1
|
Xu W, Wang Z, Yao H, Zeng Z, Lan X. Distribution of Arteriosclerotic Vessels in Patients with Arteriosclerosis and the Differences of Serum Lipid Levels Classified by Different Sites. Int J Gen Med 2024; 17:4733-4744. [PMID: 39429964 PMCID: PMC11491091 DOI: 10.2147/ijgm.s483324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Objective To investigate the distribution of arteriosclerotic vessels of arteriosclerosis, differential serum lipid profiles, and differences in the proportion of dyslipidaemia between patients with single-site arteriosclerosis and multi-site arteriosclerosis (significant hardening of ≥2 arteries). Methods The data of 6581 single-site arteriosclerosis patients and 5940 multi-site arteriosclerosis patients were extracted from the hospital medical record system. Serum total cholesterol (TC), triglycerides (TGs), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein (Apo) A1, ApoB concentrations and C-reactive protein (CRP) between patients with single-site arteriosclerosis and multi-site arteriosclerosis were collected and analyzed. Results The most diseased arteries were coronary arteries (n=7099, 33.7%), limb arteries (n=6546, 31.1%), and carotid arteries (n=5279, 25.1%). TC, LDL-C, TC/HDL-C, and LDL-C/HDL-C levels were higher and CRP level was lower in multi-site arteriosclerosis patients than those in single-site arteriosclerosis patients. The TC, LDL-C levels in non-elderly (<65 years old) female patients were higher and TG/HDL-C, TC/HDL-C, LDL-C/HDL-C levels were lower than those in non-elderly male patients, while the TG, TC, LDL-C, and TG/HDL-C levels in elderly (≥65 years old) female patients were higher and LDL-C/HDL-C level was lower than those in elderly male patients. The proportion of dyslipidemia in descending order was as follows: low HDL-C (31.9%), elevated TG (16.9%), elevated TC (9.0%), and elevated LDL-C (4.2%). The levels of TC, LDL-C, TC/HDL-C, and LDL-C/HDL-C in patients with peripheral arteriosclerosis were higher than those in patients with cardio-cerebrovascular arteriosclerosis. Conclusion There were differences in serum lipid levels in patients with arteriosclerosis with different age, gender and distribution of arteriosclerotic vessels.
Collapse
Affiliation(s)
- Weiyong Xu
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Zhenchang Wang
- Department of Emergency Medicine, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Huaqing Yao
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Zifeng Zeng
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Xinping Lan
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
2
|
Verdoia M, Rolla R, Gioscia R, Rognoni A, De Luca G. Lipoprotein associated- phospholipase A2 in STEMI vs. NSTE-ACS patients: a marker of cardiovascular atherosclerotic risk rather than thrombosis. J Thromb Thrombolysis 2023:10.1007/s11239-023-02801-1. [PMID: 37022507 DOI: 10.1007/s11239-023-02801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2023] [Indexed: 04/07/2023]
Abstract
The precise role of Lipoprotein associated phospholipase A2 (Lp-PlA2) in the pathogenesis of acute coronary syndromes (ACS) and in the prediction of future cardiovascular events is still debated. So far, few data exist on the variations of Lp-PlA2 activity in ACS and especially in NSTE-ACS vs. STEMI patients, where thrombotic and atherosclerotic mechanisms could play a differential role. The aim of the present study was, then, to compare Lp-PlA2 activity according to the type of ACS presentation. METHODS A consecutive cohort of patients undergoing coronary angiography for acute coronary syndrome (ACS) were included and divided according to presentation for non ST-segment elevation-ACS or ST-segment elevation Myocardial Infarction (STEMI). Lp-PLA2 activity was assessed in blood samples drawn at admission using the Diazyme Lp-PlA2 Activity Assay. RESULTS We included in our study 117 patients, of whom 31 (26.5%) presented with STEMI. STEMI patients were significantly younger (p = 0.05), displayed a lower rate of hypertension (p = 0.002), previous MI (p = 0.001) and PCI (p = 0.01) and used less frequently statins (p = 0.01) and clopidogrel (p = 0.02). White blood cells and admission glycemia were increased in STEMI (p = 0.001, respectively). The prevalence and severity of CAD was not different according to ACS types, but for a higher prevalence of thrombus (p < 0.001) and lower TIMI flow (p = 0.002) in STEMI. The levels of Lp-PlA2 were significantly lower in STEMI as compared to NSTE-ACS patients, (132 ± 41.1 vs. 154.6 ± 40.9 nmol/min/mL, p = 0.01). In fact, the rate of patients with Lp-PlA2 above the median (148 nmol/min/mL) was significantly lower in STEMI patients as compared to NSTE-ACS (32.3% vs. 57%, p = 0.02, adjusted OR[95% CI] = 0.20[0.06-0.68], p = 0.010). Moreover, a direct linear relationship was observed between Lp-PlA2 and LDL-C (r = 0.47, p < 0.001), but not with inflammatory biomarkers. CONCLUSION The present study shows that among ACS patients, the levels of Lp-PlA2 are inversely associated with STEMI presentation and thrombotic coronary occlusion, being instead increased in NSTE-ACS patients, therefore potentially representing a marker of more aggressive chronic cardiovascular disease with an increased risk of recurrent cardiovascular events.
Collapse
Affiliation(s)
- Monica Verdoia
- Division of Cardiology, Nuovo Ospedale degli Infermi, ASL Biella, Biella, Italy
| | - Roberta Rolla
- Clinical Chemistry, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Universit? del Piemonte Orientale, Novara, Italy
| | - Rocco Gioscia
- Division of Cardiology, Nuovo Ospedale degli Infermi, ASL Biella, Biella, Italy
| | - Andrea Rognoni
- Division of Cardiology, Nuovo Ospedale degli Infermi, ASL Biella, Biella, Italy
| | - Giuseppe De Luca
- Division of Cardiology, AOU "Policlinico G. Martino", Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
- Division of Cardiology, Galeazzi-Sant'Ambrogio Hospital, Milan, Italy.
| |
Collapse
|
3
|
Transcriptomic Analysis Identifies Differentially Expressed Genes Associated with Vascular Cuffing and Chronic Inflammation Mediating Early Thrombosis in Arteriovenous Fistula. Biomedicines 2022; 10:biomedicines10020433. [PMID: 35203642 PMCID: PMC8962355 DOI: 10.3390/biomedicines10020433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Arteriovenous fistula (AVF) is vascular access created for hemodialysis in end-stage renal disease patients. AVF creation causes increased blood flow in the outflow vein with increased pressure. Increased blood flow, blood volume, and shear stress causes outward remodeling so that the outflow vein can withstand the increased pressure. Outward remodeling of the vein involved in AVF is necessary for AVF maturation, however, inward remodeling due to excessive neointimal hyperplasia (NIH) and chronic inflammation may end up with vessel thrombosis and AVF maturation failure. Early thrombosis of the vessel may be due to the luminal factors including NIH and chronic inflammation or due to chronic inflammation of the adventitial due to perivascular cuffing. Inflammation may either be due to an immune response to the vascular injury during AVF creation or injury to the surrounding muscles and fascia. Several studies have discussed the role of inflammation in vascular thrombosis due to intimal injury during AVF creation, but there is limited information on the role of inflammation due to surrounding factors like a muscle injury. The concept of perivascular cuffing has been reported in the nervous system, but there is no study of perivascular cuffing in AVF early thrombosis. We performed the bulk RNA sequencing of the femoral arterial tissue and contralateral arteries as we found thrombosed arteries after AVF creation. RNA sequencing revealed several significantly differentially expressed genes (DEGs) related to chronic inflammation and perivascular cuffing, including tripartite motif-containing protein 55 (TRIM55). Additionally, DEGs like myoblast determination protein 1 (MYOD1) increased after muscle injury and relates to skeletal muscle differentiation, and network analysis revealed regulation of various genes regulating inflammation via MYOD1. The findings of this study revealed multiple genes with increased expression in the AVF femoral artery and may provide potential therapeutic targets or biomarkers of early thrombosis in AVF maturation failure. Thus, not only the luminal factors but also the surrounding factors mediating vascular cuffing contribute to vessel thrombosis and AVF failure via early thrombosis, and targeting the key regulatory factors may have therapeutic potential.
Collapse
|
4
|
Circulating Biomarkers Reflecting Destabilization Mechanisms of Coronary Artery Plaques: Are We Looking for the Impossible? Biomolecules 2021; 11:biom11060881. [PMID: 34198543 PMCID: PMC8231770 DOI: 10.3390/biom11060881] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022] Open
Abstract
Despite significant strides to mitigate the complications of acute coronary syndrome (ACS), this clinical entity still represents a major global health burden. It has so far been well-established that most of the plaques leading to ACS are not a result of gradual narrowing of the vessel lumen, but rather a result of sudden disruption of vulnerable atherosclerotic plaques. As most of the developed imaging modalities for vulnerable plaque detection are invasive, multiple biomarkers were proposed to identify their presence. Owing to the pivotal role of lipids and inflammation in the pathophysiology of atherosclerosis, most of the biomarkers originated from one of those processes, whereas recent advancements in molecular sciences shed light on the use of microRNAs. Yet, at present there are no clinically implemented biomarkers or any other method for that matter that could non-invasively, yet reliably, diagnose the vulnerable plaque. Hence, in this review we summarized the available knowledge regarding the pathophysiology of plaque instability, the current evidence on potential biomarkers associated with plaque destabilization and finally, we discussed if search for biomarkers could one day bring us to non-invasive, cost-effective, yet valid way of diagnosing the vulnerable, rupture-prone coronary artery plaques.
Collapse
|
5
|
Buckler AJ, Karlöf E, Lengquist M, Gasser TC, Maegdefessel L, Matic LP, Hedin U. Virtual Transcriptomics: Noninvasive Phenotyping of Atherosclerosis by Decoding Plaque Biology From Computed Tomography Angiography Imaging. Arterioscler Thromb Vasc Biol 2021; 41:1738-1750. [PMID: 33691476 PMCID: PMC8062292 DOI: 10.1161/atvbaha.121.315969] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Andrew J. Buckler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Elucid Bioimaging Inc., Boston, MA United States
| | - Eva Karlöf
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - T Christian Gasser
- KTH Solid Mechanics, Department or Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Ludvigsen TP, Pedersen SF, Vegge A, Ripa RS, Johannesen HH, Hansen AE, Löfgren J, Schumacher-Petersen C, Kirk RK, Pedersen HD, Christoffersen BØ, Ørbæk M, Forman JL, Klausen TL, Olsen LH, Kjaer A. 18F-FDG PET/MR-imaging in a Göttingen Minipig model of atherosclerosis: Correlations with histology and quantitative gene expression. Atherosclerosis 2019; 285:55-63. [PMID: 31004968 DOI: 10.1016/j.atherosclerosis.2019.04.209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS The advantage of combining molecular and morphological imaging, e.g. positron emission tomography and magnetic resonance imaging (PET/MRI), is reflected in the increased use of these modalities as surrogate end-points in clinical trials. This study aimed at evaluating plaque inflammation using 18F-fluorodeoxyglucose (18F-FDG)-PET/MRI, and gene expression in a minipig model of atherosclerosis. METHODS Göttingen Minipigs were fed for 60 weeks with fat/fructose/cholesterol-rich diet (FFC), chow (Control) or FFC-diet changed to chow midway (diet normalization group; DNO). In all groups, 18F-FDG-PET/MRI of the abdominal aorta was assessed midway and at study-end. The aorta was analyzed using histology and gene expression. RESULTS At study-end, FFC had significantly higher FDG-uptake compared to Control (target-to-background maximal uptake, TBRMax (95% confidence interval) CITBRMax: 0.092; 7.32) and DNO showed significantly decreased uptake compared to FFC (CITBRMax: -5.94;-0.07). No difference was observed between DNO and Control (CITBRMax: -2.71; 4.11). FFC displayed increased atherosclerosis and gene expression of inflammatory markers, including vascular cell adhesion molecule 1 (VCAM-1), cluster of differentiation 68 (CD68), matrix metalloproteinase 9 (MMP9), cathepsin K (CTSK) and secreted phosphoprotein 1 (SPP1) compared to Control and DNO (all, p < 0.05). FDG-uptake correlated with gene expression of inflammatory markers, including CD68, ρs = 0.58; MMP9, ρs = 0.46; SPP1, ρs = 0.44 and CTSK, ρs = 0.49; (p ≤ 0.01 for all). CONCLUSIONS In a model of atherosclerosis, 18F-FDG-PET/MRI technology allows for detection of inflammation in atherosclerotic plaques, consistent with increased inflammatory gene expression. Our findings corroborate clinical data and are important in pre-clinical drug development targeting plaque inflammation.
Collapse
Affiliation(s)
- Trine P Ludvigsen
- Global Drug Discovery, Novo Nordisk Park, Novo Nordisk A/S, DK-2760, Måløv, Denmark
| | - Sune F Pedersen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Dept. of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Andreas Vegge
- Global Drug Discovery, Novo Nordisk Park, Novo Nordisk A/S, DK-2760, Måløv, Denmark
| | - Rasmus S Ripa
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Dept. of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Helle H Johannesen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Dept. of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Adam E Hansen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Dept. of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Johan Löfgren
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Dept. of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Camilla Schumacher-Petersen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, DK-1870, Frederiksberg, Denmark
| | - Rikke K Kirk
- Global Drug Discovery, Novo Nordisk Park, Novo Nordisk A/S, DK-2760, Måløv, Denmark
| | - Henrik D Pedersen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, DK-1870, Frederiksberg, Denmark; Ellegaard Göttingen Minipigs A/S, Sorø Landevej 302, DK-4261, Dalmose, Denmark
| | | | - Mathilde Ørbæk
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Dept. of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Julie L Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, DK-1014, Copenhagen, Denmark
| | - Thomas L Klausen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Dept. of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Lisbeth H Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, DK-1870, Frederiksberg, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Dept. of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
7
|
Prasad M, Lennon R, Barsness GW, Prasad A, Gulati R, Lerman LO, Lerman A. Chronic inhibition of lipoprotein-associated phospholipase A 2 does not improve coronary endothelial function: A prospective, randomized-controlled trial. Int J Cardiol 2018; 253:7-13. [PMID: 29306475 DOI: 10.1016/j.ijcard.2017.09.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/07/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022]
Abstract
AIMS Lipoprotein-associated phospholipase A2 (Lp-PLA2), a novel biomarker for vascular inflammation, is associated with coronary endothelial dysfunction (CED) and independently predicts cardiovascular events. The current study aimed to determine whether darapladib, an orally administered Lp-PLA2 inhibitor, improved CED. METHODS AND RESULTS Fifty-four patients with CED were enrolled in a double-blinded randomized placebo-controlled trial, and were randomized to receive oral darapladib, 160mg daily, or placebo. Coronary angiography and invasive coronary endothelial function assessment were performed at baseline and post-6months of treatment. Primary endpoints were change in coronary artery diameter and coronary blood flow in response to acetylcholine. Additionally, Lp-PLA2 activity was measured at baseline and on follow-up to evaluate for adherence and drug effect. Fifty-four patients were randomized to placebo (n=29) and darapladib (n=25). Mean age in darapladib group was 55.2.±11.7years vs. 54.0±10.5years (p=0.11). On follow-up, there was no significant difference in the percent response to acetylcholine of coronary artery diameter in treatment vs. placebo group (+3 (IQR -9, 15) vs. +3 (-12, 19); p=0.87) or coronary blood flow (-5 (IQR -24, 54) vs. 39 (IQR -26, 67); p=0.41). There was significant reduction in Lp-PLA2 activity in the treatment arm vs. placebo (-76 (IQR -113, -52) vs. -7(-21, -7); p<0.001). DISCUSSION Lp-PLA2 inhibition with darapladib did not improve coronary endothelial function, despite significantly reduced Lp-PLA2 activity with darapladib. This study suggests endogenous Lp-PLA2 may not play a primary role in coronary endothelial function in humans. CLINICALTRIALS. GOV IDENTIFIER NCT01067339.
Collapse
Affiliation(s)
- Megha Prasad
- Mayo Clinic, Department of Cardiovascular Diseases, Rochester, MN, United States
| | - Ryan Lennon
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN, United States
| | - Gregory W Barsness
- Mayo Clinic, Department of Cardiovascular Diseases, Rochester, MN, United States
| | - Abhiram Prasad
- Mayo Clinic, Department of Cardiovascular Diseases, Rochester, MN, United States
| | - Rajiv Gulati
- Mayo Clinic, Department of Cardiovascular Diseases, Rochester, MN, United States
| | - Lilach O Lerman
- Mayo Clinic, Department of Cardiovascular Diseases, Rochester, MN, United States
| | - Amir Lerman
- Mayo Clinic, Department of Cardiovascular Diseases, Rochester, MN, United States.
| |
Collapse
|
8
|
Peripheral vascular atherosclerosis in a novel PCSK9 gain-of-function mutant Ossabaw miniature pig model. Transl Res 2018; 192:30-45. [PMID: 29175268 PMCID: PMC5811343 DOI: 10.1016/j.trsl.2017.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 10/24/2022]
Abstract
Hypercholesterolemia is a major risk factor for atherosclerosis. Remaining challenges in the management of atherosclerosis necessitate development of animal models that mimic human pathophysiology. We characterized a novel mutant pig model with DNA transposition of D374Y gain-of-function (GOF) cDNA of chimp proprotein convertase subtilisin/kexin type-9 (PCSK9), and tested the hypothesis that it would develop peripheral vascular remodeling and target organ injury in the kidney. Wild-type or PCSK9-GOF Ossabaw miniature pigs fed a standard or atherogenic diet (AD) (n = 7 each) were studied in vivo after 3 and 6 months of diet. Single-kidney hemodynamics and function were studied using multidetector computed tomography and kidney oxygenation by blood oxygen level-dependent magnetic resonance imaging. The renal artery was evaluated by intravascular ultrasound, aortic stiffness by multidetector computed tomography, and kidney stiffness by magnetic resonance elastography. Subsequent ex vivo studies included the renal artery endothelial function and morphology of abdominal aorta, renal, and femoral arteries by histology. Compared with wild type, PCSK9-GOF pigs had elevated cholesterol, triglyceride, and blood pressure levels at 3 and 6 months. Kidney stiffness increased in GOF groups, but aortic stiffness only in GOF-AD. Hypoxia, intrarenal fat deposition, oxidative stress, and fibrosis were observed in both GOF groups, whereas kidney function remained unchanged. Peripheral arteries in GOF groups showed medial thickening and development of atheromatous plaques. Renal endothelial function was impaired only in GOF-AD. Therefore, the PCSK9-GOF mutation induces rapid development of atherosclerosis in peripheral vessels of Ossabaw pigs, which is exacerbated by a high-cholesterol diet. This model may be useful for preclinical studies of atherosclerosis.
Collapse
|
9
|
Progression and Characterization of the Accelerated Atherosclerosis in Iliac Artery of New Zealand White Rabbits: Effect of Simvastatin. J Cardiovasc Pharmacol 2018; 69:314-325. [PMID: 28207427 DOI: 10.1097/fjc.0000000000000477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Although atherosclerosis is described in New Zealand White rabbit's iliac artery, yet details of time-dependent atherosclerosis progression are not well known. Further, a well characterized accelerated model of atherosclerosis is also required for the screening of candidate drugs to target specific steps of atherosclerosis development. The present study extensively characterizes the time-dependent plaque composition and functional responses of the atherosclerosis in rabbit iliac artery and its modification by simvastatin. METHODS Atherosclerosis was induced with a combination of balloon injury and atherogenic diet (AD) (1% cholesterol, 6% peanut oil) in rabbit's iliac artery. Atherosclerosis progression was evaluated on days 8, 10, 15, 21, 35, and 56 after AD feeding. The plaque characterization was done using histology, real-time reverse transcription-polymerase chain reaction, and vasoreactivity experiments. The standard anti-hyperlipidemic drug, simvastatin (5 mg·kg·d), was used to investigate its effect on atherosclerotic changes. RESULTS Plasma lipids were elevated in a progressive manner after AD feeding from days 8 to 56. Similarly, arterial lipids, Monocyte Chemoattractant Protein-1 (MCP-1) level along with infiltration of macrophages in the lesion area were also increased from day 15 onward. This resulted in a significant increase in the plaque area and intimal-medial thickness ratio in contrast to normal animals. Inflammatory milieu was observed with a significant increase in expression of pro-inflammatory regulators like MCP-1, Tumor Necrosis Factor-α (TNF-α) and Vascular Cell Adhesion Molecule-1 (VCAM-1), whereas anti-inflammatory cytokine interleukin 10 decreased as disease progressed. Endothelial dysfunction was also observed, specifically Acetylcholine (ACh)-induced vasorelaxation was reduced from day 8 onward, whereas the phenylephrine-induced vasoconstriction response was progressively reduced from day 15 in the iliac artery. Ground substances including proteoglycans, α-actin, and collagen content along with metalloproteinase-9 and Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibitors were significantly augmented at later time points, day 21 onward. Simvastatin treatment for 35 days, at a dose having no significant effect on plasma lipid levels, significantly reduced atherosclerotic progression as evident by reduced macrophage content, inflammatory burden, and extracellular matrix component like proteoglycans and metalloproteinase-9. CONCLUSIONS The authors observed that AD feeding with balloon injury in the rabbit iliac artery accelerated the progression of atherosclerosis and exhibited predominant features of type III human lesion within 8 weeks (56 days). Simvastatin treatment for 35 days exhibited anti-atherosclerotic efficacy without significantly lowering the circulating lipids. The current study thus provides an insight into the time-dependent atherosclerotic progression in rabbit iliac artery and highlights its utility for anti-atherosclerotic evaluation of the candidate drugs.
Collapse
|
10
|
Zabek A, Paslawski R, Paslawska U, Wojtowicz W, Drozdz K, Polakof S, Podhorska M, Dziegiel P, Mlynarz P, Szuba A. The influence of different diets on metabolism and atherosclerosis processes-A porcine model: Blood serum, urine and tissues 1H NMR metabolomics targeted analysis. PLoS One 2017; 12:e0184798. [PMID: 28991897 PMCID: PMC5633143 DOI: 10.1371/journal.pone.0184798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022] Open
Abstract
The global epidemic of cardiovascular diseases leads to increased morbidity and mortality caused mainly by myocardial infarction and stroke. Atherosclerosis is the major pathological process behind this epidemic. We designed a novel model of atherosclerosis in swine. Briefly, the first group (11 pigs) received normal pig feed (balanced diet group-BDG) for 12 months, the second group (9 pigs) was fed a Western high-calorie diet (unbalanced diet group-UDG) for 12 months, the third group (8 pigs) received a Western type high-calorie diet for 9 months later replaced by a normal diet for 3 months (regression group-RG). Clinical measurements included zoometric data, arterial blood pressure, heart rate and ultrasonographic evaluation of femoral arteries. Then, the animals were sacrificed and the blood serum, urine and skeletal muscle tissue were collected and 1H NMR based metabolomics studies with the application of fingerprinting PLS-DA and univariate analysis were done. Our results have shown that the molecular disturbances might overlap with other diseases such as onset of diabetes, sleep apnea and other obesity accompanied diseases. Moreover, we revealed that once initiated, molecular changes did not return to homeostatic equilibrium, at least for the duration of this experiment.
Collapse
Affiliation(s)
- Adam Zabek
- Bioorganic Chemistry Group, Department of Chemistry, Wroclaw University of Technology, Wyb. Wspianskiego, Wroclaw, Poland
| | - Robert Paslawski
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamienskiego, Wroclaw, Poland
- Department and Clinic of Internal and Occupational Diseases and Hypertension Wroclaw Medical University, Borowska, Wroclaw, Poland
| | - Urszula Paslawska
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamienskiego, Wroclaw, Poland
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida, Wroclaw, Poland
| | - Wojciech Wojtowicz
- Bioorganic Chemistry Group, Department of Chemistry, Wroclaw University of Technology, Wyb. Wspianskiego, Wroclaw, Poland
| | - Katarzyna Drozdz
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamienskiego, Wroclaw, Poland
- Division of Angiology, Wroclaw Medical University, Pasteura, Wroclaw, Poland
- 4th Military Hospital in Wrocław, Weigla, Wrocław, Poland
| | - Sergio Polakof
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Marzena Podhorska
- Department of Histology and Embriology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dziegiel
- Department of Histology and Embriology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Mlynarz
- Bioorganic Chemistry Group, Department of Chemistry, Wroclaw University of Technology, Wyb. Wspianskiego, Wroclaw, Poland
| | - Andrzej Szuba
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamienskiego, Wroclaw, Poland
- Division of Angiology, Wroclaw Medical University, Pasteura, Wroclaw, Poland
- 4th Military Hospital in Wrocław, Weigla, Wrocław, Poland
| |
Collapse
|
11
|
Nemati R, Dietz C, Anstadt EJ, Cervantes J, Liu Y, Dewhirst FE, Clark RB, Finegold S, Gallagher JJ, Smith MB, Yao X, Nichols FC. Deposition and hydrolysis of serine dipeptide lipids of Bacteroidetes bacteria in human arteries: relationship to atherosclerosis. J Lipid Res 2017; 58:1999-2007. [PMID: 28814639 DOI: 10.1194/jlr.m077792] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Indexed: 11/20/2022] Open
Abstract
Multiple reaction monitoring-MS analysis of lipid extracts from human carotid endarterectomy and carotid artery samples from young individuals consistently demonstrated the presence of bacterial serine dipeptide lipid classes, including Lipid 654, an agonist for human and mouse Toll-like receptor (TLR)2, and Lipid 430, the deacylated product of Lipid 654. The relative levels of Lipid 654 and Lipid 430 were also determined in common oral and intestinal bacteria from the phylum Bacteroidetes and human serum and brain samples from healthy adults. The median Lipid 430/Lipid 654 ratio observed in carotid endarterectomy samples was significantly higher than the median ratio in lipid extracts of common oral and intestinal Bacteroidetes bacteria, and serum and brain samples from healthy subjects. More importantly, the median Lipid 430/Lipid 654 ratio was significantly elevated in carotid endarterectomies when compared with control artery samples. Our results indicate that deacylation of Lipid 654 to Lipid 430 likely occurs in diseased artery walls due to phospholipase A2 enzyme activity. These results suggest that commensal Bacteriodetes bacteria of the gut and the oral cavity may contribute to the pathogenesis of TLR2-dependent atherosclerosis through serine dipeptide lipid deposition and metabolism in artery walls.
Collapse
Affiliation(s)
- Reza Nemati
- Department of Chemistry University of Connecticut, Storrs, CT 06269
| | | | - Emily J Anstadt
- Department of Immunology and Medicine, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Jorge Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Yaling Liu
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030
| | - Floyd E Dewhirst
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 and Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Robert B Clark
- Department of Immunology and Medicine, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Sydney Finegold
- Infectious Disease Division, Veterans Affairs Medical Center, Los Angeles, CA 90073 and Departments of Medicine and Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90024
| | | | - Michael B Smith
- Department of Chemistry University of Connecticut, Storrs, CT 06269
| | - Xudong Yao
- Department of Chemistry University of Connecticut, Storrs, CT 06269.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Frank C Nichols
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030
| |
Collapse
|
12
|
Tsang HG, Rashdan NA, Whitelaw CBA, Corcoran BM, Summers KM, MacRae VE. Large animal models of cardiovascular disease. Cell Biochem Funct 2016; 34:113-32. [PMID: 26914991 PMCID: PMC4834612 DOI: 10.1002/cbf.3173] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The human cardiovascular system is a complex arrangement of specialized structures with distinct functions. The molecular landscape, including the genome, transcriptome and proteome, is pivotal to the biological complexity of both normal and abnormal mammalian processes. Despite our advancing knowledge and understanding of cardiovascular disease (CVD) through the principal use of rodent models, this continues to be an increasing issue in today's world. For instance, as the ageing population increases, so does the incidence of heart valve dysfunction. This may be because of changes in molecular composition and structure of the extracellular matrix, or from the pathological process of vascular calcification in which bone-formation related factors cause ectopic mineralization. However, significant differences between mice and men exist in terms of cardiovascular anatomy, physiology and pathology. In contrast, large animal models can show considerably greater similarity to humans. Furthermore, precise and efficient genome editing techniques enable the generation of tailored models for translational research. These novel systems provide a huge potential for large animal models to investigate the regulatory factors and molecular pathways that contribute to CVD in vivo. In turn, this will help bridge the gap between basic science and clinical applications by facilitating the refinement of therapies for cardiovascular disease.
Collapse
Affiliation(s)
- H G Tsang
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - N A Rashdan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - C B A Whitelaw
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - B M Corcoran
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - K M Summers
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - V E MacRae
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| |
Collapse
|
13
|
Gruppen EG, Connelly MA, Dullaart RPF. Higher circulating GlycA, a pro-inflammatory glycoprotein biomarker, relates to lipoprotein-associated phospholipase A2 mass in nondiabetic subjects but not in diabetic or metabolic syndrome subjects. J Clin Lipidol 2015; 10:512-8. [PMID: 27206938 DOI: 10.1016/j.jacl.2015.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/06/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a cardiovascular risk marker, which is in part complexed to low-density lipoproteins, where it exerts pro-inflammatory properties. GlycA is a pro-inflammatory proton nuclear magnetic resonance spectroscopy biomarker whose signal originates from a subset of N-acetylglucosamine residues on the most abundant glycosylated acute-phase proteins. OBJECTIVE We compared plasma GlycA and Lp-PLA2 mass between subjects without type 2 diabetes mellitus (T2DM) or the metabolic syndrome (MetS) and subjects with T2DM and/or MetS. We also tested the relationship of GlycA with Lp-PLA2 in each group. METHODS Plasma GlycA, Lp-PLA2 mass, high-sensitivity C-reactivity protein (hsCRP) and lipids were measured in 40 subjects with neither T2DM nor MetS (group 1) and in 58 subjects with T2DM and/or MetS (group 2). RESULTS GlycA and hsCRP were higher (P < .01 for each), whereas Lp-PLA2 was lower in group 2 vs group 1 (P < .001). GlycA was positively related to hsCRP in each group (P < .001). In contrast, GlycA was correlated positively with Lp-PLA2 in group 1 (r = 0.384, P = .015), but not in group 2 (r = 0.045; P = .74; interaction term for difference: P = .059). Although Lp-PLA2 was correlated positively with non-high-density lipoprotein cholesterol and low-density lipoprotein cholesterol in each group (P ≤ .02), its inverse relationship with high-density lipoprotein cholesterol in group 1 (r = -0.381, P = .013) was absent in group 2 (r = -0.101, P = .42). CONCLUSIONS A pro-inflammatory glycoprotein biomarker, GlycA, is higher in subjects with either T2DM, MetS, or both. The normally present positive relationship of GlycA with Lp-PLA2 is blunted in subjects with T2DM and/or MetS.
Collapse
Affiliation(s)
- Eke G Gruppen
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
[Lp-PLA2, a biomarker of vascular inflammation and vulnerability of atherosclerosis plaques]. ANNALES PHARMACEUTIQUES FRANÇAISES 2015; 74:190-7. [PMID: 26499399 DOI: 10.1016/j.pharma.2015.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/09/2015] [Indexed: 01/21/2023]
Abstract
A chronic inflammation is involved in various stages of development of the atherosclerotic plaques. Among the emerging biomarkers of atherogenesis, the lipoprotein-associated phospholipase A2 (Lp-PLA2), formerly known as PAF-acetylhydrolase (McIntyre et al., 2009), hydrolyses the oxidized short chain phospholipids of low-density lipoproteins (LDL), thereby releasing pro-inflammatory mediators (lysophospholipids and oxidized fatty acids). Lp-PLA2, produced by monocytes/macrophages and T-lymphocytes, and mainly associated with LDL (Gazi et al., 2005), is predominantly expressed in the necrotic center of the atherosclerotic plaques and in the macrophage-rich areas (Kolodgie et al., 2006). It would have a predictive role of cardiovascular (CV) events in relation to the vulnerability of atherosclerotic plaques. Determination of Lp-PLA2 has been proposed in the assessment of the CV risk, to ensure a better stratification of populations at intermediate risk for targeted therapy (Davidson et al., 2008). Its proatherogenic role suggested that inhibition of its activity could ensure a better vascular protection in combination with cholesterol-lowering agents. Nevertheless, Lp-PLA2 is not yet a fully validated marker for use in daily clinical practice, especially since the studies using an inhibitor of Lp-PLA2 (darapladib) (STABILITY Investigators et al., 2014; O'Donoghue et al., 2014) did not show any reduction in coronary events. Lp-PLA2 could have a site-specific role in plaque inflammation and development (Fenning et al., 2015). High Lp-PLA2 activity could reflect a response to pro-inflammatory stress characteristic of atherosclerosis (Marathe et al., 2014). This presentation aims at clarifying the involvement of Lp-PLA2 in the pathophysiology of atherosclerosis, and at assessing its interest both as a biomarker for the onset of CV events and as a therapeutic target.
Collapse
|
15
|
Ludvigsen TP, Kirk RK, Christoffersen BØ, Pedersen HD, Martinussen T, Kildegaard J, Heegaard PMH, Lykkesfeldt J, Olsen LH. Göttingen minipig model of diet-induced atherosclerosis: influence of mild streptozotocin-induced diabetes on lesion severity and markers of inflammation evaluated in obese, obese and diabetic, and lean control animals. J Transl Med 2015; 13:312. [PMID: 26394837 PMCID: PMC4580291 DOI: 10.1186/s12967-015-0670-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/11/2015] [Indexed: 01/01/2023] Open
Abstract
Background From a pharmacological perspective, readily-available, well-characterized animal models of cardiovascular disease, including relevant in vivo markers of atherosclerosis are important for evaluation of novel drug candidates. Furthermore, considering the impact of diabetes mellitus on atherosclerosis in human patients, inclusion of this disease aspect in the characterization of a such model, is highly relevant. The objective of this study was to evaluate the effect of mild streptozotocin-induced diabetes on ex- and in vivo end-points in a diet-induced atherosclerotic minipig model. Methods Castrated male Göttingen minipigs were fed standard chow (CD), atherogenic diet alone (HFD) or with superimposed mild streptozotocin-induced diabetes (HFD-D). Circulating markers of inflammation (C-reactive protein (CRP), oxidized low-density lipoprotein (oxLDL), plasminogen activator inhibitor-1, lipid and glucose metabolism were evaluated together with coronary and aortic atherosclerosis after 22 or 43 diet-weeks. Group differences were evaluated by analysis of variance for parametric data and Kruskal–Wallis test for non-parametric data. For qualitative assessments, Fisher’s exact test was applied. For all analyses, p < 0.05 was considered statistically significant. Results Overall, HFD and HFD-D displayed increased CRP, oxLDL and lipid parameters compared to CD at both time points. HFD-D displayed impaired glucose metabolism as compared to HFD and CD. Advanced atherosclerotic lesions were observed in both coronary arteries and aorta of HFD and HFD-D, with more advanced plaque findings in the aorta but without differences in lesion severity or distribution between HFD and HFD-D. Statistically, triglyceride was positively (p = 0.0039), and high-density lipoprotein negatively (p = 0.0461) associated with aortic plaque area. Conclusions In this model, advanced coronary and aortic atherosclerosis was observed, with increased levels of inflammatory markers, clinically relevant to atherosclerosis. No effect of mild streptozotocin-induced diabetes was observed on plaque area, lesion severity or inflammatory markers. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0670-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Trine Pagh Ludvigsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg, Denmark. .,GLP-1 and Obesity Pharmacology - PK/PD, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark.
| | - Rikke Kaae Kirk
- Histology & Imaging, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark.
| | | | - Henrik Duelund Pedersen
- GLP-1 and Obesity Pharmacology - PK/PD, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark.
| | - Torben Martinussen
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, Postbox 1014 KBH K, Copenhagen, Denmark.
| | - Jonas Kildegaard
- Clamp Competency Center, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark.
| | - Peter M H Heegaard
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg, Denmark.
| | - Jens Lykkesfeldt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg, Denmark.
| | - Lisbeth Høier Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg, Denmark.
| |
Collapse
|
16
|
Marsche G. Lp-PLA2, plaque inflammation and lesion development vary fundamentally between different vascular sites. J Am Heart Assoc 2015; 4:jah3867. [PMID: 25672370 PMCID: PMC4345881 DOI: 10.1161/jaha.115.001800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria (G.M.)
| |
Collapse
|