1
|
Wan Z, Chibnik LB, Valeri L, Hughes TM, Blacker D, Ma Y. DNA Methylation Mediates the Association Between Cardiometabolic Risk Factors and Cognition: Findings From the Health and Retirement Study. J Gerontol A Biol Sci Med Sci 2024; 79:glae167. [PMID: 38943310 DOI: 10.1093/gerona/glae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 07/01/2024] Open
Abstract
The association between cardiometabolic risk factors and cognitive function has been well documented, but the underlying mechanisms are not fully understood. This longitudinal study aimed to investigate the potential mediating role of DNA methylation in this association. We conducted the analyses in 3 708 participants (mean [standard deviation {SD}] age: 67.3 [9.5], women: 57.9%) from the Health and Retirement Study who were assessed in the 2014-2020 waves, had Infinium Methylation EPIC BeadChip methylation assays from the 2016 Venous Blood Study, and had cognitive assessment between 2016 and 2020. Causal mediation analyses were used to test the mediation role of DNA methylation in the associations between cardiometabolic risk factors and cognition, adjusting for demographic, socioeconomic, and lifestyle factors. Hypertension (-0.061 in composite cognitive z-score; 95% confidence interval [CI: -0.119, -0.004]) and diabetes (-0.134; 95% CI: [-0.198, -0.071]) were significantly associated with worse cognitive function while abnormal body weight and hypercholesterolemia were not. An increased number of cardiometabolic risk factors was associated with worse cognitive function (p = .002). DNA methylation significantly mediated the association of hypertension (mediated effect on composite cognitive z-score: -0.023; 95% CI: -0.033, -0.014), diabetes (-0.022; 95% CI: -0.032, -0.014), and obesity (-0.021; 95% CI: -0.033, -0.011) with cognitive function, whereas the mediation effect was not observed for having hypercholesterolemia. The estimated proportions mediated were 37.4% for hypertension and 16.7% for diabetes. DNA methylation may be an important mediator linking cardiometabolic risk factors to worse cognition and might even provide a potential target for dementia prevention.
Collapse
Affiliation(s)
- Zengyi Wan
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Lori B Chibnik
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Linda Valeri
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Timothy M Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Deborah Blacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yuan Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Gou R, Xiong S, Liang X, Wu H, Qin S, Li B, Luo C, Chen J. Relationship between Life's Essential 8 and metabolic syndrome among older Americans (NHANES, 2007-2010): navigating biological aging and inflammation. Front Med (Lausanne) 2024; 11:1380464. [PMID: 38903808 PMCID: PMC11188479 DOI: 10.3389/fmed.2024.1380464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Background Metabolic syndrome (MetS) is a global health concern, and it is particularly harmful to middle-aged and elderly individuals. Life Element Eight (LE8), a measure to improve cardiovascular health, may offer benefits for MetS. Herein, we examined the relationship between LE8 and MetS among middle-aged and elderly individuals, and elucidated the role of biological aging and inflammation in this process. Methods We obtained the LE8 scores of 2,901 Americans, along with their biological aging indicators (Biological age, Phenotypic age, Serum Klotho), and computed their inflammatory indicators SII, DII. Using logistic regression model, we assessed the association among inflammatory markers, Biological aging, LE8 and MetS. Additionally, we generated restricted cubic spline (RCS) plots to display trends in significant variables in logistic regression. Using parallel mediation analysis, we evaluated the possible mediating role of various factors in the risk relationship between LE8 and MetS. Results Our examination revealed that higher LE8 scores were associated with a lower incidence of MetS in a fully adjusted model. The high LE8 subgroup had a 79.73% reduction in the risk of MetS compared to the low subgroup with an OR = 0.2027 (95% Cl 0.0871, 0.4714), with similar correlations between health factor scores and MetS risk. Biological aging mediated the associations between LE8, health behaviors and health factor scores and MetS risk. Conclusion A rise in the LE8 score among middle-aged and elderly individuals is a protective factor for MetS, and this association may be partially mediated by biological aging, suggesting that LE8 may reduce the risk of MetS by ameliorating aging.
Collapse
Affiliation(s)
- Ruoyu Gou
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Si Xiong
- Department of Ultrasonography, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Xudong Liang
- Department of Cardiology, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Hao Wu
- Department of Cardiology, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Shuitao Qin
- Department of Cardiology, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Bing Li
- Department of Cardiology, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Changjun Luo
- Department of Cardiology, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Junan Chen
- Department of Endocrinology, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| |
Collapse
|
3
|
Karabaeva RZ, Vochshenkova TA, Mussin NM, Albayev RK, Kaliyev AA, Tamadon A. Epigenetics of hypertension as a risk factor for the development of coronary artery disease in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1365738. [PMID: 38836231 PMCID: PMC11148232 DOI: 10.3389/fendo.2024.1365738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Hypertension, a multifaceted cardiovascular disorder influenced by genetic, epigenetic, and environmental factors, poses a significant risk for the development of coronary artery disease (CAD) in individuals with type 2 diabetes mellitus (T2DM). Epigenetic alterations, particularly in histone modifications, DNA methylation, and microRNAs, play a pivotal role in unraveling the complex molecular underpinnings of blood pressure regulation. This review emphasizes the crucial interplay between epigenetic attributes and hypertension, shedding light on the prominence of DNA methylation, both globally and at the gene-specific level, in essential hypertension. Additionally, histone modifications, including acetylation and methylation, emerge as essential epigenetic markers linked to hypertension. Furthermore, microRNAs exert regulatory influence on blood pressure homeostasis, targeting key genes within the aldosterone and renin-angiotensin pathways. Understanding the intricate crosstalk between genetics and epigenetics in hypertension is particularly pertinent in the context of its interaction with T2DM, where hypertension serves as a notable risk factor for the development of CAD. These findings not only contribute to the comprehensive elucidation of essential hypertension but also offer promising avenues for innovative strategies in the prevention and treatment of cardiovascular complications, especially in the context of T2DM.
Collapse
Affiliation(s)
- Raushan Zh Karabaeva
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Tamara A. Vochshenkova
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Nadiar M. Mussin
- General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Rustam K. Albayev
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Asset A. Kaliyev
- General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- Department for Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
- Department of Research and Development, PerciaVista R&D Co., Shiraz, Iran
| |
Collapse
|
4
|
Biemans Y, Bach D, Behrouzi P, Horvath S, Kramer CS, Liu S, Manson JE, Shadyab AH, Stewart J, Whitsel EA, Yang B, de Groot L, Grootswagers P. Identifying the relation between food groups and biological ageing: a data-driven approach. Age Ageing 2024; 53:ii20-ii29. [PMID: 38745494 PMCID: PMC11094402 DOI: 10.1093/ageing/afae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Heterogeneity in ageing rates drives the need for research into lifestyle secrets of successful agers. Biological age, predicted by epigenetic clocks, has been shown to be a more reliable measure of ageing than chronological age. Dietary habits are known to affect the ageing process. However, much remains to be learnt about specific dietary habits that may directly affect the biological process of ageing. OBJECTIVE To identify food groups that are directly related to biological ageing, using Copula Graphical Models. METHODS We performed a preregistered analysis of 3,990 postmenopausal women from the Women's Health Initiative, based in North America. Biological age acceleration was calculated by the epigenetic clock PhenoAge using whole-blood DNA methylation. Copula Graphical Modelling, a powerful data-driven exploratory tool, was used to examine relations between food groups and biological ageing whilst adjusting for an extensive amount of confounders. Two food group-age acceleration networks were established: one based on the MyPyramid food grouping system and another based on item-level food group data. RESULTS Intake of eggs, organ meat, sausages, cheese, legumes, starchy vegetables, added sugar and lunch meat was associated with biological age acceleration, whereas intake of peaches/nectarines/plums, poultry, nuts, discretionary oil and solid fat was associated with decelerated ageing. CONCLUSION We identified several associations between specific food groups and biological ageing. These findings pave the way for subsequent studies to ascertain causality and magnitude of these relationships, thereby improving the understanding of biological mechanisms underlying the interplay between food groups and biological ageing.
Collapse
Affiliation(s)
- Ynte Biemans
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Daimy Bach
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Pariya Behrouzi
- Biometrics, Mathematical and Statistical Methods, Wageningen University and Research, Wageningen, The Netherlands
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Charlotte S Kramer
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Simin Liu
- Departments of Medicine and Surgery, Alpert School of Medicine, Brown University, Providence, RI, USA
- Department of Epidemiology and Center for Global Cardiometabolic Health, School of Public Health, Brown University, Providence, RI, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - James Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Bo Yang
- Department of Epidemiology and Center for Global Cardiometabolic Health, School of Public Health, Brown University, Providence, RI, USA
| | - Lisette de Groot
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Pol Grootswagers
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Phyo AZZ, Fransquet PD, Wrigglesworth J, Woods RL, Espinoza SE, Ryan J. Sex differences in biological aging and the association with clinical measures in older adults. GeroScience 2024; 46:1775-1788. [PMID: 37747619 PMCID: PMC10828143 DOI: 10.1007/s11357-023-00941-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Females live longer than males, and there are sex disparities in physical health and disease incidence. However, sex differences in biological aging have not been consistently reported and may differ depending on the measure used. This study aimed to determine the correlations between epigenetic age acceleration (AA), and other markers of biological aging, separately in males and females. We additionally explored the extent to which these AA measures differed according to socioeconomic characteristics, clinical markers, and diseases. Epigenetic clocks (HorvathAge, HannumAge, PhenoAge, GrimAge, GrimAge2, and DunedinPACE) were estimated in blood from 560 relatively healthy Australians aged ≥ 70 years (females, 50.7%) enrolled in the ASPREE study. A system-wide deficit accumulation frailty index (FI) composed of 67 health-related measures was generated. Brain age and subsequently brain-predicted age difference (brain-PAD) were estimated from neuroimaging. Females had significantly reduced AA than males, but higher FI, and there was no difference in brain-PAD. FI had the strongest correlation with DunedinPACE (range r: 0.21 to 0.24 in both sexes). Brain-PAD was not correlated with any biological aging measures. Significant correlations between AA and sociodemographic characteristics and health markers were more commonly found in females (e.g., for DunedinPACE and systolic blood pressure r = 0.2, p < 0.001) than in males. GrimAA and Grim2AA were significantly associated with obesity and depression in females, while in males, hypertension, diabetes, and chronic kidney disease were associated with these clocks, as well as DunedinPACE. Our findings highlight the importance of considering sex differences when investigating the link between biological age and clinical measures.
Collapse
Affiliation(s)
- Aung Zaw Zaw Phyo
- Biological Neuropsychiatry & Dementia Unit, School of Public Health and Preventive Medicine, Monash University, 553, St. Kilda Road, Melbourne, VIC, 3004, Australia.
| | - Peter D Fransquet
- Biological Neuropsychiatry & Dementia Unit, School of Public Health and Preventive Medicine, Monash University, 553, St. Kilda Road, Melbourne, VIC, 3004, Australia
- School of Psychology, Deakin University, Burwood, Melbourne, VIC, 3125, Australia
| | - Jo Wrigglesworth
- Biological Neuropsychiatry & Dementia Unit, School of Public Health and Preventive Medicine, Monash University, 553, St. Kilda Road, Melbourne, VIC, 3004, Australia
| | - Robyn L Woods
- ASPREE Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Sara E Espinoza
- Center for Translational Geroscience, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joanne Ryan
- Biological Neuropsychiatry & Dementia Unit, School of Public Health and Preventive Medicine, Monash University, 553, St. Kilda Road, Melbourne, VIC, 3004, Australia
| |
Collapse
|
6
|
Wu D, Qu C, Huang P, Geng X, Zhang J, Shen Y, Rao Z, Zhao J. Better Life's Essential 8 contributes to slowing the biological aging process: a cross-sectional study based on NHANES 2007-2010 data. Front Public Health 2024; 12:1295477. [PMID: 38544722 PMCID: PMC10965682 DOI: 10.3389/fpubh.2024.1295477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/07/2024] [Indexed: 05/03/2024] Open
Abstract
Objective To investigate the relationship between Life's Essential 8 (LE8) and Phenotypic Age Acceleration (PhenoAgeAccel) in United States adults and to explore the impact of LE8 on phenotypic biological aging, thereby providing references for public health policies and health education. Methods Utilizing data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2007 and 2010, this cross-sectional study analyzed 7,339 adults aged 20 and above. Comprehensive assessments of LE8, PhenoAgeAccel, and research covariates were achieved through the integration of Demographics Data, Dietary Data, Laboratory Data, and Questionnaire Data derived from NHANES. Weighted generalized linear regression models and restricted cubic spline plots were employed to analyze the linear and non-linear associations between LE8 and PhenoAgeAccel, along with gender subgroup analysis and interaction effect testing. Results (1) Dividing the 2007-2010 NHANES cohort into quartiles based on LE8 unveiled significant disparities in age, gender, race, body mass index, education level, marital status, poverty-income ratio, smoking and drinking statuses, diabetes, hypertension, hyperlipidemia, phenotypic age, PhenoAgeAccel, and various biological markers (p < 0.05). Mean cell volume demonstrated no intergroup differences (p > 0.05). (2) The generalized linear regression weighted models revealed a more pronounced negative correlation between higher quartiles of LE8 (Q2, Q3, and Q4) and PhenoAgeAccel compared to the lowest LE8 quartile in both crude and fully adjusted models (p < 0.05). This trend was statistically significant (p < 0.001) in the full adjustment model. Gender subgroup analysis within the fully adjusted models exhibited a significant negative relationship between LE8 and PhenoAgeAccel in both male and female participants, with trend tests demonstrating significant results (p < 0.001 for males and p = 0.001 for females). (3) Restricted cubic spline (RCS) plots elucidated no significant non-linear trends between LE8 and PhenoAgeAccel overall and in gender subgroups (p for non-linear > 0.05). (4) Interaction effect tests denoted no interaction effects between the studied stratified variables such as age, gender, race, education level, and marital status on the relationship between LE8 and PhenoAgeAccel (p for interaction > 0.05). However, body mass index and diabetes manifested interaction effects (p for interaction < 0.05), suggesting that the influence of LE8 on PhenoAgeAccel might vary depending on an individual's BMI and diabetes status. Conclusion This study, based on NHANES data from 2007-2010, has revealed a significant negative correlation between LE8 and PhenoAgeAccel, emphasizing the importance of maintaining a healthy lifestyle in slowing down the biological aging process. Despite the limitations posed by the study's design and geographical constraints, these findings provide a scientific basis for the development of public health policies focused on healthy lifestyle practices. Future research should further investigate the causal mechanisms underlying the relationship between LE8 and PhenoAgeAccel and consider cross-cultural comparisons to enhance our understanding of healthy aging.
Collapse
Affiliation(s)
- Dongzhe Wu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Chaoyi Qu
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Peng Huang
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Xue Geng
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | | | - Yulin Shen
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Zhijian Rao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Jiexiu Zhao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
7
|
El Kabbout R, Azhar N, Breuils-Bonnet S, Martineau S, Krishna V, Kalyana-Sundaram S, Boucherat O, Provencher S, Bonnet S, Potus F. Time Is Running Out in Pulmonary Arterial Hypertension: The Epigenetic Clock Is Clicking. Am J Respir Cell Mol Biol 2024; 70:140-143. [PMID: 38299796 DOI: 10.1165/rcmb.2023-0335le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Affiliation(s)
- Reem El Kabbout
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ) Québec, Québec, Canada
| | - Nabil Azhar
- Janssen Research & Development Spring House, Pennsylvania
| | - Sandra Breuils-Bonnet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ) Québec, Québec, Canada
| | - Sandra Martineau
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ) Québec, Québec, Canada
| | - Vinod Krishna
- Janssen Research & Development Spring House, Pennsylvania
| | | | - Olivier Boucherat
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ) Québec, Québec, Canada
| | - Steeve Provencher
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ) Québec, Québec, Canada
| | - Sébastien Bonnet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ) Québec, Québec, Canada
| | - François Potus
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ) Québec, Québec, Canada
| |
Collapse
|
8
|
Liu W, You J, Ge Y, Wu B, Zhang Y, Chen S, Zhang Y, Huang S, Ma L, Feng J, Cheng W, Yu J. Association of biological age with health outcomes and its modifiable factors. Aging Cell 2023; 22:e13995. [PMID: 37723992 PMCID: PMC10726867 DOI: 10.1111/acel.13995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi-dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all-cause, and cause-specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10-4 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C-reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health-related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging.
Collapse
Affiliation(s)
- Wei‐Shi Liu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Jia You
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
| | - Yi‐Jun Ge
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Bang‐Sheng Wu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shi‐Dong Chen
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ya‐Ru Zhang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shu‐Yi Huang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ling‐Zhi Ma
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Jian‐Feng Feng
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
- Shanghai Medical College and Zhongshan Hosptital Immunotherapy Technology Transfer CenterShanghaiChina
| | - Jin‐Tai Yu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
9
|
Wang M, Li Y, Lai M, Nannini DR, Hou L, Joehanes R, Huan T, Levy D, Ma J, Liu C. Alcohol consumption and epigenetic age acceleration across human adulthood. Aging (Albany NY) 2023; 15:10938-10971. [PMID: 37889500 PMCID: PMC10637803 DOI: 10.18632/aging.205153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
The alcohol-associated biological aging remains to be studied across adulthood. We conducted linear regression analyses to investigate the associations between alcohol consumption and two DNA methylation-based biological age acceleration metrics in 3823 Framingham Heart Study participants (24-92 years and 53.8% women) adjusting for covariates. We also investigated whether the two epigenetic aging metrics mediated the association of alcohol consumption with hypertension. We found that higher long-term average alcohol consumption was significantly associated with biological age acceleration assessed by GrimAge acceleration (GAA) and PhenoAge acceleration (PAA) in middle-aged (45-64 years, n = 1866) and older (65-92 years, n = 1267) participants while not in young participants (24-44 years, n = 690). For example, one additional standard drink of alcohol (~14 grams of ethanol per day) was associated with a 0.71 ± 0.15-year (p = 2.1e-6) and 0.60 ± 0.18-year (p = 7.5e-4) increase in PAA in middle-aged and older participants, respectively, but the association was not significant in young participants (p = 0.23). One additional standard serving of liquor (~14 grams of ethanol) was associated with a greater increase in GAA (0.82-year, p = 4.8e-4) and PAA (1.45-year, p = 7.4e-5) than beer (GAA: 0.45-year, p = 5.2e-4; PAA: 0.48-year, p = 0.02) and wine (GAA: 0.51-year, p = 0.02; PAA: 0.91-year, p = 0.008) in middle-aged participant group. We observed that up to 28% of the association between alcohol consumption and hypertension was mediated by GAA or PAA in the pooled sample. Our findings suggest that alcohol consumption is associated with greater biological aging quantified by epigenetic aging metrics, which may mediate the association of alcohol consumption with quantitative traits, such as hypertension.
Collapse
Affiliation(s)
- Mengyao Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Yi Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Meng Lai
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Drew R. Nannini
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Roby Joehanes
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tianxiao Huan
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Framingham Heart Study, Framingham, MA 01702, USA
| | - Jiantao Ma
- Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- Framingham Heart Study, Framingham, MA 01702, USA
| |
Collapse
|
10
|
Hao J, Liu T, Xiu Y, Yuan H, Xu D. High DNA methylation age deceleration defines an aggressive phenotype with immunoexclusion environments in endometrial carcinoma. Front Immunol 2023; 14:1208223. [PMID: 37388735 PMCID: PMC10303802 DOI: 10.3389/fimmu.2023.1208223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Like telomere shortening, global DNA hypomethylation occurs progressively with cellular divisions or in vivo aging and functions as a mitotic clock to restrain malignant transformation/progression. Several DNA-methylation (DNAm) age clocks have been established to precisely predict chronological age using normal tissues, but show DNAm age drift in tumors, which suggests disruption of this mitotic clock during carcinogenesis. Little is known about DNAm age alterations and biological/clinical implications in endometrial cancer (EC). Here we address these issues by analyzing TCGA and GSE67116 cohorts of ECs. Horvath clock analysis of these tumors unexpectedly revealed that almost 90% of them exhibited DNAm age deceleration (DNAmad) compared to patient chronological age. Combined with an additional clock named Phenoage, we identified a subset of tumors (82/429) with high DNAmad (hDNAmad+) as assessed by both clocks. Clinically, hDNAmad+ tumors were associated with advanced diseases and shorter patient survival, compared to hDNAmad- ones. Genetically, hDNAmad+ tumors were characterized by higher copy number alterations (CNAs) whereas lower tumor mutation burden. Functionally, hDNAmad+ tumors were enriched with cell cycle and DNA mismatch repair pathways. Increased PIK3CA alterations and downregulation of SCGB2A1, the inhibitor of PI3K kinase, in hDNAmad+ tumors, might promote tumor growth/proliferation and stemness. In addition, the inactivation of aging drivers/tumor suppressors (TP53, RB1, and CDKN2A) while enhanced telomere maintenance occurred more frequently in hDNAmad+ tumors, which supports sustained tumor growth. Prominently, hDNAmad+ tumors were featured with immunoexclusion microenvironments, accompanied by significantly higher levels of VTCN1 expression while lower PD-L1 and CTLA4 expression, which indicates their poor response to immune checkpoint inhibitor (ICI)-based immunotherapy. We further showed significantly higher levels of DNMT3A and 3B expression in hDNAmad+ than in hDNAmad- tumors. Thus, the tumor suppressive function of aging-like DNA hypomethylation is severely impaired in hDNAmad+ tumors, likely due to enhanced expression of DNMT3A/3B and dysregulated aging regulators. Our findings not only enrich biological knowledge of EC pathogenesis but also help improve EC risk stratification and precision ICI immunotherapy.
Collapse
Affiliation(s)
- Jing Hao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Tiantian Liu
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuchen Xiu
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huiyang Yuan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Dawei Xu
- Department of Medicine, Bioclinicum and Center for Molecular Medicine (CMM), Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
11
|
Kresovich JK, Sandler DP, Taylor JA. Methylation-Based Biological Age and Hypertension Prevalence and Incidence. Hypertension 2023; 80:1213-1222. [PMID: 36974720 PMCID: PMC10192055 DOI: 10.1161/hypertensionaha.122.20796] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Hypertension is common in older individuals and is a major risk factor for cardiovascular disease. Blood DNA methylation profiles have been used to derive metrics of biological age that capture age-related physiological change, disease risk, and mortality. The relationships between hypertension and DNA methylation-based biological age metrics have yet to be carefully described. METHODS Among 4419 women enrolled in the prospective Sister Study cohort, DNA methylation data generated from whole blood samples collected at baseline were used to calculate 3 biological age metrics (PhenoAgeAccel, GrimAgeAccel, DunedinPACE). Women were classified as hypertensive at baseline if they had high blood pressure (systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg) or reported current use of antihypertensive medication. New incident cases of hypertension during follow-up were identified via self-report on annual health questionnaires. RESULTS All 3 DNA methylation metrics of biological age were positively associated with prevalent hypertension at baseline (per 1-SD increase; PhenoAgeAccel, adjusted odds ratio, 1.16 [95% CI, 1.05-1.28]; GrimAgeAccel, adjusted odds ratio, 1.28 [95% CI, 1.14-1.45]; DunedinPACE, adjusted odds ratio, 1.16 [95% CI, 1.03-1.30]). Among 2610 women who were normotensive at baseline, women with higher biological age were more likely to be diagnosed with incident hypertension (per 1-SD increase; PhenoAgeAccel, adjusted hazard ratio, 1.09 [95% CI, 0.97-1.23]; GrimAgeAccel, adjusted hazard ratio, 1.16 [95% CI, 0.99-1.36]; DunedinPACE, adjusted hazard ratio, 1.16 [95% CI, 1.01-1.33]). CONCLUSIONS Methylation-based biological age metrics increase before a hypertension diagnosis and appear to remain elevated in the years after clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jacob K Kresovich
- Departments of Cancer Epidemiology & Breast Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL (J.K.K.)
| | - Dale P Sandler
- Epidemiology Branch (D.P.S., J.A.T.), National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC
| | - Jack A Taylor
- Epigenetic and Stem Cell Biology Laboratory (J.A.T.), National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC
| |
Collapse
|
12
|
Abstract
Epigenetic alterations during ageing are manifested with altered gene expression linking it to lifespan regulation, genetic instability, and diseases. Diet and epigenetic modifiers exert a profound effect on the lifespan of an organism by modulating the epigenetic marks. However, our understanding of the multifactorial nature of the epigenetic process during ageing and the onset of disease conditions as well as its reversal by epidrugs, diet, or environmental factors is still mystifying. This review covers the key findings in epigenetics related to ageing and age-related diseases. Further, it holds a discussion about the epigenetic clocks and their implications in various age-related disease conditions including cancer. Although, epigenetics is a reversible process how fast the epigenetic alterations can revert to normal is an intriguing question. Therefore, this paper touches on the possibility of utilizing nutrition and MSCs secretome to accelerate the epigenetic reversal and emphasizes the identification of new therapeutic epigenetic modifiers to counter epigenetic alteration during ageing.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute for Stem Cell Science and Regenerative Medicine, 429164, Bangalore, India;
| | - Ramesh Bhonde
- Dr D Y Patil Vidyapeeth University, 121766, Pune, Maharashtra, India;
| |
Collapse
|
13
|
Chang K, Li Y, Qin Z, Zhang Z, Wang L, Yang Q, Su B. Association between Serum Soluble α-Klotho and Urinary Albumin Excretion in Middle-Aged and Older US Adults: NHANES 2007-2016. J Clin Med 2023; 12:jcm12020637. [PMID: 36675565 PMCID: PMC9863467 DOI: 10.3390/jcm12020637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
(1) Background: Preclinical and clinical studies on the anti-aging effect of α-Klotho are emerging. Urinary albumin excretion (UAE) is a well-known biomarker of kidney injury and generalized damage in the cardiovascular system. However, the potential relationship between α-Klotho and UAE is limited and controversial. This study aimed to quantify this relationship in the general middle-aged and elderly population from the National Health and Nutrition Survey (NHANES) 2007-2016. (2) Methods: Serum α-Klotho was measured by enzyme-linked immunosorbent assay. UAE was assessed by the albumin-to-creatinine ratio (ACR). After adjusting for several confounding variables, the relationship between α-Klotho and ACR was analyzed by weighted multivariable logistic regression, subgroup analysis, and interaction tests. A generalized additive model (GAM) with smooth functions using the two-piecewise linear regression model was used to examine the potential nonlinear relationship between α-Klotho and ACR. (3) Results: Among 13,584 participants aged 40-79 years, we observed an independent and significant negative correlation between α-Klotho and ACR (β = -12.22; 95% CI, -23.91, -0.53, p = 0.0448) by multivariable logistic regression analysis, especially in those with age ≥ 60 years, pulse pressure (PP) ≥ 60 mmHg, hypertension or diabetes. We further discovered the nonlinear relationship between α-Klotho and ACR by GAM, revealing the first negative and then positive correlations with an inflection point of 9.91 pg/mL between α-Klotho and ACR. (4) Conclusions: A dose-response relationship between α-Klotho and ACR was demonstrated, and the negative correlation therein indicated that α-Klotho has potential as a serum marker and prophylactic or therapeutic agent despite its metabolic and effective mechanisms needing to be further explored.
Collapse
Affiliation(s)
- Kaixi Chang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu 610041, China
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu 610041, China
| | - Zheng Qin
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu 610041, China
| | - Zhuyun Zhang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu 610041, China
| | - Liya Wang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu 610041, China
| | - Qinbo Yang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu 610041, China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
14
|
Epigenetic Clock Explains White Matter Hyperintensity Burden Irrespective of Chronological Age. BIOLOGY 2022; 12:biology12010033. [PMID: 36671726 PMCID: PMC9855342 DOI: 10.3390/biology12010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
In this manuscript we studied the relationship between WMH and biological age (B-age) in patients with acute stroke. We included in this study 247 patients with acute stroke recruited at Hospital del Mar having both epigenetic (DNA methylation) and magnetic resonance imaging data. WMH were measured using a semi-automated method. B-age was calculated using two widely used methods: the Hannum and Horvath formulas. We used multiple linear regression models to interrogate the role of B-age on WMH volume after adjusting for chronological age (C-age) and other covariables. Average C-age of the sample was 68.4 (±11.8) and we observed a relatively high median WMH volume (median = 8.8 cm3, Q1-Q3 = 4.05-18.8). After adjusting for potential confounders, we observed a significant effect of B-ageHannum on WMH volume (βHannum = 0.023, p-value = 0.029) independently of C-age, which remained significant (βC-age = 0.021, p-value = 0.036). Finally, we performed a mediation analysis, which allowed us to discover that 42.7% of the effect of C-age on WMH is mediated by B-ageHannum. On the other hand, B-ageHoarvath showed no significant associations with WMH after being adjusted for C-age. In conclusion, we show for the first time that biological age, measured through DNA methylation, contributes substantially to explain WMH volumetric burden irrespective of chronological age.
Collapse
|