1
|
Zhang F, Armando I, Jose PA, Zeng C, Yang J. G protein-coupled receptor kinases in hypertension: physiology, pathogenesis, and therapeutic targets. Hypertens Res 2024; 47:2317-2336. [PMID: 38961282 PMCID: PMC11374685 DOI: 10.1038/s41440-024-01763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
G protein-coupled receptors (GPCRs) mediate cellular responses to a myriad of hormones and neurotransmitters that play vital roles in the regulation of physiological processes such as blood pressure. In organs such as the artery and kidney, hormones or neurotransmitters, such as angiotensin II (Ang II), dopamine, epinephrine, and norepinephrine exert their functions via their receptors, with the ultimate effect of keeping normal vascular reactivity, normal body sodium, and normal blood pressure. GPCR kinases (GRKs) exert their biological functions, by mediating the regulation of agonist-occupied GPCRs, non-GPCRs, or non-receptor substrates. In particular, increasing number of studies show that aberrant expression and activity of GRKs in the cardiovascular system and kidney inhibit or stimulate GPCRs (e.g., dopamine receptors, Ang II receptors, and α- and β-adrenergic receptors), resulting in hypertension. Current studies focus on the effect of selective GRK inhibitors in cardiovascular diseases, including hypertension. Moreover, genetic studies show that GRK gene variants are associated with essential hypertension, blood pressure response to antihypertensive medicines, and adverse cardiovascular outcomes of antihypertensive treatment. In this review, we present a comprehensive overview of GRK-mediated regulation of blood pressure, role of GRKs in the pathogenesis of hypertension, and highlight potential strategies for the treatment of hypertension. Schematic representation of GPCR desensitization process. Activation of GPCRs begins with the binding of an agonist to its corresponding receptor. Then G proteins activate downstream effectors that are mediated by various signaling pathways. GPCR signaling is halted by GRK-mediated receptor phosphorylation, which causes receptor internalization through β-arrestin.
Collapse
Affiliation(s)
- Fuwei Zhang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ines Armando
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
2
|
Wang W, Wen H, Zhao C, Ma X, Liao J, Ma L. Green space modified the association between air pollutants and hypertension in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3232-3244. [PMID: 38171020 DOI: 10.1080/09603123.2023.2300047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Evidence regarding the combined effects of green space and air pollutants on hypertension remains limited and complex. This study aims to investigate the varying effects of greenness under different air pollution levels in China, using data from the wave 2018 China Health and Retirement Longitudinal Study (CHARLS) involving 17 468 adults (aged ≥ 45 years). As a result, the prevalence rate of hypertension was 42.04%. Logistic regression analyses revealed the positive associations between air pollution concentrations at the city level and prevalent hypertension and the negative associations between NDVI and prevalent hypertension, all of which were more prominent in the populations of the eastern and rural regions. Notably, the negative effect of green space was greater at the lowest quartiles of each air pollutant (OR for PM2.5 quartiles = 0.724, 0.792, 0.740, and 0.931) . Improving air quality and greenness could potentially reduce hypertension risk, and minimizing air pollution might optimize the protective effects of greenness.
Collapse
Affiliation(s)
- Wanyue Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, PR China
| | - Haoxuan Wen
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, PR China
| | - Chuanyu Zhao
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, PR China
| | - Xuxi Ma
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, PR China
| | - Jingling Liao
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, PR China
| | - Lu Ma
- Department of Biostatistics, School of Public Health, Wuhan University, Wuhan, PR China
| |
Collapse
|
3
|
Guo LH, Zeeshan M, Huang GF, Chen DH, Xie M, Liu J, Dong GH. Influence of Air Pollution Exposures on Cardiometabolic Risk Factors: a Review. Curr Environ Health Rep 2023; 10:501-507. [PMID: 38030873 DOI: 10.1007/s40572-023-00423-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE OF REVIEW The increasing prevalence of cardiometabolic risk factors (CRFs) contributes to the rise in cardiovascular disease. Previous research has established a connection between air pollution and both the development and severity of CRFs. Given the ongoing impact of air pollution on human health, this review aims to summarize the latest research findings and provide an overview of the relationship between different types of air pollutants and CRFs. RECENT FINDINGS CRFs include health conditions like diabetes, obesity, hypertension etc. Air pollution poses significant health risks and encompasses a wide range of pollutant types, air pollutants, such as particulate matter (PM), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O2). More and more population epidemiological studies have shown a positive correlation between air pollution and CRFs. Although various pollutants have diverse effects on specific cellular molecular pathways, their main influence is on oxidative stress, inflammation response, and impairment of endothelial function. More and more studies have proved that air pollution can promote the occurrence and development of cardiovascular and metabolic risk factors, and the research on the relationship between air pollution and CRFs has grown intensively. An increasing number of studies are using new biological monitoring indicators to assess the occurrence and development of CRFs resulting from exposure to air pollution. Abnormalities in some important biomarkers in the population (such as homocysteine, uric acid, and C-reactive protein) caused by air pollution deserve more attention. Further research is warranted to more fully understand the link between air pollution and novel CRF biomarkers and to investigate potential prevention and interventions that leverage the mechanistic link between air pollution and CRFs.
Collapse
Affiliation(s)
- Li-Hao Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Guo-Feng Huang
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Duo-Hong Chen
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Min Xie
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Jun Liu
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Tao Y, Luo W, Chen Y, Chen C, Chen S, Li X, Chen K, Zeng C. Exercise ameliorates skeletal muscle insulin resistance by modulating GRK4-mediated D1R expression. Clin Sci (Lond) 2023; 137:1391-1407. [PMID: 37622333 DOI: 10.1042/cs20230664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Exercise has been recommended as a nonpharmaceutical therapy to treat insulin resistance (IR). Previous studies showed that dopamine D1-like receptor agonists, such as fenoldopam, could improve peripheral insulin sensitivity, while antipsychotics, which are dopamine receptor antagonists, increased susceptibility to Type 2 diabetes mellitus (T2DM). Meanwhile, exercise has been proved to stimulate dopamine receptors. However, whether the dopamine D1 receptor (D1R) is involved in exercise-mediated amelioration of IR remains unclear. We found that the D1-like receptor antagonist, SCH23390, reduced the effect of exercise on lowering blood glucose and insulin in insulin-resistant mice and inhibited the contraction-induced glucose uptake in C2C12 myotubes. Similarly, the opposite was true for the D1-like receptor agonist, fenoldopam. Furthermore, the expression of D1R was decreased in skeletal muscles from streptozotocin (STZ)- and high-fat intake-induced T2DM mice, accompanied by increased D1R phosphorylation, which was reversed by exercise. A screening study showed that G protein-coupled receptor kinase 4 (GRK4) may be the candidate kinase for the regulation of D1R function, because, in addition to the increased GRK4 expression in skeletal muscles of T2DM mice, GRK4 transgenic T2DM mice exhibited lower insulin sensitivity, accompanied by higher D1R phosphorylation than control mice, whereas the AAV9-shGRK4 mice were much more sensitive to insulin than AAV9-null mice. Mechanistically, the up-regulation of GRK4 expression caused by increased reactive oxygen species (ROS) in IR was ascribed to the enhanced expression of c-Myc, a transcriptional factor of GRK4. Taken together, the present study shows that exercise, via regulation of ROS/c-Myc/GRK4 pathway, ameliorates D1R dysfunction and improves insulin sensitivity.
Collapse
Affiliation(s)
- Yu Tao
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Wenbin Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Shengnan Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoping Li
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, P.R. China
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, P.R. China
| |
Collapse
|
5
|
Xu C, Zhang Q, Huang G, Huang J, Zhang H. The impact of PM2.5 on kidney. J Appl Toxicol 2023; 43:107-121. [PMID: 35671242 DOI: 10.1002/jat.4356] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 01/09/2023]
Abstract
PM2.5 poses a severe risk to kidneys, inducing kidney function decline, increasing the risk of suffering from chronic kidney diseases and promoting the occurrence and development of various renal tumors. The mechanism of PM2.5-induced renal injury may involve oxidative stress, inflammatory response, and cytotoxicity. This paper elaborated PM2.5-induced kidney damage and the corresponding possible mechanism so as to raise awareness of air pollution and reduce the damage to human body.
Collapse
Affiliation(s)
- Chunming Xu
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China
| | - Qian Zhang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Guochen Huang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Jia Huang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China.,Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Hongxia Zhang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China.,Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
6
|
Yang J, Hall JE, Jose PA, Chen K, Zeng C. Comprehensive insights in GRK4 and hypertension: From mechanisms to potential therapeutics. Pharmacol Ther 2022; 239:108194. [PMID: 35487286 PMCID: PMC9728143 DOI: 10.1016/j.pharmthera.2022.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
G protein-coupled receptors (GPCRs) mediate cellular responses to diverse extracellular stimuli that play vital roles in the regulation of biology, including behavior. Abnormal G protein-coupled receptor kinase (GRK)-mediated regulation of GPCR function is involved in the pathogenesis of hypertension. Among the seven GRK subtypes, GRK4 has attracted attention because of its constitutive activity and tissue-specific expression. Increasing number of studies show that GRK4 affects blood pressure by GPCR-mediated regulation of renal and arterial function. The target receptor of GRK4 is confined not only to GPCRs, but also to other blood pressure-regulating receptors, such as the adiponectin receptor. Genetic studies in humans show that in several ethnic groups, GRK4 gene variants (R65L, A142V, and A486V) are associated with salt-sensitive or salt-resistant essential hypertension and blood pressure responses to antihypertensive medicines. In this article, we present a comprehensive overview of GRK-mediated regulation of blood pressure, focusing on the latest research progress on GRK4 and hypertension and highlighting potential and novel strategies for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, PR China; Department of Cardiology, Chongqing General Hospital, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China.
| |
Collapse
|
7
|
Hu C, Tao Y, Deng Y, Cai Q, Ren H, Yu C, Zheng S, Yang J, Zeng C. Paternal long-term PM2.5 exposure causes hypertension via increased renal AT1R expression and function in male offspring. Clin Sci (Lond) 2021; 135:2575-2588. [PMID: 34779863 PMCID: PMC8628185 DOI: 10.1042/cs20210802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023]
Abstract
Maternal exposure to fine particulate matter (PM2.5) causes hypertension in offspring. However, paternal contribution of PM2.5 exposure to hypertension in offspring remains unknown. In the present study, male Sprague-Dawley rats were treated with PM2.5 suspension (10 mg/ml) for 12 weeks and/or fed with tap water containing an antioxidant tempol (1 mM/L) for 16 weeks. The blood pressure, 24 h-urine volume and sodium excretion were determined in male offspring. The offspring were also administrated with losartan (20 mg/kg/d) for 4 weeks. The expressions of angiotensin II type 1 receptor (AT1R) and G-protein-coupled receptor kinase type 4 (GRK4) were determined by qRT-PCR and immunoblotting. We found that long-term PM2.5 exposure to paternal rats caused hypertension and impaired urine volume and sodium excretion in male offspring. Both the mRNA and protein expression of GRK4 and its downstream target AT1R were increased in offspring of PM2.5-exposed paternal rats, which was reflected in its function because treatment with losartan, an AT1R antagonist, decreased the blood pressure and increased urine volume and sodium excretion. In addition, the oxidative stress level was increased in PM2.5-treated paternal rats. Administration with tempol in paternal rats restored the increased blood pressure and decreased urine volume and sodium excretion in the offspring of PM2.5-exposed paternal rats. Treatment with tempol in paternal rats also reversed the increased expressions of AT1R and GRK4 in the kidney of their offspring. We suggest that paternal PM2.5 exposure causes hypertension in offspring. The mechanism may be involved that paternal PM2.5 exposure-associated oxidative stress induces the elevated renal GRK4 level, leading to the enhanced AT1R expression and its-mediated sodium retention, consequently causes hypertension in male offspring.
Collapse
Affiliation(s)
- Cuimei Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yu Tao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yi Deng
- Department of General Practice Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qi Cai
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Cheng Yu
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, China
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
8
|
Cao N, Tang H, Tian M, Gong X, Xu Z, Zhou B, Lan C, Chen C, Qu S, Zheng S, Ren H, Fan C, Jose PA, Zeng C, Xia T. Genetic variants of GRK4 influence circadian rhythm of blood pressure and response to candesartan in hypertensive patients. Clin Exp Hypertens 2021; 43:597-603. [PMID: 33899625 DOI: 10.1080/10641963.2021.1919357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Genetic variants of coding genes related to blood pressure regulation participate in the pathogenesis of hypertension and determines the response to specific antihypertensive drugs. G protein-coupled receptor kinase 4 (GRK4) and its variants are of great importance in pathogenesis of hypertension. However, little is known about role of GRK4 variants in determine circadian rhythm of blood pressure and response to candesartan in hypertension. The aim of this study was to analyze the correlation of GRK4 variants and circadian rhythm of blood pressure, and to explore their effect on antihypertensive efficiency of candestartan.Methods: In this study, a total of 1239 cases were eligible, completed ambulatory blood pressure monitoring (ABPm) observation and exon sequencing of G protein-coupled receptor kinase 4 (GRK4). ABPm was obtained before and after 4-week treatment of candesartan. Diurnal variation of systolic blood pressure and antihypertensive effect of candesartan were then assessed.Results: Compared to GRK4 wild type (GRK4-WT), patients with GRK4 variants were more likely to be non-dippers (odds ratio (OR) 6.672, 95% confidence interval (CI) 5.124-8.688, P < .001), with GRK4 A142V (OR 5.888, 95% CI 4.332-8.003, P < .001), A486V (OR 7.102, 95% CI 5.334-9.455, P < .001) and GRK4 R65L (OR 3.273, 95% CI 2.271-4.718, P < .001), respectively. Correlation analysis revealed that non-dippers rhythm of blood pressure were associated with GRK4 variants (r = .420, P < .001), with GRK4 A142V (r = .416, P < .001), A486V (r = .465, P < .001) and GRK4 R65L (r = .266, P < .001), respectively. When given 4-week candesartan, patients with GRK4 variants showed better antihypertensive effect as to drop in blood pressure (24 h mSBP, 21.21 ± 4.99 vs 12.34 ± 4.78 mmHg, P < .001) and morning peak (MP-SBP, 16.54 ± 4.37 vs 11.52 ± 4.14 mmHg, P < .001), as well as greater increase in trough to peak ratio (SBP-T/P, .71 ± .07 vs .58 ± .07, P < .001) and smoothness index (SBP-SI, 1.44 ± .16 vs 1.17 ± .11, P < .001) than those with GRK4 WT.Conclusion: This study indicates that hypertensive patients with GRK4 variants are more likely to be non-dippers. What's more, patients with GRK4 variants possess a significantly better antihypertensive response to candesartan than those with GRK4 WT.
Collapse
Affiliation(s)
- Nian Cao
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Hui Tang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Miao Tian
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Xue Gong
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Binqing Zhou
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Cong Lan
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Shuang Qu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Chao Fan
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Pedro A Jose
- Department of Medicine and Pharmacology-Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Tianyang Xia
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| |
Collapse
|
9
|
Yang J, Villar VAM, Jose PA, Zeng C. Renal Dopamine Receptors and Oxidative Stress: Role in Hypertension. Antioxid Redox Signal 2021; 34:716-735. [PMID: 32349533 PMCID: PMC7910420 DOI: 10.1089/ars.2020.8106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: The kidney plays an important role in the long-term control of blood pressure. Oxidative stress is one of the fundamental mechanisms responsible for the development of hypertension. Dopamine, via five subtypes of receptors, plays an important role in the control of blood pressure by various mechanisms, including the inhibition of oxidative stress. Recent Advances: Dopamine receptors exert their regulatory function to decrease the oxidative stress in the kidney and ultimately maintain normal sodium balance and blood pressure homeostasis. An aberration of this regulation may be involved in the pathogenesis of hypertension. Critical Issues: Our present article reviews the important role of oxidative stress and intrarenal dopaminergic system in the regulation of blood pressure, summarizes the current knowledge on renal dopamine receptor-mediated antioxidation, including decreasing reactive oxygen species production, inhibiting pro-oxidant enzyme nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, and stimulating antioxidative enzymes, and also discusses its underlying mechanisms, including the increased activity of G protein-coupled receptor kinase 4 (GRK4) and abnormal trafficking of renal dopamine receptors in hypertensive status. Future Directions: Identifying the mechanisms of renal dopamine receptors in the regulation of oxidative stress and their contribution to the pathogenesis of hypertension remains an important research focus. Increased understanding of the role of reciprocal regulation between renal dopamine receptors and oxidative stress in the regulation of blood pressure may give us novel insights into the pathogenesis of hypertension and provide a new treatment strategy for hypertension.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Chunyu Zeng
- Department of Cardiology, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
10
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|
11
|
Yu C, Chen S, Wang X, Wu G, Zhang Y, Fu C, Hu C, Liu Z, Luo X, Wang J, Chen L. Exposure to maternal diabetes induces endothelial dysfunction and hypertension in adult male rat offspring. Microvasc Res 2021; 133:104076. [PMID: 32956647 DOI: 10.1016/j.mvr.2020.104076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023]
Abstract
The adverse environment in early life can modulate adult phenotype, including blood pressure. Our previous study shows, in a rat streptozotocin (STZ)-induced maternal diabetes model, fetal exposure to maternal diabetes is characterized by established hypertension in the offspring. However, the exact mechanisms are not known. Our present study found, as compared with male control mother offspring (CMO), male diabetic mother offspring (DMO) had higher blood pressure with arterial dysfunction, i.e., decreased acetylcholine (Ach)-induced vasodilation. But there is no difference in blood pressure between female CMO and DMO. The decreased Ach-induced vasodilation was related to decreased nitric oxide (NO) production in the endothelium, not NO sensitivity in vascular smooth muscle because sodium nitroprusside (SNP)-mediated vasodilation was preserved; there was decreased NO production and lower eNOS phosphorylation in male DMO. The reactive oxygen species (ROS) level was increased in male DMO than CMO; normalized ROS levels with tempol increased NO production, normalized Ach-mediated vasodilation, and lowered blood pressure in male DMO rats. It indicates that diabetic programming hypertension is related to arterial dysfunction; normalizing ROS might be a potential strategy for the prevention of hypertension in the offspring.
Collapse
MESH Headings
- Age Factors
- Animals
- Arterial Pressure
- Blood Glucose/metabolism
- Cyclic GMP/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes, Gestational/blood
- Diabetes, Gestational/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Female
- Hypertension/etiology
- Hypertension/metabolism
- Hypertension/physiopathology
- Male
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiopathology
- Nitric Oxide/metabolism
- Oxidative Stress
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Sex Factors
- Vasodilation
- Rats
Collapse
Affiliation(s)
- Cheng Yu
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Shuo Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Xinquan Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Ye Zhang
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Chunjiang Fu
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Cuimei Hu
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Zhengbi Liu
- Center of Laboratory Animal, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoli Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China.
| | - Lianglong Chen
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
12
|
Blum MF, Surapaneni A, Stewart JD, Liao D, Yanosky JD, Whitsel EA, Power MC, Grams ME. Particulate Matter and Albuminuria, Glomerular Filtration Rate, and Incident CKD. Clin J Am Soc Nephrol 2020; 15:311-319. [PMID: 32108020 PMCID: PMC7057299 DOI: 10.2215/cjn.08350719] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVES Exposure to particulate matter (PM) <2.5 μm in aerodynamic diameter (PM2.5) has been linked to detrimental health effects. This study aimed to describe the relationship between long-term PM2.5 exposure and kidney disease, including eGFR, level of albuminuria, and incident CKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS The study included 10,997 participants from the Atherosclerosis Risk in Communities cohort who were followed from 1996-1998 through 2016. Monthly mean PM2.5 concentrations (μg/m3) were estimated at geocoded participant addresses using geographic information system-based, spatiotemporal generalized additive mixed models-including geospatial covariates such as land use-and then averaged over the 12-month period preceding participant examination. Covariate-adjusted, cross-sectional associations of PM2.5, baseline eGFR, and urinary albumin-creatinine ratio (UACR) were estimated using linear regression. PM2.5 and incident CKD (defined as follow-up eGFR <60 ml/min per 1.73 m2 with ≥25% eGFR decline relative to baseline, CKD-related hospitalization or death based on International Classification of Diseases 9/10 codes, or development of ESKD) associations were estimated using Cox proportional hazards regression. Modeling was stratified by study site, and stratum-specific estimates were combined using random-effects meta-analyses. RESULTS Baseline mean participant age was 63 (±6) years and eGFR was 86 (±16) ml/min per 1.73 m2. There was no significant PM2.5-eGFR association at baseline. Each 1-μg/m3 higher annual average PM2.5 was associated with higher UACR after adjusting for demographics, socioeconomic status, and clinical covariates (percentage difference, 6.6%; 95% confidence interval [95% CI], 2.6% to 10.7%). Each 1-μg/m3 higher annual average PM2.5 was associated with a significantly higher risk of incident CKD (hazard ratio, 1.05; 95% CI, 1.01 to 1.10). CONCLUSIONS Exposure to higher annual average PM2.5 concentrations was associated with a higher level of albuminuria and higher risk for incident CKD in a community-based cohort.
Collapse
Affiliation(s)
| | - Aditya Surapaneni
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, Maryland
| | - James D. Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Duanping Liao
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jeff D. Yanosky
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | - Melinda C. Power
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC
| | - Morgan E. Grams
- Division of Nephrology
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
13
|
Carll AP, Salatini R, Pirela SV, Wang Y, Xie Z, Lorkiewicz P, Naeem N, Qian Y, Castranova V, Godleski JJ, Demokritou P. Inhalation of printer-emitted particles impairs cardiac conduction, hemodynamics, and autonomic regulation and induces arrhythmia and electrical remodeling in rats. Part Fibre Toxicol 2020; 17:7. [PMID: 31996220 PMCID: PMC6990551 DOI: 10.1186/s12989-019-0335-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/29/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Using engineered nanomaterial-based toners, laser printers generate aerosols with alarming levels of nanoparticles that bear high bioactivity and potential health risks. Yet, the cardiac impacts of printer-emitted particles (PEPs) are unknown. Inhalation of particulate matter (PM) promotes cardiovascular morbidity and mortality, and ultra-fine particulates (< 0.1 μm aerodynamic diameter) may bear toxicity unique from larger particles. Toxicological studies suggest that PM impairs left ventricular (LV) performance; however, such investigations have heretofore required animal restraint, anesthesia, or ex vivo preparations that can confound physiologic endpoints and/or prohibit LV mechanical assessments during exposure. To assess the acute and chronic effects of PEPs on cardiac physiology, male Sprague Dawley rats were exposed to PEPs (21 days, 5 h/day) while monitoring LV pressure (LVP) and electrocardiogram (ECG) via conscious telemetry, analyzing LVP and heart rate variability (HRV) in four-day increments from exposure days 1 to 21, as well as ECG and baroreflex sensitivity. At 2, 35, and 70 days after PEPs exposure ceased, rats received stress tests. RESULTS On day 21 of exposure, PEPs significantly (P < 0.05 vs. Air) increased LV end systolic pressure (LVESP, + 18 mmHg) and rate-pressure-product (+ 19%), and decreased HRV indicating sympathetic dominance (root means squared of successive differences [RMSSD], - 21%). Overall, PEPs decreased LV ejection time (- 9%), relaxation time (- 3%), tau (- 5%), RMSSD (- 21%), and P-wave duration (- 9%). PEPs increased QTc interval (+ 5%) and low:high frequency HRV (+ 24%; all P < 0.05 vs. Air), while tending to decrease baroreflex sensitivity and contractility index (- 15% and - 3%, P < 0.10 vs. Air). Relative to Air, at both 2 and 35 days after PEPs, ventricular arrhythmias increased, and at 70 days post-exposure LVESP increased. PEPs impaired ventricular repolarization at 2 and 35 days post-exposure, but only during stress tests. At 72 days post-exposure, PEPs increased urinary dopamine 5-fold and protein expression of ventricular repolarizing channels, Kv1.5, Kv4.2, and Kv7.1, by 50%. CONCLUSIONS Our findings suggest exposure to PEPs increases cardiovascular risk by augmenting sympathetic influence, impairing ventricular performance and repolarization, and inducing hypertension and arrhythmia. PEPs may present significant health risks through adverse cardiovascular effects, especially in occupational settings, among susceptible individuals, and with long-term exposure.
Collapse
Affiliation(s)
- Alex P. Carll
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Renata Salatini
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Sandra V. Pirela
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Yun Wang
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
- Department of Occupational and Environmental Health Sciences,School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Nazratan Naeem
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV USA
| | - Vincent Castranova
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV USA
| | - John J. Godleski
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| |
Collapse
|
14
|
Banday AA, Diaz AD, Lokhandwala M. Kidney dopamine D 1-like receptors and angiotensin 1-7 interaction inhibits renal Na + transporters. Am J Physiol Renal Physiol 2019; 317:F949-F956. [PMID: 31411069 DOI: 10.1152/ajprenal.00135.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of dopamine D1-like receptors (DR) in the regulation of renal Na+ transporters, natriuresis, and blood pressure is well established. However, the involvement of the angiotensin 1-7 (ANG 1-7)-Mas receptor in the regulation of Na+ balance and blood pressure is not clear. The present study aimed to investigate the hypothesis that ANG 1-7 can regulate Na+ homeostasis by modulating the renal dopamine system. Sprague-Dawley rats were infused with saline alone (vehicle) or saline with ANG 1-7, ANG 1-7 antagonist A-779, DR agonist SKF38393, and antagonist SCH23390. Infusion of ANG 1-7 caused significant natriuresis and diuresis compared with saline alone. Both natriuresis and diuresis were blocked by A-779 and SCH23390. SKF38393 caused a significant, SCH23390-sensitive natriuresis and diuresis, and A-779 had no effect on the SKF38393 response. Concomitant infusion of ANG 1-7 and SKF38393 did not show a cumulative effect compared with either agonist alone. Treatment of renal proximal tubules with ANG 1-7 or SKF38393 caused a significant decrease in Na+-K+-ATPase and Na+/H+ exchanger isoform 3 activity. While SCH23390 blocked both ANG 1-7- and SKF38393-induced inhibition, the DR response was not sensitive to A-779. Additionally, ANG 1-7 activated PKG, enhanced tyrosine hydroxylase activity via Ser40 phosphorylation, and increased renal dopamine production. These data suggest that ANG 1-7, via PKG, enhances tyrosine hydroxylase activity, which increases renal dopamine production and activation of DR and subsequent natriuresis. This study provides evidence for a unidirectional functional interaction between two G protein-coupled receptors to regulate renal Na+ transporters and induce natriuresis.
Collapse
Affiliation(s)
- Anees A Banday
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas
| | - Andrea Diaz Diaz
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Mustafa Lokhandwala
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas
| |
Collapse
|
15
|
Bo Y, Guo C, Lin C, Chang LY, Chan TC, Huang B, Lee KP, Tam T, Lau AKH, Lao XQ, Yeoh EK. Dynamic Changes in Long-Term Exposure to Ambient Particulate Matter and Incidence of Hypertension in Adults. Hypertension 2019; 74:669-677. [PMID: 31303109 DOI: 10.1161/hypertensionaha.119.13212] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many countries dedicated in mitigation of air pollution in the past several decades. However, little is known about how air quality improvement affects health. Therefore, we conducted current study to investigate dynamic changes in long-term exposure to ambient particulate matter (PM2.5) and incidence of hypertension in a large longitudinal cohort. We recruited 134 978 adults aged 18 years or above between 2001 and 2014. All the participants received a series of standard medical examinations, including measurements of blood pressure. The PM2.5 concentration was estimated using a satellite-based spatiotemporal model at a high resolution (1×1 km2). The change in long-term exposure to PM2.5 (ΔPM2.5) was defined as the difference between the values measured during follow-up and during the immediately preceding visit, and a negative value indicated an improvement in PM2.5 air quality. Time-varying Cox model was used to examine the associations between ΔPM2.5 and the development of hypertension. The results show that PM2.5 concentrations increased in 2002, 2003, and 2004, but began to decrease in 2005. Every 5 µg/m3 change in exposure to PM2.5 (ie, a ΔPM2.5 of 5 µg/m3) was associated with a 16% change in the incidence of hypertension (hazard ratio, 0.84; 95% CI, 0.82-0.86). Both stratified and sensitivity analyses generally yielded similar results. We found that an improvement in PM2.5 exposure is associated with a decreased incidence of hypertension. Our findings demonstrate that air pollution mitigation is an effective strategy to reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Yacong Bo
- From the Jockey Club School of Public Health and Primary Care (Y.B., C.G., K.-P.L., X.Q.L., E.-K.Y.), the Chinese University of Hong Kong
| | - Cui Guo
- From the Jockey Club School of Public Health and Primary Care (Y.B., C.G., K.-P.L., X.Q.L., E.-K.Y.), the Chinese University of Hong Kong
| | - Changqing Lin
- Division of Environment and Sustainability (C.L., A.K.H.L.), the Hong Kong University of Science and Technology.,Department of Civil and Environmental Engineering (C.L., A.K.H.L.), the Hong Kong University of Science and Technology
| | - Ly-Yun Chang
- Gratia Christian College, Hong Kong (L.-Y.C.).,Institute of Sociology (L.-Y.C), Academia Sinica, Taiwan
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences (T.-C.C.), Academia Sinica, Taiwan.,Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei City, Taiwan (T.-C.C.)
| | - Bo Huang
- Department of Geography and Resource Management (B.H.), the Chinese University of Hong Kong
| | - Kam-Pui Lee
- From the Jockey Club School of Public Health and Primary Care (Y.B., C.G., K.-P.L., X.Q.L., E.-K.Y.), the Chinese University of Hong Kong
| | - Tony Tam
- Department of Sociology (T.T.), the Chinese University of Hong Kong
| | - Alexis K H Lau
- Division of Environment and Sustainability (C.L., A.K.H.L.), the Hong Kong University of Science and Technology.,Department of Civil and Environmental Engineering (C.L., A.K.H.L.), the Hong Kong University of Science and Technology
| | - Xiang Qian Lao
- From the Jockey Club School of Public Health and Primary Care (Y.B., C.G., K.-P.L., X.Q.L., E.-K.Y.), the Chinese University of Hong Kong
| | - Eng-Kiong Yeoh
- From the Jockey Club School of Public Health and Primary Care (Y.B., C.G., K.-P.L., X.Q.L., E.-K.Y.), the Chinese University of Hong Kong.,Shenzhen Research Institute of The Chinese University of Hong Kong, Shenzhen, China (X.Q.L.)
| |
Collapse
|
16
|
Hassan L, Pecht T, Goldstein N, Haim Y, Kloog I, Yarza S, Sarov B, Novack V. The effects of ambient particulate matter on human adipose tissue. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:564-576. [PMID: 31242808 DOI: 10.1080/15287394.2019.1634381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effects of particulate matter (PM) air pollution on adipose tissue have mainly been studied in animal models. The aim of this study was to examine the potential associations between PM exposure and 25 cellular markers in human omental (OM) and subcutaneous (SC) adipose tissue. The PM exposure assessments for both PM2.5 (PM <2.5 μm in diameter) and PM10 (<10 μm) were based upon a novel hybrid satellite-based spatio-temporally resolved model. We calculated the PM exposure above the background threshold for 1 week (acute phase), 3 and 6 months (intermediate phase), and 1 year (chronic phase) prior to tissue harvesting and tested the associations with adipose cell metabolic effects using multiple linear regressions and heat maps strategy. Chemokine levels were found to increase after acute and intermediate exposure duration to PM10. The levels of stress signaling biomarkers in the SC and OM tissues rose after acute exposure to PM10 and PM2.5. Macrophage and leucocyte counts were associated with severity of PM exposure in all three duration groups. Adipocyte diameter decreased in all exposure periods. Our results provide evidence for significant contribution of air pollutants exposure to adipose tissue inflammation as well as for pathophysiological mechanisms of metabolic dysregulation that may be involved in the observed responses.
Collapse
Affiliation(s)
- Lior Hassan
- a Environmental Health Research Institute, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Tal Pecht
- b Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Nir Goldstein
- b Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Yulia Haim
- b Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Itai Kloog
- c Department of Geography and Environmental Development, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Shaked Yarza
- a Environmental Health Research Institute, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Batia Sarov
- d Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Victor Novack
- a Environmental Health Research Institute, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| |
Collapse
|
17
|
The Role of Myokines and Adipokines in Hypertension and Hypertension-related Complications. Hypertens Res 2019; 42:1544-1551. [PMID: 31133682 PMCID: PMC8076012 DOI: 10.1038/s41440-019-0266-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/21/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
Abstract
The cross-talk between skeletal muscle and adipose tissue has been identified to play a key role in the regulation of blood pressure and the development of hypertension. The role of different adipokines and myokines in hypertension and hypertension-related complications remains unclear. In the present study, 98 hypertensive patients and 24 normotensive controls were recruited, and additional subgroup analyses of hypertension-related complications were also performed. The levels of the circulating bone-derived factors leptin, apelin, fractalkine, brain-derived neurotrophic factor (BDNF), leukemia inhibitory factor (LIF), myostatin, fatty-acid-binding protein 3 (FABP3), irisin, follistatin-related protein 1 (FSTL1), oncostatin M, fibroblast growth factor 21 (FGF21) and musclin were measured by a protein liquid chip assay. The circulating levels of BDNF and musclin were decreased, whereas the leptin and irisin levels were increased, in hypertensive patients compared with those in the control individuals. Further logistic analysis indicated that the irisin level was positively correlated with SBP and an independent predictor for hypertension after adjustment. In nonobese subjects, the concentrations of DKK1, BDNF and FSTL1 were decreased, whereas the concentrations of leptin and irisin were increased. Irisin and DKK1 might be associated with hypertension. Additional subgroup analyses showed that irisin is significantly associated with hypertension-related stroke. In conclusion, we found that increased irisin levels are associated with hypertension and hypertension-related stroke. These findings indicate that irisin may be involved in the pathophysiology of hypertension.
Collapse
|
18
|
Prenatal cold exposure causes hypertension in offspring by hyperactivity of the sympathetic nervous system. Clin Sci (Lond) 2019; 133:1097-1113. [PMID: 31015358 PMCID: PMC6833955 DOI: 10.1042/cs20190254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Environmental temperature plays a role in the variation of blood pressure. Maternal cold stress could affect the physiological phenotype of the offspring, including blood pressure elevation. In the present study, we found that adult offspring of dams exposed to cold have increased systolic and diastolic blood pressure, and decreased urine volume and sodium excretion, accompanied by increased heart rate and heart rate variability, secondary to increased activity of the sympathetic nervous system. Renal denervation or adrenergic receptor blockade decreased blood pressure and increased sodium excretion. The increase in peripheral sympathetic nerve activity can be ascribed to the central nervous system because administration of clonidine, a centrally acting α2 adrenergic receptor agonist, lowered blood pressure to a greater degree in the prenatal cold-exposed than control offspring. Moreover, these prenatal cold-exposed offspring had hypothalamic paraventricular nucleus (PVN) disorder because magnetic resonance spectroscopy showed decreased N-acetylaspartate and increased choline and creatine ratios in the PVN. Additional studies found that prenatal cold exposure impaired the balance between inhibitory and excitatory neurons. This led to PVN overactivation that was related to enhanced PVN-angiotensin II type 1 (AT1) receptor expression and function. Microinjection of the AT1 receptor antagonist losartan in the PVN lowered blood pressure to a greater extent in prenatal cold-exposed that control offspring. The present study provides evidence for overactive peripheral and central sympathetic nervous systems in the pathogenesis of prenatal cold-induced hypertension. Central AT1 receptor blockade in the PVN may be a key step for treatment of this type hypertension.
Collapse
|
19
|
The emerging role of sorting nexins in cardiovascular diseases. Clin Sci (Lond) 2019; 133:723-737. [PMID: 30877150 PMCID: PMC6418407 DOI: 10.1042/cs20190034] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023]
Abstract
The sorting nexin (SNX) family consists of a diverse group of cytoplasmic- and membrane-associated phosphoinositide-binding proteins that play pivotal roles in the regulation of protein trafficking. This includes the entire endocytic pathway, such as endocytosis, endosomal sorting, and endosomal signaling. Dysfunctions of SNX pathway are involved in several forms of cardiovascular disease (CVD). Moreover, SNX gene variants are associated with CVDs. In this review, we discuss the current knowledge on SNX-mediated regulatory mechanisms and their roles in the pathogenesis and treatment of CVDs.
Collapse
|
20
|
Cho CC, Hsieh WY, Tsai CH, Chen CY, Chang HF, Lin CS. In Vitro and In Vivo Experimental Studies of PM 2.5 on Disease Progression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1380. [PMID: 29966381 PMCID: PMC6068560 DOI: 10.3390/ijerph15071380] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/14/2022]
Abstract
Air pollution is a very critical issue worldwide, particularly in developing countries. Particulate matter (PM) is a type of air pollution that comprises a heterogeneous mixture of different particle sizes and chemical compositions. There are various sources of fine PM (PM2.5), and the components may also have different effects on people. The pathogenesis of PM2.5 in several diseases remains to be clarified. There is a long history of epidemiological research on PM2.5 in several diseases. Numerous studies show that PM2.5 can induce a variety of chronic diseases, such as respiratory system damage, cardiovascular dysfunction, and diabetes mellitus. However, the epidemiological evidence associated with potential mechanisms in the progression of diseases need to be proved precisely through in vitro and in vivo investigations. Suggested mechanisms of PM2.5 that lead to adverse effects and chronic diseases include increasing oxidative stress, inflammatory responses, and genotoxicity. The aim of this review is to provide a brief overview of in vitro and in vivo experimental studies of PM2.5 in the progression of various diseases from the last decade. The summarized research results could provide clear information about the mechanisms and progression of PM2.5-induced disease.
Collapse
Affiliation(s)
- Ching-Chang Cho
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
| | - Wen-Yeh Hsieh
- Division of Chest Medicine, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Chin-Hung Tsai
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, 699 Section 8, Taiwan Blvd., Taichung 435, Taiwan.
| | - Cheng-Yi Chen
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Hui-Fang Chang
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Endocrinology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
| |
Collapse
|
21
|
Qin G, Xia J, Zhang Y, Guo L, Chen R, Sang N. Ambient fine particulate matter exposure induces reversible cardiac dysfunction and fibrosis in juvenile and older female mice. Part Fibre Toxicol 2018; 15:27. [PMID: 29941001 PMCID: PMC6019275 DOI: 10.1186/s12989-018-0264-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cardiovascular disease is the leading cause of mortality in the advanced world, and age is an important determinant of cardiac function. The purpose of the study is to determine whether the PM2.5-induced cardiac dysfunction is age-dependent and whether the adverse effects can be restored after PM2.5 exposure withdrawal. METHODS Female C57BL/6 mice at different ages (4-week-old, 4-month-old, and 10-month-old) received oropharyngeal aspiration of 3 mg/kg b.w. PM2.5 every other day for 4 weeks. Then, 10-month-old and 4-week-old mice were exposed to PM2.5 for 4 weeks and withdrawal PM2.5 1 or 2 weeks. Heart rate and systolic blood pressure were measured using a tail-cuff system. Cardiac function was assessed by echocardiography. Left ventricles were processed for histology to assess myocardial fibrosis. ROS generation was detected by photocatalysis using 2',7'-dichlorodihydrofluorescein diacetate (DCFHDA). The expression of cardiac fibrosis markers (Col1a1, Col3a1) and possible signaling molecules, including NADPH oxidase 4 (NOX-4), transforming growth factor β1 (TGFβ1), and Smad3, were detected by qPCR and/ or Western blot. RESULTS PM2.5 exposure induced cardiac diastolic dysfunction of mice, elevated the heart rate and blood pressure, developed cardiac systolic dysfunction of 10-month-old mice, and caused fibrosis in both 4-week-old and 10-month-old mice. PM2.5 exposure increased the expression of Col1a1, Col3a1, NOX-4, and TGFβ1, activated Smad3, and generated more reactive oxygen species in the myocardium of 4-week-old and 10-month-old mice. The withdrawal from PM2.5 exposure restored blood pressure, heart rate, cardiac function, expression of collagens, and malonaldehyde (MDA) levels in hearts of both 10-month-old and 4-week-old mice. CONCLUSION Juvenile and older mice are more sensitive to PM2.5 than adults and suffer from cardiac dysfunction. PM2.5 exposure reversibly elevated heart rate and blood pressure, induced cardiac systolic dysfunction of older mice, and reversibly induced fibrosis in juvenile and older mice. The mechanism by which PM2.5 exposure resulted in cardiac lesions might involve oxidative stress, NADPH oxidase, TGFβ1, and Smad-dependent pathways.
Collapse
Affiliation(s)
- Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006 People’s Republic of China
| | - Jin Xia
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006 People’s Republic of China
| | - Yingying Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006 People’s Republic of China
| | - Lianghong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 People’s Republic of China
| | - Rui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety& CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and PreventionTechniques, National Center for Nanoscience & Technology of China, Beijing, 100190 People’s Republic of China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006 People’s Republic of China
| |
Collapse
|