1
|
Zhang J, Zhao D, Zang Z, Ruan Z, Fu Q, Zhang K. miR-200a-3p-enriched MSC-derived extracellular vesicles reverse erectile function in diabetic rats by targeting Keap1. Biomed Pharmacother 2024; 177:116964. [PMID: 38959607 DOI: 10.1016/j.biopha.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The administration of mesenchymal stem cells (MSCs) through intracavernous injection is a potential therapeutic approach for managing diabetes mellitus-induced erectile dysfunction (DMED). However, pulmonary embolism and tumorigenicity are fatal adverse events that limit the clinical application of MSCs. In this study, we examined the therapeutic efficacy and potential mechanism of MSC-derived extracellular vesicles (MSC-EVs). METHODS In this study, forty 8-week-old male SpragueDawley (SD) rats were utilised. In the control group, ten rats were administered an intraperitoneal injection of PBS. STZ (60 mg/kg) was intraperitoneally injected into the remaining rats to establish a diabetes mellitus (DM) model. Afterwards, the diabetic rats were divided into three groups at random: the DM group (intracavernosal injection of PBS), the EVs group (intracavernosal injection of MSC-EVs), and the EVs-200a group (intracavernosal injection of miR-200a-3p-enriched extracellular vesicles). Erectile function was determined by measuring intracavernous pressure in real time and utilising electrical stimulation of the cavernous nerves. The smooth muscle content was evaluated through the investigation of penile tissue using immunofluorescence staining, Masson's trichrome staining, and western blotting after euthanasia. Superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) levels in the corpus cavernosum were measured via ELISA. In vitro, hydrogen peroxide (H2O2) was used to induce oxidative stress. The viability of corpus cavernosum smooth muscle cells (ccSMCs) incubated with or without H2O2 was measured using a CCK8 assay. Flow cytometry was used to assess the levels of reactive oxygen species (ROS) and apoptosis in ccSMCs. Furthermore, a dual-luciferase reporter assay was performed to validate the relationship between miR-200a-3p and Keap1. RESULTS Reversal of erectile function was observed in the EVs groups, especially in the EVs-200a group. DM increased the MDA level and decreased the SOD and GSH levels. In the DM group, the expression of alpha-smooth muscle actin (α-SMA) and smooth muscle 22 alpha (SM22α) was decreased, and the expression of osteopontin (OPN) was increased. Western blotting revealed decreased Nrf2, HO-1, and Bcl2 expression and increased Keap1, Bax and cleaved caspase3 expression in the cavernous tissue. miR-200a-3p-enriched extracellular vesicles (EVs-200a) reversed these changes and inhibited the loss of smooth muscle content and cavernous fibrosis. In vitro, H2O2 induced high ROS levels in ccSMCs and increased apoptosis, and these effects reversed by EVs-200a. H2O2 reduced Nrf2, HO-1, and Bcl2 expression and increased Keap1, Bax and cleaved caspase-3 expression, and these effects were reversed by MSC-EVs, especially EVs-200a. The of dual-luciferase reporter assay results indicated that miR-200a-3p directly targeted Keap1 in a negative manner. CONCLUSION MSC-EVs, especially EVs-200a, alleviated erectile dysfunction in diabetic rats through the regulation of phenotypic switching, apoptosis and fibrosis. Mechanistically, miR-200a-3p targeted the Keap1/Nrf2 pathway to attenuate oxidative stress in diabetic rats.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Danfeng Zhao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250199, China
| | - Zhenjie Zang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zheng Ruan
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China; Department of Urology, Tai'an City Central Hospital, Tai'an 271099, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250199, China; Key Laboratory of Urinary Diseases in Universities of Shandong, Shandong First Medical University, Jinan 250021, China.
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
2
|
Xu S, Han X, Wang X, Yu Y, Qu C, Liu X, Yang B. The role of oxidative stress in aortic dissection: a potential therapeutic target. Front Cardiovasc Med 2024; 11:1410477. [PMID: 39070552 PMCID: PMC11272543 DOI: 10.3389/fcvm.2024.1410477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The incidence of aortic dissection (AD) is steadily increasing, driven by the rising prevalence of chronic conditions such as hypertension and the global aging of the population. Oxidative stress emerges as a pivotal pathophysiological mechanism contributing to the progression of AD. Oxidative stress triggers apoptosis in vascular smooth muscle cells, reshapes the extracellular matrix (ECM), and governs ECM degradation and remodeling, subsequently impacting aortic compliance. Furthermore, oxidative stress not only facilitates the infiltration of macrophages and mononuclear lymphocytes but also disrupts the integral structure and functionality of endothelial cells, thereby inducing endothelial cell dysfunction and furthering the degeneration of the middle layer of the aortic wall. Investigating antioxidants holds promise as a therapeutic avenue for addressing AD.
Collapse
Affiliation(s)
- Shengnan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xueyu Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xiukun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Paredes F, Williams HC, Liu X, Holden C, Bogan B, Wang Y, Crotty KM, Yeligar SM, Elorza AA, Lin Z, Rezvan A, San Martin A. The mitochondrial protease ClpP is a druggable target that controls VSMC phenotype by a SIRT1-dependent mechanism. Redox Biol 2024; 73:103203. [PMID: 38823208 PMCID: PMC11169483 DOI: 10.1016/j.redox.2024.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs), known for their remarkable lifelong phenotypic plasticity, play a pivotal role in vascular pathologies through their ability to transition between different phenotypes. Our group discovered that the deficiency of the mitochondrial protein Poldip2 induces VSMC differentiation both in vivo and in vitro. Further comprehensive biochemical investigations revealed Poldip2's specific interaction with the mitochondrial ATPase caseinolytic protease chaperone subunit X (CLPX), which is the regulatory subunit for the caseinolytic protease proteolytic subunit (ClpP) that forms part of the ClpXP complex - a proteasome-like protease evolutionarily conserved from bacteria to humans. This interaction limits the protease's activity, and reduced Poldip2 levels lead to ClpXP complex activation. This finding prompted the hypothesis that ClpXP complex activity within the mitochondria may regulate the VSMC phenotype. Employing gain-of-function and loss-of-function strategies, we demonstrated that ClpXP activity significantly influences the VSMC phenotype. Notably, both genetic and pharmacological activation of ClpXP inhibits VSMC plasticity and fosters a quiescent, differentiated, and anti-inflammatory VSMC phenotype. The pharmacological activation of ClpP using TIC10, currently in phase III clinical trials for cancer, successfully replicates this phenotype both in vitro and in vivo and markedly reduces aneurysm development in a mouse model of elastase-induced aortic aneurysms. Our mechanistic exploration indicates that ClpP activation regulates the VSMC phenotype by modifying the cellular NAD+/NADH ratio and activating Sirtuin 1. Our findings reveal the crucial role of mitochondrial proteostasis in the regulation of the VSMC phenotype and propose the ClpP protease as a novel, actionable target for manipulating the VSMC phenotype.
Collapse
Affiliation(s)
- Felipe Paredes
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Holly C Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Xuesong Liu
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States; Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Claire Holden
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Bethany Bogan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Yu Wang
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States; Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States; Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Zhiyong Lin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Amir Rezvan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
4
|
Mohammed KAK, Madeddu P, Avolio E. MEK inhibitors: a promising targeted therapy for cardiovascular disease. Front Cardiovasc Med 2024; 11:1404253. [PMID: 39011492 PMCID: PMC11247000 DOI: 10.3389/fcvm.2024.1404253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular disease (CVD) represents the leading cause of mortality and disability all over the world. Identifying new targeted therapeutic approaches has become a priority of biomedical research to improve patient outcomes and quality of life. The RAS-RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway is gaining growing interest as a potential signaling cascade implicated in the pathogenesis of CVD. This pathway is pivotal in regulating cellular processes like proliferation, growth, migration, differentiation, and survival, which are vital in maintaining cardiovascular homeostasis. In addition, ERK signaling is involved in controlling angiogenesis, vascular tone, myocardial contractility, and oxidative stress. Dysregulation of this signaling cascade has been linked to cell dysfunction and vascular and cardiac pathological remodeling, which contribute to the onset and progression of CVD. Recent and ongoing research has provided insights into potential therapeutic interventions targeting the RAS-RAF-MEK-ERK pathway to improve cardiovascular pathologies. Preclinical studies have demonstrated the efficacy of targeted therapy with MEK inhibitors (MEKI) in attenuating ERK activation and mitigating CVD progression in animal models. In this article, we first describe how ERK signaling contributes to preserving cardiovascular health. We then summarize current knowledge of the roles played by ERK in the development and progression of cardiac and vascular disorders, including atherosclerosis, myocardial infarction, cardiac hypertrophy, heart failure, and aortic aneurysm. We finally report novel therapeutic strategies for these CVDs encompassing MEKI and discuss advantages, challenges, and future developments for MEKI therapeutics.
Collapse
Affiliation(s)
- Khaled A K Mohammed
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paolo Madeddu
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
5
|
Quinn M, Zhang RYK, Bello I, Rye KA, Thomas SR. Myeloperoxidase as a Promising Therapeutic Target after Myocardial Infarction. Antioxidants (Basel) 2024; 13:788. [PMID: 39061857 PMCID: PMC11274265 DOI: 10.3390/antiox13070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coronary artery disease (CAD) and myocardial infarction (MI) remain leading causes of death and disability worldwide. CAD begins with the formation of atherosclerotic plaques within the intimal layer of the coronary arteries, a process driven by persistent arterial inflammation and oxidation. Myeloperoxidase (MPO), a mammalian haem peroxidase enzyme primarily expressed within neutrophils and monocytes, has been increasingly recognised as a key pro-inflammatory and oxidative enzyme promoting the development of vulnerable coronary atherosclerotic plaques that are prone to rupture, and can precipitate a MI. Mounting evidence also implicates a pathogenic role for MPO in the inflammatory process that follows a MI, which is characterised by the rapid infiltration of activated neutrophils into the damaged myocardium and the release of MPO. Excessive and persistent cardiac inflammation impairs normal cardiac healing post-MI, resulting in adverse cardiac outcomes and poorer long-term cardiac function, and eventually heart failure. This review summarises the evidence for MPO as a significant oxidative enzyme contributing to the inappropriate inflammatory responses driving the progression of CAD and poor cardiac healing after a MI. It also details the proposed mechanisms underlying MPO's pathogenic actions and explores MPO as a novel therapeutic target for the treatment of unstable CAD and cardiac damage post-MI.
Collapse
Affiliation(s)
| | | | | | | | - Shane R. Thomas
- Cardiometabolic Disease Research Group, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Yu ZP, Wang YK, Wang XY, Gong LN, Tan HL, Jiang MX, Wang LF, Yu GH, Deng KY, Xin HB. Smooth-Muscle-Cell-Specific Deletion of CD38 Protects Mice from AngII-Induced Abdominal Aortic Aneurysm through Inhibiting Vascular Remodeling. Int J Mol Sci 2024; 25:4356. [PMID: 38673941 PMCID: PMC11049988 DOI: 10.3390/ijms25084356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.
Collapse
MESH Headings
- Animals
- Male
- Mice
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/genetics
- Angiotensin II
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Disease Models, Animal
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
- Signal Transduction
- Vascular Remodeling/genetics
Collapse
Affiliation(s)
- Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yi-Kai Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Li-Na Gong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Mei-Xiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Ling-Fang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Guan-Hui Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| |
Collapse
|
7
|
Domagała D, Data K, Szyller H, Farzaneh M, Mozdziak P, Woźniak S, Zabel M, Dzięgiel P, Kempisty B. Cellular, Molecular and Clinical Aspects of Aortic Aneurysm-Vascular Physiology and Pathophysiology. Cells 2024; 13:274. [PMID: 38334666 PMCID: PMC10854611 DOI: 10.3390/cells13030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
A disturbance of the structure of the aortic wall results in the formation of aortic aneurysm, which is characterized by a significant bulge on the vessel surface that may have consequences, such as distention and finally rupture. Abdominal aortic aneurysm (AAA) is a major pathological condition because it affects approximately 8% of elderly men and 1.5% of elderly women. The pathogenesis of AAA involves multiple interlocking mechanisms, including inflammation, immune cell activation, protein degradation and cellular malalignments. The expression of inflammatory factors, such as cytokines and chemokines, induce the infiltration of inflammatory cells into the wall of the aorta, including macrophages, natural killer cells (NK cells) and T and B lymphocytes. Protein degradation occurs with a high expression not only of matrix metalloproteinases (MMPs) but also of neutrophil gelatinase-associated lipocalin (NGAL), interferon gamma (IFN-γ) and chymases. The loss of extracellular matrix (ECM) due to cell apoptosis and phenotype switching reduces tissue density and may contribute to AAA. It is important to consider the key mechanisms of initiating and promoting AAA to achieve better preventative and therapeutic outcomes.
Collapse
Affiliation(s)
- Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Hubert Szyller
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Institute of Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
8
|
Paumann-Page M, Obinger C, Winterbourn CC, Furtmüller PG. Peroxidasin Inhibition by Phloroglucinol and Other Peroxidase Inhibitors. Antioxidants (Basel) 2023; 13:23. [PMID: 38275643 PMCID: PMC10812467 DOI: 10.3390/antiox13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Human peroxidasin (PXDN) is a ubiquitous peroxidase enzyme expressed in most tissues in the body. PXDN represents an interesting therapeutic target for inhibition, as it plays a role in numerous pathologies, including cardiovascular disease, cancer and fibrosis. Like other peroxidases, PXDN generates hypohalous acids and free radical species, thereby facilitating oxidative modifications of numerous biomolecules. We have studied the inhibition of PXDN halogenation and peroxidase activity by phloroglucinol and 14 other peroxidase inhibitors. Although a number of compounds on their own potently inhibited PXDN halogenation activity, only five were effective in the presence of a peroxidase substrate with IC50 values in the low μM range. Using sequential stopped-flow spectrophotometry, we examined the mechanisms of inhibition for several compounds. Phloroglucinol was the most potent inhibitor with a nanomolar IC50 for purified PXDN and IC50 values of 0.95 μM and 1.6 μM for the inhibition of hypobromous acid (HOBr)-mediated collagen IV cross-linking in a decellularized extracellular matrix and a cell culture model. Other compounds were less effective in these models. Most interestingly, phloroglucinol was identified to irreversibly inhibit PXDN, either by mechanism-based inhibition or tight binding. Our work has highlighted phloroglucinol as a promising lead compound for the design of highly specific PXDN inhibitors and the assays used in this study provide a suitable approach for high-throughput screening of PXDN inhibitors.
Collapse
Affiliation(s)
- Martina Paumann-Page
- Mātai Hāora Centre for Redox Biology and Medicine, University of Otago Christchurch, Ōtautahi Christchurch 8011, New Zealand;
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria;
| | - Christian Obinger
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria;
| | - Christine C. Winterbourn
- Mātai Hāora Centre for Redox Biology and Medicine, University of Otago Christchurch, Ōtautahi Christchurch 8011, New Zealand;
| | - Paul G. Furtmüller
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria;
| |
Collapse
|
9
|
Wyllie K, Panagopoulos V, Cox TR. The role of peroxidasin in solid cancer progression. Biochem Soc Trans 2023; 51:1881-1895. [PMID: 37801286 PMCID: PMC10657184 DOI: 10.1042/bst20230018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Peroxidasin is a heme-containing peroxidase enzyme that plays a vital role in the cross-linking of collagen IV molecules in basement membranes. Collagen IV cross-links are essential for providing structure and mechanical stability throughout tissue development, homeostasis, and wound healing. During cancer progression, the basement membrane is degraded, and proteins typically found in the basement membrane, including peroxidasin and collagen IV, can be found spread throughout the tumour microenvironment where they interact with cancer cells and alter cell behaviour. Whilst peroxidasin is reported to be up-regulated in a number of different cancers, the role that it plays in disease progression and metastasis has only recently begun to be studied. This review highlights the current literature exploring the known roles of peroxidasin in normal tissues and cancer progression, regulators of peroxidasin expression, and the reported relationships between peroxidasin expression and patient outcome in cancer.
Collapse
Affiliation(s)
- Kaitlin Wyllie
- Matrix & Metastasis Lab, The Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Ecosystems Program, Sydney, NSW 2010, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Thomas R. Cox
- Matrix & Metastasis Lab, The Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Ecosystems Program, Sydney, NSW 2010, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Xie J, Tang Z, Chen Q, Jia X, Li C, Jin M, Wei G, Zheng H, Li X, Chen Y, Liao W, Liao Y, Bin J, Huang S. Clearance of Stress-Induced Premature Senescent Cells Alleviates the Formation of Abdominal Aortic Aneurysms. Aging Dis 2023; 14:1778-1798. [PMID: 37196124 PMCID: PMC10529745 DOI: 10.14336/ad.2023.0215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/15/2023] [Indexed: 05/19/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a multifactorial disease characterized by various pathophysiological processes, including chronic inflammation, oxidative stress, and proteolytic activity in the aortic wall. Stress-induced premature senescence (SIPS) has been implicated in regulating these pathophysiological processes, but whether SIPS contributes to AAA formation remains unknown. Here, we detected SIPS in AAA from patients and young mice. The senolytic agent ABT263 prevented AAA development by inhibiting SIPS. Additionally, SIPS promoted the transformation of vascular smooth muscle cells (VSMCs) from a contractile phenotype to a synthetic phenotype, whereas inhibition of SIPS by the senolytic drug ABT263 suppressed VSMC phenotypic switching. RNA sequencing and single-cell RNA sequencing analysis revealed that fibroblast growth factor 9 (FGF9), secreted by stress-induced premature senescent VSMCs, was a key regulator of VSMC phenotypic switching and that FGF9 knockdown abolished this effect. We further showed that the FGF9 level was critical for the activation of PDGFRβ/ERK1/2 signaling, facilitating VSMC phenotypic change. Taken together, our findings demonstrated that SIPS is critical for VSMC phenotypic switching through the activation of FGF9/PDGFRβ/ERK1/2 signaling, promoting AAA development and progression. Thus, targeting SIPS with the senolytic agent ABT263 may be a valuable therapeutic strategy for the prevention or treatment of AAA.
Collapse
Affiliation(s)
- Jingfang Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Zhenquan Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Qiqi Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Xiaoqian Jia
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Ming Jin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| |
Collapse
|
11
|
Higashikuni Y, Liu W, Sata M. Not a small frog in a big pond: targeting bradykinin receptor B2 signaling in vascular smooth muscle cells for treatment of hypertension. Hypertens Res 2023; 46:2415-2418. [PMID: 37507534 DOI: 10.1038/s41440-023-01385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Yasutomi Higashikuni
- Department of Cardiovascular Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Wenhao Liu
- Department of Cardiovascular Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan
| |
Collapse
|
12
|
Tian Y, Li X, Bai C, Yang Z, Zhang L, Luo J, Zhang W. lncRNA MIR503HG Targets miR-191-5p/PLCD1 Axis and Negatively Modulates Apoptosis, Extracellular Matrix Disruption, and Inflammation in Abdominal Aortic Aneurysm. Mediators Inflamm 2023; 2023:4003618. [PMID: 37228901 PMCID: PMC10205412 DOI: 10.1155/2023/4003618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/09/2022] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
As the most prevalent subtype of aortic aneurysm, abdominal aortic aneurysm (AAA) features the apoptosis, extracellular matrix (ECM) disruption, and inflammation response of vascular smooth muscle cells (VSMCs). Noncoding RNAs (ncRNAs) are crucial factors in AAA progression, while the investigations have not been fully explained. miR-191-5p upregulation is found in aortic aneurysm. However, its role in AAA has not been addressed. This research purposed to excavate the possible and associated molecular axis of miR-191-5p in AAA. In our study, miR-191-5p level was detected to be high in the tissues from AAA patients in comparison with the control group. After miR-191-5p expression was enhanced, cell viability was repressed, cell apoptosis was boosted, and ECM disruption and the inflammation response were fortified. Furthermore, the relationship among MIR503HG, miR-191-5p, and phospholipase C delta 1 (PLCD1) in VSMCs was disclosed via mechanism assays. Decreased MIR503HG lacked the inhibition on miR-191-5p targeting PLCD1, resulting in downregulation of PLCD1, which facilitated the progression of AAA. Thus, targeting MIR503HG/miR-191-5p/PLCD1 pathway will provide an additional method for the cure of AAA patients.
Collapse
Affiliation(s)
- Ye Tian
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Xinxi Li
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Chao Bai
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Zhenwei Yang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Lei Zhang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Jun Luo
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Wenbin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
13
|
Kim H, Park H, Hwang B, Kim S, Choi YH, Kim WJ, Moon SK. Bisphenol A exposure inhibits vascular smooth muscle cell responses: Involvement of proliferation, migration, and invasion. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104060. [PMID: 36610522 DOI: 10.1016/j.etap.2023.104060] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have associated bisphenol A (BPA) with malignant tumor formation, infertility, and atherosclerosis in vitro and in vivo. However, the precise mechanisms through which BPA affects the cardiovascular system under normal conditions remain unclear. Therefore, this study investigated the biological mechanisms through which BPA affects the responses of aortic vascular smooth muscle cells (VSMCs). BPA treatment inhibited the proliferative activity of VSMCs and induced G2/M-phase cell cycle arrest via stimulation of the ATM-CHK2-Cdc25C-p21WAF1-Cdc2 cascade in VSMCs. Furthermore, BPA treatment upregulated the phosphorylation of mitogen-activated protein kinase (MAPK) pathways such as ERK, JNK, and p38 MAPK in VSMCs. However, the phosphorylation level of AKT was down-regulated by BPA treatment. Additionally, the phosphorylation of ERK, JNK, and p38 MAPK was suppressed when the cells were treated with their respective inhibitors (U0126, SP600125, and SB203580). BPA suppressed MMP-9 activity by reducing the binding activity of AP-1, Sp-1, and NF-κB, thus inhibiting the invasive and migratory ability of VSMCs. These data demonstrate that BPA interferes with the proliferation, migration, and invasion capacities of VSMCs. Therefore, our findings suggest that overexposure to BPA can lead to cardiovascular damage due to dysregulated VSMC responses.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hongbum Park
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Soobin Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 47340, Republic of Korea
| | - Wun-Jae Kim
- Institute of Urotech, Cheongju, Chungbuk 28120, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
14
|
Dai M, Zhu X, Zeng S, Liu Q, Hu R, Huang L, Wang Y, Deng J, Yu Q. Dexmedetomidine protects cells from Angiotensin II-induced smooth muscle cell phenotype switch and endothelial cell dysfunction. Cell Cycle 2023; 22:450-463. [PMID: 36196460 PMCID: PMC9879174 DOI: 10.1080/15384101.2022.2124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/07/2022] [Accepted: 09/10/2022] [Indexed: 01/29/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disorder greatly threatening life of the elderly population. Dexmedetomidine (DEX), an α2-adrenergic receptor agonist, has been shown to suppress AAA development. Nevertheless, the signaling pathways that might be mediated by DEX in AAA has not been clarified. Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) were treated with Angiotensin II (Ang II) to mimic AAA in vitro. BrdU, wound healing, and Transwell assays were utilized for measuring VSMC proliferation and migration. Western blotting was used for evaluating protein levels of contractile VSMC markers, collagens and matrix metalloproteinases (MMPs) in VSMCs as well as apoptosis- and HMGB1/TLR4/NF-κB signaling-related markers in ECs. Cell adhesion molecule expression and monocyte-endothelial adhesion were assessed by immunofluorescence staining and adhesion assays. Flow cytometry was implemented for analyzing EC apoptosis. Hematoxylin-eosin staining and ELISA were used to detect the effect of DEX in vivo. In this study, DEX inhibited Ang II-evoked VSMC phenotype switch and extracellular matrix degradation. DEX suppressed the inflammatory response and apoptosis of ECs induced by Ang II. DEX inhibited HMGB1/TLR4/NF-κB signaling pathway in Ang II-treated ECs. DEX attenuated Ang II-induced AAA and inflammation in mice. Overall, DEX ameliorates Ang II-induced VSMC phenotype switch, and inactivates HMGB1/TLR4/NF-κB signaling pathway to alleviate Ang II-induced EC dysfunction.
Collapse
Affiliation(s)
- Min Dai
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaohong Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Simin Zeng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ruilin Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lianghui Huang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Deng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Yu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Ye N, Miao L, Wang F, Wu S, Wu B, Zhou Y, Wang C, Sun G. Cathepsin D Attenuates the Proliferation of Vascular Smooth Muscle Cells Induced by the AGE/RAGE Pathway by Suppressing the ERK Signal. Curr Pharm Des 2023; 29:2387-2395. [PMID: 37855363 DOI: 10.2174/0113816128261894231012144719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND In this study, we aimed to clarify the role and mechanism by which Cathepsin D (CTSD) mediates the advanced glycation end products (AGEs)-induced proliferation of vascular smooth muscle cells (VSMCs). METHODS We conducted a Western blotting assay and co-immunoprecipitation assay to detect the expression of target proteins and the interaction between different proteins. Cell Counting Kit-8 (CCK-8) assay and 5- ethynyl-2'-deoxyuridine (EdU) were used to evaluate the proliferation. RESULTS AGEs significantly promoted phenotypic switching and proliferation of VSMCs in a concentration-dependent manner. This effect of AGEs was accompanied by inhibition of CTSD. Both the proliferation of VSMCs and inhibition of CTSD induced by AGEs could be attenuated by the specific inhibitor of the receptor for advanced glycation end products (RAGE), FPS-ZM1. Overexpression of CTSD significantly alleviated these effects of AGEs on VSMCs. The mechanism of CTSD action in VSMCs was also explored. Overexpression of CTSD reduced the activation of p-ERK caused by AGEs. By contrast, the knockdown of CTSD, elicited using a plasmid containing short hairpin RNA (shRNA) against CTSD, further increased the activation of p-ERK compared to AGEs alone. Additionally, co-immunoprecipitation studies revealed an endogenous interaction between CTSD, a protease, and p-ERK, its potential substrate. CONCLUSION It has been demonstrated that CTSD downregulates the level of phosphorylated ERK by degrading its target, and this interaction plays a critical role in the proliferation of VSMCs induced by the AGE/RAGE axis. These results provide a novel insight into the prevention and treatment of vascular complications in diabetes.
Collapse
Affiliation(s)
- Ning Ye
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Linlin Miao
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Fengzhi Wang
- Department of Neurology, People's Hospital of Liaoning Province, People's Hospital of China Medical University, Shenyang, Liaoning 110016, China
| | - Shaojun Wu
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Boquan Wu
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ying Zhou
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Chang Wang
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Guozhe Sun
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
16
|
Jia X, Chen X, Gao C, Wang H, Yang C, Jiang LH, Fan Y. Functional cooperation between IK Ca and TRPC1 channels regulates serum-induced vascular smooth muscle cell proliferation via mediating Ca 2+ influx and ERK1/2 activation. Cell Prolif 2022; 56:e13385. [PMID: 36562293 PMCID: PMC10068941 DOI: 10.1111/cpr.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The increased proliferation of vascular smooth muscle cells (VSMCs) contributes to the pathogenesis of vascular diseases. The intermediate conductance calcium-activated potassium (IKCa ) channel plays a critical role in VSMC proliferation by raising the intracellular calcium concentration ([Ca2+ ]i ), but the underlying mechanism is still not unclear. Here we investigated the cooperation between IKCa and transient receptor potential canonical 1 (TRPC1) channels in mediating extracellular Ca2+ entry, which in turn activates downstream Ca2+ signalling in the regulation of VSMC proliferation using serum-induced cell proliferation model. Serum-induced cell proliferation was accompanied with up-regulation of IKCa expression and an increase in [Ca2+ ]i . Serum-induced cell proliferation and increase in [Ca2+ ]i were suppressed by IKCa inhibition with TRAM-34 or IKCa knockdown. Serum-induced cell proliferation was strongly reduced by the removal of extracellular Ca2+ with EGTA or intracellular Ca2+ with BAPTA-AM and, additionally, by TRPC1 knockdown. Moreover, the increase in [Ca2+ ]i induced by serum or by IKCa activation with 1-EBIO was attenuated by TRPC1 knockdown. Finally, serum induced ERK1/2 activation, which was attenuated by treatment with TRAM-34 or BAPTA-AM, as well as TRPC1 knockdown. Consistently, serum-induced cell proliferation was suppressed by ERK1/2 inhibition with PD98059. Taken together, these results suggest that the IKCa and TRPC1 channels cooperate in mediating Ca2+ influx that activates the ERK1/2 pathway to promote cell proliferation, thus providing new mechanistic insights into VSMC proliferation.
Collapse
Affiliation(s)
- Xiaoling Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Xinlan Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Chao Gao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Haikun Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Chengxi Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, and Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, China.,A4245-Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
17
|
Liu R, Huang SS, Shi H, Chang S, Ge J. Alpha-lipoic acid protects against aortic aneurysm and dissection by improving vascular smooth muscle cell function. Life Sci 2022; 311:121159. [DOI: 10.1016/j.lfs.2022.121159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
18
|
Kalay F, Sait TM, Ekmekçi H, Kucur M, İkitimur B, Sönmez H, Güngör Z. Artificial neuronal network analysis in investigating the relationship between oxidative stress and endoplasmic reticulum stress to address blocked vessels in cardiovascular disease. J Med Biochem 2022; 41:518-525. [PMID: 36381079 PMCID: PMC9636495 DOI: 10.5937/jomb0-33855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/04/2022] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Cardiovascular disease is the leading cause of death in the world and is associated with significant morbidity. Atherosclerosis is the main cause of cardiovascular disease (CVD), including myocardial infarction (MI), heart failure, and stroke. The mechanism of atherosclerosis has not been well investigated in different aspects, such as the relationship between oxidative stress and endothelial function. This project aims to investigate whether an oxidative enzyme vascular peroxidase 1 (VPO1) and activating transcription factor 4 (ATF4) can be used as biomarkers in highlighting the pathogenesis of the disease and in evaluating the prognosis of the relationship with endoplasmic reticulum and oxidative stress. This paper used artificial neural network analysis to predict cardiovascular disease risk based on new generation biochemical markers that combine vascular inflammation, oxidative and endoplasmic reticulum stress. METHODS For this purpose, 80 patients were evaluated according to the coronary angiography results. hs-CRP, lipid parameters and demographic characteristics, VPO1, ATF4 and Glutathione peroxidase 1(GPx1) levels were measured. RESULTS We found an increase in VPO1 and hs-CRP levels in single-vessel disease as compared to controls. On the contrary, ATF4 and GPx1 levels were decreased in the same group, which was not significant. Our results showed a significant positive correlation between ATF4 and lipid parameters. A statistically significant positive correlation was also observed for VPO1 and ATF4 (r=0.367, P<0.05), and a negative correlation was found for ATF4 and GPx1 (r=-0.467, P<0.01). A significant negative relationship was noted for GPx1 and hs-CRP in two/three-vessel disease (r=-0.366, P<0.05). Artificial neural network analysis stated that body mass index (BMI) and smoking history information give us an important clue as compared to age, gender and alcohol consumption parameters when predicting the number of blocked vessels. CONCLUSIONS VPO1 and ATF4 might be potential biomarkers associated with coronary artery disease, especially in the follow-up and monitoring of treatment protocols, in addition to traditional risk factors.
Collapse
Affiliation(s)
- Fatma Kalay
- University of Istanbul - Cerrahpasa, Cerrahpasa Medical School, Department of Medical Biochemistry, Istanbul, Turkey
| | - Toprak Muhammet Sait
- University of Istanbul - Cerrahpasa, Cerrahpasa Medical School, Department of Medical Biochemistry, Istanbul, Turkey
| | - Hakan Ekmekçi
- University of Istanbul - Cerrahpasa, Cerrahpasa Medical School, Department of Medical Biochemistry, Istanbul, Turkey
| | - Mine Kucur
- University of Istanbul - Cerrahpasa, Cerrahpasa Medical School, Department of Medical Biochemistry, Istanbul, Turkey
| | - Barış İkitimur
- University of Istanbul - Cerrahpasa, Cerrahpasa Medical School, Department of Cardiology, Istanbul, Turkey
| | - Hüseyin Sönmez
- University of Istanbul - Cerrahpasa, Cerrahpasa Medical School, Department of Medical Biochemistry, Istanbul, Turkey
| | - Zeynep Güngör
- University of Istanbul - Cerrahpasa, Cerrahpasa Medical School, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
19
|
Li T, Liu B, Luo XJ, Peng J. VPO1/HOCl/ERK pathway mediates the right ventricular remodeling in rats with hypoxic pulmonary hypertension. Arch Biochem Biophys 2022; 723:109267. [PMID: 35483433 DOI: 10.1016/j.abb.2022.109267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/28/2022]
Abstract
Right ventricular (RV) remodeling is a major feature of pulmonary arterial hypertension (PAH). Vascular peroxidase 1 (VPO1) is reported to participate in the process of PAH. This study aims to explore whether VPO1 contributes to hypoxia-induced cardiac hypertrophy and the underlying mechanisms. SD rats were exposure to continuous hypoxia (10% O2) for 3 weeks, which showed RV hypertrophy (increases in the ratio of RV weight to tibia length, cardiac cell size and hypertrophic markers), concomitant with upregulation of VPO1, elevation in hypochlorous acid (HOCl) production and ERK phosphorylation. In hypoxia (3% O2)-induced hypertrophic H9c2 cells, similar characteristics of cardiac hypertrophy to that of hypoxia-treated rats were observed. Administration of VPO1 siRNA or NaHS (the HOCl inhibitor) suppressed HOCl production, ERK phosphorylation, and cardiac hypertrophy. Replacement of hypoxia with NaClO (exogenous HOCl) could also induce cardiac cell hypertrophy and activate ERK signaling pathway. In addition, hypoxia-induced cardiac hypertrophy could be blocked by PD98059 (the ERK-specific inhibitor). Based on these observations, we conclude that VPO1 promotes RV remodeling in PAH rats through catalyzing HOCl production, leading to the activation of ERK signaling. Thus, VPO1 may have the potential as a therapeutic target for PAH.
Collapse
Affiliation(s)
- Tao Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Pharmacy, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Bin Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
20
|
Rombouts KB, van Merrienboer TAR, Ket JCF, Bogunovic N, van der Velden J, Yeung KK. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest 2022; 52:e13697. [PMID: 34698377 PMCID: PMC9285394 DOI: 10.1111/eci.13697] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aortic aneurysms (AA) are pathological dilations of the aorta, associated with an overall mortality rate up to 90% in case of rupture. In addition to dilation, the aortic layers can separate by a tear within the layers, defined as aortic dissections (AD). Vascular smooth muscle cells (vSMC) are the predominant cell type within the aortic wall and dysregulation of vSMC functions contributes to AA and AD development and progression. However, since the exact underlying mechanism is poorly understood, finding potential therapeutic targets for AA and AD is challenging and surgery remains the only treatment option. METHODS In this review, we summarize current knowledge about vSMC functions within the aortic wall and give an overview of how vSMC functions are altered in AA and AD pathogenesis, organized per anatomical location (abdominal or thoracic aorta). RESULTS Important functions of vSMC in healthy or diseased conditions are apoptosis, phenotypic switch, extracellular matrix regeneration and degradation, proliferation and contractility. Stressors within the aortic wall, including inflammatory cell infiltration and (epi)genetic changes, modulate vSMC functions and cause disturbance of processes within vSMC, such as changes in TGF-β signalling and regulatory RNA expression. CONCLUSION This review underscores a central role of vSMC dysfunction in abdominal and thoracic AA and AD development and progression. Further research focused on vSMC dysfunction in the aortic wall is necessary to find potential targets for noninvasive AA and AD treatment options.
Collapse
Affiliation(s)
- Karlijn B Rombouts
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Tara A R van Merrienboer
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | | | - Natalija Bogunovic
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Cheng G, Shi R. Mammalian peroxidasin (PXDN): From physiology to pathology. Free Radic Biol Med 2022; 182:100-107. [PMID: 35219848 PMCID: PMC8957557 DOI: 10.1016/j.freeradbiomed.2022.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
Heme-containing peroxidases catalyze the oxidation of a variety of substrates by consuming hydrogen peroxide (H2O2), and play diversified roles in physiology and pathology including innate immunity, the synthesis of thyroid hormone and the extracellular matrix, as well as the pathogenesis of several inflammatory diseases. Peroxidasin (PXDN), also known as Vascular Peroxidase-1 (VPO1), is a newly identified peroxidase and expresses in multiple cells and tissues including cardiovascular system and the lung. Recent studies imply its roles in the innate immunity, cardiovascular physiology and diseases, and extracellular matrix formation. Studies on the role of PXDN in human diseases are entering a new and exciting stage, and this review provides the insights into this emerging field of PXDN.
Collapse
Affiliation(s)
- Guangjie Cheng
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Kubota H, Yamada H, Sugimoto T, Wada N, Motoyama S, Saburi M, Miyawaki D, Wakana N, Kami D, Ogata T, Ibi M, Matoba S. Repeated Social Defeat Enhances CaCl 2-Induced Abdominal Aortic Aneurysm Expansion by Inhibiting the Early Fibrotic Response via the MAPK-MKP-1 Pathway. Cells 2022; 11:cells11040732. [PMID: 35203381 PMCID: PMC8870675 DOI: 10.3390/cells11040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Depression is an independent risk factor for cardiovascular disease and is significantly associated with the prevalence of abdominal aortic aneurysm (AAA). We investigated the effect of repeated social defeat (RSD) on AAA development. Eight-week-old male wild-type mice were exposed to RSD by being housed with larger CD-1 mice in a shared cage. They were subjected to vigorous physical contact. After the confirmation of depressive-like behavior, calcium chloride was applied to the infrarenal aorta of the mice. At one week, AAA development was comparable between the defeated and control mice, without any differences being observed in the accumulated macrophages or in the matrix metalloproteinase activity. At two weeks, the maximum diameter and circumference of the aneurysm were significantly increased in the defeated mice, and a significant decrease in periaortic fibrosis was also observed. Consistently, the phosphorylation of the extracellular signal-regulated kinase and the incorporation of 5-bromo-2'-deoxyuridine in the primarily cultured aortic vascular smooth muscle cells were significantly reduced in the defeated mice, which was accompanied by a substantial increase in mitogen-activated protein kinase phosphatase-1 (MKP-1). The MKP-1 mRNA and protein expression levels during AAA were much higher in the defeated mice than they were in the control mice. Our findings demonstrate that RSD enhances AAA development by suppressing periaortic fibrosis after an acute inflammatory response and imply novel mechanisms that are associated with depression-related AAA development.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Hiroyuki Yamada
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
- Correspondence: ; Tel.: +81-75-251-5511
| | - Takeshi Sugimoto
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Naotoshi Wada
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Shinichiro Motoyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Makoto Saburi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Daisuke Miyawaki
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Noriyuki Wakana
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Masakazu Ibi
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan;
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| |
Collapse
|
23
|
Feng DD, Zheng B, Yu J, Zhang ML, Ma Y, Hao X, Wen JK, Zhang XH. 17β-Estradiol Inhibits Proliferation and Oxidative Stress in Vascular Smooth Muscle Cells by Upregulating BHLHE40 Expression. Front Cardiovasc Med 2021; 8:768662. [PMID: 34917665 PMCID: PMC8669345 DOI: 10.3389/fcvm.2021.768662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
Background: Intimal hyperplasia is a major complication of restenosis after angioplasty. The abnormal proliferation and oxidative stress of vascular smooth muscle cells (VSMCs) are the basic pathological feature of neointimal hyperplasia. 17β-Estradiol can inhibit VSMCs proliferation and inflammation. However, it is still unclear whether and how 17β-Estradiol affects intimal hyperplasia. Methods: The neointima hyperplasia was observed by hematoxylin/eosin staining. The expression of PCNA, cyclin D1, NOX1, NOX4 and p47phox in neointima hyperplasia tissues and VSMCs was determined by qRT-PCR and Western blotting. MTS assay, cell counting and EdU staining were performed to detect cells proliferation. The oxidative stress was assessed by ROS staining. Results: 17β-Estradiol suppressed carotid artery ligation-induced intimal hyperplasia, which is accompanied by an increase of BHLHE40 level. Furthermore, loss- and gain-of-function experiments revealed that BHLHE40 knockdown promotes, whereas BHLHE40 overexpression inhibits TNF-α-induced VSMC proliferation and oxidative stress. 17β-Estradiol inhibited TNF-α-induced VSMC proliferation and oxidative stress by promoting BHLHE40 expression, thereby suppressing MAPK signaling pathways. In addition, enforcing the expression of BHLHE40 leads to amelioration of intimal hyperplasia. Conclusions: Our study demonstrates that 17β-Estradiol inhibits proliferation and oxidative stress in vivo and in vitro by promotion of BHLHE40 expression.
Collapse
Affiliation(s)
- Dan-Dan Feng
- Ministry of Education of China, The Key Laboratory of Neural and Vascular Biology, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Bin Zheng
- Ministry of Education of China, The Key Laboratory of Neural and Vascular Biology, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Jing Yu
- Ministry of Education of China, The Key Laboratory of Neural and Vascular Biology, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Man-Li Zhang
- Ministry of Education of China, The Key Laboratory of Neural and Vascular Biology, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Ma
- Ministry of Education of China, The Key Laboratory of Neural and Vascular Biology, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Xiao Hao
- Ministry of Education of China, The Key Laboratory of Neural and Vascular Biology, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Jin-Kun Wen
- Ministry of Education of China, The Key Laboratory of Neural and Vascular Biology, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Xin-Hua Zhang
- Ministry of Education of China, The Key Laboratory of Neural and Vascular Biology, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
24
|
Huang Y, Ren L, Li J, Zou H. Long non-coding RNA PVT1/microRNA miR-3127-5p/NCK-associated protein 1-like axis participates in the pathogenesis of abdominal aortic aneurysm by regulating vascular smooth muscle cells. Bioengineered 2021; 12:12583-12596. [PMID: 34898354 PMCID: PMC8810122 DOI: 10.1080/21655979.2021.2010384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The long non-coding RNA plasmacytoma variant translocation 1 (lncRNA PVT1) has been implicated in the progression of abdominal aortic aneurysms (AAA). However, the detailed mechanism requires further analysis. Our study was aimed at interrogating the mechanism of PVT1 in an H2O2-induced AAA model in vitro. The expression of lncRNA PVT1, microRNA miR-3127-5p, and NCK-associated protein 1-like (NCKAP1L) was examined in AAA tissues and H2O2-treated vascular smooth muscle cells (VSMCs). Cell proliferation was assayed using Cell Counting Kit-8 (CCK8) and 5-Bromodeoxyuridine (BrdU) assays. Meanwhile, 5-Ethynyl-2'-deoxyuridine (EdU) staining was performed to assess cell apoptosis and caspase-3 activity. IL-1β and caspase-1 expression was also assessed using Western blotting to determine inflammasome activation in H2O2-treated VSMCs. Luciferase reporter assays addressed the possible interaction between miR-3127-5p and PVT1 or NCKAP1L, which was predicted by starBase analysis. PVT1 and NCKAP1L expression was elevated in AAA tissues and induced the AAA model in vitro, whereas miR-3127-5p showed the opposite trend. Functionally, PVT1 silencing promoted cell proliferation and reduced the apoptotic rate and inflammasome activation in H2O2-treated VSMCs. Mechanical investigation demonstrated that PVT1 acted as a sponge of miR-3127-5p to modulate NCKAP1L expression, resulting in suppression of VSMC proliferation, induction of apoptosis, and activation of inflammation. In conclusion, PVT1 participates in AAA progression through the miR-3127-5p/NCKAP1L axis and may be a promising biosignature and therapeutic target for AAA.
Collapse
Affiliation(s)
- Youjin Huang
- Department of Vascular Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Li Ren
- Department of Vascular Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Jiajia Li
- Intensive Care Unit, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Haibo Zou
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Zhou C, Wang F, Ma H, Xing N, Hou L, Du Y, Ding H. Silencing of FOS-like antigen 1 represses restenosis via the ERK/AP-1 pathway in type 2 diabetic mice. Diab Vasc Dis Res 2021; 18:14791641211058855. [PMID: 34881661 PMCID: PMC8669130 DOI: 10.1177/14791641211058855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Restenosis is a major limiting factor for a successful outcome in type 2 diabetes (T2D) patients undergoing percutaneous coronary intervention (PCI). The aim of this study is to explore the role and regulatory mechanism of FOS-like antigen 1 (FOSL1) in restenosis in T2D. A T2D with restenosis mouse model was established by the combination of high-fat diet and streptozotocin injection and by wire-injury. High glucose (HG)-treated vascular smooth muscle cells (VSMCs) were used to mimic T2D in vitro. The results of quantitative real time PCR and western blotting demonstrated that the expression of FOSL1 was increased not only in T2D mice or HG-induced VSMCs, but also in T2D mice that underwent wire-injury. HE staining revealed that FOSL1 knockdown significantly reduced the intimal/media ratio of T2D mice after wire-injury. Silencing of FOSL1 reversed the promoting effects of HG treatment on viability, migration and inflammation reactions, and the inhibiting effect on the apoptosis of VSMCs. Inhibition of ERK/AP-1 pathway obtained similar patterns in HG-induced VSMCs. The activation of ERK/AP-1 pathway reversed the influence of FOSL1 knockdown on HG-induced VSMCs. Our findings indicate that silencing of FOSL1 may suppress restenosis via regulation of the ERK/AP-1 pathway in T2D mice, pointing out a potential therapeutic target to prevent restenosis in T2D.
Collapse
Affiliation(s)
- Chaoxi Zhou
- The Second Surgical Department of the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fujun Wang
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongfang Ma
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Xing
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Hou
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaping Du
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haixia Ding
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Haixia Ding, Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China.
| |
Collapse
|
26
|
Chakraborty R, Chatterjee P, Dave JM, Ostriker AC, Greif DM, Rzucidlo EM, Martin KA. Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vasc Sci 2021; 2:79-94. [PMID: 34617061 PMCID: PMC8489222 DOI: 10.1016/j.jvssci.2021.04.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Objective The phenotypic plasticity of vascular smooth muscle cells (VSMCs) is central to vessel growth and remodeling, but also contributes to cardiovascular pathologies. New technologies including fate mapping, single cell transcriptomics, and genetic and pharmacologic inhibitors have provided fundamental new insights into the biology of VSMC. The goal of this review is to summarize the mechanisms underlying VSMC phenotypic modulation and how these might be targeted for therapeutic benefit. Methods We summarize findings from extensive literature searches to highlight recent discoveries in the mechanisms underlying VSMC phenotypic switching with particular relevance to intimal hyperplasia. PubMed was searched for publications between January 2001 and December 2020. Search terms included VSMCs, restenosis, intimal hyperplasia, phenotypic switching or modulation, and drug-eluting stents. We sought to highlight druggable pathways as well as recent landmark studies in phenotypic modulation. Results Lineage tracing methods have determined that a small number of mature VSMCs dedifferentiate to give rise to oligoclonal lesions in intimal hyperplasia and atherosclerosis. In atherosclerosis and aneurysm, single cell transcriptomics reveal a striking diversity of phenotypes that can arise from these VSMCs. Mechanistic studies continue to identify new pathways that influence VSMC phenotypic plasticity. We review the mechanisms by which the current drug-eluting stent agents prevent restenosis and note remaining challenges in peripheral and diabetic revascularization for which new approaches would be beneficial. We summarize findings on new epigenetic (DNA methylation/TET methylcytosine dioxygenase 2, histone deacetylation, bromodomain proteins), transcriptional (Hippo/Yes-associated protein, peroxisome proliferator-activity receptor-gamma, Notch), and β3-integrin-mediated mechanisms that influence VSMC phenotypic modulation. Pharmacologic and genetic targeting of these pathways with agents including ascorbic acid, histone deacetylase or bromodomain inhibitors, thiazolidinediones, and integrin inhibitors suggests potential therapeutic value in the setting of intimal hyperplasia. Conclusions Understanding the molecular mechanisms that underlie the remarkable plasticity of VSMCs may lead to novel approaches to treat and prevent cardiovascular disease and restenosis.
Collapse
Affiliation(s)
- Raja Chakraborty
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Payel Chatterjee
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Jui M Dave
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Genetics, Yale University School of Medicine, New Haven, Conn
| | - Allison C Ostriker
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Daniel M Greif
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Genetics, Yale University School of Medicine, New Haven, Conn
| | - Eva M Rzucidlo
- Department Surgery, Section of Vascular Surgery, McLeod Regional Medical Center, Florence, SC
| | - Kathleen A Martin
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| |
Collapse
|
27
|
Jing Cao, Zhang G, Liu Z, Xu Q, Li C, Cheng G, Shi R. Peroxidasin promotes diabetic vascular endothelial dysfunction induced by advanced glycation end products via NOX2/HOCl/Akt/eNOS pathway. Redox Biol 2021; 45:102031. [PMID: 34116361 PMCID: PMC8192873 DOI: 10.1016/j.redox.2021.102031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 11/11/2022] Open
Abstract
Reactive oxygen species (ROS) derived from NADPH oxidases (NOX) plays an essential role in advanced glycation end products (AGEs)-induced diabetic vascular endothelial dysfunction. Peroxidasin (PXDN, VPO1) is one member of peroxidases family that catalyzes hydrogen peroxide (H2O2) to hypochlorous acid (HOCl). This present study aimed to elucidate the role of PXDN in promoting vascular endothelial dysfunction induced by AGEs in diabetes mellitus. We found that, compared to non-diabetic (db/m) mice, PXDN expression was notably increased in db/db mice with impaired endothelium-dependent relaxation. Knockdown of PXDN in vivo through tail vein injection of siRNA restored the impaired endothelium-dependent relaxation function of db/db mice which is accompanied with up-regulation of eNOS Ser1177 phosphorylation and NO production. AGEs significantly elevated expression of PXDN and 3-Cl-Tyr, but decreased phosphorylation of Akt and eNOS and NO release in HUVECs. All these effects induced by AGEs were remarkable alleviated by silencing PXDN with small interfering RNAs. In addition, HOCl treatment alone as well as HOCl added with Akt inhibitor MK2206 inhibited phosphorylation of Akt and eNOS, reducing NO production. More importantly,AGEs-induced up-regulation of PXDN and 3-Cl-Tyr with endothelial dysfunction were transformed by NOX2 silencing and H2O2 scavengers. Thus, these results support the conclusion that PXDN promotes AGEs-induced diabetic vascular endothelial dysfunction by attenuating eNOS phosphorylation at Ser1177 via NOX2/HOCl/Akt pathway.
Collapse
Affiliation(s)
- Jing Cao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, 410013, Changsha, China.
| | - Guogang Zhang
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, 410013, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Zhaoya Liu
- Department of Geriatrics, The Third Xiangya Hospital of Central South University, 410013, Changsha, China.
| | - Qian Xu
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, China.
| | - Chan Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, 41008, Changsha, China.
| | - Guangjie Cheng
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, 35294, AL, USA.
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, 41008, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
28
|
Han JH, Heo KS, Myung CS. Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) accelerates vascular remodelling via p53 and JAK2-STAT3 regulation in vascular smooth muscle cells. Br J Pharmacol 2021; 178:4533-4551. [PMID: 34289085 DOI: 10.1111/bph.15631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Abnormal vascular smooth muscle cell (VSMC) proliferation and migration lead to neointima formation, which eventually results in cardiovascular hyperplastic diseases. The molecular mechanisms underlying these cellular processes have not been fully understood. Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) has been identified as an anti-apoptotic molecule, but little is known about its target genes and related pathways in VSMC dysfunction or its clinical implication in neointima formation following vascular injury. EXPERIMENTAL APPROACH Determination, using loss/gain-of-function approaches by gene delivery, of whether CIAPIN1 modulates VSMC proliferation, migration and neointima formation and the underlying mechanisms was carried out. Balloon injury or ligation and local delivery of lentivirus were performed on rat or mouse carotid arteries. Rat aortic smooth muscle cells, the primary cell, was used as the model to evaluate the effect of CIAPIN1 on proliferation and migration. KEY RESULTS CIAPIN1 was overexpressed in the neointimal region of rat arteries. CIAPIN1 deficiency markedly inhibited injury-induced or ligation-induced intimal hyperplasia and suppressed PDGF-BB-induced VSMC proliferation, migration and cell cycle progression, while overexpression promoted proliferation, migration and neointima formation. CIAPIN1 negatively regulated Tp53 transcription, which promoted cell cycle progression and migration via cyclin E1-CDK2/pRb/PCNA and the MMP2 pathway. CIAPIN1 also increased JAK2 expression, enhancing JAK2 and STAT3 phosphorylation by vascular injury, which forced phenotypic switching from contractile to synthetic state in injured arteries. CONCLUSIONS AND IMPLICATIONS These findings provide new insights into the mechanism by which CIAPIN1 regulates vascular remodelling and suggest a novel therapeutic target for treating vascular proliferative diseases.
Collapse
Affiliation(s)
- Joo-Hui Han
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Kyung-Sun Heo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Chang-Seon Myung
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| |
Collapse
|
29
|
Basement membrane collagen IV deficiency promotes abdominal aortic aneurysm formation. Sci Rep 2021; 11:12903. [PMID: 34145342 PMCID: PMC8213747 DOI: 10.1038/s41598-021-92303-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a complex disease which is incompletely accounted for. Basement membrane (BM) Collagen IV (COL4A1/A2) is abundant in the artery wall, and several lines of evidence indicate a protective role of baseline COL4A1/A2 in AAA development. Using Col4a1/a2 hemizygous knockout mice (Col4a1/a2+/-, 129Svj background) we show that partial Col4a1/a2 deficiency augmented AAA formation. Although unchallenged aortas were morphometrically and biomechanically unaffected by genotype, explorative proteomic analyses of aortas revealed a clear reduction in BM components and contractile vascular smooth muscle cell (VSMC) proteins, suggesting a central effect of the BM in maintaining VSMCs in the contractile phenotype. These findings were translated to human arteries by showing that COL4A1/A2 correlated to BM proteins and VSMC markers in non-lesioned internal mammary arteries obtained from coronary artery bypass procedures. Moreover, in human AAA tissue, MYH11 (VSMC marker) was depleted in areas of reduced COL4 as assessed by immunohistochemistry. Finally, circulating COL4A1 degradation fragments correlated with AAA progression in the largest Danish AAA cohort, suggesting COL4A1/A2 proteolysis to be an important feature of AAA formation. In sum, we identify COL4A1/A2 as a critical regulator of VSMC phenotype and a protective factor in AAA formation.
Collapse
|
30
|
PXDN reduces autophagic flux in insulin-resistant cardiomyocytes via modulating FoxO1. Cell Death Dis 2021; 12:418. [PMID: 33903591 PMCID: PMC8076187 DOI: 10.1038/s41419-021-03699-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
Autophagy, a well-observed intracellular lysosomal degradation process, is particularly important to the cell viability in diabetic cardiomyopathy (DCM). Peroxidasin (PXDN) is a heme-containing peroxidase that augments oxidative stress and plays an essential role in cardiovascular diseases, while whether PXDN contributes to the pathogenesis of DCM remains unknown. Here we reported the suppression of cell viability and autophagic flux, as shown by autophagosomes accumulation and increased expression level of LC3-II and p62 in cultured H9C2 and human AC16 cells that treated with 400 μM palmitate acid (PA) for 24 h. Simultaneously, PXDN protein level increased. Moreover, cell death, autophagosomes accumulation as well as increased p62 expression were suppressed by PXDN silence. In addition, knockdown of PXDN reversed PA-induced downregulated forkhead box-1 (FoxO1) and reduced FoxO1 phosphorylation, whereas did not affect AKT phosphorylation. Not consistent with the effects of si-PXDN, double-silence of PXDN and FoxO1 significantly increased cell death, suppressed autophagic flux and declined the level of FoxO1 and PXDN, while the expression of LC3-II was unchanged under PA stimulation. Furthermore, inhibition of FoxO1 in PA-untreated cells induced cell death, inhibited autophagic flux, and inhibited FoxO1 and PXDN expression. Thus, we come to conclusion that PXDN plays a key role in PA-induced cell death by impairing autophagic flux through inhibiting FoxO1, and FoxO1 may also affect the expression of PXDN. These findings may develop better understanding of potential mechanisms regarding autophagy in insulin-resistant cardiomyocytes.
Collapse
|
31
|
Blum A, Mostow K, Jackett K, Kelty E, Dakpa T, Ryan C, Hagos E. KLF4 Regulates Metabolic Homeostasis in Response to Stress. Cells 2021; 10:830. [PMID: 33917010 PMCID: PMC8067718 DOI: 10.3390/cells10040830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/23/2022] Open
Abstract
Cancerous cells are detrimental to the human body and can be incredibly resilient against treatments because of the complexities of molecular carcinogenic pathways. In particular, cancer cells are able to sustain increased growth under metabolic stress due to phenomena like the Warburg effect. Krüppel-like factor 4 (KLF4), a context-dependent transcription factor that can act as both a tumor suppressor and an oncogene, is involved in many molecular pathways that respond to low glucose and increased reactive oxygen species (ROS), raising the question of its role in metabolic stress as a result of increased proliferation of tumor cells. In this study, metabolic assays were performed, showing enhanced efficiency of energy production in cells expressing KLF4. Western blotting showed that KLF4 increases the expression of essential glycolytic proteins. Furthermore, we used immunostaining to show that KLF4 increases the localization of glucose transporter 1 (GLUT1) to the cellular membrane. 2',7'-Dichlorodihydrofluorescein diacetate (H2DCF-DA) was used to analyze the production of ROS, and we found that KLF4 reduces stress-induced ROS within cells. Finally, we demonstrated increased autophagic death in KLF4-expressing cells in response to glucose starvation. Collectively, these results relate KLF4 to non-Warburg metabolic behaviors that support its role as a tumor suppressor and could make KLF4 a target for new cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Engda Hagos
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (A.B.); (K.M.); (K.J.); (E.K.); (T.D.); (C.R.)
| |
Collapse
|
32
|
Lu W, Zhou Y, Zeng S, Zhong L, Zhou S, Song H, Ding R, Zhong G, Li Q, Hu Y, Wen Z, Liao Q, Wang Y, Lyu L, Zhong Y, Hu G, Liao Y, Xie D, Xie J. Loss of FoxO3a prevents aortic aneurysm formation through maintenance of VSMC homeostasis. Cell Death Dis 2021; 12:378. [PMID: 33828087 PMCID: PMC8027644 DOI: 10.1038/s41419-021-03659-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/09/2022]
Abstract
Vascular smooth muscle cell (VSMC) phenotypic switching plays a critical role in the formation of abdominal aortic aneurysms (AAAs). FoxO3a is a key suppressor of VSMC homeostasis. We found that in human and animal AAA tissues, FoxO3a was upregulated, SM22α and α-smooth muscle actin (α-SMA) proteins were downregulated and synthetic phenotypic markers were upregulated, indicating that VSMC phenotypic switching occurred in these diseased tissues. In addition, in cultured VSMCs, significant enhancement of FoxO3a expression was found during angiotensin II (Ang II)-induced VSMC phenotypic switching. In vivo, FoxO3a overexpression in C57BL/6J mice treated with Ang II increased the formation of AAAs, whereas FoxO3a knockdown exerted an inhibitory effect on AAA formation in ApoE−/− mice infused with Ang II. Mechanistically, FoxO3a overexpression significantly inhibited the expression of differentiated smooth muscle cell (SMC) markers, activated autophagy, the essential repressor of VSMC homeostasis, and promoted AAA formation. Our study revealed that FoxO3a promotes VSMC phenotypic switching to accelerate AAA formation through the P62/LC3BII autophagy signaling pathway and that therapeutic approaches that decrease FoxO3a expression may prevent AAA formation.
Collapse
Affiliation(s)
- Weiling Lu
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China.,Department of Cardiology, Ganzhou Municipal Hospital, 49th, Grand Highway, 341000, Ganzhou, China
| | - Yu Zhou
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratory of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shan Zeng
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China
| | - Lintao Zhong
- Department of Cardiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 519000, Zhuhai, China
| | - Shiju Zhou
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China
| | - Haoyu Song
- Wards of Cadres, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 519000, Zhuhai, China
| | - Rongming Ding
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China
| | - Gaojun Zhong
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China
| | - Qingrui Li
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China
| | - Yuhua Hu
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China
| | - Zhongyu Wen
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China
| | - Qin Liao
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China
| | - Yalan Wang
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China
| | - Lianglliang Lyu
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China
| | - Yiming Zhong
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China
| | - Gonghua Hu
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515, Guangzhou, China.
| | - Dongming Xie
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China. .,Jiangxi Branch Center of National Geriatric Disease Clinical Medical Research Center, Gannan Medical University, University Town, 341000, Ganzhou Development District, Jiangxi Province, China.
| | - Jiahe Xie
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, University Town, Ganzhou Development District, 341000, Ganzhou, China. .,Jiangxi Branch Center of National Geriatric Disease Clinical Medical Research Center, Gannan Medical University, University Town, 341000, Ganzhou Development District, Jiangxi Province, China.
| |
Collapse
|
33
|
Flouda K, Mercer J, Davies MJ, Hawkins CL. Role of myeloperoxidase-derived oxidants in the induction of vascular smooth muscle cell damage. Free Radic Biol Med 2021; 166:165-177. [PMID: 33631301 DOI: 10.1016/j.freeradbiomed.2021.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/14/2021] [Indexed: 01/12/2023]
Abstract
Myeloperoxidase (MPO) is released by activated immune cells and forms the oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN) from the competing substrates chloride and thiocyanate. MPO and the overproduction of HOCl are strongly linked with vascular cell dysfunction and inflammation in atherosclerosis. HOCl is highly reactive and causes marked cell dysfunction and death, whereas data with HOSCN are conflicting, and highly dependent on the nature of the cell type. In this study we have examined the reactivity of HOCl and HOSCN with human coronary artery smooth muscle cells (HCASMC), given the key role of this cell type in maintaining vascular function. HOCl reacts rapidly with the cells, resulting in extensive cell death by both necrosis and apoptosis, and increased levels of intracellular calcium. In contrast, HOSCN reacts more slowly, with cell death occurring only after prolonged incubation, and in the absence of the accumulation of intracellular calcium. Exposure of HCASMC to HOCl also influences mitochondrial respiration, decreases glycolysis, lactate release, the production of ATP, cellular thiols and glutathione levels. These changes occurred to varying extents on exposure of the cells to HOSCN, where evidence was also obtained for the reversible modification of cellular thiols. HOCl also induced alterations in the mRNA expression of multiple inflammatory and phenotypic genes. Interestingly, the extent and nature of these changes was highly dependent on the specific cell donor used, with more marked effects observed in cells isolated from diseased compared to healthy vessels. Overall, these data provide new insight into pathways promoting vascular dysfunction during chronic inflammation, support the use of thiocyanate as a means to modulate MPO-induced cellular damage in atherosclerosis.
Collapse
Affiliation(s)
- Konstantina Flouda
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - John Mercer
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
34
|
Wang S, Tian X, Liu D, Zhang X, Yan C, Han Y. TRPV5 attenuates abdominal aortic aneurysm in mice by regulating KLF4-dependent phenotype switch of aortic vascular smooth muscle cells. Arch Biochem Biophys 2020; 698:108724. [PMID: 33309615 DOI: 10.1016/j.abb.2020.108724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a fatal vascular disease with insidious symptoms. However, the mechanism behind its development remains unclear. The transient receptor potential vanilloid (TRPV) family has crucial protective effects against cardiovascular diseases, but the role of TRPV5 in AAA has yet to be reported. In this study, ApoE-/- mice were intraperitoneally injected with AAV-GFP or AAV-TRPV5. After 30 days, mice were further administered with angiotensin II (Ang II, 1.44 mg/kg/day) by using osmotic pumps to induce the AAA model or Saline for 28 days, (i.e., Saline + AAV-GFP, Saline + AAV-TRPV5, Ang II + AAV-GFP and Ang II + AAV-TRPV5 groups were established). Compared with the control group, the incidence of AAA and the maximal diameter of the abdominal aorta markedly decreased in Ang II + AAV-TRPV5, which was detected by vascular ultrasound at 28 day. Meanwhile, less collagen and elastin degradation were observed in the Ang II + AAV-TRPV5 group by using Masson and Elastin stains. Moreover, more α-SMA and less MMP2 was observed in the abdominal aortas collected at 28 day by immunohistochemistry. In vitro, primary mouse vascular smooth muscle cells (VSMCs) were treated with Ang II (1 μM) to induce phenotype switch. Sh-TRPV5 and AdTRPV5 were used to transfect VSMCs. PCR and Western blotting were used to access the expression of contractile marker, including α-SMA and SM-22α. The results showed that the mRNA and protein level of α-SMA and SM-22α were decreased under the stimulation of Ang II, but could be attenuated by TRPV5 overexpression. The cell scratch assay demonstrated that the migration ability of VSMCs was increased in Ang II treated group and could be ameliorated by TRPV5 overexpression. Above all, VSMCs transformed from the contractile into secretory phenotype under Ang II stimuli, but could be rescued by TRPV5 overexpression. Furthermore, TRPV5 overexpression suppressed the increased expression of KLF4 induced by Ang II treatment in VSMCs. The data demonstrated that TRPV5 could inhibit AAA formation and play a critical role in the VSMC phenotype switch by downregulating KLF4, suggesting TRPV5 as a new strategy for treating AAA.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxiang Tian
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaolin Zhang
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
35
|
MiR-126-5p promotes contractile switching of aortic smooth muscle cells by targeting VEPH1 and alleviates Ang II-induced abdominal aortic aneurysm in mice. J Transl Med 2020; 100:1564-1574. [PMID: 32612287 DOI: 10.1038/s41374-020-0454-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a potential lethal disease that is defined by an irreversible dilatation (>50%) of the aorta. During AAA expansion, the aortic wall is often remodeled, which is featured by extracellular matrix (ECM) degeneration, medial and adventitial inflammation, depletion and phenotypic switching of vascular smooth muscle cells (SMCs). Recent studies have suggested microRNAs as vital regulators for vascular SMC function. Our earlier work demonstrated an anti-AAA role of miR-126-5p in ApoE-/- mice infused with angiotensin (Ang) II. The present study aimed to further elucidate its role in AAA pathogenesis with a focus on aortic SMC phenotypic switching. Ventricular zone expressed PH domain containing 1 (VEPH1) was identified as a novel negative regulator for vascular SMC differentiation by our group, and its expression was negatively correlated to miR-126-5p in mouse abdominal aortas based on the present microarray data. In vivo, in addition attenuating Ang II infusion-induced aortic dilation and elastin degradation, miR-126-5p agomirs also significantly reduced the expression of VEPH1. In vitro, to induce synthetic transition of human aortic smooth muscle cells (hAoSMCs), cells were stimulated with 1 μM Ang II for 24 h. Ectopic overexpression of miR-126-5p restored the differentiation of hAoSMCs-the expression of contractile/differentiated SMC markers, MYH11, and α-SMA, increased, whilst that of synthetic/dedifferentiated SMC markers, PCNA and Vimentin, decreased. Both mus and homo VEPH1 genes were validated as direct targets for miR-126-5p. VEPH1 re-expression impaired miR-126-5p-induced differentiation of hAoSMCs. In addition, Ang II-induced upregulation in matrix metalloproteinase (MMP)-9 and MMP2, two key proteases responsible for ECM degradation, in mouse aortas and hAoSMCs was reduced by miR-126-5p overexpression as well. Collectively, these results reveal an important, but previously unexplored, role of miR-126-5p in inhibiting AAA development-associated aortic SMC dedifferentiation.
Collapse
|
36
|
Ma D, Liu X, Zhang JJ, Zhao JJ, Xiong YJ, Chang Q, Wang HY, Su P, Meng J, Zhao YB. Vascular Smooth Muscle FTO Promotes Aortic Dissecting Aneurysms via m6A Modification of Klf5. Front Cardiovasc Med 2020; 7:592550. [PMID: 33330653 PMCID: PMC7715013 DOI: 10.3389/fcvm.2020.592550] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 11/27/2022] Open
Abstract
Background: Aortic dissecting aneurysm (ADA) represents an aortic remodeling disease with a high mortality rate. Fat mass and obesity-associated protein (FTO) exerts RNA demethylation function to regulate gene expression related to stem cell differentiation, DNA damage repair, and tumorigenesis, but the role of FTO in ADA is still unclear. Methods: The expression and location of FTO in 43 ADA tissues and 11 normal tissues were determined by RT-qPCR, WB, immunohistochemistry, and immunofluorescence staining. Detecting proliferation and migration of VSMCs. M6A methylated RNA immuno-precipitation qRT-PCR and dual luciferase reporter assay were performed for determining m6A level and interaction between m6A modulation and Klf5 mRNA, respectively. Results: FTO are highly expressed in VSMCs. FTO was positively correlated with BMI, triglyceride, and D-dimer (all P < 0.05). Functionally, both AngII-induced FTO expression and over expression of FTO promote cell proliferation and migration, whereas knockdown of FTO inhibits these functions. Mechanically, we identified Krüppel-like factor 5 (Klf5) as a target of FTO mediating m6A modification. Overexpression of FTO reduced m6A modification on Klf5 mRNA and promoted Klf5 mRNA expression. Furthermore, the p-GSK3β and Klf5 levels increased after FTO overexpression. Finally, knockdown of FTO suppresses the p-GSK3β levels and Klf5 expression regardless of AngII treatment. Conclusions: Our study revealed that FTO expression significantly contributes to the phenotype conversion of VSMCs and the ADA by the demethylation function (m6A), thereby providing a novel therapeutic target.
Collapse
Affiliation(s)
- Dong Ma
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiao Liu
- Cardiac Surgery Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin-Jin Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Jun-Jian Zhao
- Affiliated Hospital of North China University of Technology, Tangshan, China
| | - Yan-Jie Xiong
- Affiliated Hospital of North China University of Technology, Tangshan, China
| | - Quan Chang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hong-Yan Wang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Peng Su
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Jia Meng
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yong-Bo Zhao
- Cardiac Surgery Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
37
|
Malecki C, Hambly BD, Jeremy RW, Robertson EN. The Role of Inflammation and Myeloperoxidase-Related Oxidative Stress in the Pathogenesis of Genetically Triggered Thoracic Aortic Aneurysms. Int J Mol Sci 2020; 21:ijms21207678. [PMID: 33081376 PMCID: PMC7590002 DOI: 10.3390/ijms21207678] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Genetically triggered thoracic aortic aneurysms (TAAs) are usually considered to exhibit minimal levels of inflammation. However, emerging data demonstrate that specific features of an inflammatory response can be observed in TAA, and that the extent of the inflammatory response can be correlated with the severity, in both mouse models and in human studies. Myeloperoxidase (MPO) is a key mediator of the inflammatory response, via production of specific oxidative species, e.g., the hypohalous acids. Specific tissue modifications, mediated by hypohalous acids, have been documented in multiple cardiovascular pathologies, including atherosclerosis associated with coronary artery disease, abdominal aortic, and cerebral aneurysms. Similarly, data are now emerging that show the capacity of MPO-derived oxidative species to regulate mechanisms important in TAA pathogenesis, including alterations in extracellular matrix homeostasis, activation of matrix metalloproteinases, induction of endothelial dysfunction and vascular smooth muscle cell phenotypic switching, and activation of ERK1/2 signaling. The weight of evidence supports a role for inflammation in exacerbating the severity of TAA progression, expanding our understanding of the pathogenesis of TAA, identifying potential biomarkers for early detection of TAA, monitoring severity and progression, and for defining potential novel therapeutic targets.
Collapse
Affiliation(s)
- Cassandra Malecki
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (B.D.H.); (R.W.J.); (E.N.R.)
- Correspondence:
| | - Brett D. Hambly
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (B.D.H.); (R.W.J.); (E.N.R.)
| | - Richmond W. Jeremy
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (B.D.H.); (R.W.J.); (E.N.R.)
- Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Elizabeth N. Robertson
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (B.D.H.); (R.W.J.); (E.N.R.)
- Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| |
Collapse
|
38
|
Song W, Gao K, Huang P, Tang Z, Nie F, Jia S, Guo R. Bazedoxifene inhibits PDGF-BB induced VSMC phenotypic switch via regulating the autophagy level. Life Sci 2020; 259:118397. [DOI: 10.1016/j.lfs.2020.118397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/06/2023]
|
39
|
Zhuge Y, Zhang J, Qian F, Wen Z, Niu C, Xu K, Ji H, Rong X, Chu M, Jia C. Role of smooth muscle cells in Cardiovascular Disease. Int J Biol Sci 2020; 16:2741-2751. [PMID: 33110393 PMCID: PMC7586427 DOI: 10.7150/ijbs.49871] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Normally, smooth muscle cells (SMCs) are localized in the tunica media of the vasculature, where they take responsibility for vascular contraction and extracellular matrix (ECM) generation. SMCs also play a significant role in obedience and elastic rebound of the artery in response to the haemodynamic condition. However, under pathological or stressed conditions, phenotype switching from contractile to synthetic state or other cell types will occur in SMCs to positively or negatively contribute to disease progression. Various studies demonstrated that functional changes of SMCs are implicated in several cardiovascular diseases. In this review, we present the function of vascular SMCs (VSMCs) and the involved molecular mechanisms about phenotype switching, and summarize the roles of SMCs in atherosclerosis, hypertension, arterial aneurysms and myocardial infarction, hoping to obtain potential therapeutic targets against cardiovascular disease in the clinical practices.
Collapse
Affiliation(s)
- Yingzhi Zhuge
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jian Zhang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fanyu Qian
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhengwang Wen
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ke Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Hao Ji
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Xing Rong
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Maoping Chu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
40
|
You W, Hong Y, He H, Huang X, Tao W, Liang X, Zhang Y, Li X. TGF-β mediates aortic smooth muscle cell senescence in Marfan syndrome. Aging (Albany NY) 2020; 11:3574-3584. [PMID: 31147528 PMCID: PMC6594817 DOI: 10.18632/aging.101998] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/24/2019] [Indexed: 12/20/2022]
Abstract
Formation of aortic aneurysms as a consequence of augmented transforming growth factor β (TGF-β) signaling and vascular smooth muscle cell (VSMC) dysfunction is a potentially lethal complication of Marfan syndrome (MFS). Here, we examined VSMC senescence in patients with MFS and explored the potential mechanisms that link VSMC senescence and TGF-β. Tissue was harvested from the ascending aorta of control donors and MFS patients, and VSMCs were isolated. Senescence-associated β-galactosidase (SA-β-gal) activity and expression of senescence-related proteins (p53, p21) were significantly higher in aneurysmal tissue from MFS patients than in healthy aortic tissue from control donors. Compared to control-VSMCs, MFS-VSMCs were larger with higher levels of both SA-β-gal activity and mitochondrial reactive oxygen species (ROS). In addition, TGF-β1 levels were much higher in MFS- than control-VSMCs. TGF-β1 induced VSMC senescence through excessive ROS generation. This effect was suppressed by Mito-tempo, a mitochondria-targeted antioxidant, or SC-514, a NF-κB inhibitor. This suggests TGF-β1 induces VSMC senescence through ROS-mediated activation of NF-κB signaling. It thus appears that a TGF-β1/ROS/NF-κB axis may mediate VSMC senescence and aneurysm formation in MFS patients. This finding could serve as the basis for a novel strategy for treating aortic aneurysm in MFS.
Collapse
Affiliation(s)
- Wei You
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Yimei Hong
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Haiwei He
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Xiaoran Huang
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Wuyuan Tao
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Xiaoting Liang
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Xin Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|
41
|
Liu S, Huang T, Liu R, Cai H, Pan B, Liao M, Yang P, Wang L, Huang J, Ge Y, Xu B, Wang W. Spermidine Suppresses Development of Experimental Abdominal Aortic Aneurysms. J Am Heart Assoc 2020; 9:e014757. [PMID: 32308093 PMCID: PMC7428527 DOI: 10.1161/jaha.119.014757] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background The protective effects of polyamines on cardiovascular disease have been demonstrated in many studies. However, the roles of spermidine, a natural polyamine, in abdominal aortic aneurysm (AAA) disease have not been studied. In this study, we investigated the influence and potential mechanisms of spermidine treatment on experimental AAA disease. Methods and Results Experimental AAAs were induced in 8‐ to 10‐week‐old male C57BL/6J mice by transient intra‐aortic infusion of porcine pancreatic elastase. Spermidine was administered via drinking water at a concentration of 3 mmol/L. Spermidine treatment prevented experimental AAA formation with preservation of medial elastin and smooth muscle cells. In immunostaining, macrophages, T cells, neutrophils, and neovessels were significantly reduced in aorta of spermidine‐treated, as compared with vehicle‐treated elastase‐infused mice. Additionally, flow cytometric analysis showed that spermidine treatment reduced aortic leukocyte infiltration and circulating inflammatory cells. Furthermore, we demonstrated that spermidine treatment promoted autophagy‐related proteins in experimental AAAs using Western blot analysis, immunostaining, and transmission electron microscopic examination. Autophagic function was evaluated for human abdominal aneurysmal and nonaneurysmal adjacent aortae from AAA patients using Western blot analysis and immunohistochemistry. Dysregulated autophagic function, as evidenced by increased SQSTM1/p62 protein and phosphorylated mTOR, was found in aneurysmal, as compared with nonaneurysmal, aortic segments. Conclusions Our results suggest that spermidine supplementation limits experimental AAA formation associated with preserved aortic structural integrity, attenuated aortic inflammatory infiltration, reduced circulating inflammatory monocytes, and increased autophagy‐related proteins. These findings suggest that spermidine may be a promising treatment for AAA disease.
Collapse
Affiliation(s)
- Shuai Liu
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Tingting Huang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Rui Liu
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Huoying Cai
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Baihong Pan
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Mingmei Liao
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Pu Yang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Lei Wang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Jianhua Huang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Yingbin Ge
- Department of Physiology Nanjing Medical University Nanjing Jiangsu China
| | - Baohui Xu
- Department of Surgery Stanford University School of Medicine Stanford CA
| | - Wei Wang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China.,National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan China
| |
Collapse
|
42
|
Liu B, Granville DJ, Golledge J, Kassiri Z. Pathogenic mechanisms and the potential of drug therapies for aortic aneurysm. Am J Physiol Heart Circ Physiol 2020; 318:H652-H670. [PMID: 32083977 PMCID: PMC7099451 DOI: 10.1152/ajpheart.00621.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Aortic aneurysm is a permanent focal dilation of the aorta. It is usually an asymptomatic disease but can lead to sudden death due to aortic rupture. Aortic aneurysm-related mortalities are estimated at ∼200,000 deaths per year worldwide. Because no pharmacological treatment has been found to be effective so far, surgical repair remains the only treatment for aortic aneurysm. Aortic aneurysm results from changes in the aortic wall structure due to loss of smooth muscle cells and degradation of the extracellular matrix and can form in different regions of the aorta. Research over the past decade has identified novel contributors to aneurysm formation and progression. The present review provides an overview of cellular and noncellular factors as well as enzymes that process extracellular matrix and regulate cellular functions (e.g., matrix metalloproteinases, granzymes, and cathepsins) in the context of aneurysm pathogenesis. An update of clinical trials focusing on therapeutic strategies to slow abdominal aortic aneurysm growth and efforts underway to develop effective pharmacological treatments is also provided.
Collapse
Affiliation(s)
- Bo Liu
- University of Wisconsin, Madison, Department of Surgery, Madison Wisconsin
| | - David J Granville
- International Collaboration on Repair Discoveries Centre and University of British Columbia Centre for Heart Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Department of Vascular and Endovascular Surgery, Townsville Hospital and Health Services, Townsville, Queensland, Australia
| | - Zamaneh Kassiri
- University of Alberta, Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
43
|
Ren J, Han Y, Ren T, Fang H, Xu X, Lun Y, Jiang H, Xin S, Zhang J. AEBP1 Promotes the Occurrence and Development of Abdominal Aortic Aneurysm by Modulating Inflammation via the NF-κB Pathway. J Atheroscler Thromb 2020; 27:255-270. [PMID: 31462616 PMCID: PMC7113137 DOI: 10.5551/jat.49106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/13/2019] [Indexed: 01/03/2023] Open
Abstract
AIM Inflammation plays a significant role in the pathogenesis of human abdominal aortic aneurysm (AAA). AEBP1 can promote activation of the NF-κB pathway, subsequently affecting the expression of NF-κB target genes, including inflammatory cytokines and matrix metalloproteinases (MMPs). Our objective was to examine the role of AEBP1 in the development of AAA and characterize the underlying mechanism. METHODS ITRAQ, RT-PCR, western blot, immunohistochemistry, and ELISA were used to compare different experimental groups with the controls and to determine the differentially expressed genes. We generated an AAA model using porcine pancreatic elastase in Sprague-Dawley rats and silenced their AEBP1 in vivo by adenoviruses injected intra-adventitially. We also silenced or overexpressed AEBP1 in human vascular smooth muscle cells in vitro in the presence and in the absence of NF-κB inhibitor BAY 11-7082. RESULTS Proteome iTRAQ revealed a high expression of AEBP1 in AAA patients, which was verified by qRT-PCR, western blot, immunohistochemistry, and ELISA. The mean expression level of AEBP1 in AAA patients was higher than that in controls. Along with AEBP1 upregulation, we also verified mis-activation of NF-κB in human AAA samples. The in vivo studies indicated that AEBP1 knockdown suppressed AAA progression. Finally, the in vitro studies illustrated that AEBP1 promotes activation of the NF-κB pathway, subsequently upregulating pro-inflammatory factors and MMPs. CONCLUSIONS Our results indicate a role of AEBP1 in the pathogenesis of AAA and provide a novel insight into how AEBP1 causes the development of AAA by activating the NF-κB pathway.
Collapse
Affiliation(s)
- Jiancong Ren
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Yanshuo Han
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Tongming Ren
- Department of Anatomy Laboratory, Xinxiang Medical College, Xinxiang, China
| | - Hong Fang
- Department of Pancreatic Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Xiaohan Xu
- Department of Anesthesiology, the First Hospital, China Medical University, Shenyang, China
| | - Yu Lun
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Han Jiang
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Shijie Xin
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Jian Zhang
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| |
Collapse
|
44
|
Li Z, Kong W. Cellular signaling in Abdominal Aortic Aneurysm. Cell Signal 2020; 70:109575. [PMID: 32088371 DOI: 10.1016/j.cellsig.2020.109575] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are highly lethal cardiovascular diseases without effective medications. However, the molecular and signaling mechanisms remain unclear. A series of pathological cellular processes have been shown to contribute to AAA formation, including vascular extracellular matrix remodeling, inflammatory and immune responses, oxidative stress, and dysfunction of vascular smooth muscle cells. Each cellular process involves complex cellular signaling, such as NF-κB, MAPK, TGFβ, Notch and inflammasome signaling. In this review, we discuss how cellular signaling networks function in various cellular processes during the pathogenesis and progression of AAA. Understanding the interaction of cellular signaling networks with AAA pathogenesis as well as the crosstalk of different signaling pathways is essential for the development of novel therapeutic approaches to and personalized treatments of AAA diseases.
Collapse
Affiliation(s)
- Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
45
|
Lemaire J, Mireault M, Jumarie C. Zinc interference with Cd‐induced hormetic effect in differentiated Caco‐2 cells: Evidence for inhibition downstream ERK activation. J Biochem Mol Toxicol 2019; 34:e22437. [DOI: 10.1002/jbt.22437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Joannie Lemaire
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Myriam Mireault
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Catherine Jumarie
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| |
Collapse
|
46
|
Tingting T, Wenjing F, Qian Z, Hengquan W, Simin Z, Zhisheng J, Shunlin Q. The TGF-β pathway plays a key role in aortic aneurysms. Clin Chim Acta 2019; 501:222-228. [PMID: 31707165 DOI: 10.1016/j.cca.2019.10.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Aortic dissection and aortic aneurysms are currently among the most high-risk cardiovascular diseases due to their rapid onset and high mortality. Although aneurysm research has been extensive, the pathogenesis remains unknown. Studies have found that the TGF-β/Smad pathway and aneurysm formation appear linked. For example, the TGF-β signaling pathway was significantly activated in aneurysm development and aortic dissection. Aneurysms are not, however, mitigated following knockdown of TGF-β signaling pathway-related genes. Incidence and mortality rate of ruptured thoracic aneurysms increase with the down-regulation of the classical TGF-β signaling pathway. In this review, we summarize recent findings and evaluate the differential role of classical and non-classical TGF-β pathways on aortic aneurysm. It is postulated that the TGF-β signaling pathway is necessary to maintain vascular function, but over-activation will promote aneurysms whereas over-inhibition will lead to bypass pathway over-activation and promote aneurysm occurrence.
Collapse
Affiliation(s)
- Tang Tingting
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Fan Wenjing
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China; Emergency Department, The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zeng Qian
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Wan Hengquan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhao Simin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Jiang Zhisheng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Qu Shunlin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
47
|
Stieber C, Malka K, Boucher JM, Liaw L. Human Perivascular Adipose Tissue as a Regulator of the Vascular Microenvironment and Diseases of the Coronary Artery and Aorta. ACTA ACUST UNITED AC 2019; 3:10-15. [PMID: 32411947 PMCID: PMC7224402 DOI: 10.29245/2578-3025/2019/4.1174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Perivascular adipose tissue (PVAT) is an adipose depot that surrounds blood vessels in the human body and exerts local paracrine signaling. Under physiologically healthy conditions, PVAT has an anti-contractile effect on vessels, but in obesity this effect is lost. During metabolic disease, adiponectin secretion is dysregulated, influencing nitric oxide bioavailability and macrophage infiltration and inflammation, all of which mediate PVAT signaling. However, based on the location in the body, and the type of adipocyte present, PVAT has different relationships with risk factors for disease. Imaging studies in patients with cardiovascular disease have demonstrated important associations between PVAT structure and pathology, yet insight into molecular pathways regulating human PVAT function are still lacking. This review focuses on our current understanding of human PVAT and its secretory role in the vascular microenvironment. A current area of priority is defining molecular differences in the secretome between PVAT depots, as this could inform the treatment of diseases that occur in anatomically restricted locations. In addition, understanding progressive changes in PVAT structure and function during metabolic disease is required for effective targeted therapies.
Collapse
Affiliation(s)
- Caitlin Stieber
- Center for Molecular Medicine, Maine Medical Center Research Institute, United States
| | - Kimberly Malka
- Center for Molecular Medicine, Maine Medical Center Research Institute, United States
| | - Joshua M Boucher
- Center for Molecular Medicine, Maine Medical Center Research Institute, United States
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, United States
| |
Collapse
|
48
|
Lai J, Ai J, Luo D, Jin T, Liao B, Zhou L, Feng S, Jin X, Li H, Wang K. β-Adrenoceptor signaling regulates proliferation and contraction of human bladder smooth muscle cells under pathological hydrostatic pressure. J Cell Biochem 2019; 120:17872-17886. [PMID: 31161623 DOI: 10.1002/jcb.29056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Partial bladder outlet obstruction (PBOO) promotes bladder detrusor hyperplasia, increases bladder pressure, and decreases bladder compliance. To extensively explore its underlying mechanism, our study aimed to investigate the effect of pathological hydrostatic pressure on human bladder smooth muscle cell (hBSMC) proliferation and contraction through β-adrenoceptor (ADRB) signaling in vitro. METHODS hBSMCs were subjected to pathological hydrostatic pressure (100 cm H2 O) to investigate the effect of ADRBs on the proliferation and contraction of hBSMCs treated with its agonists and/or antagonists. RESULTS Firstly, exposure to 100 cm H2 O hydrostatic pressure significantly upregulated the expression of α-smooth muscle actin (α-SMA) in hBSMCs at 6 hours, and promoted cell proliferation at 24 hours. When subjected to hydrostatic pressure alone, hBSMCs treated with ADRB2 and ADRB3 agonists for 6 hours inhibited α-SMA expression compared with untreated cells. By contrast, hBSMCs treated with ADRB2 agonists for 24 hours suppressed cell proliferation compared with untreated cells. The two classical pathways of ADRB, protein kinase A (PKA), and exchange factor directly activated by cAMP (EPAC) inhibited the contraction of hBSMCs under hydrostatic pressure via regulating mothers against decapentaplegic homolog 2 (SMAD2) activity. The proliferation of hBSMCs was mainly regulated by the EPAC pathway through extracellular signal-regulated kinase 1/2 (ERK1/2) activity. CONCLUSION The contraction of hBSMCs under hydrostatic pressure was regulated by ADRB2 and ADRB3 via the PKA/EPAC-SMAD2 pathway, and the proliferation of hBSMCs was regulated by ADRB2 via the EPAC-ERK1/2 pathway. Compared with ADRB3, ADRB2 played a predominant role under pathological hydrostatic pressure. These findings markedly uncovered the underlying mechanism of ADRBs in PBOO and provided new insights into the efficient treatment of patients with PBOO.
Collapse
Affiliation(s)
- Junyu Lai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Deyi Luo
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Zhou
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shijian Feng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
49
|
Gao F, Huang Y, Zhang L, Liu W. Involvement of estrogen receptor and GPER in bisphenol A induced proliferation of vascular smooth muscle cells. Toxicol In Vitro 2019; 56:156-162. [DOI: 10.1016/j.tiv.2019.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
|