1
|
Wu Y, Xu Y, Xu L. Pharmacological therapy targeting the immune response in atherosclerosis. Int Immunopharmacol 2024; 141:112974. [PMID: 39168023 DOI: 10.1016/j.intimp.2024.112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the formation of atherosclerotic plaques that consist of numerous cells including smooth muscle cells, endothelial cells, immune cells, and foam cells. The most abundant innate and adaptive immune cells, including neutrophils, monocytes, macrophages, B cells, and T cells, play a pivotal role in the inflammatory response, lipoprotein metabolism, and foam cell formation to accelerate atherosclerotic plaque formation. In this review, we have discussed the underlying mechanisms of activated immune cells in promoting AS and reviewed published clinical trials for the treatment of AS by suppressing immune cell activation. We have also presented some crucial shortcomings of current clinical trials. Lastly, we have discussed the therapeutic potential of novel compounds, including herbal medicine and dietary food, in alleviating AS in animals. Despite these limitations, further clinical trials and experimental studies will enhance our understanding of the mechanisms modulated by immune cells and promote widespread drug use to treat AS by suppressing immune system-induced inflammation.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China.
| | - Linhao Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
2
|
Mobilia M, Karakashian A, Neupane KR, Hage O, Whitus C, Carter A, Voy C, Johnson LA, Graf GA, Gordon SM. Enhancement of high-density lipoprotein-associated protease inhibitor activity prevents atherosclerosis progression. Atherosclerosis 2024; 396:118544. [PMID: 39126769 PMCID: PMC11404725 DOI: 10.1016/j.atherosclerosis.2024.118544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND AIMS Inflammatory cells within atherosclerotic lesions secrete proteolytic enzymes that contribute to lesion progression and destabilization, increasing the risk for an acute cardiovascular event. Elastase is a serine protease, secreted by macrophages and neutrophils, that may contribute to the development of unstable plaque. We previously reported interaction of endogenous protease-inhibitor proteins with high-density lipoprotein (HDL), including alpha-1-antitrypsin, an inhibitor of elastase. These findings support a potential role for HDL as a modulator of protease activity. In this study, we test the hypothesis that enhancement of HDL-associated elastase inhibitor activity is protective against atherosclerotic lesion progression. METHODS We designed an HDL-targeting protease inhibitor (HTPI) that binds to HDL and confers elastase inhibitor activity. Lipoprotein binding and the impact of HTPI on atherosclerosis were examined using mouse models. Histology and immunofluorescence staining of aortic root sections were used to examine the impact of HTPI on lesion morphology and inflammatory features. RESULTS HTPI is a small (1.6 kDa) peptide with an elastase inhibitor domain, a soluble linker, and an HDL-targeting domain. When incubated with human plasma ex vivo, HTPI predominantly binds to HDL. Intravenous administration of HTPI to mice resulted in its binding to plasma HDL and increased elastase inhibitor activity on isolated HDL. Accumulation of HTPI within plaque was observed after administration to Apoe-/- mice. To examine the effect of HTPI treatment on atherosclerosis, prevention and progression studies were performed using Ldlr-/- mice fed Western diet. In both study designs, HTPI-treated mice had reduced lipid deposition in plaque. CONCLUSIONS These data support the hypothesis that HDL-associated anti-elastase activity can improve the atheroprotective potential of HDL and highlight the potential utility of HDL enrichment with anti-protease activity as an approach for stabilization of atherosclerotic lesions.
Collapse
Affiliation(s)
- Maura Mobilia
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | | | - Khaga R Neupane
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Olivia Hage
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Callie Whitus
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Abigail Carter
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Clairity Voy
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Gregory A Graf
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Scott M Gordon
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Geng S, Zhang Y, Lu R, Irimia D, Li L. Resolving neutrophils through genetic deletion of TRAM attenuate atherosclerosis pathogenesis. iScience 2024; 27:110097. [PMID: 38883832 PMCID: PMC11179630 DOI: 10.1016/j.isci.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Systemic neutrophil dysregulation contributes to atherosclerosis pathogenesis, and restoring neutrophil homeostasis may be beneficial for treating atherosclerosis. Herein, we report that a homeostatic resolving subset of neutrophils exists in mice and humans characterized by the low expression of TRAM, correlated with reduced expression of inflammatory mediators (leukotriene B4 [LTB4] and elastase) and elevated expression of anti-inflammatory resolving mediators (resolvin D1 [RvD1] and CD200R). TRAM-deficient neutrophils can potently improve vascular integrity and suppress atherosclerosis pathogenesis when adoptively transfused into recipient atherosclerotic animals. Mechanistically, we show that TRAM deficiency correlates with reduced expression of 5-lipoxygenase (LOX5) activating protein (LOX5AP), dislodges nuclear localization of LOX5, and switches the lipid mediator secretion from pro-inflammatory LTB4 to pro-resolving RvD1. TRAM also serves as a stress sensor of oxidized low-density lipoprotein (oxLDL) and/or free cholesterol and triggers inflammatory signaling processes that facilitate elastase release. Together, our study defines a unique neutrophil population characterized by reduced TRAM, capable of homeostatic resolution and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Ran Lu
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Daniel Irimia
- Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA 02114, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| |
Collapse
|
4
|
Zhang Y, Kong X, Liang L, Xu D. Regulation of vascular remodeling by immune microenvironment after the establishment of autologous arteriovenous fistula in ESRD patients. Front Immunol 2024; 15:1365422. [PMID: 38807593 PMCID: PMC11130379 DOI: 10.3389/fimmu.2024.1365422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Autogenous arteriovenous fistula (AVF) is the preferred dialysis access for receiving hemodialysis treatment in end-stage renal disease patients. After AVF is established, vascular remodeling occurs in order to adapt to hemodynamic changes. Uremia toxins, surgical injury, blood flow changes and other factors can induce inflammatory response, immune microenvironment changes, and play an important role in the maintenance of AVF vascular remodeling. This process involves the infiltration of pro-inflammatory and anti-inflammatory immune cells and the secretion of cytokines. Pro-inflammatory and anti-inflammatory immune cells include neutrophil (NEUT), dendritic cell (DC), T lymphocyte, macrophage (Mφ), etc. This article reviews the latest research progress and focuses on the role of immune microenvironment changes in vascular remodeling of AVF, in order to provide a new theoretical basis for the prevention and treatment of AVF failure.
Collapse
Affiliation(s)
| | | | - Liming Liang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, Shandong, China
| | | |
Collapse
|
5
|
García-Culebras A, Cuartero MI, Peña-Martínez C, Moraga A, Vázquez-Reyes S, de Castro-Millán FJ, Cortes-Canteli M, Lizasoain I, Moro MÁ. Myeloid cells in vascular dementia and Alzheimer's disease: Possible therapeutic targets? Br J Pharmacol 2024; 181:777-798. [PMID: 37282844 DOI: 10.1111/bph.16159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Growing evidence supports the suggestion that the peripheral immune system plays a role in different pathologies associated with cognitive impairment, such as vascular dementia (VD) or Alzheimer's disease (AD). The aim of this review is to summarize, within the peripheral immune system, the implications of different types of myeloid cells in AD and VD, with a special focus on post-stroke cognitive impairment and dementia (PSCID). We will review the contributions of the myeloid lineage, from peripheral cells (neutrophils, platelets, monocytes and monocyte-derived macrophages) to central nervous system (CNS)-associated cells (perivascular macrophages and microglia). Finally, we will evaluate different potential strategies for pharmacological modulation of pathological processes mediated by myeloid cell subsets, with an emphasis on neutrophils, their interaction with platelets and the process of immunothrombosis that triggers neutrophil-dependent capillary stall and hypoperfusion, as possible effector mechanisms that may pave the way to novel therapeutic avenues to stop dementia, the epidemic of our time. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Alicia García-Culebras
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - María Isabel Cuartero
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Carolina Peña-Martínez
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Sandra Vázquez-Reyes
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Francisco Javier de Castro-Millán
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Marta Cortes-Canteli
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Ángeles Moro
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
6
|
Wang L, Zhou Z, Xu X, Li Y, Zhang R, Yu Z, Huang X, Zang S, Sun T. Elevated first-trimester neutrophil elastase and proteinase 3 increase the risk of gestational diabetes mellitus and adverse fetal outcomes. Reprod Biol Endocrinol 2024; 22:2. [PMID: 38167145 PMCID: PMC10759696 DOI: 10.1186/s12958-023-01170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Chronic inflammation plays a vital role in the development of gestational diabetes mellitus (GDM). Studies in mouse models show that neutrophil serine proteases (NSPs), neutrophil elastase (NE) and proteinase-3 (PR3) are important drivers of chronic inflammation with consequent metabolic disturbances. This study evaluated the association of NE and PR3 with GDM development and adverse fetal outcomes. METHOD(S) This was a prospective cohort study. Serum PR3 and NE concentration was measured in all enrolled pregnant women in the first and the second trimester to determine the connection between NSPs and GDM and adverse fetal outcomes. Logistic regression, spline regression and linear regression analyses were applied to investigate the association of NE or PR3 with GDM development and adverse fetal outcomes. The concentration of NE and PR3 in placental biopsies was evaluated by semi-quantitative analysis of immunohistochemistry staining. RESULT(S) NE or PR3 concentration in the first trimester, rather than the second, increased more significantly in women with GDM than in those without, regardless of pre-pregnancy body mass index and age. There was a stepwise increase in GDM occurrence as well as comprehensive adverse fetal outcomes across tertiles of NE and PR3. NE and PR3 were positively associated with neutrophil count, pre-pregnancy BMI, plasma glucose level and newborn weight. Logistic regression revealed NE or PR3 to be independent risk factors for the development of GDM and comprehensive adverse fetal outcomes. Spline regression showed a significant increased risk of GDM occurrence and comprehensive adverse fetal outcomes when serum NE concentration exceeded 417.60 ng/mL and a similar result for PR3 and GDM occurrence when the latter exceeded 88.52 ng/mL. Immunohistochemistry data confirmed that enriched NE and PR3 content in placental tissue may have contributed to the development of GDM. CONCLUSION(S) This work demonstrates that excessive first-trimester NE and PR3 increase the risk of GDM development and comprehensive adverse fetal outcomes.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, 200240, Shanghai, China
| | - Zhoujunhao Zhou
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, 200240, Shanghai, China
| | - Xinming Xu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, 200240, Shanghai, China
| | - Yue Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, 200240, Shanghai, China
| | - Rui Zhang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, 200240, Shanghai, China
| | - Zhiyan Yu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, 200240, Shanghai, China
| | - Xinmei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, 200240, Shanghai, China
| | - Shufei Zang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, 200240, Shanghai, China.
| | - Tiange Sun
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, 200240, Shanghai, China.
| |
Collapse
|
7
|
Liu C, Yalavarthi S, Tambralli A, Zeng L, Rysenga CE, Alizadeh N, Hudgins L, Liang W, NaveenKumar SK, Shi H, Shelef MA, Atkins KB, Pennathur S, Knight JS. Inhibition of neutrophil extracellular trap formation alleviates vascular dysfunction in type 1 diabetic mice. SCIENCE ADVANCES 2023; 9:eadj1019. [PMID: 37878711 PMCID: PMC10599623 DOI: 10.1126/sciadv.adj1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
While neutrophil extracellular traps (NETs) have previously been linked to some diabetes-associated complications, such as dysfunctional wound healing, their potential role in diabetic vascular dysfunction has not been studied. Diabetic Akita mice were crossed with either Elane-/- or Pad4-/- mice to generate NET-deficient diabetic mice. By 24 weeks of age, Akita aortae showed markedly impaired relaxation in response to acetylcholine, indicative of vascular dysfunction. Both Akita-Elane-/- mice and Akita-Pad4-/- mice had reduced levels of circulating NETs and improved acetylcholine-mediated aortic relaxation. Compared with wild-type aortae, the thromboxane metabolite TXB2 was roughly 10-fold higher in both intact and endothelium-denuded aortae of Akita mice. In contrast, Akita-Elane-/- and Akita-Pad4-/- aortae had TXB2 levels similar to wild type. In summary, inhibition of NETosis by two independent strategies prevented the development of vascular dysfunction in diabetic Akita mice. Thromboxane was up-regulated in the vessel walls of NETosis-competent diabetic mice, suggesting a role for neutrophils in driving the production of this vasoconstrictive and atherogenic prostanoid.
Collapse
Affiliation(s)
- Chao Liu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ajay Tambralli
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lixia Zeng
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christine E. Rysenga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nikoo Alizadeh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lucas Hudgins
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Wenying Liang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Hui Shi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Rheumatology and Immunology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Miriam A. Shelef
- Division of Rheumatology, Department of Medicine, University of Wisconsin–Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Kevin B. Atkins
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Yang M, Zhou X, Pearce SW, Yang Z, Chen Q, Niu K, Liu C, Luo J, Li D, Shao Y, Zhang C, Chen D, Wu Q, Cutillas PR, Zhao L, Xiao Q, Zhang L. Causal Role for Neutrophil Elastase in Thoracic Aortic Dissection in Mice. Arterioscler Thromb Vasc Biol 2023; 43:1900-1920. [PMID: 37589142 PMCID: PMC10521802 DOI: 10.1161/atvbaha.123.319281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Thoracic aortic dissection (TAD) is a life-threatening aortic disease without effective medical treatment. Increasing evidence has suggested a role for NE (neutrophil elastase) in vascular diseases. In this study, we aimed at investigating a causal role for NE in TAD and exploring the molecular mechanisms involved. METHODS β-aminopropionitrile monofumarate was administrated in mice to induce TAD. NE deficiency mice, pharmacological inhibitor GW311616A, and adeno-associated virus-2-mediated in vivo gene transfer were applied to explore a causal role for NE and associated target gene in TAD formation. Multiple functional assays and biochemical analyses were conducted to unravel the underlying cellular and molecular mechanisms of NE in TAD. RESULTS NE aortic gene expression and plasma activity was significantly increased during β-aminopropionitrile monofumarate-induced TAD and in patients with acute TAD. NE deficiency prevents β-aminopropionitrile monofumarate-induced TAD onset/development, and GW311616A administration ameliorated TAD formation/progression. Decreased levels of neutrophil extracellular traps, inflammatory cells, and MMP (matrix metalloproteinase)-2/9 were observed in NE-deficient mice. TBL1x (F-box-like/WD repeat-containing protein TBL1x) has been identified as a novel substrate and functional downstream target of NE in TAD. Loss-of-function studies revealed that NE mediated inflammatory cell transendothelial migration by modulating TBL1x-LTA4H (leukotriene A4 hydrolase) signaling and that NE regulated smooth muscle cell phenotype modulation under TAD pathological condition by regulating TBL1x-MECP2 (methyl CpG-binding protein 2) signal axis. Further mechanistic studies showed that TBL1x inhibition decreased the binding of TBL1x and HDAC3 (histone deacetylase 3) to MECP2 and LTA4H gene promoters, respectively. Finally, adeno-associated virus-2-mediated Tbl1x gene knockdown in aortic smooth muscle cells confirmed a regulatory role for TBL1x in NE-mediated TAD formation. CONCLUSIONS We unravel a critical role of NE and its target TBL1x in regulating inflammatory cell migration and smooth muscle cell phenotype modulation in the context of TAD. Our findings suggest that the NE-TBL1x signal axis represents a valuable therapeutic for treating high-risk TAD patients.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Xinmiao Zhou
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China (X.Z.)
| | - Stuart W.A. Pearce
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Zhisheng Yang
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Qishan Chen
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
| | - Kaiyuan Niu
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Chenxin Liu
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Jun Luo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Dan Li
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, China (D.L., L. Zhao)
| | - Yue Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Pedro R. Cutillas
- Faculty of Medicine and Dentistry, Centre for Haemato-Oncology, Barts Cancer Institute (P.R.C.), Queen Mary University of London, United Kingdom
| | - Lin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, China (D.L., L. Zhao)
| | - Qingzhong Xiao
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, China (Q.X.)
| | - Li Zhang
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
| |
Collapse
|
9
|
Mobilia M, Karakashian A, Whitus C, Neupane KR, Johnson LA, Graf GA, Gordon SM. Enhancement of High-Density Lipoprotein-Associated Protease Inhibitor Activity Prevents Atherosclerosis Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.551670. [PMID: 37609198 PMCID: PMC10441367 DOI: 10.1101/2023.08.07.551670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background Inflammatory cells within atherosclerotic lesions secrete various proteolytic enzymes that contribute to lesion progression and destabilization, increasing the risk for an acute cardiovascular event. The relative contributions of specific proteases to atherogenesis is not well understood. Elastase is a serine protease, secreted by macrophages and neutrophils, that may contribute to the development of unstable plaque. We have previously reported interaction of endogenous protease-inhibitor proteins with high-density lipoprotein (HDL), including alpha-1-antitrypsin, an inhibitor of elastase. These findings support a potential role for HDL as an endogenous modulator of protease activity. In this study, we test the hypothesis that enhancement of HDL-associated elastase inhibitor activity is protective against atherosclerotic lesion progression. Methods We designed an HDL-targeting protease inhibitor (HTPI) that binds to HDL and confers elastase inhibitor activity. Lipoprotein binding and the impact of HTPI on atherosclerosis was examined using mouse models. Results HTPI is a small (1.6 kDa) peptide with an elastase inhibitor domain, a soluble linker, and an HDL-targeting domain. When incubated with human plasma ex vivo , HTPI predominantly binds to HDL. Intravenous administration of HTPI to mice resulted in its binding to plasma HDL and increased elastase inhibitor activity on isolated HDL. Accumulation of HTPI within plaque was observed after systemic administration to Apoe -/- mice. To examine the effect of HTPI treatment on atherosclerosis, prevention and progression studies were performed using Ldlr -/- mice fed Western diet. In both study designs, HTPI-treated mice had reduced lipid deposition in plaque. Histology and immunofluorescence staining of aortic root sections were used to examine the impact of HTPI on lesion morphology and inflammatory features. Conclusions These data support the hypothesis that HDL-associated anti-elastase activity can improve the atheroprotective potential of HDL and highlight the potential utility of HDL enrichment with anti-protease activity as an approach for stabilization of atherosclerotic lesions.
Collapse
|
10
|
Spectrofluorimetric and Computational Investigation of New Phthalimide Derivatives towards Human Neutrophil Elastase Inhibition and Antiproliferative Activity. Int J Mol Sci 2022; 24:ijms24010110. [PMID: 36613577 PMCID: PMC9820738 DOI: 10.3390/ijms24010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Herein, nine phthalimide-based thiazoles (4a-4i) were synthesized and investigated as new human neutrophil elastase (HNE) inhibitors using spectrofluorimetric and computational methods. The most active compounds containing 4-trifluoromethyl (4c), 4-naphthyl (4e) and 2,4,6-trichloro (4h) substituents in the phenyl ring exhibited high HNE inhibitory activity with IC50 values of 12.98-16.62 µM. Additionally, compound 4c exhibited mixed mechanism of action. Computational investigation provided a consistent picture of the ligand-receptor pattern of inter-actions, common for the whole considered group of compounds. Moreover, compounds 4b, 4c, 4d and 4f showed high antiproliferative activity against human cancer cells lines MV4-11, and A549 with IC50 values of 8.21 to 25.57 µM. Additionally, compound 4g showed high activity against MDA-MB-231 and UMUC-3 with IC50 values of 9.66 and 19.81 µM, respectively. Spectrophotometric analysis showed that the most active compound 4c demonstrated high stability under physiological conditions.
Collapse
|
11
|
Li H, Qiao C, Zhao L, Jing Q, Xue D, Zhang Y. Epigallocatechin-3-gallate reduces neutrophil extracellular trap formation and tissue injury in severe acute pancreatitis. J Leukoc Biol 2022; 112:1427-1443. [PMID: 35983712 DOI: 10.1002/jlb.3a0322-151r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/22/2022] [Indexed: 01/04/2023] Open
Abstract
Neutrophil extracellular traps (NETs) promote intra-acinar trypsin activation and tissue damage. Therefore, reducing NET formation can reduce tissue damage in severe acute pancreatitis (SAP). However, NET formation pathways may differ among disease models. In this study, we evaluated the role of the myeloperoxidase-neutrophil elastase (NE) pathway in NET formation in SAP. SAP was induced by intraperitoneal injection of cerulein and LPSs in mice, and NE activity was inhibited by GW311616. Pancreatic tissues were collected for multiplex immunofluorescence, scanning electron microscopy, and western blotting to detect NET formation and the effect of NE on citrullinated histone H3, followed by analyses of serum amylase and cytokine levels. Pretreatment with GW311616 significantly reduced NET formation, pancreatic tissue damage, and systemic inflammatory responses in SAP. Network pharmacology analyses using NE as the target revealed the monomeric compound epigallocatechin-3-gallate (EGCG). Binding between EGCG and NE was validated using molecular docking, and the ability of EGCG to inhibit NE activity was verified experimentally. NET formation by PMA-stimulated neutrophils was significantly reduced in vitro when the cells were pretreated with 40 μM EGCG. Pretreatment with EGCG significantly reduced NET formation, pancreatic tissue damage, and systemic inflammatory responses in vivo. These results reveal that NET formation requires the myeloperoxidase-NE pathway, and citrullination of histone H3 is affected by NE activity in SAP. EGCG shows therapeutic potential for affecting NE activity, NET formation, and systemic inflammation in SAP.
Collapse
Affiliation(s)
- Hongxuan Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Cong Qiao
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lingyu Zhao
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingxu Jing
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingmei Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Targeted Inhibition of Matrix Metalloproteinase-8 Prevents Aortic Dissection in a Murine Model. Cells 2022; 11:cells11203218. [PMID: 36291087 PMCID: PMC9600539 DOI: 10.3390/cells11203218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic dissection (AD) is a lethal aortic pathology without effective medical treatments since the underlying pathological mechanisms responsible for AD remain elusive. Matrix metalloproteinase-8 (MMP8) has been previously identified as a key player in atherosclerosis and arterial remodeling. However, the functional role of MMP8 in AD remains largely unknown. Here, we report that an increased level of MMP8 was observed in 3-aminopropionitrile fumarate (BAPN)-induced murine AD. AD incidence and aortic elastin fragmentation were markedly reduced in MMP8-knockout mice. Importantly, pharmacologic inhibition of MMP8 significantly reduced the AD incidence and aortic elastin fragmentation. We observed less inflammatory cell accumulation, a lower level of aortic inflammation, and decreased smooth muscle cell (SMC) apoptosis in MMP8-knockout mice. In line with our previous observation that MMP8 cleaves Ang I to generate Ang II, BAPN-treated MMP8-knockout mice had increased levels of Ang I, but decreased levels of Ang II and lower blood pressure. Additionally, we observed a decreased expression level of vascular cell adhesion molecule-1 (VCAM1) and a reduced level of reactive oxygen species (ROS) in MMP8-knockout aortas. Mechanistically, our data show that the Ang II/VCAM1 signal axis is responsible for MMP8-mediated inflammatory cell invasion and transendothelial migration, while MMP8-mediated SMC inflammation and apoptosis are attributed to Ang II/ROS signaling. Finally, we observed higher levels of aortic and serum MMP8 in patients with AD. We therefore provide new insights into the molecular mechanisms underlying AD and identify MMP8 as a potential therapeutic target for this life-threatening aortic disease.
Collapse
|
13
|
Cai Y, Wang Z, Li L, He L, Wu X, Zhang M, Zhu P. Neuropeptide Y regulates cholesterol uptake and efflux in macrophages and promotes foam cell formation. J Cell Mol Med 2022; 26:5391-5402. [PMID: 36172879 PMCID: PMC9639043 DOI: 10.1111/jcmm.17561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
The dysregulation of lipid metabolic pathways (cholesterol uptake and efflux) in macrophages results in the formation of lipid‐dense macrophages, named foam cells, that participate in plaque formation. NPY binding to NPY receptors in macrophages can modulate cell functions and affect the process of atherosclerotic plaques. The present study aimed to determine whether NPY affects the formation of macrophage‐derived foam cells and its underlying mechanisms in macrophages. THP‐1‐derived macrophages were incubated with oxidized low‐density lipoprotein (ox‐LDL) and treated with different concentrations of NPY. We analysed the relative levels of proteins related to cholesterol uptake and efflux. We found that NPY effectively increased cholesterol uptake and intracellular cholesterol content via the Y1 and Y5 receptors, and this effect was blocked by Y1 and Y5 antagonists. Mechanistically, NPY enhanced the expression of SRA and CD36 via the PKC/PPARγ pathways, promoting macrophage cholesterol uptake. Moreover, NPY significantly decreased cholesterol efflux to the extracellular cholesterol acceptors ApoA1 and HDL in macrophages. NPY mediated decreases in ABCA1, ABCG1 and SR‐BI expression through the inhibition of the JAK/STAT3 pathways. Our results suggest that NPY binding to the Y1 and Y5 receptors enhances foam cell formation by regulating cholesterol uptake and efflux in macrophages.
Collapse
Affiliation(s)
- Yu Cai
- Department of Rehabilitation, Wuhan Fourth Hospital, Wuhan, China
| | - Zhengchao Wang
- Department of Orthopedics, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lun Li
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, China
| | - Li He
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, China
| | - Xinying Wu
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, China
| | - Mingjing Zhang
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, China
| | - Pengfei Zhu
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, China
| |
Collapse
|
14
|
Zhao T, Jiang Q, Li W, Wang Y, Zou Y, Chai X, Yuan Z, Ma L, Yu R, Deng T, Yu C, Wang T. Antigen-Presenting Cell-Like Neutrophils Foster T Cell Response in Hyperlipidemic Patients and Atherosclerotic Mice. Front Immunol 2022; 13:851713. [PMID: 35251050 PMCID: PMC8891125 DOI: 10.3389/fimmu.2022.851713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Neutrophils constitute abundant cellular components in atherosclerotic plaques. Most of the current studies are focused on the roles of granular proteins released by neutrophils in atherosclerosis. Here, we revealed a unique subset of neutrophils which exhibit the characteristics of antigen-presenting cell (APC) (which were called APC-like neutrophils afterwards) in atherosclerosis. The roles of APC-like neutrophils and relevant mechanisms were investigated in hyperlipidemic patients and atherosclerotic mice. Higher percentages of neutrophils and APC-like neutrophils were found in peripheral blood of hyperlipidemic patients than that of healthy donors. Meanwhile, we also identified higher infiltration of neutrophils and APC-like neutrophils in atherosclerotic mice. Ox-LDL induced Phorbol-12-myristate-13-acetate (PMA)-activated neutrophils to acquire the APC-like phenotype. Importantly, upon over-expression of APC-like markers, neutrophils acquired APC functions to promote the proliferation and interferon-γ production of CD3+ T cells via HLA-DR/CD80/CD86. In accordance with what found in vitro, positive correlation between neutrophils and CD3+ T cells was observed in hyperlipidemic patients. In conclusion, our work identifies a proinflammatory neutrophil subset in both hyperlipidemic patients and atherosclerotic mice. This unique phenotype of neutrophils could activate the adaptive immune response to promote atherosclerosis progression. Thus, this neutrophil subset may be a new target for immunotherapy of atherosclerosis.
Collapse
Affiliation(s)
- Tingrui Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, China
| | - Qingsong Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China.,Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Wenming Li
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, China
| | - Yao Zou
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, China
| | - Xinyu Chai
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, China
| | - Zhiyi Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, China
| | - Limei Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, China
| | - Ruihong Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, China
| | - Tao Deng
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, China
| | - Tingting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, China
| |
Collapse
|
15
|
Nie H, Xiong Q, Lan G, Song C, Yu X, Chen L, Wang D, Ren T, Chen Z, Liu X, Zhou Y. Sivelestat Alleviates Atherosclerosis by Improving Intestinal Barrier Function and Reducing Endotoxemia. Front Pharmacol 2022; 13:838688. [PMID: 35444551 PMCID: PMC9014170 DOI: 10.3389/fphar.2022.838688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence suggests that atherosclerosis, one of the leading phenotypes of cardiovascular diseases, is a chronic inflammatory disease. During the atherosclerotic process, immune cells play critical roles in vascular inflammation and plaque formation. Meanwhile, gastrointestinal disorder is considered a risk factor in mediating the atherosclerotic process. The present study aimed to utilize sivelestat, a selective inhibitor of neutrophil elastase, to investigate its pharmacological benefits on atherosclerosis and disclose the gastrointestinal–vascular interaction. The activation of intestinal neutrophil was increased during atherosclerotic development in Western diet-fed ApoE-/- mice. Administration of sivelestat attenuated atherosclerotic phenotypes, including decreasing toxic lipid accumulation, vascular monocyte infiltration, and inflammatory cytokines. Sivelestat decreased intestinal permeability and endotoxemia in atherosclerotic mice. Mechanistically, sivelestat upregulated the expression of zonula occludens-1 in the atherosclerotic mice and recombinant neutrophil elastase protein-treated intestinal epithelial cells. Meanwhile, treatment of sivelestat suppressed the intestinal expression of inflammatory cytokines and NF-κB activity. In contrast, administration of lipopolysaccharides abolished the anti-atherosclerotic benefits of sivelestat in the Western diet-fed ApoE-/- mice. Further clinical correlation study showed that the circulating endotoxin level and intestinal neutrophil elastase activity were positively correlated with carotid intima-medial thickness in recruited subjects. In conclusion, sivelestat had pharmacological applications in protection against atherosclerosis, and intestinal homeostasis played one of the critical roles in atherosclerotic development.
Collapse
Affiliation(s)
- Hezhongrong Nie
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Qingquan Xiong
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Guanghui Lan
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chunli Song
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaohong Yu
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lei Chen
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Daming Wang
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tingyu Ren
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zeyan Chen
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xintong Liu
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yiwen Zhou
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
16
|
Lodge KM, Vassallo A, Liu B, Long M, Tong Z, Newby PR, Agha-Jaffar D, Paschalaki K, Green CE, Belchamber KBR, Ridger VC, Stockley RA, Sapey E, Summers C, Cowburn AS, Chilvers ER, Li W, Condliffe AM. Hypoxia Increases the Potential for Neutrophil-mediated Endothelial Damage in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2022; 205:903-916. [PMID: 35044899 PMCID: PMC9838628 DOI: 10.1164/rccm.202006-2467oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rationale: Patients with chronic obstructive pulmonary disease (COPD) experience excess cardiovascular morbidity and mortality, and exacerbations further increase the risk of such events. COPD is associated with persistent blood and airway neutrophilia and systemic and tissue hypoxia. Hypoxia augments neutrophil elastase release, enhancing capacity for tissue injury. Objective: To determine whether hypoxia-driven neutrophil protein secretion contributes to endothelial damage in COPD. Methods: The healthy human neutrophil secretome generated under normoxic or hypoxic conditions was characterized by quantitative mass spectrometry, and the capacity for neutrophil-mediated endothelial damage was assessed. Histotoxic protein concentrations were measured in normoxic versus hypoxic neutrophil supernatants and plasma from patients experiencing COPD exacerbation and healthy control subjects. Measurements and Main Results: Hypoxia promoted PI3Kγ-dependent neutrophil elastase secretion, with greater release seen in neutrophils from patients with COPD. Supernatants from neutrophils incubated under hypoxia caused pulmonary endothelial cell damage, and identical supernatants from COPD neutrophils increased neutrophil adherence to endothelial cells. Proteomics revealed differential neutrophil protein secretion under hypoxia and normoxia, and hypoxia augmented secretion of a subset of histotoxic granule and cytosolic proteins, with significantly greater release seen in COPD neutrophils. The plasma of patients with COPD had higher content of hypoxia-upregulated neutrophil-derived proteins and protease activity, and vascular injury markers. Conclusions: Hypoxia drives a destructive "hypersecretory" neutrophil phenotype conferring enhanced capacity for endothelial injury, with a corresponding signature of neutrophil degranulation and vascular injury identified in plasma of patients with COPD. Thus, hypoxic enhancement of neutrophil degranulation may contribute to increased cardiovascular risk in COPD. These insights may identify new therapeutic opportunities for endothelial damage in COPD.
Collapse
Affiliation(s)
- Katharine M Lodge
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Arlette Vassallo
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Bin Liu
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Merete Long
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom; and
| | - Zhen Tong
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul R Newby
- Institute of Inflammation and Ageing, University of Birmingham and
| | - Danya Agha-Jaffar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Koralia Paschalaki
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Clara E Green
- Institute of Inflammation and Ageing, University of Birmingham and
| | | | - Victoria C Ridger
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom; and
| | - Robert A Stockley
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham and.,University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Charlotte Summers
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew S Cowburn
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Edwin R Chilvers
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Wei Li
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Condliffe
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom; and
| |
Collapse
|
17
|
Liu Y, Jiang P, An L, Zhu M, Li J, Wang Y, Huang Q, Xiang Y, Li X, Shi Q, Weng Y. The role of neutrophil elastase in aortic valve calcification. J Transl Med 2022; 20:167. [PMID: 35397552 PMCID: PMC8994374 DOI: 10.1186/s12967-022-03363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background Calcific aortic valve disease (CAVD) is the most commonly valvular disease in the western countries initiated by inflammation and abnormal calcium deposition. Currently, there is no clinical drug for CAVD. Neutrophil elastase (NE) plays a causal role in inflammation and participates actively in cardiovascular diseases. However, the effect of NE on valve calcification remains unclear. So we next explore whether it is involved in valve calcification and the molecular mechanisms involved. Methods NE expression and activity in calcific aortic valve stenosis (CAVD) patients (n = 58) and healthy patients (n = 30) were measured by enzyme-linked immunosorbent assay (ELISA), western blot and immunohistochemistry (IHC). Porcine aortic valve interstitial cells (pVICs) were isolated and used in vitro expriments. The effects of NE on pVICs inflammation, apoptosis and calcification were detected by TUNEL assay, MTT assay, reverse transcription polymerase chain reaction (RT-PCR) and western blot. The effects of NE knockdown and NE activity inhibitor Alvelestat on pVICs inflammation, apoptosis and calcification under osteogenic medium induction were also detected by RT-PCR, western blot, alkaline phosphatase staining and alizarin red staining. Changes of Intracellular signaling pathways after NE treatment were measured by western blot. Apolipoprotein E−/− (APOE−/−) mice were employed in this study to establish the important role of Alvelestat in valve calcification. HE was used to detected the thickness of valve. IHC was used to detected the NE and α-SMA expression in APOE−/− mice. Echocardiography was employed to assess the heat function of APOE−/− mice. Results The level and activity of NE were evaluated in patients with CAVD and calcified valve tissues. NE promoted inflammation, apoptosis and phenotype transition in pVICs in the presence or absence of osteogenic medium. Under osteogenic medium induction, NE silencing or NE inhibitor Alvelestat both suppressed the osteogenic differentiation of pVICs. Mechanically, NE played its role in promoting osteogenic differentiation of pVICs by activating the NF-κB and AKT signaling pathway. Alvelestat alleviated valve thickening and decreased the expression of NE and α-SMA in western diet-induced APOE−/− mice. Alvelestat also reduced NE activity and partially improved the heart function of APOE−/−mice. Conclusions Collectively, NE is highly involved in the pathogenesis of valve calcification. Targeting NE such as Alvelestat may be a potential treatment for CAVD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03363-1.
Collapse
|
18
|
Wang L, Pan J, Sun Y, Zong S, Zhang R, Li Y, Yu Z, Liu J, Zang S. Increased Neutrophil elastase and proteinase 3 are closely associated with occurrence and severity of stroke and acute myocardial infarction in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2022; 186:109853. [PMID: 35341779 DOI: 10.1016/j.diabres.2022.109853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
AIMS The role of Neutrophil elastase (NE) and proteinase 3 (PR3) in the occurrence and severity of stroke and acute myocardial infarction (AMI) have not been explored in type 2 diabetes mellitus (T2DM). This study aimed to investigate the relationship and predictive ability of NE and PR3 in the development of stroke and AMI in patients with T2DM, and to explore the pattern of NE and PR3 in atherosclerotic plaques. METHODS 465 patients with T2DM (stroke or AMI, n = 234; non stroke or AMI, n = 231) were recruited. Clinical characteristics, and NE and PR3 concentration were measured in all subjects. Semi-quantitative analysis of immunohistochemistry staining for NE and PR3 was performed in detached emboli and stable plaques. RESULTS Patients with stroke or AMI had a higher level of NE and PR3, with a more pronounced increase in more severe cases (higher mRS score in stroke and Gensini score in AMI) and associated with clinical markers. An increase in NE and PR3 was an independent risk factor for stroke (OR = 4.318, P = 0.017; OR = 2.979, P = 0.048, respectively) and AMI (OR = 8.385, P = 0.015; OR = 5.540, P = 0.047). Finally, immunohistochemistry staining revealed that the NE and PR3 positive area increased significantly in detached emboli compared with stable plaques. CONCLUSION Increased NE and PR3 was associated with occurrence and severity of stroke and AMI in patients with T2DM. Enriched NE and PR3 in detached emboli may be associated with plaque vulnerability.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, Shanghai 200240, China
| | - Jie Pan
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, Shanghai 200240, China
| | - Yifan Sun
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, Shanghai 200240, China
| | - Shuhang Zong
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, Shanghai 200240, China
| | - Rui Zhang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, Shanghai 200240, China
| | - Yue Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, Shanghai 200240, China
| | - Zhiyan Yu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, Shanghai 200240, China
| | - Jun Liu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, Shanghai 200240, China
| | - Shufei Zang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqin Road, Shanghai 200240, China.
| |
Collapse
|
19
|
An W, Luong LA, Bowden NP, Yang M, Wu W, Zhou X, Liu C, Niu K, Luo J, Zhang C, Sun X, Poston R, Zhang L, Evans PC, Xiao Q. Cezanne is a critical regulator of pathological arterial remodelling by targeting β-catenin signalling. Cardiovasc Res 2022; 118:638-653. [PMID: 33599243 PMCID: PMC8803089 DOI: 10.1093/cvr/cvab056] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/16/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Pathological arterial remodelling including neointimal hyperplasia and atherosclerosis is the main underlying cause for occluding arterial diseases. Cezanne is a novel deubiquitinating enzyme, functioning as a NF-кB negative regulator, and plays a key role in renal inflammatory response and kidney injury induced by ischaemia. Here we attempted to examine its pathological role in vascular smooth muscle cell (VSMC) pathology and arterial remodelling. METHODS AND RESULTS Cezanne expression levels were consistently induced by various atherogenic stimuli in VSMCs, and in remodelled arteries upon injury. Functionally, VSMCs over-expressing wild-type Cezanne, but not the mutated catalytically-inactive Cezanne (C209S), had an increased proliferative ability and mobility, while the opposite was observed in VSMCs with Cezanne knockdown. Surprisingly, we observed no significant effects of Cezanne on VSMC apoptosis, NF-κB signalling, or inflammation. RNA-sequencing and biochemical studies showed that Cezanne drives VSMC proliferation by regulating CCN family member 1 (CCN1) by targeting β-catenin for deubiquitination. Importantly, local correction of Cezanne expression in the injured arteries greatly decreased VSMC proliferation, and prevented arterial inward remodelling. Interestingly, global Cezanne gene deletion in mice led to smaller atherosclerotic plaques, but with a lower level of plaque stability. Translating, we observed a similar role for Cezanne in human VSMCs, and higher expression levels of Cezanne in human atherosclerotic lesions. CONCLUSION Cezanne is a key regulator of VSMC proliferation and migration in pathological arterial remodelling. Our findings have important implications for therapeutic targeting Cezanne signalling and VSMC pathology in vascular diseases.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Apoptosis
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Cysteine-Rich Protein 61/genetics
- Cysteine-Rich Protein 61/metabolism
- Disease Models, Animal
- Endopeptidases/genetics
- Endopeptidases/metabolism
- Humans
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- NF-kappa B/metabolism
- Neointima
- Ubiquitination
- Vascular Remodeling
- Wnt Signaling Pathway
- beta Catenin/genetics
- beta Catenin/metabolism
- Mice
Collapse
Affiliation(s)
- Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Le A Luong
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Neil P Bowden
- Department of Infection, Immunity and Cardiovascular Disease, Bateson Centre, and Insigneo Institute for In Silico Medicine, University of Sheffield, Beech Hill Rd, Sheffield S10 2RX, UK
| | - Mei Yang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Cardiology, and Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Wu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Xinmiao Zhou
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Chenxin Liu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Kaiyuan Niu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jun Luo
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Cheng Zhang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Xiaolei Sun
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Robin Poston
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Li Zhang
- Department of Cardiology, and Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, Bateson Centre, and Insigneo Institute for In Silico Medicine, University of Sheffield, Beech Hill Rd, Sheffield S10 2RX, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Lisco G, Giagulli VA, De Pergola G, Guastamacchia E, Jirillo E, Triggiani V. The Pathogenic Role of Foam Cells in Atherogenesis: Do They Represent Novel Therapeutic Targets? Endocr Metab Immune Disord Drug Targets 2022; 22:765-777. [PMID: 34994321 DOI: 10.2174/1871530322666220107114313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Foam cells, mainly derived from monocytes-macrophages, contain lipid droplets essentially composed of cholesterol in their cytoplasm. They infiltrate the intima of arteries, contributing to the formation of atherosclerotic plaques. PATHOGENESIS Foam cells damage the arterial cell wall via the release of proinflammatory cytokines, free radicals, and matrix metalloproteinases, enhancing the plaque size up to its rupture. THERAPY A correct dietary regimen seems to be the most appropriate therapeutic approach to minimize obesity, which is associated with the formation of foam cells. At the same time, different types of antioxidants have been evaluated to arrest the formation of foam cells, even if the results are still contradictory. In any case, a combination of antioxidants seems to be more efficient in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giovanni De Pergola
- Unit of Geriatrics and Internal Medicine, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Science, Neuroscience and Sensory Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
21
|
ChhodenR S, Ferdous M, Adhikary DK, Salim MA, Banerjee SK, Fariduddin M, Biswas SK. Expression of neutrophil elastase and myeloperoxidase genes in coronary atherosclerosis. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Jakimiuk K, Gesek J, Atanasov AG, Tomczyk M. Flavonoids as inhibitors of human neutrophil elastase. J Enzyme Inhib Med Chem 2021; 36:1016-1028. [PMID: 33980119 PMCID: PMC8128182 DOI: 10.1080/14756366.2021.1927006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/17/2022] Open
Abstract
Elastase is a proteolytic enzyme belonging to the family of hydrolases produced by human neutrophils, monocytes, macrophages, and endothelial cells. Human neutrophil elastase is known to play multiple roles in the human body, but an increase in its activity may cause a variety of diseases. Elastase inhibitors may prevent the development of psoriasis, chronic kidney disease, respiratory disorders (including COVID-19), immune disorders, and even cancers. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in herbal plants, have been revealed to influence elastase release and its action on human cells. This review focuses on elastase inhibitors that have been discovered from natural sources and are biochemically characterised as flavonoids. The inhibitory activity on elastase is a characteristic of flavonoid aglycones and their glycoside and methylated, acetylated and hydroxylated derivatives. The presented analysis of structure-activity relationship (SAR) enables the determination of the chemical groups responsible for evoking an inhibitory effect on elastase. Further study especially of the in vivo efficacy and safety of the described natural compounds is of interest in order to gain better understanding of their health-promoting potential.
Collapse
Affiliation(s)
- Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, Poland
| | - Jakub Gesek
- Department of Pharmacognosy, Medical University of Białystok, Student’s Scientific Association, Białystok, Poland
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
23
|
Yang M, Chen Q, Mei L, Wen G, An W, Zhou X, Niu K, Liu C, Ren M, Sun K, Xiao Q, Zhang L. Neutrophil elastase promotes neointimal hyperplasia by targeting toll-like receptor 4 (TLR4)-NF-κB signalling. Br J Pharmacol 2021; 178:4048-4068. [PMID: 34076894 DOI: 10.1111/bph.15583] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Neointimal hyperplasia (NIH) is the fundamental cause for vascular diseases and vascular smooth muscle cell (VSMC) dysregulation has been widely implicated in NIH. Neutrophil elastase is a potential therapeutic target for multiple diseases. We investigated the role of neutrophil elastase in VSMC functions and injury-induced NIH and explored the therapeutic potential of targeting neutrophil elastase in NIH. EXPERIMENTAL APPROACH VSMCs were used to analyse the effects of neutrophil elastase. Proteomic analysis was used to identify potential neutrophil elastase targets. Artery injury model and neutrophil elastase inhibitor GW311616A were used to investigate the role of neutrophil elastase in NIH. KEY RESULTS TNF-α up-regulated neutrophil elastase in VSMCs through modulating GAPBα/Runx1/CEBPα/c-Myb signalling. Up-regulated neutrophil elastase promoted VSMC migration, proliferation and inflammation. Toll-like receptor 4 (TLR4) was identified as a target protein for neutrophil elastase in VSMCs and the TLR4/MyD88/IRAK1/TRAF6/NF-κB regulatory axis was shown to be the signalling pathway for neutrophil elastase in VSMC pathology. Importantly, TLR4 inhibition abolished neutrophil elastase-mediated VSMC dysregulation. Injury-induced NIH was significantly reduced in both neutrophil elastase-deficient mice and mice treated with GW311616A. The formation of neutrophil extracellular traps was impaired in injured arteries from neutrophil elastase-deficient mice. Finally, a similar role for neutrophil elastase in human VSMC pathology was confirmed and we observed higher expression levels of neutrophil elastase but lower expression levels of TLR4 in human atherosclerotic lesions. CONCLUSION AND IMPLICATIONS We provide new insight into the molecular mechanisms underlying NIH and identify neutrophil elastase as a potential therapeutic target for vascular disease.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Qishan Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Li Mei
- Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guanmei Wen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Xinmiao Zhou
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kaiyuan Niu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Chenxin Liu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Meixia Ren
- Fujian Key Laboratory of Geriatrics, Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Kun Sun
- Department of Pediatric Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Oh DJ, Lee JH, Kwon YE, Choi HM. Relationship Between Arteriovenous Fistula Stenosis and Circulating Levels of Neutrophil Granule Proteins in Chronic Hemodialysis Patients. Ann Vasc Surg 2021; 77:226-235. [PMID: 34437969 DOI: 10.1016/j.avsg.2021.05.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arteriovenous fistula (AVF) stenosis leading to its failure is a major cause of morbidity in hemodialysis patients; however, detailed pathogenesis of AVF stenosis is still under investigation. To date, monocytes/macrophages have been considered pivotal players in chronic inflammation of vascular disease including atherosclerosis and AVF stenosis. However, recent evidence strongly suggests that neutrophils and neutrophil granule proteins are important contributors to vascular disease. The aim of the present study was to evaluate the relationship between AVF stenosis and neutrophil activation by measuring circulating levels of neutrophil elastase (NE) and lactoferrin, enzymes released on neutrophil activation, as well as other inflammation markers including neutrophil counts. METHODS This was a single-center, prospective observational study conducted on 83 prevalent hemodialysis patients with AVF. Blood levels of biomarkers and sonography (US) measurement were assessed at baseline and 1 year after enrollment. Clinical follow-up continued for one more year (a total of 2 years for each patient) to observe any AVF events. RESULTS Circulating levels of both NE and lactoferrin positively correlated with the degree of AVF stenosis. Patients with significant AVF stenosis had older AVFs, higher neutrophil-to-lymphocyte ratio (NLR), and higher circulating levels of NE and lactoferrin. On multivariate logistic regression analysis, both circulating levels of NE and NLR remained independent predictors of significant AVF stenosis. CONCLUSIONS Circulating levels of NE and the NLR were identified as independent predictors of at-risk AVF with significant stenosis. Our data suggest the potential role of neutrophil and innate immunity activation on the development of AVF stenosis.
Collapse
Affiliation(s)
- Dong-Jin Oh
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang-si, Gyeonggi-do, South Korea
| | - Jeong Hoon Lee
- Department of Vascular surgery, Myongji Hospital, Hanyang University College of Medicine, Goyang-si, Gyeonggi-do, South Korea
| | - Young Eun Kwon
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang-si, Gyeonggi-do, South Korea
| | - Hye Min Choi
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang-si, Gyeonggi-do, South Korea.
| |
Collapse
|
25
|
Glucocorticoids: Fuelling the Fire of Atherosclerosis or Therapeutic Extinguishers? Int J Mol Sci 2021; 22:ijms22147622. [PMID: 34299240 PMCID: PMC8303333 DOI: 10.3390/ijms22147622] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/21/2023] Open
Abstract
Glucocorticoids are steroid hormones with key roles in the regulation of many physiological systems including energy homeostasis and immunity. However, chronic glucocorticoid excess, highlighted in Cushing's syndrome, is established as being associated with increased cardiovascular disease (CVD) risk. Atherosclerosis is the major cause of CVD, leading to complications including coronary artery disease, myocardial infarction and heart failure. While the associations between glucocorticoid excess and increased prevalence of these complications are well established, the mechanisms underlying the role of glucocorticoids in development of atheroma are unclear. This review aims to better understand the importance of glucocorticoids in atherosclerosis and to dissect their cell-specific effects on key processes (e.g., contractility, remodelling and lesion development). Clinical and pre-clinical studies have shown both athero-protective and pro-atherogenic responses to glucocorticoids, effects dependent upon their multifactorial actions. Evidence indicates regulation of glucocorticoid bioavailability at the vasculature is complex, with local delivery, pre-receptor metabolism, and receptor expression contributing to responses linked to vascular remodelling and inflammation. Further investigations are required to clarify the mechanisms through which endogenous, local glucocorticoid action and systemic glucocorticoid treatment promote/inhibit atherosclerosis. This will provide greater insights into the potential benefit of glucocorticoid targeted approaches in the treatment of cardiovascular disease.
Collapse
|
26
|
Al-Horani RA, Aliter KF, Kar S, Mottamal M. Sulfonated Nonsaccharide Heparin Mimetics Are Potent and Noncompetitive Inhibitors of Human Neutrophil Elastase. ACS OMEGA 2021; 6:12699-12710. [PMID: 34056422 PMCID: PMC8154244 DOI: 10.1021/acsomega.1c00935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/13/2021] [Indexed: 05/03/2023]
Abstract
Human neutrophil elastase (HNE) is a serine protease that plays vital roles in inflammation, innate immune response, and tissue remodeling processes. HNE has been actively pursued as a drug target, particularly for the treatment of cardiopulmonary diseases. Although thousands of molecules have been reported to inhibit HNE, yet very few are being evaluated in early clinical trials, with sivelestat as the only approved HNE inhibitor. We report here a novel chemotype of sulfonated nonsaccharide heparin mimetics as potent and noncompetitive inhibitors of HNE. Using a chromogenic substrate hydrolysis assay, 14 sulfonated nonsaccharide heparin mimetics were tested for their inhibitory activity against HNE. Only 12 molecules inhibited HNE with IC50 values of 0.22-88.3 μM. The inhibition of HNE by these molecules was salt-dependent. Interestingly, a specific hexa-sulfonated molecule inhibited HNE with an IC50 value of 0.22 μM via noncompetitive mechanism, as demonstrated by Michaelis-Menten kinetics. The hexa-sulfonated derivative demonstrated at least 455-, 221-, 1590-, 21-, and 381-fold selectivity indices over other heparin-binding coagulation proteins including factors IIa, Xa, IXa, XIa, and FXIIIa, respectively. At the highest concentrations tested, the molecule also did not significantly inhibit other serine proteases of plasmin, trypsin, and chymotrypsin. Further supporting its selectivity, the molecule did not show heparin-like effects on clotting times of human plasma. The molecule also did not affect the proliferation of three cell lines at a concentration as high as 10 μM. Interestingly, the hexa-sulfonated molecule also inhibited cathepsin G with an IC50 value of 0.57 μM alluding to a dual anti-inflammatory action. A computational approach was exploited to identify putative binding site(s) for this novel class of HNE inhibitors. Overall, the reported hexa-sulfonated nonsaccharide heparin mimetic serves as a new platform to develop potent, selective, and noncompetitive inhibitors of HNE for therapeutic purposes.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
- . Tel: (504) 520-7603. Fax: (504) 520-7954
| | - Kholoud F. Aliter
- Department
of Chemistry, School of STEM, Dillard University, New Orleans, Louisiana 70122, United States
| | - Srabani Kar
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | - Madhusoodanan Mottamal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| |
Collapse
|
27
|
Kamal MM, Adel A, Sayed GH, Ragab S, Kassem DH. New emerging roles of the novel hepatokine SERPINB1 in type 2 diabetes mellitus: Crosstalk with β-cell dysfunction and dyslipidemia. Transl Res 2021; 231:1-12. [PMID: 33326860 DOI: 10.1016/j.trsl.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/26/2020] [Accepted: 12/09/2020] [Indexed: 01/10/2023]
Abstract
Diabetes mellitus (DM) is a devastating metabolic disease. Recently, the cross-talk between insulin-secreting-β-cells and various organs has sparked much interest. SerpinB1 emerged as a novel hepatokine inducing β-cell proliferation. However, its role in type-2-DM (T2DM) patients has not been adequately studied. This study was designed to investigate its circulating levels in subjects with/without T2DM, and to study its association with β-cell function, as well as various glycemic-control and lipid-profile parameters. Anthropometric data and biochemical markers including fasting plasma glucose (FPG), HbA1C % and lipid profile parameters were measured in 55 T2DM patients, as well as 30 healthy nondiabetic subjects. Serum serpinB1, insulin and C-peptide levels were measured by ELISA. The homeostasis model assessment of both β-cell function (HOMA2-β%) and insulin resistance (HOMA-IR) were calculated. SerpinB1 levels were found to be significantly lower in T2DM patients 0.7 (0.2-12.4) ng/mL, compared to nondiabetic subjects 1.2 (0.94-24) ng/mL, P < 0.001, regardless of glycemic control, obesity, or insulin resistance. Additionally, serpinB1 levels were found to be positively associated with C-peptide, HOMA2-β% in all subjects; and BMI only in non-DM subjects; while negatively associated with FPG, HbA1C% and lipid-profile parameters. Higher serum serpinB1 levels were found to be associated with lower susceptibility for T2DM. Conclusively, serpinB1 is associated with various aspects of β-cell dysfunction, glycemic-control, and dyslipidemia with a possible role in β-cell compensation in obese nondiabetic subjects. The results of the current study shed lights on potential novel roles of serpinB1 in T2DM besides its action as an inducer for β-cell proliferation.
Collapse
Affiliation(s)
- Mohamed Mostafa Kamal
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Aya Adel
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Ghada Hussein Sayed
- Department of Clinical and Chemical Pathology, National Institute of Diabetes and Endocrinology, Cairo, Egypt
| | - Shadia Ragab
- Department of Clinical and Chemical Pathology, Medical Division, National Research Center, Cairo, Egypt
| | - Dina Hamada Kassem
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
28
|
Treatment with a neutrophil elastase inhibitor and ofloxacin reduces P. aeruginosa burden in a mouse model of chronic suppurative otitis media. NPJ Biofilms Microbiomes 2021; 7:31. [PMID: 33824337 PMCID: PMC8024339 DOI: 10.1038/s41522-021-00200-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic suppurative otitis media (CSOM) is a widespread, debilitating problem with poorly understood immunology. Here, we assess the host response to middle ear infection over the course of a month post-infection in a mouse model of CSOM and in human subjects with the disease. Using multiparameter flow cytometry and a binomial generalized linear machine learning model, we identified Ly6G, a surface marker of mature neutrophils, as the most informative factor of host response driving disease in the CSOM mouse model. Consistent with this, neutrophils were the most abundant cell type in infected mice and Ly6G expression tracked with the course of infection. Moreover, neutrophil-specific immunomodulatory treatment using the neutrophil elastase inhibitor GW 311616A significantly reduces bacterial burden relative to ofloxacin-only treated animals in this model. The levels of dsDNA in middle ear effusion samples are elevated in both humans and mice with CSOM and decreased during treatment, suggesting that dsDNA may serve as a molecular biomarker of treatment response. Together these data strongly implicate neutrophils in the ineffective immune response to P. aeruginosa infection in CSOM and suggest that immunomodulatory strategies may benefit drug-tolerant infections for chronic biofilm-mediated disease.
Collapse
|
29
|
Kayar NA, Üstün K, Gözlü M, Haliloğlu S, Alptekin NÖ. The effects of non-surgical periodontal therapy on neutrophil elastase and elastase alpha-1 proteinase inhibitor levels in GCF in periodontitis patients with or without acute coronary syndrome. Clin Oral Investig 2021; 25:3329-3338. [PMID: 33687554 DOI: 10.1007/s00784-021-03838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Periodontitis may contribute to vascular damage, resulting in the destabilization of atherosclerotic plaque leading to acute coronary syndrome (ACS). In this study, we explored the effect of non-surgical periodontal treatment (NSPT) on cardiovascular blood biomarkers and gingival crevicular fluid (GCF) neutrophil elastase (NE) and α1-proteinase inhibitor (α-1PI) levels in periodontitis (P) participants with and without ACS. MATERIALS AND METHODS Medical and dental examinations were performed to diagnose ACS and periodontitis, respectively. Seventeen patients with diagnosis of ACS and periodontitis were included in this study, as a test group (group ACS). Twenty-six age and sex-matched control patients with periodontitis (group P) were otherwise systemically healthy. Both groups received NSPT. Plasma levels of cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), C-reactive protein (CRP), GCF NE activity, GCF α1-PI levels, and GCF NE/α1-PI rates were measured at baseline, at1st and 3rd months after NSPT. RESULTS GCF NE activity/time (μU/30s) decreased significantly at 3rd month compared to baseline values in the Group P after NSPT. First and 3rd months after NSPT, in the Group P GCF α1-PI activity/time (pg/30s) was significantly higher than the Group ACS. Moreover GCF NE/α1-PI rates decreased significantly compared to baseline values at 1st and 3rd months after NSPT in the group P. CONCLUSION NSPT yields decrease in NE/α1-PI rates. NE and its possible interactions with α1-PI may play a crucial role in both periodontitis and ACS. GCF α1PI activity/time (U/30s) can be a potential biomarker in management of periodontitis associated with ACS. CLINICAL RELEVANCE The GCF α1-PI reduction may alter the immune-inflammatory response in patients with periodontitis and thus increase the risk of ACS. TRIAL REGISTRATION Thai Clinical Trials.gov (NCT04785235).
Collapse
Affiliation(s)
- Nezahat Arzu Kayar
- Department of Periodontology, Akdeniz University Faculty of Dentistry, 07058, Antalya, Turkey.
| | - Kemal Üstün
- Department of Periodontology, Akdeniz University Faculty of Dentistry, 07058, Antalya, Turkey
| | - Muammer Gözlü
- Department of Periodontology, Selcuk University Faculty of Dentistry, Konya, Turkey.,Dentesthetic Oral and Dental Clinic, Konya, Turkey
| | - Seyfullah Haliloğlu
- Department of Biochemistry, Selcuk University Faculty of Veterinary Medicine, Konya, Turkey
| | - Nilgün Özlem Alptekin
- Department of Periodontology, Baskent University Faculty of Dentistry, 06790, Ankara, Turkey
| |
Collapse
|
30
|
Jia J, Wang M, Ma Y, Teng J, Shi H, Liu H, Sun Y, Su Y, Meng J, Chi H, Chen X, Cheng X, Ye J, Liu T, Wang Z, Wan L, Zhou Z, Wang F, Yang C, Hu Q. Circulating Neutrophil Extracellular Traps Signature for Identifying Organ Involvement and Response to Glucocorticoid in Adult-Onset Still's Disease: A Machine Learning Study. Front Immunol 2020; 11:563335. [PMID: 33240258 PMCID: PMC7680913 DOI: 10.3389/fimmu.2020.563335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Adult-onset Still’s disease (AOSD) is an autoinflammatory disease with multisystem involvement. Early identification of patients with severe complications and those refractory to glucocorticoid is crucial to improve therapeutic strategy in AOSD. Exaggerated neutrophil activation and enhanced formation of neutrophil extracellular traps (NETs) in patients with AOSD were found to be closely associated with etiopathogenesis. In this study, we aim to investigate, to our knowledge for the first time, the clinical value of circulating NETs by machine learning to distinguish AOSD patients with organ involvement and refractory to glucocorticoid. Plasma samples were used to measure cell-free DNA, NE-DNA, MPO-DNA, and citH3-DNA complexes from training and validation sets. The training set included 40 AOSD patients and 24 healthy controls (HCs), and the validation set included 26 AOSD patients and 16 HCs. Support vector machines (SVM) were used for modeling and validation of circulating NETs signature for the diagnosis of AOSD and identifying patients refractory to low-dose glucocorticoid treatment. The training set was used to build a model, and the validation set was used to test the predictive capacity of the model. A total of four circulating NETs showed similar trends in different individuals and could distinguish patients with AOSD from HCs by SVM (AUC value: 0.88). Circulating NETs in plasma were closely correlated with systemic score, laboratory tests, and cytokines. Moreover, circulating NETs had the potential to distinguish patients with liver and cardiopulmonary system involvement. Furthermore, the AUC value of combined NETs to identify patients who were refractory to low-dose glucocorticoid was 0.917. In conclusion, circulating NETs signature provide added clinical value in monitoring AOSD patients. It may provide evidence to predict who is prone to be refractory to low-dose glucocorticoid and help to make efficient therapeutic strategy.
Collapse
Affiliation(s)
- Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuning Ma
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfen Meng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Rheumatology and Immunology, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Huihui Chi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Chen
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyan Wan
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuochao Zhou
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
da Silva RF, Baptista D, Roth A, Miteva K, Burger F, Vuilleumier N, Carbone F, Montecucco F, Mach F, J. Brandt K. Anti-Apolipoprotein A-1 IgG Influences Neutrophil Extracellular Trap Content at Distinct Regions of Human Carotid Plaques. Int J Mol Sci 2020; 21:ijms21207721. [PMID: 33086507 PMCID: PMC7588926 DOI: 10.3390/ijms21207721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neutrophils accumulate in atherosclerotic plaques. Neutrophil extracellular traps (NET) were recently identified in experimental atherosclerosis and in complex human lesions. However, not much is known about the NET marker citrullinated histone-3 (H3Cit) expression and functionality in human carotid plaques. Moreover, the association between the proatherosclerotic autoantibody anti-apolipoprotein A-1 (anti-ApoA-1 IgG) and NET has never been investigated. METHODS Atherosclerotic plaques have been obtained from 36 patients with severe carotid stenosis that underwent carotid endarterectomy for severe carotid stenosis. Samples were sectioned into upstream and downstream regions from the same artery segment. Plaque composition and expression of NET markers neutrophil elastase (NE) and H3Cit were quantified by immunohistochemistry. H3Cit expression and function was evaluated by immunofluorescence and confocal analysis in a subset of patients. RESULTS Pathological features of vulnerable phenotypes were exacerbated in plaques developed at downstream regions, including higher accumulation of neutrophils and enhanced expression of NE and H3Cit, as compared to plaques from upstream regions. The H3Cit signal was also more intense in downstream regions, with significant extracellular distribution in spaces outside of neutrophils. The percentage of H3Cit colocalization with CD66b (neutrophils) was markedly lower in downstream portions of carotid plaques, confirming the extrusion of NET in this region. In agreement, the maximum distance of the H3Cit signal from neutrophils, extrapolated from vortex distance calculation in all possible directions, was also higher in downstream plaques. The serum anti-ApoA-1index positively correlated with the expression of H3Cit in downstream segments of plaques. Expression of the H3Cit signal outside of neutrophils and H3Cit maximal distance from CD66b-positive cells increased in plaques from serum positive anti-ApoA-1 patients compared with serum negative patients. CONCLUSION NET elements are differentially expressed in upstream versus downstream regions of human carotid plaques and may be influenced by circulating levels of anti-ApoA-1 IgG. These findings could warrant the investigation of NET elements as potential markers of vulnerability.
Collapse
Affiliation(s)
- Rafaela F. da Silva
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Daniela Baptista
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Kapka Miteva
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Fabienne Burger
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Nicolas Vuilleumier
- Department of Diagnostics, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland;
- Department of Medical Specialities, Division of Laboratory Medicine, Faculty of Medicine, 1211 Geneva, Switzerland
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, viale Benedetto XV n6, 16132 Genoa, Italy; (F.C.); (F.M.)
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Largo Rosanna Benzi n10, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, viale Benedetto XV n6, 16132 Genoa, Italy; (F.C.); (F.M.)
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Largo Rosanna Benzi n10, 16132 Genoa, Italy
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Karim J. Brandt
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
- Correspondence: ; Tel.: +41-2237-94-647
| |
Collapse
|
32
|
Crocetti L, Giovannoni MP, Cantini N, Guerrini G, Vergelli C, Schepetkin IA, Khlebnikov AI, Quinn MT. Novel Sulfonamide Analogs of Sivelestat as Potent Human Neutrophil Elastase Inhibitors. Front Chem 2020; 8:795. [PMID: 33033716 PMCID: PMC7491426 DOI: 10.3389/fchem.2020.00795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Human neutrophil elastase (HNE) is involved in a number of essential physiological processes and has been identified as a potential therapeutic target for treating acute and chronic lung injury. Nevertheless, only one drug, Sivelestat, has been approved for clinical use and just in Japan and the Republic of Korea. Thus, there is an urgent need for the development of low-molecular-weight synthetic HNE inhibitors, and we have developed a wide variety of HNE inhibitors with various chemical scaffolds. We hypothesized that substitution of the active fragment of Sivelestat into these HNE inhibitor scaffolds could modulate their inhibitory activity, potentially resulting in higher efficacy and/or improved chemical stability. Here, we report the synthesis, biological evaluation, and molecular modeling studies of novel compounds substituted with the 4-(sulfamoyl)phenyl pivalate fragment necessary for Sivelestat activity. Many of these compounds were potent HNE inhibitors with activity in the nanomolar range (IC50 = 19-30 nM for compounds 3a, 3b, 3f, 3g, and 9a), confirming that the 4-(sulfamoyl)phenyl pivalate fragment could substitute for the N-CO group at position 1 and offer a different point of attack for Ser195. Results of molecular docking of the these pivaloyl-containing compounds into the HNE binding site supported the mechanism of inhibitory activity involving a nucleophilic attack of Ser195 from the catalytic triad onto the pivaloyl carbonyl group. Furthermore, some compounds (e.g., 3a and 3f) had a relatively good stability in aqueous buffer (t1/2 > 9 h). Thus, this novel approach led to the identification of a number of potent HNE inhibitors that could be used as leads for the further development of new therapeutics.
Collapse
Affiliation(s)
- Letizia Crocetti
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Maria Paola Giovannoni
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Niccolò Cantini
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Gabriella Guerrini
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudia Vergelli
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Igor A. Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | | | - Mark T. Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
33
|
Aguilar-Ballester M, Herrero-Cervera A, Vinué Á, Martínez-Hervás S, González-Navarro H. Impact of Cholesterol Metabolism in Immune Cell Function and Atherosclerosis. Nutrients 2020; 12:nu12072021. [PMID: 32645995 PMCID: PMC7400846 DOI: 10.3390/nu12072021] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Cholesterol, the most important sterol in mammals, helps maintain plasma membrane fluidity and is a precursor of bile acids, oxysterols, and steroid hormones. Cholesterol in the body is obtained from the diet or can be de novo synthetized. Cholesterol homeostasis is mainly regulated by the liver, where cholesterol is packed in lipoproteins for transport through a tightly regulated process. Changes in circulating lipoprotein cholesterol levels lead to atherosclerosis development, which is initiated by an accumulation of modified lipoproteins in the subendothelial space; this induces significant changes in immune cell differentiation and function. Beyond lesions, cholesterol levels also play important roles in immune cells such as monocyte priming, neutrophil activation, hematopoietic stem cell mobilization, and enhanced T cell production. In addition, changes in cholesterol intracellular metabolic enzymes or transporters in immune cells affect their signaling and phenotype differentiation, which can impact on atherosclerosis development. In this review, we describe the main regulatory pathways and mechanisms of cholesterol metabolism and how these affect immune cell generation, proliferation, activation, and signaling in the context of atherosclerosis.
Collapse
Affiliation(s)
- María Aguilar-Ballester
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Andrea Herrero-Cervera
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Ángela Vinué
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Sergio Martínez-Hervás
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
- Endocrinology and Nutrition Department Clinic Hospital and Department of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Herminia González-Navarro
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Didactics of Experimental and Social Sciences, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963864403; Fax: +34-963987860
| |
Collapse
|
34
|
Crocetti L, Quinn MT, Schepetkin IA, Giovannoni MP. A patenting perspective on human neutrophil elastase (HNE) inhibitors (2014-2018) and their therapeutic applications. Expert Opin Ther Pat 2019; 29:555-578. [PMID: 31204543 PMCID: PMC9642779 DOI: 10.1080/13543776.2019.1630379] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Human neutrophil elastase (HNE) is involved in a variety of serious chronic diseases, especially cardiopulmonary pathologies. For this reason, the regulation of HNE activity represents a promising therapeutic approach, which is evident by the development of a number of new and selective HNE inhibitors, both in the academic and pharmaceutical environments. AREAS COVERED The present review analyzes and summarizes the patent literature regarding human neutrophil elastase inhibitors for the treatment of cardiopulmonary diseases over 2014-2018. EXPERT OPINION HNE is an interesting and defined target to treat various inflammatory diseases, including a number of cardiopulmonary pathologies. The research in this field is quite active, and a number of HNE inhibitors are currently in various stages of clinical development. In addition, new opportunities for HNE inhibitor development stem from recent studies demonstrating the involvement of HNE in many other inflammatory pathologies, including rheumatoid arthritis, inflammatory bowel disease, skin diseases, and cancer. Furthermore, the development of dual HNE/proteinase 3 inhibitors is being pursued as an innovative approach for the treatment of neutrophilic inflammatory diseases. Thus, these new developments will likely stimulate new and increased interest in this important therapeutic target and for the development of novel and selective HNE inhibitors.
Collapse
Affiliation(s)
- L Crocetti
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - MT Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - IA Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - MP Giovannoni
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
35
|
Volobueva A, Zhang D, Grechko AV, Orekhov AN. Foam cell formation and cholesterol trafficking and metabolism disturbances in atherosclerosis. COR ET VASA 2019. [DOI: 10.1016/j.crvasa.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Bagley J, Williams L, Hyde M, Birriel CR, Iacomini J. Hyperlipidemia and Allograft Rejection. CURRENT TRANSPLANTATION REPORTS 2019; 6:90-98. [PMID: 31934529 DOI: 10.1007/s40472-019-0232-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose of review Advances in the development of immunosuppressive drug regimens have led to impressive survival rates in the year following organ transplantation. However rates of long-term graft dysfunction remain undesirably high. Recently it has been shown that co-morbidities in the patient population may affect graft survival. In mouse models, hyperlipidemia, a co-morbidity present in the majority of cardiac transplant patients, can significantly alter T cell responses to cardiac and skin allografts, and accelerate graft rejection. Here we review recent advances in our understanding of how alterations in lipids affect immune function and graft survival. Recent Findings Recent work in humans has highlighted the importance of controlling low density lipoprotein (LDL) levels in transplant recipients to reduce the development of chronic allograft vasculopathy (CAV). High serum levels of cholesterol containing particles leads to extensive immune system changes to T cell proliferation, differentiation and suppression. Changes in B cell subsets, and the ability of antigen presenting cells to stimulate T cells in hyperlipidemic animals may also contribute to increased organ allograft rejection. Summary Cholesterol metabolism is a critical cellular pathway for proper control of immune cell homeostasis and activation. Increasing evidence in both human, and in mouse models shows that elevated levels of serum cholesterol can have profound impact on the immune system. Hyperlipidemia has been shown to increase T cell activation, alter the development of T helper subsets, increase the inflammatory capacity of antigen presenting cells (APC) and significantly accelerate graft rejection in several models.
Collapse
Affiliation(s)
- Jessamyn Bagley
- Tufts University School of Medicine, Department of Immunology, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, MA 02111 USA
| | - Linus Williams
- Tufts University School of Medicine, Department of Immunology, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, MA 02111 USA
| | - Michael Hyde
- Tufts University School of Medicine, Department of Immunology, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, MA 02111 USA
| | - Christian Rosa Birriel
- Tufts University School of Medicine, Department of Immunology, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, MA 02111 USA
| | - John Iacomini
- Tufts University School of Medicine, Department of Immunology, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, MA 02111 USA
| |
Collapse
|
37
|
Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol 2018; 112:54-71. [PMID: 30115528 DOI: 10.1016/j.vph.2018.08.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022]
Abstract
During atherosclerosis, the gradual accumulation of lipids into the subendothelial space of damaged arteries results in several lipid modification processes followed by macrophage uptake in the arterial wall. The way in which these modified lipoproteins are dealt with determines the likelihood of cholesterol accumulation within the monocyte-derived macrophage and thus its transformation into the foam cell that makes up the characteristic fatty streak observed in the early stages of atherosclerosis. The unique expression of chemokine receptors and cellular adhesion molecules expressed on the cell surface of monocytes points to a particular extravasation route that they can take to gain entry into atherosclerotic site, in order to undergo differentiation into the phagocytic macrophage. Indeed several GWAS and animal studies have identified key genes and proteins required for monocyte recruitment as well cholesterol handling involving lipid uptake, cholesterol esterification and cholesterol efflux. A re-examination of the previously accepted paradigm of macrophage foam cell origin has been called into question by recent studies demonstrating shared expression of scavenger receptors, cholesterol transporters and pro-inflammatory cytokine release by alternative cell types present in the neointima, namely; endothelial cells, vascular smooth muscle cells and stem/progenitor cells. Thus, therapeutic targets aimed at a more heterogeneous foam cell population with shared functions, such as enhanced protease activity, and signalling pathways, mediated by non-coding RNA molecules, may provide greater therapeutic outcome in patients. Finally, studies targeting each aspect of foam cell formation and death using both genetic knock down and pharmacological inhibition have provided researchers with a clearer understanding of the cellular processes at play, as well as helped researchers to identify key molecular targets, which may hold significant therapeutic potential in the future.
Collapse
Affiliation(s)
- Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Stuart W A Pearce
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
38
|
Liu Y, Carmona-Rivera C, Moore E, Seto NL, Knight JS, Pryor M, Yang ZH, Hemmers S, Remaley AT, Mowen KA, Kaplan MJ. Myeloid-Specific Deletion of Peptidylarginine Deiminase 4 Mitigates Atherosclerosis. Front Immunol 2018; 9:1680. [PMID: 30140264 PMCID: PMC6094966 DOI: 10.3389/fimmu.2018.01680] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence suggests that neutrophil extracellular traps (NETs) may play a role in promoting atherosclerotic plaque lesions in humans and in murine models. The exact pathways involved in NET-driven atherogenesis remain to be systematically characterized. To assess the extent to which myeloid-specific peptidylarginine deiminase 4 (PAD4) and PAD4-dependent NET formation contribute to atherosclerosis, mice with myeloid-specific deletion of PAD4 were generated and backcrossed to Apoe-/- mice. The kinetics of atherosclerosis development were determined. NETs, but not macrophage extracellular traps, were present in atherosclerotic lesions as early as 3 weeks after initiating high-fat chow. The presence of NETs was associated with the development of atherosclerosis and with inflammatory responses in the aorta. Specific deletion of PAD4 in the myeloid lineage significantly reduced atherosclerosis burden in association with diminished NET formation and reduced inflammatory responses in the aorta. NETs stimulated macrophages to synthesize inflammatory mediators, including IL-1β, CCL2, CXCL1, and CXCL2. Our data support the notion that NETs promote atherosclerosis and that the use of specific PAD4 inhibitors may have therapeutic benefits in this potentially devastating condition.
Collapse
Affiliation(s)
- Yudong Liu
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Erica Moore
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nickie L Seto
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Milton Pryor
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, United States
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, United States
| | - Saskia Hemmers
- The Scripps Research Institute, La Jolla, CA, United States
| | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, United States
| | - Kerri A Mowen
- The Scripps Research Institute, La Jolla, CA, United States
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|