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Tetralogy of Fallot (TOF) is the most common form of cyanotic congenital heart disease (CHD). Although a lower methylation level of whole genome has been demonstrated in TOF patients, little is known regarding the DNA methylation changes in specific gene and its associations with TOF development. NOTCH4 is a mediator of the Notch signalling pathway that plays an important role in normal cardiac development. However, the role of epigenetic regulation of the NOTCH4 gene in the pathogenesis of TOF remains unclear. Considering the NOTCH4 low mutation frequency and reduced expression in the TOF patients, we hypothesized that abnormal DNA methylation change of NOTCH4 gene may influence its expression and responsible for TOF development. In this study, we measured the promoter methylation status of NOTCH4 and was measured and its regulation mechanism was explored, which may be related to TOF disease. Additionally, the promoter methylation statuses of NOTCH4 was measured in order to further understand epigenetic mechanisms that may serve a role in the development of TOF. Immunohistochemical analysis was used to examine NOTCH4 expression in right ventricular outflow tract myocardial tissues in patients with TOF. Compared with healthy controls, patients with TOF displayed significantly reduced in NOTCH4 expression (P=0.0055). Moreover, bisulphite sequencing suggested that the methylation levels of CpG site 2 in the NOTCH4 promoter was significantly higher in the patients than in the controls (P=0.0459). NOTCH4 expression was negatively associated with CpG site 2 methylation levels (r=−0.51; P=0.01). ETS1 transcription factor can serve as transcriptional activators by binding to specific DNA sequences of target genes, such as DLL4 and NOTCH4, which serves an important role in normal heart development. Dual-luciferase reporter and electrophoretic mobility shift assays indicated that the ETS1 transcription factor could bind to the NOTCH4 promoter region. However, binding of ETS1 to the NOTCH4 promoter was abrogated by methylation at the putative ETS1 binding sites. These findings suggested that decreased NOTCH4 expression in patients with TOF may be associated with hypermethylation of CpG site 2 in the NOTCH4 promoter region, due to impaired binding of ETS1.
Collapse
Affiliation(s)
- Yanjie Zhu
- Institute of Paediatrics, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Ming Ye
- Cardiovascular Centre, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Hongfei Xu
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ruoyi Gu
- Cardiovascular Centre, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Xiaojing Ma
- Cardiovascular Centre, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Mingwu Chen
- Division of Life Sciences and Medicine, The First Affiliated Hospital of The University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Xiaodi Li
- Institute of Paediatrics, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Wei Sheng
- Institute of Paediatrics, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Guoying Huang
- Institute of Paediatrics, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| |
Collapse
|
27
|
Su D, Gao Q, Guan L, Sun P, Li Q, Shi C, Ma X. Downregulation of SOX11 in fetal heart tissue, under hyperglycemic environment, mediates cardiomyocytes apoptosis. J Biochem Mol Toxicol 2020; 35:e22629. [PMID: 32935389 DOI: 10.1002/jbt.22629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Gestational diabetes mellitus is one of the causes of abnormal embryonic heart development, but the mechanism is still poor. This study investigated the regulatory mechanism and role of SOX11 in congenital heart abnormality in a hyperglycemic environment. Immunohistochemistry, Western blotting, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) showed decreased SOX11 protein and messenger RNA (mRNA) levels in the heart tissue of diabetic offspring compared with the control group. A Sequenom EpiTYPER MassArray showed that methylation sites upstream in SOX11 region 1 were increased in the diabetic group compared with the control group. Luciferase reporter assays and qRT-PCR showed that Dnmt3b overexpression decreased SOX11 promoter activity and its mRNA level, whereas Dnmt3a had little effect on regulating SOX11 expression. Furthermore, we found that Dnmt3L cooperated with Dnmt3b to regulate SOX11 gene expression. Additionally, the function of SOX11 silencing was analyzed by using small interfering RNA-mediated knockdown. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and apoptotic assays showed that SOX11 downregulation inhibited cell viability and induced apoptosis in cardiomyocytes. Overexpression of the SOX11 gene suppressed cardiomyocytes apoptosis after high glucose treatment. We identified a novel epigenetic regulatory mechanism of SOX11 during heart development in a hyperglycemic environment and revealed a distinct role of SOX11 in mediating cardiomyocytes viability and apoptosis.
Collapse
Affiliation(s)
- Dongmei Su
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China.,Department of cell biology, Graduate School, Peking Union Medical College, Beijing, China
| | - Qianqian Gao
- Department of Biology, Dezhou College, Dezhou, China
| | - Lina Guan
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China
| | - Peng Sun
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China
| | - Qian Li
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China
| | - Cuige Shi
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China
| | - Xu Ma
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China.,Department of cell biology, Graduate School, Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Zhao X, Chang S, Liu X, Wang S, Zhang Y, Lu X, Zhang T, Zhang H, Wang L. Imprinting aberrations of SNRPN, ZAC1 and INPP5F genes involved in the pathogenesis of congenital heart disease with extracardiac malformations. J Cell Mol Med 2020; 24:9898-9907. [PMID: 32693431 PMCID: PMC7520315 DOI: 10.1111/jcmm.15584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Congenital heart disease (CHD) with extracardiac malformations (EM) is the most common multiple malformation, resulting from the interaction between genetic abnormalities and environmental factors. Most studies have attributed the causes of CHD with EM to chromosomal abnormalities. However, multi‐system dysplasia is usually caused by both genetic mutations and epigenetic dysregulation. The epigenetic mechanisms underlying the pathogenesis of CHD with EM remain unclear. In this study, we investigated the mechanisms of imprinting alterations, including those of the Small nuclear ribonucleoprotein polypeptide N (SNRPN), PLAG1 like zinc finger 1 (ZAC1) and inositol polyphosphate‐5‐phosphatase F (INPP5F) genes, in the pathogenesis of CHD with EM. The methylation levels of SNRPN, ZAC1, and INPP5F genes were analysed by the MassARRAY platform in 24 children with CHD with EM and 20 healthy controls. The expression levels of these genes were detected by real‐time polymerase chain reaction (PCR). The correlation between methylation regulation and gene expression was confirmed using 5‐azacytidine (5‐Aza) treated cells. The methylation levels of SNRPN and ZAC1 genes were significantly increased in CHD with EM, while that of INPP5F was decreased. The methylation alterations of these genes were negatively correlated with expression. Risk analysis showed that abnormal hypermethylation of SNRPN and ZAC1 resulted in 5.545 and 7.438 times higher risks of CHD with EM, respectively, and the abnormal hypomethylation of INPP5F was 8.38 times higher than that of the control group. We concluded that abnormally high methylation levels of SNRPN and ZAC1 and decreased levels of INPP5F imply an increased risk of CHD with EM by altering their gene functions. This study provides evidence of imprinted regulation in the pathogenesis of multiple malformations.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Cardiac Surgery, The Capital Institute of Pediatrics, Beijing, China
| | - Shaoyan Chang
- Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xinli Liu
- Department of Obstetrics and Gynecology, PLA Army General Hospital 263rd Clinical Department, Beijing, China
| | - Shuangxing Wang
- Department of Cardiac Surgery, The Capital Institute of Pediatrics, Beijing, China
| | - Yueran Zhang
- Department of Cardiac Surgery, The Capital Institute of Pediatrics, Beijing, China
| | - Xiaolin Lu
- Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Hui Zhang
- Department of Cardiac Surgery, The Capital Institute of Pediatrics, Beijing, China
| | - Li Wang
- Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
29
|
Guan Y, Liu H, Ma Z, Li SY, Park J, Sheng X, Susztak K. Dnmt3a and Dnmt3b-Decommissioned Fetal Enhancers are Linked to Kidney Disease. J Am Soc Nephrol 2020; 31:765-782. [PMID: 32127410 PMCID: PMC7191927 DOI: 10.1681/asn.2019080797] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cytosine methylation is an epigenetic mark that dictates cell fate and response to stimuli. The timing and establishment of methylation logic during kidney development remains unknown. DNA methyltransferase 3a and 3b are the enzymes capable of establishing de novo methylation. METHODS We generated mice with genetic deletion of Dnmt3a and Dnmt3b in nephron progenitor cells (Six2CreDnmt3a/3b) and kidney tubule cells (KspCreDnmt3a/3b). We characterized KspCreDnmt3a/3b mice at baseline and after injury. Unbiased omics profiling, such as whole genome bisulfite sequencing, reduced representation bisulfite sequencing and RNA sequencing were performed on whole-kidney samples and isolated renal tubule cells. RESULTS KspCreDnmt3a/3b mice showed no obvious morphologic and functional alterations at baseline. Knockout animals exhibited increased resistance to cisplatin-induced kidney injury, but not to folic acid-induced fibrosis. Whole-genome bisulfite sequencing indicated that Dnmt3a and Dnmt3b play an important role in methylation of gene regulatory regions that act as fetal-specific enhancers in the developing kidney but are decommissioned in the mature kidney. Loss of Dnmt3a and Dnmt3b resulted in failure to silence developmental genes. We also found that fetal-enhancer regions methylated by Dnmt3a and Dnmt3b were enriched for kidney disease genetic risk loci. Methylation patterns of kidneys from patients with CKD showed defects similar to those in mice with Dnmt3a and Dnmt3b deletion. CONCLUSIONS Our results indicate a potential locus-specific convergence of genetic, epigenetic, and developmental elements in kidney disease development.
Collapse
Affiliation(s)
- Yuting Guan
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hongbo Liu
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ziyuan Ma
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Szu-Yuan Li
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jihwan Park
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xin Sheng
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Wu TT, Ma YW, Zhang X, Dong W, Gao S, Wang JZ, Zhang LF, Lu D. Myocardial tissue-specific Dnmt1 knockout in rats protects against pathological injury induced by Adriamycin. J Transl Med 2020; 100:974-985. [PMID: 32051532 PMCID: PMC7312399 DOI: 10.1038/s41374-020-0402-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022] Open
Abstract
Novel molecular mechanisms of the pathophysiology of heart failure (HF) are continuously being discovered, including epigenetic regulation. Among epigenetic marks, the role of DNA hypomethylation in shaping heart morphology and function in vivo and the pathogenesis of cardiomyopathy and/or HF, especially in adults, has not been clearly established. Here we show that the strong expression of DNA methyltransferase 1 (Dnmt1) is obviously downregulated in the WT adult rat heart with age. By contrast, the expression of Dnmt1 is upregulated suddenly in heart tissues from pressure overload-induced HF mice and adriamycin-induced cardiac injury and HF mice, consistent with the increased expression of Dnmt1 observed in familial hypertrophic cardiomyopathy (FHCM) patients. To further assess the role of Dnmt1, we generated myocardium-specific Dnmt1 knockout (Dnmt1 KO) rats using CRISPR-Cas9 technology. Echocardiographic and histopathological examinations demonstrated that Dnmt1 deficiency is associated with resistance to cardiac pathological changes and protection at the global and organization levels in response to pathological stress. Furthermore, Dnmt1 deficiency in the myocardium restricts the expressional reprogramming of genes and activates pathways involved in myocardial protection and anti-apoptosis in response to pathological stress. Transcriptome and genome-wide DNA methylation analyses revealed that these changes in regulation are linked to alterations in the methylation status of genes due to Dnmt1 knockout. The present study is the first to investigate in vivo the impact of genome-wide cardiac DNA methyltransferase deficiency on physiological development and the pathological processes of heart tissues in response to stress. The exploration of the role of epigenetics in the development, modification, and prevention of cardiomyopathy and HF is in a very preliminary stage but has an infinite future.
Collapse
Affiliation(s)
- Tong-Tong Wu
- 0000 0001 0706 7839grid.506261.6Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Wu Ma
- 0000 0001 0706 7839grid.506261.6Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Zhang
- 0000 0001 0706 7839grid.506261.6Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Dong
- 0000 0001 0706 7839grid.506261.6Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Gao
- 0000 0001 0706 7839grid.506261.6Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji-Zheng Wang
- 0000 0001 0706 7839grid.506261.6State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian-Feng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Dan Lu
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
31
|
Lan Y, Evans T. Epigenetic Regulation of Cardiac Development and Disease through DNA Methylation. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2019; 1:1-10. [PMID: 31595268 PMCID: PMC6783123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Epigenetic control mechanisms play critical roles in organ development and tissue homeostasis. Increasing evidence suggests that cardiac lineage commitment and cardiovascular disease are tightly regulated by epigenetic mechanisms, controlling changes in DNA methylation, histone modifications, ATP-dependent chromatin remodeling, and expression levels for non-coding RNAs. This review summarizes our current understanding of epigenetic control mechanisms regulating cardiac development and disease, particularly focuses on the function of DNA methylation and demethylation through families of DNA methyltransferases and dioxygenases.
Collapse
Affiliation(s)
- Yahui Lan
- Department of Surgery, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
32
|
Epigenetics and Mechanobiology in Heart Development and Congenital Heart Disease. Diseases 2019; 7:diseases7030052. [PMID: 31480510 PMCID: PMC6787645 DOI: 10.3390/diseases7030052] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
: Congenital heart disease (CHD) is the most common birth defect worldwide and the number one killer of live-born infants in the United States. Heart development occurs early in embryogenesis and involves complex interactions between multiple cell populations, limiting the understanding and consequent treatment of CHD. Furthermore, genome sequencing has largely failed to predict or yield therapeutics for CHD. In addition to the underlying genome, epigenetics and mechanobiology both drive heart development. A growing body of evidence implicates the aberrant regulation of these two extra-genomic systems in the pathogenesis of CHD. In this review, we describe the stages of human heart development and the heart defects known to manifest at each stage. Next, we discuss the distinct and overlapping roles of epigenetics and mechanobiology in normal development and in the pathogenesis of CHD. Finally, we highlight recent advances in the identification of novel epigenetic biomarkers and environmental risk factors that may be useful for improved diagnosis and further elucidation of CHD etiology.
Collapse
|
33
|
Liu Y, Lu P, Wang Y, Morrow BE, Zhou B, Zheng D. Spatiotemporal Gene Coexpression and Regulation in Mouse Cardiomyocytes of Early Cardiac Morphogenesis. J Am Heart Assoc 2019; 8:e012941. [PMID: 31322043 PMCID: PMC6761639 DOI: 10.1161/jaha.119.012941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
Background Heart tube looping to form a 4-chambered heart is a critical stage of embryonic heart development, but the gene drivers and their regulatory targets have not been extensively characterized at the cell-type level. Methods and Results To study the interaction of signaling pathways, transcription factors (TFs), and genetic networks in the process, we constructed gene co-expression networks and identified gene modules highly activated in individual cardiomyocytes at multiple anatomical regions and developmental stages using previously published single-cell RNA-seq data. Function analyses of the modules uncovered major pathways important for spatiotemporal cardiomyocyte differentiation. Interestingly, about half of the pathways were highly active in cardiomyocytes at the outflow tract (OFT) and atrioventricular canal, including well-known pathways for cardiac development and many newly identified ones. We predicted that these OFT-atrioventricular canal pathways were regulated by a large number of TFs actively expressed at the OFT-atrioventricular canal cardiomyocytes, with the prediction supported by motif enrichment analysis, including 10 TFs that have not been previously associated with cardiac development (eg, Etv5, Rbpms, and Baz2b). Furthermore, we found that TF targets in the OFT-atrioventricular canal modules were most significantly enriched with genes associated with mouse heart developmental abnormalities and human congenital heart defects, in comparison with TF targets in other modules, consistent with the critical developmental roles of OFT. Conclusions By analyzing gene co-expression at single cardiomyocytes, our systematic study has uncovered many known and additional new important TFs and their regulated molecular signaling pathways that are spatiotemporally active during heart looping.
Collapse
Affiliation(s)
- Yang Liu
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Pengfei Lu
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Yidong Wang
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Bernice E. Morrow
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
- Department of Ob/Gyn and PediatricsAlbert Einstein College of MedicineBronxNY
| | - Bin Zhou
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
- Department of Ob/Gyn and PediatricsAlbert Einstein College of MedicineBronxNY
- Department of MedicineAlbert Einstein College of MedicineBronxNY
| | - Deyou Zheng
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
- Department of NeurologyAlbert Einstein College of MedicineBronxNY
- Department of NeuroscienceAlbert Einstein College of MedicineBronxNY
| |
Collapse
|
34
|
Has2 natural antisense RNA and Hmga2 promote Has2 expression during TGFβ-induced EMT in breast cancer. Matrix Biol 2019; 80:29-45. [DOI: 10.1016/j.matbio.2018.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
|
35
|
Di Mauro V, Crasto S, Colombo FS, Di Pasquale E, Catalucci D. Wnt signalling mediates miR-133a nuclear re-localization for the transcriptional control of Dnmt3b in cardiac cells. Sci Rep 2019; 9:9320. [PMID: 31249372 PMCID: PMC6597717 DOI: 10.1038/s41598-019-45818-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
MiR-133a is a muscle-enriched miRNA, which plays a key role for proper skeletal and cardiac muscle function via regulation of transduction cascades, including the Wnt signalling. MiR-133a modulates its targets via canonical mRNA repression, a process that has been largely demonstrated to occur within the cytoplasm. However, recent evidence has shown that miRNAs play additional roles in other sub-cellular compartments, such as nuclei. Here, we show that miR-133a translocates to the nucleus of cardiac cells following inactivation of the canonical Wnt pathway. The nuclear miR-133a/AGO2 complex binds to a complementary miR-133a target site within the promoter of the de novo DNA methyltransferase 3B (Dnmt3b) gene, leading to its transcriptional repression, which is mediated by DNMT3B itself. Altogether, these data show an unconventional role of miR-133a that upon its relocalization to the nucleus is responsible for epigenetic repression of its target gene Dnmt3b via a DNMT3B self-regulatory negative feedback loop.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- University of Milan Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Silvia Crasto
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Federico Simone Colombo
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Elisa Di Pasquale
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Daniele Catalucci
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy.
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
36
|
Hoff K, Lemme M, Kahlert AK, Runde K, Audain E, Schuster D, Scheewe J, Attmann T, Pickardt T, Caliebe A, Siebert R, Kramer HH, Milting H, Hansen A, Ammerpohl O, Hitz MP. DNA methylation profiling allows for characterization of atrial and ventricular cardiac tissues and hiPSC-CMs. Clin Epigenetics 2019; 11:89. [PMID: 31186048 PMCID: PMC6560887 DOI: 10.1186/s13148-019-0679-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/03/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cardiac disease modelling using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) requires thorough insight into cardiac cell type differentiation processes. However, current methods to discriminate different cardiac cell types are mostly time-consuming, are costly and often provide imprecise phenotypic evaluation. DNA methylation plays a critical role during early heart development and cardiac cellular specification. We therefore investigated the DNA methylation pattern in different cardiac tissues to identify CpG loci for further cardiac cell type characterization. Results An array-based genome-wide DNA methylation analysis using Illumina Infinium HumanMethylation450 BeadChips led to the identification of 168 differentially methylated CpG loci in atrial and ventricular human heart tissue samples (n = 49) from different patients with congenital heart defects (CHD). Systematic evaluation of atrial-ventricular DNA methylation pattern in cardiac tissues in an independent sample cohort of non-failing donor hearts and cardiac patients using bisulfite pyrosequencing helped us to define a subset of 16 differentially methylated CpG loci enabling precise characterization of human atrial and ventricular cardiac tissue samples. This defined set of reproducible cardiac tissue-specific DNA methylation sites allowed us to consistently detect the cellular identity of hiPSC-CM subtypes. Conclusion Testing DNA methylation of only a small set of defined CpG sites thus makes it possible to distinguish atrial and ventricular cardiac tissues and cardiac atrial and ventricular subtypes of hiPSC-CMs. This method represents a rapid and reliable system for phenotypic characterization of in vitro-generated cardiomyocytes and opens new opportunities for cardiovascular research and patient-specific therapy. Electronic supplementary material The online version of this article (10.1186/s13148-019-0679-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kirstin Hoff
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marta Lemme
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne-Karin Kahlert
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Institute for Clinical Genetics, Carl Gustav Carus Faculty of Medicine, Dresden, Germany
| | - Kerstin Runde
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Enrique Audain
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dorit Schuster
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jens Scheewe
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Tim Attmann
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Thomas Pickardt
- National Register for Congenital Heart Defects, DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Competence Network for Congenital Heart Defects, DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University Hospital Ulm, Ulm, Germany
| | - Hans-Heiner Kramer
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Arne Hansen
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, University Hospital Ulm, Ulm, Germany
| | - Marc-Phillip Hitz
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany. .,Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany. .,Wellcome Trust Sanger Institute, Cambridge, UK.
| |
Collapse
|
37
|
Lister R, Chamberlain A, Einstein F, Wu B, Zheng D, Zhou B. Intrauterine Programming of Diabetes Induced Cardiac Embryopathy. DIABETES & OBESITY INTERNATIONAL JOURNAL 2019; 4:202. [PMID: 32537569 PMCID: PMC7293196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Maternal hyperglycemia is a well-recognized risk factor for fetal congenital heart disease. However, the underlying cellular and molecular mechanisms are not well characterized. We hypothesize that maternal hyperglycemia leading to congenital heart are linked to abnormal DNA methylation and mRNA expression at cardiac specific loci. METHODS Hyperglycemia was induced in normal 8-week old CD-1 female mice with a one-time intraperitoneal injection of 150 mg/kg of streptozotocin (STZ) 2 weeks prior to mating. Histological analysis of fetal cardiac morphology was evaluated for malformations on embryonic day (E) 16.5 of control pups and pups exposed to maternal hyperglycemia. We used a massively-parallel sequencing-based methylation sensitive restriction based assay to examine genome-wide cytosine methylation levels at >1.65 million loci in neonatal hearts on post-natal (P) day 0. Functional validation was performed with real time quantitative polymerase chain reaction (RT-qPCR). RESULTS Cardiac structural defects occurred in 28% of the pups (n=12/45) of hyperglycemic dams versus 7% (n=4/61) of controls. Notable phenotypes were hypoplastic left or right ventricle, double outlet right ventricle, ventricular septal defect, and left ventricular outflow tract obstruction. A 10-fold increase in DNA methylation of gene promoter regions was seen in many cardiac important genes in the experimental versus control P0 neonates and have corresponding decreases in gene expression in 21/32 genes functionally validated. CONCLUSION Maternal hyperglycemia alters DNA methylation and mRNA expression of some cardiac genes during heart development. Quantitative, genome-wide assessment of cytosine methylation can be used as a discovery platform to gain insight into the mechanisms of hyperglycemia-induced cardiac anomalies.
Collapse
Affiliation(s)
| | | | | | - Bingruo Wu
- MD Albert Einstein College of Medicine, USA
| | - DeYou Zheng
- Phd Albert Einstein College of Medicine, USA
| | - Bin Zhou
- MD Vanderbilt University Medical Center, USA
| |
Collapse
|
38
|
Menon V, Lincoln J. The Genetic Regulation of Aortic Valve Development and Calcific Disease. Front Cardiovasc Med 2018; 5:162. [PMID: 30460247 PMCID: PMC6232166 DOI: 10.3389/fcvm.2018.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022] Open
Abstract
Heart valves are dynamic, highly organized structures required for unidirectional blood flow through the heart. Over an average lifetime, the valve leaflets or cusps open and close over a billion times, however in over 5 million Americans, leaflet function fails due to biomechanical insufficiency in response to wear-and-tear or pathological stimulus. Calcific aortic valve disease (CAVD) is the most common valve pathology and leads to stiffening of the cusp and narrowing of the aortic orifice leading to stenosis and insufficiency. At the cellular level, CAVD is characterized by valve endothelial cell dysfunction and osteoblast-like differentiation of valve interstitial cells. These processes are associated with dysregulation of several molecular pathways important for valve development including Notch, Sox9, Tgfβ, Bmp, Wnt, as well as additional epigenetic regulators. In this review, we discuss the multifactorial mechanisms that contribute to CAVD pathogenesis and the potential of targeting these for the development of novel, alternative therapeutics beyond surgical intervention.
Collapse
Affiliation(s)
- Vinal Menon
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Joy Lincoln
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, Ohio State University, Columbus, OH, United States
| |
Collapse
|
39
|
Nicoll R. Environmental Contaminants and Congenital Heart Defects: A Re-Evaluation of the Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102096. [PMID: 30257432 PMCID: PMC6210579 DOI: 10.3390/ijerph15102096] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Congenital heart defects (CHDs) are a common birth defect of largely unknown etiology, with high fetal and neonatal mortality. A review of CHDs and environmental contaminant exposure found that meta-analyses showed only modest associations for smoking, vehicle exhaust components, disinfectant by-products and proximity to incinerators, with stronger results from the newer, larger and better quality studies masked by the typical absence of effect in older studies. Recent studies of exposure to agricultural pesticides, solvents, metals and landfill sites also showed associations. Certain contaminants have been associated with certain CHDs, with septal defects being the most common. Frequent methodological problems include failure to account for potential confounders or maternal/paternal preconception exposure, differences in diagnosing, defining and classifying CHDs, grouping of defects to increase power, grouping of contaminants with dissimilar mechanisms, exclusion of pregnancies that result in death or later life diagnosis, and the assumption that maternal residence at birth is the same as at conception. Furthermore, most studies use measurement estimates of one exposure, ignoring the many additional contaminant exposures in daily life. All these problems can distort and underestimate the true associations. Impaired methylation is a common mechanism, suggesting that supplementary folate may be protective for any birth defect.
Collapse
Affiliation(s)
- Rachel Nicoll
- Department of Public Health and Clinical Medicine, Umeå University, SE 901-87 Umeå, Sweden.
| |
Collapse
|
40
|
Yang X, Kong Q, Li Z, Xu M, Cai Z, Zhao C. Association between the promoter methylation of the TBX20 gene and tetralogy of fallot. SCAND CARDIOVASC J 2018; 52:287-291. [PMID: 30084275 DOI: 10.1080/14017431.2018.1499955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To investigate the association between promoter methylation of the TBX20 gene and tetralogy of Fallot (TOF). Methods. The methylation level of TBX20 promoter regions in 23 patients with TOF and five controls were analyzed through bisulfite sequencing polymerase chain reaction. Meanwhile, the expression of TBX20 mRNA was measured using real time fluorescence quantitative polymerase chain reaction. RESULTS The region -400 to -48 in the TBX20 promoter consisting of 42 CpG sites was predicted to contain multiple transcription factor binding sites. In this study, the overall methylation level in this region was lower in patients with TOF than in the controls (P = .035). Among the 42 CpG sites, the methylation percentages of the CpG 26 site in the TOF cases were lower than those in the controls (P = .016). The mRNA expression of TBX20 in the right ventricular outflow tract myocardium was increased in TOF cases in contrast to those in the controls (P < .001). The methylation levels in TOF cases were correlated with mRNA expression values (r = -0.81, P < .001). CONCLUSION The downregulated methylation level at TBX20 promoter may be responsible for the elevated mRNA expression levels in patients with TOF. The abnormal methylation status of the TBX20 promoter may contribute to the pathogenesis of TOF.
Collapse
Affiliation(s)
- Xiaofei Yang
- a Department of Pediatrics , Qilu Hospital of Shandong University , Jinan , China.,b Department of Pediatrics , Yidu central hospital of Weifang , Weifang , China
| | - Qingyu Kong
- a Department of Pediatrics , Qilu Hospital of Shandong University , Jinan , China
| | - Zhenghao Li
- b Department of Pediatrics , Yidu central hospital of Weifang , Weifang , China
| | - Min Xu
- c Department of Pediatrics , The People's Hospital of Yucheng City , Dezhou , China
| | - Zhifeng Cai
- a Department of Pediatrics , Qilu Hospital of Shandong University , Jinan , China
| | - Cuifen Zhao
- a Department of Pediatrics , Qilu Hospital of Shandong University , Jinan , China
| |
Collapse
|
41
|
Marcu R, Choi YJ, Xue J, Fortin CL, Wang Y, Nagao RJ, Xu J, MacDonald JW, Bammler TK, Murry CE, Muczynski K, Stevens KR, Himmelfarb J, Schwartz SM, Zheng Y. Human Organ-Specific Endothelial Cell Heterogeneity. iScience 2018; 4:20-35. [PMID: 30240741 PMCID: PMC6147238 DOI: 10.1016/j.isci.2018.05.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The endothelium first forms in the blood islands in the extra-embryonic yolk sac and then throughout the embryo to establish circulatory networks that further acquire organ-specific properties during development to support diverse organ functions. Here, we investigated the properties of endothelial cells (ECs), isolated from four human major organs-the heart, lung, liver, and kidneys-in individual fetal tissues at three months' gestation, at gene expression, and at cellular function levels. We showed that organ-specific ECs have distinct expression patterns of gene clusters, which support their specific organ development and functions. These ECs displayed distinct barrier properties, angiogenic potential, and metabolic rate and support specific organ functions. Our findings showed the link between human EC heterogeneity and organ development and can be exploited therapeutically to contribute in organ regeneration, disease modeling, as well as guiding differentiation of tissue-specific ECs from human pluripotent stem cells.
Collapse
Affiliation(s)
- Raluca Marcu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Yoon Jung Choi
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jun Xue
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chelsea L Fortin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Yuliang Wang
- Department of Computer Science & Engineering, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ryan J Nagao
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jin Xu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - James W MacDonald
- Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Pathology, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Kelly R Stevens
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Pathology, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jonathan Himmelfarb
- Department of Medicine, University of Washington, Seattle, WA, USA; Kidney Research Institute, University of Washington, Seattle, WA, USA
| | | | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Kidney Research Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
42
|
Cunningham CM, Eghbali M. An Introduction to Epigenetics in Cardiovascular Development, Disease, and Sexualization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:31-47. [PMID: 30051375 DOI: 10.1007/978-3-319-77932-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetic regulation of gene expression is integral to cell differentiation, development, and disease. Modes of epigenetic regulation-including DNA methylation, histone modifications, and ncRNA-based regulation-alter chromatin structure, promotor accessibility, and contribute to posttranscriptional modifications. In the cardiovascular system, epigenetic regulation is necessary for proper cardiovascular development and homeostasis, while epigenetic dysfunction is associated with improper cardiac development and disease.Early sexualization of tissues, including X-inactivation in females and maternal and paternal imprinting, is also orchestrated through epigenetic mechanisms. Furthermore, sex chromosomes encode various sex-specific genes involved in epigenetic regulation, while sex hormones can act as regulatory cofactors that may predispose or protect males and females against developing diseases with a marked sex bias.The following book chapter summarizes the field of epigenetics in the context of cardiovascular development and disease while also highlighting the role of epigenetic regulation as a powerful source of sex differences within the cardiovascular system.
Collapse
Affiliation(s)
- Christine M Cunningham
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Zhang D, Wu B, Wang P, Wang Y, Lu P, Nechiporuk T, Floss T, Greally JM, Zheng D, Zhou B. Non-CpG methylation by DNMT3B facilitates REST binding and gene silencing in developing mouse hearts. Nucleic Acids Res 2017; 45:3102-3115. [PMID: 27956497 PMCID: PMC5389556 DOI: 10.1093/nar/gkw1258] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/25/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
The dynamic interaction of DNA methylation and transcription factor binding in regulating spatiotemporal gene expression is essential for embryogenesis, but the underlying mechanisms remain understudied. In this study, using mouse models and integration of in vitro and in vivo genetic and epigenetic analyses, we show that the binding of REST (repressor element 1 (RE1) silencing transcription factor; also known as NRSF) to its cognate RE1 sequences is temporally regulated by non-CpG methylation. This process is dependent on DNA methyltransferase 3B (DNMT3B) and leads to suppression of adult cardiac genes in developing hearts. We demonstrate that DNMT3B preferentially mediates non-CpG methylation of REST-targeted genes in the developing heart. Downregulation of DNMT3B results in decreased non-CpG methylation of RE1 sequences, reduced REST occupancy, and consequently release of the transcription suppression during later cardiac development. Together, these findings reveal a critical gene silencing mechanism in developing mammalian hearts that is regulated by the dynamic interaction of DNMT3B-mediated non-CpG methylation and REST binding.
Collapse
Affiliation(s)
- Donghong Zhang
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bingruo Wu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ping Wang
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yidong Wang
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pengfei Lu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tamilla Nechiporuk
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Thomas Floss
- German Research Center for Environmental Health, Neuherberg, Germany
| | - John M. Greally
- Departments of Genetics, Medicine (Hematology), and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Deyou Zheng
- Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bin Zhou
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Lei L, Lin H, Zhong S, Zhang Z, Chen J, Yu X, Liu X, Zhang C, Nie Z, Zhuang J. DNA methyltransferase 1 rs16999593 genetic polymorphism decreases risk in patients with transposition of great arteries. Gene 2017; 615:50-56. [PMID: 28323001 DOI: 10.1016/j.gene.2017.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 11/19/2022]
Abstract
Complete transposition of the great arteries (TGA) is the most frequent cyanotic heart defect diagnosed in neonates. However, the exact etiology of TGA is unknown. The aim of the present study was to assess the association of TGA pathogenesis with single nucleotide polymorphisms (SNPs) in DNA methyltransferases (DNMTs)-1 and 3a- in Chinese children. We genotyped 5 SNPs (rs16999593, rs16999358, and rs2228611 in DNMT1; and rs2276599 and rs2276598 in DNMT3A) in 206 patients with complete TGA and 252 healthy children. Statistical analysis was performed to explore the association of the 5 SNPs with complete TGA susceptibility. Compared with the T/T and C/C genotypes, the heterozygous genotype C/T of rs16999593 correlated with a decreased risk for complete TGA under codominant (OR=0.46; 95% CI=0.29-0.72), dominant (OR=0.58; 95% CI=0.38-0.88), and overdominant (OR=0.44; 95% CI=0.28-0.68) models. In contrast, the genotype C/C of rs16999593 correlated with a higher risk for TGA under a recessive model (OR=3.15; 95% CI=1.14-8.68) compared with the T/T and C/T genotypes. Furthermore, the TGC, TGT, CGC, and CGT haplotypes of DNMT1 did not differ significantly between the two groups, whereas the frequency of the TAC haplotype was lower in the case group (OR<1; P=0.002). No significant differences in the frequencies of the TC, CC, TT, and CT haplotypes of DNMT3A were found between the two groups. Furthermore, logistic regression showed that sex and the rs16999358 SNP were two independent risk factors for complete TGA. Overall, the C/T genotype of the rs16999593 SNP in DNMT1 might decrease the risk of complete TGA pathogenesis in the Southern Chinese population.
Collapse
Affiliation(s)
- Liming Lei
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Laboratory of South China Structural Heart Disease, Guangzhou 510080, China
| | - Haoming Lin
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shilong Zhong
- Medical Research Center of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhiwei Zhang
- Department of Pediatrics of Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jimei Chen
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Laboratory of South China Structural Heart Disease, Guangzhou 510080, China
| | - Xiyong Yu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoqing Liu
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Laboratory of South China Structural Heart Disease, Guangzhou 510080, China
| | - Cheng Zhang
- Department of Pediatrics of Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhiqiang Nie
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Laboratory of South China Structural Heart Disease, Guangzhou 510080, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Laboratory of South China Structural Heart Disease, Guangzhou 510080, China.
| |
Collapse
|
45
|
Li H, Liu P, Xu S, Li Y, Dekker JD, Li B, Fan Y, Zhang Z, Hong Y, Yang G, Tang T, Ren Y, Tucker HO, Yao Z, Guo X. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest 2017; 127:1241-1253. [PMID: 28240601 DOI: 10.1172/jci89511] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022] Open
Abstract
A hallmark of aged mesenchymal stem/progenitor cells (MSCs) in bone marrow is the pivot of differentiation potency from osteoblast to adipocyte coupled with a decrease in self-renewal capacity. However, how these cellular events are orchestrated in the aging progress is not fully understood. In this study, we have used molecular and genetic approaches to investigate the role of forkhead box P1 (FOXP1) in transcriptional control of MSC senescence. In bone marrow MSCs, FOXP1 expression levels declined with age in an inverse manner with those of the senescence marker p16INK4A. Conditional depletion of Foxp1 in bone marrow MSCs led to premature aging characteristics, including increased bone marrow adiposity, decreased bone mass, and impaired MSC self-renewal capacity in mice. At the molecular level, FOXP1 regulated cell-fate choice of MSCs through interactions with the CEBPβ/δ complex and recombination signal binding protein for immunoglobulin κ J region (RBPjκ), key modulators of adipogenesis and osteogenesis, respectively. Loss of p16INK4A in Foxp1-deficient MSCs partially rescued the defects in replication capacity and bone mass accrual. Promoter occupancy analyses revealed that FOXP1 directly represses transcription of p16INK4A. These results indicate that FOXP1 attenuates MSC senescence by orchestrating their cell-fate switch while maintaining their replicative capacity in a dose- and age-dependent manner.
Collapse
|
46
|
Resetting the epigenome for heart regeneration. Semin Cell Dev Biol 2016; 58:2-13. [DOI: 10.1016/j.semcdb.2015.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022]
|
47
|
Burridge PW, Sharma A, Wu JC. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine. Annu Rev Genet 2016; 49:461-84. [PMID: 26631515 DOI: 10.1146/annurev-genet-112414-054911] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regeneration or replacement of lost cardiomyocytes within the heart has the potential to revolutionize cardiovascular medicine. Numerous methodologies have been used to achieve this aim, including the engraftment of bone marrow- and heart-derived cells as well as the identification of modulators of adult cardiomyocyte proliferation. Recently, the conversion of human somatic cells into induced pluripotent stem cells and induced cardiomyocyte-like cells has transformed potential approaches toward this goal, and the engraftment of cardiac progenitors derived from human embryonic stem cells into patients is now feasible. Here we review recent advances in our understanding of the genetic and epigenetic control of human cardiogenesis, cardiac differentiation, and the induced reprogramming of somatic cells to cardiomyocytes. We also cover genetic programs for inducing the proliferation of endogenous cardiomyocytes and discuss the genetic state of cells used in cardiac regenerative medicine.
Collapse
Affiliation(s)
- Paul W Burridge
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305.,Department of Pharmacology.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| | - Arun Sharma
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305
| | - Joseph C Wu
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
48
|
Fang X, Poulsen RR, Wang-Hu J, Shi O, Calvo NS, Simmons CS, Rivkees SA, Wendler CC. Knockdown of DNA methyltransferase 3a alters gene expression and inhibits function of embryonic cardiomyocytes. FASEB J 2016; 30:3238-55. [PMID: 27306334 PMCID: PMC5001511 DOI: 10.1096/fj.201600346r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/31/2016] [Indexed: 12/28/2022]
Abstract
We previously found that in utero caffeine exposure causes down-regulation of DNA methyltransferases (DNMTs) in embryonic heart and results in impaired cardiac function in adulthood. To assess the role of DNMTs in these events, we investigated the effects of reduced DNMT expression on embryonic cardiomyocytes. siRNAs were used to knock down individual DNMT expression in primary cultures of mouse embryonic cardiomyocytes. Immunofluorescence staining was conducted to evaluate cell morphology. A video-based imaging assay and multielectrode array were used to assess cardiomyocyte contractility and electrophysiology, respectively. RNA-Seq and multiplex bisulfite sequencing were performed to examine gene expression and promoter methylation, respectively. At 72 h after transfection, reduced DNMT3a expression, but not DNMT1 or -3b, disrupted sarcomere assembly and decreased beating frequency, contractile movement, amplitude of field action potential, and cytosolic calcium signaling of cardiomyocytes. RNA-Seq analysis revealed that the DNMT3a-deficient cells had deactivated gene networks involved in calcium, endothelin-1, renin-angiotensin, and cardiac β-adrenergic receptor signaling, which were not inhibited by DNMT3b siRNA. Moreover, decreased methylation levels were found in the promoters of Myh7, Myh7b, Tnni3, and Tnnt2, consistent with the up-regulation of these genes by DNMT3a siRNA. These data show that DNMT3a plays an important role in regulating embryonic cardiomyocyte gene expression, morphology and function.-Fang, X., Poulsen, R. R., Wang-Hu, J., Shi, O., Calvo, N. S., Simmons, C. S., Rivkees, S. A., Wendler, C. C. Knockdown of DNA methyltransferase 3a alters gene expression and inhibits function of embryonic cardiomyocytes.
Collapse
Affiliation(s)
- Xiefan Fang
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - Ryan R Poulsen
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - John Wang-Hu
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - Olivia Shi
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - Nicholas S Calvo
- Department of Mechanical and Aerospace Engineering, College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Scott A Rivkees
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - Christopher C Wendler
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| |
Collapse
|
49
|
Jo BS, Koh IU, Bae JB, Yu HY, Jeon ES, Lee HY, Kim JJ, Choi M, Choi SS. Methylome analysis reveals alterations in DNA methylation in the regulatory regions of left ventricle development genes in human dilated cardiomyopathy. Genomics 2016; 108:84-92. [PMID: 27417303 DOI: 10.1016/j.ygeno.2016.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/23/2016] [Accepted: 07/10/2016] [Indexed: 10/21/2022]
Abstract
Dilated cardiomyopathy (DCM) is one of the main causes of heart failure (called cardiomyopathies) in adults. Alterations in epigenetic regulation (i.e., DNA methylation) have been implicated in the development of DCM. Here, we identified a total of 1828 differentially methylated probes (DMPs) using the Infinium 450K HumanMethylation Bead chip by comparing the methylomes between 18 left ventricles and 9 right ventricles. Alterations in DNA methylation levels were observed mainly in lowly methylated regions corresponding to promoter-proximal regions, which become hypermethylated in severely affected left ventricles. Subsequent mRNA microarray analysis showed that the effect of DNA methylation on gene expression regulation is not unidirectional but is controlled by the functional sub-network context. DMPs were significantly enriched in the transcription factor binding sites (TFBSs) we tested. Alterations in DNA methylation were specifically enriched in the cis-regulatory regions of cardiac development genes, the majority of which are involved in ventricular development (e.g., TBX5 and HAND1).
Collapse
Affiliation(s)
- Bong-Seok Jo
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Chuncheon 24341, South Korea
| | - In-Uk Koh
- Division of Structural and Functional Genomics, Center of Genome Science, National Research Institute of Health, Chuncheongbuk-do 28159, South Korea
| | - Jae-Bum Bae
- Division of Structural and Functional Genomics, Center of Genome Science, National Research Institute of Health, Chuncheongbuk-do 28159, South Korea
| | - Ho-Yeong Yu
- Division of Structural and Functional Genomics, Center of Genome Science, National Research Institute of Health, Chuncheongbuk-do 28159, South Korea
| | - Eun-Seok Jeon
- Division of Cardiology, Cardiac and Vascular Center, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, South Korea
| | - Hae-Young Lee
- Division of Cardiology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jae-Joong Kim
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 44033, South Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Chuncheon 24341, South Korea.
| |
Collapse
|
50
|
Matsa E, Ahrens JH, Wu JC. Human Induced Pluripotent Stem Cells as a Platform for Personalized and Precision Cardiovascular Medicine. Physiol Rev 2016; 96:1093-126. [PMID: 27335446 PMCID: PMC6345246 DOI: 10.1152/physrev.00036.2015] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized the field of human disease modeling, with an enormous potential to serve as paradigm shifting platforms for preclinical trials, personalized clinical diagnosis, and drug treatment. In this review, we describe how hiPSCs could transition cardiac healthcare away from simple disease diagnosis to prediction and prevention, bridging the gap between basic and clinical research to bring the best science to every patient.
Collapse
Affiliation(s)
- Elena Matsa
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - John H Ahrens
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|