1
|
Jacob SM, Lee S, Kim SH, Sharkey KA, Pfeffer G, Nguyen MD. Brain-body mechanisms contribute to sexual dimorphism in amyotrophic lateral sclerosis. Nat Rev Neurol 2024; 20:475-494. [PMID: 38965379 DOI: 10.1038/s41582-024-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of human motor neuron disease. It is characterized by the progressive degeneration of upper and lower motor neurons, leading to generalized motor weakness and, ultimately, respiratory paralysis and death within 3-5 years. The disease is shaped by genetics, age, sex and environmental stressors, but no cure or routine biomarkers exist for the disease. Male individuals have a higher propensity to develop ALS, and a different manifestation of the disease phenotype, than female individuals. However, the mechanisms underlying these sex differences remain a mystery. In this Review, we summarize the epidemiology of ALS, examine the sexually dimorphic presentation of the disease and highlight the genetic variants and molecular pathways that might contribute to sex differences in humans and animal models of ALS. We advance the idea that sexual dimorphism in ALS arises from the interactions between the CNS and peripheral organs, involving vascular, metabolic, endocrine, musculoskeletal and immune systems, which are strikingly different between male and female individuals. Finally, we review the response to treatments in ALS and discuss the potential to implement future personalized therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sarah M Jacob
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sukyoung Lee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University Hospital, Seoul, South Korea
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Tran NN, Chwa JS, Brady KM, Borzage M, Brecht ML, Woon JX, Miner A, Merkel CA, Friedlich P, Peterson BS, Wood JC. Cerebrovascular responses to a 90° tilt in healthy neonates. Pediatr Res 2024; 95:1851-1859. [PMID: 38280952 PMCID: PMC11245387 DOI: 10.1038/s41390-024-03046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/30/2023] [Accepted: 01/07/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Tilts can induce alterations in cerebral hemodynamics in healthy neonates, but prior studies have only examined systemic parameters or used small tilt angles (<90°). The healthy neonatal population, however, are commonly subjected to large tilt angles (≥90°). We sought to characterize the cerebrovascular response to a 90° tilt in healthy term neonates. METHODS We performed a secondary descriptive analysis on 44 healthy term neonates. We measured cerebral oxygen saturation (rcSO2), oxygen saturation (SpO2), heart rate (HR), breathing rate (BR), and cerebral fractional tissue oxygen extraction (cFTOE) over three consecutive 90° tilts. These parameters were measured for 2-min while neonates were in a supine (0°) position and 2-min while tilted to a sitting (90°) position. We measured oscillometric mean blood pressure (MBP) at the start of each tilt. RESULTS rcSO2 and BR decreased significantly in the sitting position, whereas cFTOE, SpO2, and MBP increased significantly in the sitting position. We detected a significant position-by-time interaction for all physiological parameters. CONCLUSION A 90° tilt induces a decline in rcSO2 and an increase in cFTOE in healthy term neonates. Understanding the normal cerebrovascular response to a 90° tilt in healthy neonates will help clinicians to recognize abnormal responses in high-risk infant populations. IMPACT Healthy term neonates (≤14 days old) had decreased cerebral oxygen saturation (~1.1%) and increased cerebral oxygen extraction (~0.01) following a 90° tilt. We detected a significant position-by-time interaction with all physiological parameters measured, suggesting the effect of position varied across consecutive tilts. No prior study has characterized the cerebral oxygen saturation response to a 90° tilt in healthy term neonates.
Collapse
Affiliation(s)
- Nhu N Tran
- Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Jason S Chwa
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kenneth M Brady
- Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew Borzage
- Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mary-Lynn Brecht
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jessica X Woon
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anna Miner
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlin A Merkel
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Philippe Friedlich
- Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bradley S Peterson
- Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John C Wood
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Panerai RB, Davies A, Clough RH, Beishon LC, Robinson TG, Minhas JS. The effect of hypercapnia on the directional sensitivity of dynamic cerebral autoregulation and the influence of age and sex. J Cereb Blood Flow Metab 2024; 44:272-283. [PMID: 37747437 PMCID: PMC10993882 DOI: 10.1177/0271678x231203475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
The cerebral circulation responds differently to increases in mean arterial pressure (MAP), compared to reductions in MAP. We tested the hypothesis that this directional sensitivity is reduced by hypercapnia. Retrospective analysis of 104 healthy subjects (46 male (44%), age range 19-74 years), with five minute recordings of middle cerebral blood velocity (MCAv, transcranial Doppler), non-invasive MAP (Finometer) and end-tidal CO2 (capnography) at rest, during both poikilocapnia and hypercapnia (5% CO2 breathing in air) produced MCAv step responses allowing estimation of the classical Autoregulation Index (ARIORIG), and corresponding values for both positive (ARI+D) and negative (ARI-D) changes in MAP. Hypercapnia led to marked reductions in ARIORIG, ARI+D and ARI-D (p < 0.0001, all cases). Females had a lower value of ARIORIG compared to males (p = 0.030) at poikilocapnia (4.44 ± 1.74 vs 4.74 ± 1.48) and hypercapnia (2.44 ± 1.93 vs 3.33 ± 1.61). The strength of directional sensitivity (ARI+D-ARI-D) was not influenced by hypercapnia (p = 0.46), sex (p = 0.76) or age (p = 0.61). During poikilocapnia, ARI+D decreased with age in females (p = 0.027), but not in males. Directional sensitivity was not affected by hypercapnia, suggesting that its origins are more likely to be inherent to the mechanics of vascular smooth muscle than to myogenic pathways.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Aaron Davies
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Rebecca H Clough
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
4
|
van Campen C(LMC, Rowe PC, Verheugt FWA, Visser FC. Influence of end-tidal CO 2 on cerebral blood flow during orthostatic stress in controls and adults with myalgic encephalomyelitis/chronic fatigue syndrome. Physiol Rep 2023; 11:e15639. [PMID: 37688420 PMCID: PMC10492011 DOI: 10.14814/phy2.15639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 09/10/2023] Open
Abstract
Brain perfusion is sensitive to changes in CO2 levels (CO2 reactivity). Previously, we showed a pathological cerebral blood flow (CBF) reduction in the majority of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients during orthostatic stress. Limited data are available on the relation between CO2 and CBF changes in ME/CFS patients. Therefore, we studied this relation between ME/CFS patients and healthy controls (HC) during tilt testing. In this retrospective study, supine and end-tilt CBF, as measured by extracranial Doppler flow, were compared with PET CO2 data in female patients either with a normal heart rate and blood pressure (HR/BP) response or with postural orthostatic tachycardia syndrome (POTS), and in HC. Five hundred thirty-five female ME/CFS patients and 34 HC were included. Both in supine position and at end-tilt, there was a significant relation between CBF and PET CO2 in patients (p < 0.0001), without differences between patients with a normal HR/BP response and with POTS. The relations between the %CBF change and the PET CO2 reduction were both significant in patients and HC (p < 0.0001 and p = 0.0012, respectively). In a multiple regression analysis, the patient/HC status and PET CO2 predicted CBF. The contribution of the PET CO2 to CBF changes was limited, with low adjusted R2 values. In female ME/CFS patients, CO2 reactivity, as measured during orthostatic stress testing, is similar to that of HC and is independent of the type of hemodynamic abnormality. However, the influence of CO2 changes on CBF changes is modest in female ME/CFS patients.
Collapse
Affiliation(s)
| | - Peter C. Rowe
- Department of PaediatricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | | |
Collapse
|
5
|
The utility of therapeutic hypothermia on cerebral autoregulation. JOURNAL OF INTENSIVE MEDICINE 2022; 3:27-37. [PMID: 36789361 PMCID: PMC9924009 DOI: 10.1016/j.jointm.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/07/2022]
Abstract
Cerebral autoregulation (CA) dysfunction is a strong predictor of clinical outcome in patients with acute brain injury (ABI). CA dysfunction is a potential pathologic defect that may lead to secondary injury and worse functional outcomes. Early therapeutic hypothermia (TH) in patients with ABI is controversial. Many factors, including patient selection, timing, treatment depth, duration, and rewarming strategy, impact its clinical efficacy. Therefore, optimizing the benefit of TH is an important issue. This paper reviews the state of current research on the impact of TH on CA function, which may provide the basis and direction for CA-oriented target temperature management.
Collapse
|
6
|
Tran NN, Tran M, Panigrahy A, Brady KM, Votava-Smith JK. Association of Cerebrovascular Stability Index and Head Circumference Between Infants With and Without Congenital Heart Disease. Pediatr Cardiol 2022; 43:1624-1630. [PMID: 35426499 DOI: 10.1007/s00246-022-02891-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
Congenital heart disease (CHD) is a common birth defect in the United States. CHD infants are more likely to have smaller head circumference and neurodevelopmental delays; however, the cause is unknown. Altered cerebrovascular hemodynamics may contribute to neurologic abnormalities, such as smaller head circumference, thus we created a novel Cerebrovascular Stability Index (CSI), as a surrogate for cerebral autoregulation. We hypothesized that CHD infants would have an association between CSI and head circumference. We performed a prospective, longitudinal study in CHD infants and healthy controls. We measured CSI and head circumference at 4 time points (newborn, 3, 6, 9 months). We calculated CSI by subtracting the average 2-min sitting from supine cerebral oxygenation (rcSO2) over three consecutive tilts (0-90°), then averaged the change score for each age. Linear regressions quantified the relationship between CSI and head circumference. We performed 177 assessments in total (80 healthy controls, 97 CHD infants). The average head circumference was smaller in CHD infants (39.2 cm) compared to healthy controls (41.6 cm) (p < 0.001) and head circumference increased by 0.27 cm as CSI improved in the sample (p = 0.04) overall when combining all time points. Similarly, head circumference increased by 0.32 cm as CSI improved among CHD infants (p = 0.04). We found CSI significantly associated with head circumference in our sample overall and CHD infants alone, which suggests that impaired CSI may affect brain size in CHD infants. Future studies are needed to better understand the mechanism of interaction between CSI and brain growth.
Collapse
Affiliation(s)
- Nhu N Tran
- Division of Neonatology, Children's Hospital Los Angeles (CHLA), Fetal and Neonatal Institute, 4650 Sunset Blvd., MS#137, Los Angeles, CA, 90027, USA. .,Department of Pediatrics, Keck School of Medicine, University of Southern California (KSOM USC), Los Angeles, CA, USA.
| | - Michelle Tran
- Department of Population and Public Health Sciences, KSOM USC, Los Angeles, CA, USA.,Division of Research on Children, Youth, and Families, The Saban Research Institute, CHLA, Los Angeles, CA, USA
| | - Ashok Panigrahy
- Department of Pediatric Radiology, CHLA, Los Angeles, CA, USA.,University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Ken M Brady
- Lurie Children's Hospital of Chicago, Anesthesiology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jodie K Votava-Smith
- Department of Pediatrics, Keck School of Medicine, University of Southern California (KSOM USC), Los Angeles, CA, USA.,Division of Cardiology, Department of Pediatrics, CHLA and KSOM USC, Los Angeles, CA, USA
| |
Collapse
|
7
|
Glodzik L, Rusinek H, Butler T, Li Y, Storey P, Sweeney E, Osorio RS, Biskaduros A, Tanzi E, Harvey P, Woldstad C, Maloney T, de Leon MJ. Higher body mass index is associated with worse hippocampal vasoreactivity to carbon dioxide. Front Aging Neurosci 2022; 14:948470. [PMID: 36158536 PMCID: PMC9491849 DOI: 10.3389/fnagi.2022.948470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background and objectives Obesity is a risk factor for cognitive decline. Probable mechanisms involve inflammation and cerebrovascular dysfunction, leading to diminished cerebral blood flow (CBF) and cerebrovascular reactivity (CVR). The hippocampus, crucially involved in memory processing and thus relevant to many types of dementia, poses a challenge in studies of perfusion and CVR, due to its location, small size, and complex shape. We examined the relationships between body mass index (BMI) and hippocampal resting CBF and CVR to carbon dioxide (CVRCO2) in a group of cognitively normal middle-aged and older adults. Methods Our study was a retrospective analysis of prospectively collected data. Subjects were enrolled for studies assessing the role of hippocampal hemodynamics as a biomarker for AD among cognitively healthy elderly individuals (age > 50). Participants without cognitive impairment, stroke, and active substance abuse were recruited between January 2008 and November 2017 at the NYU Grossman School of Medicine, former Center for Brain Health. All subjects underwent medical, psychiatric, and neurological assessments, blood tests, and MRI examinations. To estimate CVR, we increased their carbon dioxide levels using a rebreathing protocol. Relationships between BMI and brain measures were tested using linear regression. Results Our group (n = 331) consisted of 60.4% women (age 68.8 ± 7.5 years; education 16.8 ± 2.2 years) and 39.6% men (age 70.4 ± 6.4 years; education 16.9 ± 2.4 years). Approximately 22% of them (n = 73) were obese. BMI was inversely associated with CVRCO2 (β = -0.12, unstandardized B = -0.06, 95% CI -0.11, -0.004). A similar relationship was observed after excluding subjects with diabetes and insulin resistance (β = -0.15, unstandardized B = -0.08, 95% CI -0.16, -0.000). In the entire group, BMI was more strongly related to hippocampal CVRCO2 in women (β = -0.20, unstandardized B = -0.08, 95% CI -0.13, -0.02). Discussion These findings lend support to the notion that obesity is a risk factor for hippocampal hemodynamic impairment and suggest targeting obesity as an important prevention strategy. Prospective studies assessing the effects of weight loss on brain hemodynamic measures and inflammation are warranted.
Collapse
Affiliation(s)
- Lidia Glodzik
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Henry Rusinek
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Tracy Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Pippa Storey
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Elizabeth Sweeney
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ricardo S. Osorio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| | - Adrienne Biskaduros
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Emily Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Patrick Harvey
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Christopher Woldstad
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Thomas Maloney
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Mony J. de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
8
|
Hussain SM, Ernst ME, Barker AL, Margolis KL, Reid CM, Neumann JT, Tonkin AM, Phuong TLT, Beilin LJ, Pham T, Chowdhury EK, Cicuttini FM, Gilmartin-Thomas JFM, Carr PR, McNeil JJ. Variation in Mean Arterial Pressure Increases Falls Risk in Elderly Physically Frail and Prefrail Individuals Treated With Antihypertensive Medication. Hypertension 2022; 79:2051-2061. [PMID: 35722878 PMCID: PMC9378722 DOI: 10.1161/hypertensionaha.122.19356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Impaired cerebral blood flow has been associated with an increased risk of falls. Mean arterial pressure (MAP) and variability in MAP have been reported to affect cerebral blood flow but their relationships to the risk of falls have not previously been reported. METHODS Utilising data from the Aspirin in Reducing Events in the Elderly trial participants, we estimated MAP and variability in MAP, defined as within-individual SD of MAP from baseline and first 2 annual visits. The relationship with MAP was studied in 16 703 participants amongst whom 1539 falls were recorded over 7.3 years. Variability in MAP was studied in 14 818 of these participants who experienced 974 falls over 4.1 years. Falls were confined to those involving hospital presentation. Cox regression was used to calculate hazard ratio and 95% CI for associations with falls. RESULTS Long-term variability in MAP was not associated with falls except amongst frail or prefrail participants using antihypertensive medications. Within this group each 5 mm Hg increase in long-term variability in MAP increased the risk of falls by 16% (hazard ratio, 1.16 [95% CI, 1.02-1.33]). Amongst the antihypertensive drugs studied, beta-blocker monotherapy (hazard ratio, 1.93 [95% CI, 1.17-3.18]) was associated with an increased risk of falls compared with calcium channel blockers. CONCLUSIONS Higher levels of long-term variability in MAP increase the risk of serious falls in older frail and prefrail individuals taking antihypertensive medications. The observation that the relationship was limited to frail and prefrail individuals might explain some of the variability of previous studies linking blood pressure indices and falls.
Collapse
Affiliation(s)
- Sultana Monira Hussain
- School of Public Health and Preventive Medicine, Monash University, Victoria 3004 Australia
- Department of Medical Education, Melbourne Medical School, The University of Melbourne, Victoria 3010 Australia
| | - Michael E. Ernst
- Department of Pharmacy Practice and Science, College of Pharmacy; and, Department of Family Medicine, Carver College of Medicine. The University of Iowa, Iowa City, Iowa. USA
| | - Anna L Barker
- School of Public Health and Preventive Medicine, Monash University, Victoria 3004 Australia
| | | | - Christopher M Reid
- School of Public Health and Preventive Medicine, Monash University, Victoria 3004 Australia
| | - Johannes T Neumann
- School of Public Health and Preventive Medicine, Monash University, Victoria 3004 Australia
- Department of Cardiology, University Heart & Vascular Center Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Andrew M Tonkin
- School of Public Health and Preventive Medicine, Monash University, Victoria 3004 Australia
| | - Thao Le Thi Phuong
- School of Public Health and Preventive Medicine, Monash University, Victoria 3004 Australia
| | - Lawrence J Beilin
- Medical School, Royal Perth Hospital, University of Western Australia, Perth, Australia
| | - Thao Pham
- School of Public Health and Preventive Medicine, Monash University, Victoria 3004 Australia
| | - Enayet K Chowdhury
- School of Public Health and Preventive Medicine, Monash University, Victoria 3004 Australia
| | - Flavia M Cicuttini
- School of Public Health and Preventive Medicine, Monash University, Victoria 3004 Australia
| | - Julia FM Gilmartin-Thomas
- School of Public Health and Preventive Medicine, Monash University, Victoria 3004 Australia
- College of Health and Biomedicine, and Institute for Health & Sport, Victoria University, Victoria, Australia
- Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, Victoria, Australia
| | - Prudence R Carr
- School of Public Health and Preventive Medicine, Monash University, Victoria 3004 Australia
| | - John J McNeil
- School of Public Health and Preventive Medicine, Monash University, Victoria 3004 Australia
| |
Collapse
|
9
|
Newman L, O'Connor JD, Nolan H, Reilly RB, Kenny RA. Age and sex related differences in orthostatic cerebral oxygenation: Findings from 2764 older adults in the Irish Longitudinal Study on Ageing (TILDA). Exp Gerontol 2022; 167:111903. [PMID: 35902001 DOI: 10.1016/j.exger.2022.111903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 04/29/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
AIMS Cerebral hypoperfusion is implicated in the pathogenesis of associations between orthostatic hypotension and adverse outcome such as falls, cognitive impairment, depression, and mortality. Although the blood pressure response to orthostasis has been well studied there is a lack of information on orthostatic cerebrovascular responses in older populations. METHODS AND RESULTS We measured cerebral hemodynamics, utilizing near infrared spectroscopy, coupled with peripheral blood pressure during an active stand in a large population of well-phenotyped older adults (N = 2764). Multi-level mixed effect models were utilized to investigate associations with age and sex, as well as confounders including anti-hypertensive medications. Normative cerebral oxygenation responses were also modelled utilizing generalized additive models for location, scale, and shape (GAMLSS). Older age groups experienced larger initial drops in oxygenation and a slower recovery, and responses also differed by sex. The drop after standing ranged from -1.85 % (CI: -2.02 to -1.68) in the males aged 54-59 years vs -1.15 % (CI: -1.31 to -1.00 %) in females aged 54-59 years, to -2.67 % (CI: -3.01 to -2.33) in males aged ≥ 80 years vs -1.97 % (CI: -2.32 to -1.62) females aged ≥ 80 years. Reduced oxygenation levels were also evident in those taking anti-hypertensive medications. CONCLUSION Cerebral autoregulation is impaired with age, particularly in older women and those taking anti-hypertensives. SBP during the stand explained some of the age gradient in the late recovery stage of the stand for the oldest age group. Reported orthostatic symptoms did not correlate with hypoperfusion. Therefore, measures of orthostatic cerebral flow should be assessed in addition to peripheral BP in older patients irrespective of symptoms. Further studies are required to investigate the relationship between NIRS measurements and clinical outcomes such as falls, cognitive impairment and depression.
Collapse
Affiliation(s)
- Louise Newman
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin 2, Ireland.
| | - John D O'Connor
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin 2, Ireland
| | - Hugh Nolan
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin 2, Ireland
| | - Richard B Reilly
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin 2, Ireland; Mercer's Institute for Successful Ageing, St James's Hospital, Dublin, Ireland
| |
Collapse
|
10
|
Leacy JK, Johnson EM, Lavoie LR, Macilwraith DN, Bambury M, Martin JA, Lucking EF, Linares AM, Saran G, Sheehan DP, Sharma N, Day TA, O'Halloran KD. Variation within the visually evoked neurovascular coupling response of the posterior cerebral artery is not influenced by age or sex. J Appl Physiol (1985) 2022; 133:335-348. [PMID: 35771218 PMCID: PMC9359642 DOI: 10.1152/japplphysiol.00292.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurovascular coupling (NVC) is the temporal and spatial coordination between local neuronal activity and regional cerebral blood flow. The literature is unsettled on whether age and/or sex affect NVC, which may relate to differences in methodology and the quantification of NVC in small sample-sized studies. The aim of this study was to 1) determine the relative and combined contribution of age and sex to the variation observed across several distinct NVC metrics (n = 125, 21–66 yr; 41 males) and 2) present an approach for the comprehensive systematic assessment of the NVC response using transcranial Doppler ultrasound. NVC was measured as the relative change from baseline (absolute and percent change) assessing peak, mean, and total area under the curve (tAUC) of cerebral blood velocity through the posterior cerebral artery (PCAv) during intermittent photic stimulation. In addition, the NVC waveform was compartmentalized into distinct regions, acute (0–9 s), mid (10–19 s), and late (20–30 s), following the onset of photic stimulation. Hierarchical multiple regression modeling was used to determine the extent of variation within each NVC metric attributable to demographic differences in age and sex. After controlling for differences in baseline PCAv, the R2 data suggest that 1.6%, 6.1%, 1.1%, 3.4%, 2.5%, and 4.2% of the variance observed within mean, peak, tAUC, acute, mid, and late response magnitude is attributable to the combination of age and sex. Our study reveals that variability in NVC response magnitude is independent of age and sex in healthy human participants, aged 21–66 yr. NEW & NOTEWORTHY We assessed the variability within the neurovascular coupling response attributable to age and sex (n = 125, 21–66 yr; 41 male). Based on the assessment of posterior cerebral artery responses to visual stimulation, 0%–6% of the variance observed within several metrics of NVC response magnitude are attributable to the combination of age and sex. Therefore, observed differences between age groups and/or sexes are likely a result of other physiological factors.
Collapse
Affiliation(s)
- Jack K Leacy
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Emily M Johnson
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Lauren R Lavoie
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Diane N Macilwraith
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Megan Bambury
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Jason A Martin
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Andrea M Linares
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Gurkarn Saran
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Dwayne P Sheehan
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Nishan Sharma
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Trevor A Day
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Subclinical cognitive deficits are associated with reduced cerebrovascular response to visual stimulation in mid-sixties men. GeroScience 2022; 44:1905-1923. [PMID: 35648331 DOI: 10.1007/s11357-022-00596-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/22/2022] [Indexed: 11/04/2022] Open
Abstract
Reduced cerebrovascular response to neuronal activation is observed in patients with neurodegenerative disease. In the present study, we examined the correlation between reduced cerebrovascular response to visual activation (ΔCBFVis.Act) and subclinical cognitive deficits in a human population of mid-sixties individuals without neurodegenerative disease. Such a correlation would suggest that impaired cerebrovascular function occurs before overt neurodegenerative disease. A total of 187 subjects (age 64-67 years) of the Metropolit Danish Male Birth Cohort participated in the study. ΔCBFVis.Act was measured using arterial spin labelling (ASL) MRI. ΔCBFVis.Act correlated positively with cognitive performance in: Global cognition (p = 0.046), paired associative memory (p = 0.025), spatial recognition (p = 0.026), planning (p = 0.016), simple processing speed (p < 0.01), and with highly significant correlations with current intelligence (p < 10-5), and more complex processing speed (p < 10-3), the latter two explaining approximately 11-13% of the variance. Reduced ΔCBFVis.Act was independent of brain atrophy. Our findings suggest that inhibited cerebrovascular response to neuronal activation is an early deficit in the ageing brain and associated with subclinical cognitive deficits. Cerebrovascular dysfunction could be an early sign of a trajectory pointing towards the development of neurodegenerative disease. Future efforts should elucidate if maintenance of a healthy cerebrovascular function can protect against the development of dementia.
Collapse
|
12
|
Svedung Wettervik TM, Hånell A, Howells T, Enblad P, Lewén A. Females Exhibit Better Cerebral Pressure Autoregulation, Less Mitochondrial Dysfunction, and Reduced Excitotoxicity following Severe Traumatic Brain Injury. J Neurotrauma 2022; 39:1507-1517. [PMID: 35587145 DOI: 10.1089/neu.2022.0097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of the study was to investigate sex-related differences in intracranial pressure (ICP) dynamics, cerebral pressure autoregulation (PRx55-15), cerebral energy metabolism, and clinical outcome after severe traumatic brain injury (TBI). One-hundred sixty-nine adult TBI patients, treated at the neurointensive care (NIC) unit, at Uppsala University Hospital, 2008-2020, with ICP and cerebral microdialysis (MD) monitoring, were included. Of the 169 TBI patients, 131 (78%) were male and 38 (22%) female. Male patients were more often injured by motor vehicle accidents and less often by bicycle accidents (p < 0.05). There were otherwise no difference in age, neurological status at admission, and types of intracranial hemorrhages between the sexes. The percent of monitoring time with ICP above 20 mmHg and CPP below 60 mmHg were similar for both sexes. Males exhibited more disturbed cerebral pressure autoregulation (PRx55-15 (mean ± SD); 0.28 ± 0.18 vs. 0.17 ± 0.23, p < 0.05) day 1, worse cerebral energy metabolism (MD-lactate-/pyruvate-ratio (median (IQR)); 25 (19-31) vs. 20 (17-25), p < 0.01) and mitochondrial dysfunction (higher burden of MD-LPR > 25 and MD-pyruvate > 120 µM (median (IQR)); 13 (0-58) % vs. 3 (0-17) %, p < 0.05) day 2 to 5, increased excitotoxicity (MD-glutamate median (IQR); 9 (4-32) µM vs. 5 (3-10) µM, p < 0.05) day 2 to 5, and higher biomarker levels of cellular injury (MD-glycerol median (IQR); 103 (66-193) µM vs. 68 (49-106) µM, p < 0.01) most pronounced day 6 to 10. There was no difference in mortality or the degree of favorable outcome between the sexes. Altogether, females exhibited more favorable cerebral physiology post-TBI, particularly better mitochondrial function and reduced excitotoxicity, but this did not translate into better clinical outcome compared to males. Future studies needs to further explore potential sex differences in secondary injury mechanisms in TBI.
Collapse
Affiliation(s)
| | | | | | - Per Enblad
- Uppsala Universitet, 8097, Uppsala, Sweden;
| | | |
Collapse
|
13
|
Pérez-Denia L, Claffey P, Byrne L, Rice C, Kenny RA, Finucane C. Increased multimorbidity is associated with impaired cerebral and peripheral hemodynamic stabilization during active standing. J Am Geriatr Soc 2022; 70:1973-1986. [PMID: 35535653 PMCID: PMC9545463 DOI: 10.1111/jgs.17810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Background Age‐related morbidities and frailty are associated with impaired blood pressure (BP) and heart rate (HR) recovery after standing. Here we investigate how multimorbidity affects cerebral and peripheral hemodynamics during standing in a large sample of older patients. Methods Patients were recruited from a national Falls and Syncope Unit. They underwent an active stand test (5–10 min lying +3 min standing) with monitoring of continuous BP, HR, total peripheral resistance (TPR), stroke volume (SV), and a near‐infrared spectroscopy (NIRS) derived cerebral tissue saturation index (TSI). A multimorbidity count was derived from a 26‐item list of conditions. Features derived from the signals included: nadir, overshoot, value at 30 s, steady‐state and recovery rate. Robust linear regression was used to assess the association between multimorbidity, TSI and peripheral hemodynamics while correcting for covariates. A p‐value <0.05 was considered statistically significant. Results Multimorbidity was associated with poorer recovery of TSI at 30 s after standing (β: −0.15, CI:[−0.25–0.06], p = 0.009) independent of all peripheral hemodynamics. Impaired diastolic BP (DBP) recovery at 30s (β:−1.34, CI:[−2.29–0.40], p = 0.032), DBP steady‐state (β:−1.18, CI:[−2.04–0.32], p = 0.032), TPR overshoot‐to‐nadir difference (β:−0.041, CI:[−0.070–0.013], p = 0.045), and SV at 30s (β:1.30, CI:[0.45 2.15], p = 0.027) were also associated with increasing multimorbidity. After sex stratification, only females demonstrated impaired TSI with multimorbidity at overshoot (β: −0.19, CI: [−0.32 ‐0.07], p = 0.009), 30 s (β: −0.22 [−0.35–0.10], p = 0.005) and steady‐state (β: −0.20, CI:[−0.35–0.04], p = 0.023), independent of peripheral hemodynamics. Conclusions Transient cerebral oxygenation and peripheral hemodynamic responses are impaired with multimorbidity (frailty) in older patients, particularly in females. This study demonstrates the feasibility of using NIRS in this clinical context and may inform the development of clinical management strategies targeting both cerebral oxygenation and blood pressure impairments in patients with faints and falls.
Collapse
Affiliation(s)
- Laura Pérez-Denia
- School of Medicine, Trinity College Dublin, Dublin, Ireland.,Falls and Syncope Unit, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland.,Department of Medical Physics, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland
| | - Paul Claffey
- School of Medicine, Trinity College Dublin, Dublin, Ireland.,Falls and Syncope Unit, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland
| | - Lisa Byrne
- Falls and Syncope Unit, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland
| | - Ciara Rice
- Falls and Syncope Unit, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland
| | - Rose Anne Kenny
- School of Medicine, Trinity College Dublin, Dublin, Ireland.,Falls and Syncope Unit, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland
| | - Ciarán Finucane
- School of Medicine, Trinity College Dublin, Dublin, Ireland.,Falls and Syncope Unit, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland.,Department of Medical Physics, Mercer's Institute for Successful Ageing, St. James's Hospital Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Maxwell JD, Bannell DJ, Brislane A, Carter SE, Miller GD, Roberts KA, Hopkins ND, Low DA, Carter HH, Thompson A, Claassen JAHR, Thijssen DHJ, Jones H. The impact of age, sex, cardio-respiratory fitness, and cardiovascular disease risk on dynamic cerebral autoregulation and baroreflex sensitivity. Eur J Appl Physiol 2022; 122:1531-1541. [PMID: 35429292 PMCID: PMC9132800 DOI: 10.1007/s00421-022-04933-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/08/2022] [Indexed: 11/10/2022]
Abstract
Background Humans display an age-related decline in cerebral blood flow and increase in blood pressure (BP), but changes in the underlying control mechanisms across the lifespan are less well understood. We aimed to; (1) examine the impact of age, sex, cardiovascular disease (CVD) risk, and cardio-respiratory fitness on dynamic cerebral autoregulation and cardiac baroreflex sensitivity, and (2) explore the relationships between dynamic cerebral autoregulation (dCA) and cardiac baroreflex sensitivity (cBRS). Methods 206 participants aged 18–70 years were stratified into age categories. Cerebral blood flow velocity was measured using transcranial Doppler ultrasound. Repeated squat-stand manoeuvres were performed (0.10 Hz), and transfer function analysis was used to assess dCA and cBRS. Multivariable linear regression was used to examine the influence of age, sex, CVD risk, and cardio-respiratory fitness on dCA and cBRS. Linear models determined the relationship between dCA and cBRS. Results Age, sex, CVD risk, and cardio-respiratory fitness did not impact dCA normalised gain, phase, or coherence with minimal change in all models (P > 0.05). cBRS gain was attenuated with age when adjusted for sex and CVD risk (young–older; β = − 2.86 P < 0.001) along with cBRS phase (young–older; β = − 0.44, P < 0.001). There was no correlation between dCA normalised gain and phase with either parameter of cBRS. Conclusion Ageing was associated with a decreased cBRS, but dCA appears to remain unchanged. Additionally, our data suggest that sex, CVD risk, and cardio-respiratory fitness have little effect.
Collapse
|
15
|
Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C. Sex differences in the blood-brain barrier: Implications for mental health. Front Neuroendocrinol 2022; 65:100989. [PMID: 35271863 DOI: 10.1016/j.yfrne.2022.100989] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Prevalence of mental disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) are increasing at alarming rates in our societies. Growing evidence points toward major sex differences in these conditions, and high rates of treatment resistance support the need to consider novel biological mechanisms outside of neuronal function to gain mechanistic insights that could lead to innovative therapies. Blood-brain barrier alterations have been reported in MDD, BD and SZ. Here, we provide an overview of sex-specific immune, endocrine, vascular and transcriptional-mediated changes that could affect neurovascular integrity and possibly contribute to the pathogenesis of mental disorders. We also identify pitfalls in current literature and highlight promising vascular biomarkers. Better understanding of how these adaptations can contribute to mental health status is essential not only in the context of MDD, BD and SZ but also cardiovascular diseases and stroke which are associated with higher prevalence of these conditions.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Luisa Bandeira Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Beatrice Daigle
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Amandine Hong-Minh
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada.
| |
Collapse
|
16
|
Chacón M, Rojas-Pescio H, Peñaloza S, Landerretche J. Machine Learning Models and Statistical Complexity to Analyze the Effects of Posture on Cerebral Hemodynamics. ENTROPY 2022; 24:e24030428. [PMID: 35327938 PMCID: PMC8947420 DOI: 10.3390/e24030428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
The mechanism of cerebral blood flow autoregulation can be of great importance in diagnosing and controlling a diversity of cerebrovascular pathologies such as vascular dementia, brain injury, and neurodegenerative diseases. To assess it, there are several methods that use changing postures, such as sit-stand or squat-stand maneuvers. However, the evaluation of the dynamic cerebral blood flow autoregulation (dCA) in these postures has not been adequately studied using more complex models, such as non-linear ones. Moreover, dCA can be considered part of a more complex mechanism called cerebral hemodynamics, where others (CO2 reactivity and neurovascular-coupling) that affect cerebral blood flow (BF) are included. In this work, we analyzed postural influences using non-linear machine learning models of dCA and studied characteristics of cerebral hemodynamics under statistical complexity using eighteen young adult subjects, aged 27 ± 6.29 years, who took the systemic or arterial blood pressure (BP) and cerebral blood flow velocity (BFV) for five minutes in three different postures: stand, sit, and lay. With models of a Support Vector Machine (SVM) through time, we used an AutoRegulatory Index (ARI) to compare the dCA in different postures. Using wavelet entropy, we estimated the statistical complexity of BFV for three postures. Repeated measures ANOVA showed that only the complexity of lay-sit had significant differences.
Collapse
Affiliation(s)
- Max Chacón
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Av. Víctor Jara N° 2659, Estación Central, Santiago 9190864, Chile; (H.R.-P.); (S.P.)
- Correspondence:
| | - Hector Rojas-Pescio
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Av. Víctor Jara N° 2659, Estación Central, Santiago 9190864, Chile; (H.R.-P.); (S.P.)
| | - Sergio Peñaloza
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Av. Víctor Jara N° 2659, Estación Central, Santiago 9190864, Chile; (H.R.-P.); (S.P.)
| | - Jean Landerretche
- Unidad de Neurología, Escuela de Medicina, Universidad de Santiago de Chile, Av. Alameda N° 3336, Estación Central, Santiago 9170022, Chile;
| |
Collapse
|
17
|
Labrecque L, Burma JS, Roy MA, Smirl JD, Brassard P. Reproducibility and diurnal variation of the directional sensitivity of the cerebral pressure-flow relationship in men and women. J Appl Physiol (1985) 2021; 132:154-166. [PMID: 34855525 DOI: 10.1152/japplphysiol.00653.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebral pressure-flow relationship has directional sensitivity, meaning the augmentation in cerebral blood flow is attenuated when mean arterial pressure (MAP) increases vs MAP decreases. We employed repeated squat-stands (RSS) to quantify it using a novel metric. However, its within-day reproducibility and the impacts of diurnal variation and biological sex are unknown. Study aims were to evaluate this metric for: 1) within-day reproducibility and diurnal variation in middle (MCA; ∆MCAvT/∆MAPT) and posterior cerebral arteries (PCA; ∆PCAvT/∆MAPT); 2) sex differences. ∆MCAvT/∆MAPT and ∆PCAvT/∆MAPT were calculated at seven time-points (08:00-17:00) in 18 participants (8 women; 24 ± 3 yrs) using the minimum-to-maximum MCAv or PCAv and MAP for each RSS at 0.05 Hz and 0.10 Hz. Relative metric values were also calculated (%MCAvT/%MAPT, %PCAvT/%MAPT). Intraclass correlation coefficient (ICC) evaluated reproducibility, which was good (0.75-0.90) to excellent (>0.90). Time-of-day impacted ∆MCAvT/∆MAPT (0.05 Hz: p = 0.002; 0.10 Hz: p = 0.001), %MCAvT/%MAPT (0.05 Hz: p = 0.035; 0.10 Hz: p = 0.009), and ∆PCAvT/∆MAPT (0.05 Hz: p = 0.024), albeit with small/negligible effect sizes. MAP direction impacted both arteries' metric at 0.10 Hz (all p < 0.024). Sex differences in the MCA only (p = 0.003) vanished when reported in relative terms. These findings demonstrate this metric is reproducible throughout the day in the MCA and PCA and is not impacted by biological sex.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Jonathan David Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|
18
|
Chandra PK, Cikic S, Baddoo MC, Rutkai I, Guidry JJ, Flemington EK, Katakam PV, Busija DW. Transcriptome analysis reveals sexual disparities in gene expression in rat brain microvessels. J Cereb Blood Flow Metab 2021; 41:2311-2328. [PMID: 33715494 PMCID: PMC8392780 DOI: 10.1177/0271678x21999553] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sex is an important determinant of brain microvessels (MVs) function and susceptibility to cerebrovascular and neurological diseases, but underlying mechanisms are unclear. Using high throughput RNA sequencing analysis, we examined differentially expressed (DE) genes in brain MVs from young, male, and female rats. Bioinformatics analysis of the 23,786 identified genes indicates that 298 (1.2%) genes were DE using False Discovery Rate criteria (FDR; p < 0.05), of which 119 (40%) and 179 (60%) genes were abundantly expressed in male and female MVs, respectively. Nucleic acid binding, enzyme modulator, and transcription factor were the top three DE genes, which were more highly expressed in male than female MVs. Synthesis of glycosylphosphatidylinositol (GPI), biosynthesis of GPI-anchored proteins, steroid and cholesterol synthesis, were the top three significantly enriched canonical pathways in male MVs. In contrast, respiratory chain, ribosome, and 3 ́-UTR-mediated translational regulation were the top three enriched canonical pathways in female MVs. Different gene functions of MVs were validated by proteomic analysis and western blotting. Our novel findings reveal major sex disparities in gene expression and canonical pathways of MVs and these differences provide a foundation to study the underlying mechanisms and consequences of sex-dependent differences in cerebrovascular and other neurological diseases.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sinisa Cikic
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Melody C Baddoo
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessie J Guidry
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Erik K Flemington
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Prasad Vg Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
19
|
Panerai RB, Haunton VJ, Llwyd O, Minhas JS, Katsogridakis E, Salinet ASM, Maggio P, Robinson TG. Cerebral critical closing pressure and resistance-area product: the influence of dynamic cerebral autoregulation, age and sex. J Cereb Blood Flow Metab 2021; 41:2456-2469. [PMID: 33818187 PMCID: PMC8392773 DOI: 10.1177/0271678x211004131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022]
Abstract
Instantaneous arterial pressure-flow (or velocity) relationships indicate the existence of a cerebral critical closing pressure (CrCP), with the slope of the relationship expressed by the resistance-area product (RAP). In 194 healthy subjects (20-82 years, 90 female), cerebral blood flow velocity (CBFV, transcranial Doppler), arterial blood pressure (BP, Finapres) and end-tidal CO2 (EtCO2, capnography) were measured continuously for five minutes during spontaneous fluctuations of BP at rest. The dynamic cerebral autoregulation (CA) index (ARI) was extracted with transfer function analysis from the CBFV step response to the BP input and step responses were also obtained for the BP-CrCP and BP-RAP relationships. ARI was shown to decrease with age at a rate of -0.025 units/year in men (p = 0.022), but not in women (p = 0.40). The temporal patterns of the BP-CBFV, BP-CrCP and BP-RAP step responses were strongly influenced by the ARI (p < 0.0001), but not by sex. Age was also a significant determinant of the peak of the CBFV step response and the tail of the RAP response. Whilst the RAP step response pattern is consistent with a myogenic mechanism controlling dynamic CA, further work is needed to explore the potential association of the CrCP step response with the flow-mediated component of autoregulation.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria J Haunton
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Osian Llwyd
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Emmanuel Katsogridakis
- Department of Vascular Surgery, Wythenshawe Hospital, Manchester Foundation Trust, Manchester, UK
| | - Angela SM Salinet
- Neurology Department, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Paola Maggio
- Neurology Department, ASST Bergamo EST (BG), Italy
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
20
|
Gong J, Harris K, Peters SAE, Woodward M. Sex differences in the association between major cardiovascular risk factors in midlife and dementia: a cohort study using data from the UK Biobank. BMC Med 2021; 19:110. [PMID: 34006267 PMCID: PMC8132382 DOI: 10.1186/s12916-021-01980-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Sex differences in major cardiovascular risk factors for incident (fatal or non-fatal) all-cause dementia were assessed in the UK Biobank. The effects of these risk factors on all-cause dementia were explored by age and socioeconomic status (SES). METHODS Cox proportional hazards models were used to estimate hazard ratios (HRs) and women-to-men ratio of HRs (RHR) with 95% confidence intervals (CIs) for systolic blood pressure (SBP) and diastolic blood pressure (DBP), smoking, diabetes, adiposity, stroke, SES and lipids with dementia. Poisson regression was used to estimate the sex-specific incidence rate of dementia for these risk factors. RESULTS 502,226 individuals in midlife (54.4% women, mean age 56.5 years) with no prevalent dementia were included in the analyses. Over 11.8 years (median), 4068 participants (45.9% women) developed dementia. The crude incidence rates were 5.88 [95% CI 5.62-6.16] for women and 8.42 [8.07-8.78] for men, per 10,000 person-years. Sex was associated with the risk of dementia, where the risk was lower in women than men (HR = 0.83 [0.77-0.89]). Current smoking, diabetes, high adiposity, prior stroke and low SES were associated with a greater risk of dementia, similarly in women and men. The relationship between blood pressure (BP) and dementia was U-shaped in men but had a dose-response relationship in women: the HR for SBP per 20 mmHg was 1.08 [1.02-1.13] in women and 0.98 [0.93-1.03] in men. This sex difference was not affected by the use of antihypertensive medication at baseline. The sex difference in the effect of raised BP was consistent for dementia subtypes (vascular dementia and Alzheimer's disease). CONCLUSIONS Several mid-life cardiovascular risk factors were associated with dementia similarly in women and men, but not raised BP. Future bespoke BP-lowering trials are necessary to understand its role in restricting cognitive decline and to clarify any sex difference.
Collapse
Affiliation(s)
- Jessica Gong
- The George Institute for Global Health, University of New South Wales, Level 5, 1 King St, Newtown, NSW, 2042, Australia.
| | - Katie Harris
- The George Institute for Global Health, University of New South Wales, Level 5, 1 King St, Newtown, NSW, 2042, Australia
| | - Sanne A E Peters
- The George Institute for Global Health, University of New South Wales, Level 5, 1 King St, Newtown, NSW, 2042, Australia.,The George Institute for Global Health, Imperial College London, Central Working - Fourth Floor, Translation and Innovation Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, UK.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508, GA, Utrecht, The Netherlands
| | - Mark Woodward
- The George Institute for Global Health, University of New South Wales, Level 5, 1 King St, Newtown, NSW, 2042, Australia.,The George Institute for Global Health, Imperial College London, Central Working - Fourth Floor, Translation and Innovation Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, UK.,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
21
|
Tran NN, Votava-Smith JK, Wood JC, Panigrahy A, Wee CP, Borzage M, Kumar SR, Murray PM, Brecht ML, Paquette L, Brady KM, Peterson BS. Cerebral oxygen saturation and cerebrovascular instability in newborn infants with congenital heart disease compared to healthy controls. PLoS One 2021; 16:e0251255. [PMID: 33970937 PMCID: PMC8109808 DOI: 10.1371/journal.pone.0251255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Infants with Congenital Heart Disease (CHD) are at risk for developmental delays, though the mechanisms of brain injury that impair development are unknown. Potential causes could include cerebral hypoxia and cerebrovascular instability. We hypothesized that we would detect significantly reduced cerebral oxygen saturation and greater cerebrovascular instability in CHD infants compared to the healthy controls. Methods We performed a secondary analysis on a sample of 43 term infants (28 CHD, 15 healthy controls) that assessed prospectively in temporal cross-section before or at 12 days of age. CHD infants were assessed prior to open-heart surgery. Cerebral oxygen saturation levels were estimated using Near-Infrared Spectroscopy, and cerebrovascular stability was assessed with the response of cerebral oxygen saturation after a postural change (supine to sitting). Results Cerebral oxygen saturation was 9 points lower in CHD than control infants in both postures (β = -9.3; 95%CI = -17.68, -1.00; p = 0.028), even after controlling for differences in peripheral oxygen saturation. Cerebrovascular stability was significantly impaired in CHD compared to healthy infants (β = -2.4; 95%CI = -4.12, -.61; p = 0.008), and in CHD infants with single ventricle compared with biventricular defects (β = -1.5; 95%CI = -2.95, -0.05; p = 0.04). Conclusion CHD infants had cerebral hypoxia and decreased cerebral oxygen saturation values following a postural change, suggesting cerebrovascular instability. Future longitudinal studies should assess the associations of cerebral hypoxia and cerebrovascular instability with long-term neurodevelopmental outcomes in CHD infants.
Collapse
Affiliation(s)
- Nhu N. Tran
- Institute for the Developing Mind, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - Jodie K. Votava-Smith
- Division of Cardiology, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - John C. Wood
- Division of Cardiology, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ashok Panigrahy
- University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pediatric Radiology, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Choo Phei Wee
- Department of Preventive Medicine, Southern California Clinical and Translational Science Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Matthew Borzage
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Division of Neonatology, Department of Pediatrics, Fetal and Neonatal Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - S. Ram Kumar
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Division of Cardiothoracic Surgery, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Paula M. Murray
- Institute for Nursing and Interprofessional Research, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Mary-Lynn Brecht
- School of Nursing, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Lisa Paquette
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Division of Neonatology, Department of Pediatrics, Fetal and Neonatal Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Kenneth M. Brady
- Lurie Children’s Hospital of Chicago, Anesthesiology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Bradley S. Peterson
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
22
|
Ruediger SL, Koep JL, Keating SE, Pizzey FK, Coombes JS, Bailey TG. Effect of menopause on cerebral artery blood flow velocity and cerebrovascular reactivity: Systematic review and meta-analysis. Maturitas 2021; 148:24-32. [PMID: 34024348 DOI: 10.1016/j.maturitas.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/28/2021] [Accepted: 04/11/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Menopause and its associated decline in oestrogen is linked to chronic conditions like cardiovascular disease and osteoporosis, which may be difficult to disentangle from the effects of ageing. Further, post-menopausal women are at increased risk of cerebrovascular disease, linked to declines in cerebral blood flow (CBF) and cerebrovascular reactivity (CVR), yet the direct understanding of the impact of the menopause on cerebrovascular function is unclear. The aim of this systematic review and meta-analysis was to examine the literature investigating CBF and CVR in pre- compared with post-menopausal women METHODS: Five databases were searched for studies assessing CBF or CVR in pre- and post-menopausal women. Meta-analysis examined the effect of menopausal status on middle cerebral artery velocity (MCAv), and GRADE-assessed evidence certainty RESULTS: Nine studies (n=504) included cerebrovascular outcomes. Six studies (n=239) reported negligible differences in MCAv between pre- and post-menopausal women [2.11cm/s (95% CI: -8.94 to 4.73, p=0.54)], but with a "low" certainty of evidence. MCAv was lower in post-menopausal women in two studies, when MCAv was adjusted for blood pressure. CVR was lower in post- compared with pre-menopausal women in two of three studies, but high-quality evidence is lacking. Across outcomes, study methodology and reporting criteria for menopause were inconsistent CONCLUSIONS: MCAv was similar in post- compared with pre-menopausal women. Methodological differences in characterising menopause and inconsistent reporting of cerebrovascular outcomes make comparisons difficult. Comprehensive assessments of cerebrovascular function of the intra- and extracranial arteries to determine the physiological implications of menopause on CBF with healthy ageing is warranted.
Collapse
Affiliation(s)
- Stefanie L Ruediger
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jodie L Koep
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia; Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Shelley E Keating
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Faith K Pizzey
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia; School of Nursing, Midwifery and Social Work, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Nogueira RC, Beishon L, Bor-Seng-Shu E, Panerai RB, Robinson TG. Cerebral Autoregulation in Ischemic Stroke: From Pathophysiology to Clinical Concepts. Brain Sci 2021; 11:511. [PMID: 33923721 PMCID: PMC8073938 DOI: 10.3390/brainsci11040511] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke (IS) is one of the most impacting diseases in the world. In the last decades, new therapies have been introduced to improve outcomes after IS, most of them aiming for recanalization of the occluded vessel. However, despite this advance, there are still a large number of patients that remain disabled. One interesting possible therapeutic approach would be interventions guided by cerebral hemodynamic parameters such as dynamic cerebral autoregulation (dCA). Supportive hemodynamic therapies aiming to optimize perfusion in the ischemic area could protect the brain and may even extend the therapeutic window for reperfusion therapies. However, the knowledge of how to implement these therapies in the complex pathophysiology of brain ischemia is challenging and still not fully understood. This comprehensive review will focus on the state of the art in this promising area with emphasis on the following aspects: (1) pathophysiology of CA in the ischemic process; (2) methodology used to evaluate CA in IS; (3) CA studies in IS patients; (4) potential non-reperfusion therapies for IS patients based on the CA concept; and (5) the impact of common IS-associated comorbidities and phenotype on CA status. The review also points to the gaps existing in the current research to be further explored in future trials.
Collapse
Affiliation(s)
- Ricardo C. Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Neurology, Hospital Nove de Julho, São Paulo 01409-002, Brazil
| | - Lucy Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
| | - Edson Bor-Seng-Shu
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Ronney B. Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University of Leicester, Leicester LE5 4PW, UK
| | - Thompson G. Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University of Leicester, Leicester LE5 4PW, UK
| |
Collapse
|
24
|
Dudek KA, Dion‐Albert L, Kaufmann FN, Tuck E, Lebel M, Menard C. Neurobiology of resilience in depression: immune and vascular insights from human and animal studies. Eur J Neurosci 2021; 53:183-221. [PMID: 31421056 PMCID: PMC7891571 DOI: 10.1111/ejn.14547] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a chronic and recurrent psychiatric condition characterized by depressed mood, social isolation and anhedonia. It will affect 20% of individuals with considerable economic impacts. Unfortunately, 30-50% of depressed individuals are resistant to current antidepressant treatments. MDD is twice as prevalent in women and associated symptoms are different. Depression's main environmental risk factor is chronic stress, and women report higher levels of stress in daily life. However, not every stressed individual becomes depressed, highlighting the need to identify biological determinants of stress vulnerability but also resilience. Based on a reverse translational approach, rodent models of depression were developed to study the mechanisms underlying susceptibility vs resilience. Indeed, a subpopulation of animals can display coping mechanisms and a set of biological alterations leading to stress resilience. The aetiology of MDD is multifactorial and involves several physiological systems. Exacerbation of endocrine and immune responses from both innate and adaptive systems are observed in depressed individuals and mice exhibiting depression-like behaviours. Increasing attention has been given to neurovascular health since higher prevalence of cardiovascular diseases is found in MDD patients and inflammatory conditions are associated with depression, treatment resistance and relapse. Here, we provide an overview of endocrine, immune and vascular changes associated with stress vulnerability vs. resilience in rodents and when available, in humans. Lack of treatment efficacy suggests that neuron-centric treatments do not address important causal biological factors and better understanding of stress-induced adaptations, including sex differences, could contribute to develop novel therapeutic strategies including personalized medicine approaches.
Collapse
Affiliation(s)
- Katarzyna A. Dudek
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Ellen Tuck
- Smurfit Institute of GeneticsTrinity CollegeDublinIreland
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| |
Collapse
|
25
|
Barnes JN, Charkoudian N. Integrative cardiovascular control in women: Regulation of blood pressure, body temperature, and cerebrovascular responsiveness. FASEB J 2020; 35:e21143. [PMID: 33151577 DOI: 10.1096/fj.202001387r] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Over the past several decades, it has become increasingly clear that women have distinct cardiovascular profiles compared to men. In this review, our goal is to provide an overview of the literature regarding the influences of female sex and reproductive hormones (primarily estradiol) on mechanisms of cardiovascular control relevant to regulation of blood pressure, body temperature, and cerebral blood flow. Young women tend to have lower resting blood pressure compared with men. This sex difference is reversed at menopause, when women develop higher sympathetic nerve activity and the risk of systemic hypertension increases sharply as postmenopausal women age. Vascular responses to thermal stress, including cutaneous vasodilation and vasoconstriction, are also affected by reproductive hormones in women, where estradiol appears to promote vasodilation and heat dissipation. The influence of reproductive hormones on cerebral blood flow and sex differences in the ability of the cerebral vasculature to increase its blood flow (cerebrovascular reactivity) are relatively new areas of investigation. Sex and hormonal influences on integrative blood flow regulation have further implications during challenges to physiological homeostasis, including exercise. We propose that increasing awareness of these sex-specific mechanisms is important for optimizing health care and promotion of wellness in women across the life span.
Collapse
Affiliation(s)
- Jill N Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nisha Charkoudian
- US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
26
|
Sprick JD, Nocera JR, Hajjar I, O'Neill WC, Bailey J, Park J. Cerebral blood flow regulation in end-stage kidney disease. Am J Physiol Renal Physiol 2020; 319:F782-F791. [PMID: 32985235 DOI: 10.1152/ajprenal.00438.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients with chronic kidney disease (CKD) and end-stage kidney disease (ESKD) experience an increased risk of cerebrovascular disease and cognitive dysfunction. Hemodialysis (HD), a major modality of renal replacement therapy in ESKD, can cause rapid changes in blood pressure, osmolality, and acid-base balance that collectively present a unique stress to the cerebral vasculature. This review presents an update regarding cerebral blood flow (CBF) regulation in CKD and ESKD and how the maintenance of cerebral oxygenation may be compromised during HD. Patients with ESKD exhibit decreased cerebral oxygen delivery due to anemia, despite cerebral hyperperfusion at rest. Cerebral oxygenation further declines during HD due to reductions in CBF, and this may induce cerebral ischemia or "stunning." Intradialytic reductions in CBF are driven by decreases in cerebral perfusion pressure that may be partially opposed by bicarbonate shifts during dialysis. Intradialytic reductions in CBF have been related to several variables that are routinely measured in clinical practice including ultrafiltration rate and blood pressure. However, the role of compensatory cerebrovascular regulatory mechanisms during HD remains relatively unexplored. In particular, cerebral autoregulation can oppose reductions in CBF driven by reductions in systemic blood pressure, while cerebrovascular reactivity to CO2 may attenuate intradialytic reductions in CBF through promoting cerebral vasodilation. However, whether these mechanisms are effective in ESKD and during HD remain relatively unexplored. Important areas for future work include investigating potential alterations in cerebrovascular regulation in CKD and ESKD and how key regulatory mechanisms are engaged and integrated during HD to modulate intradialytic declines in CBF.
Collapse
Affiliation(s)
- Justin D Sprick
- Division of Renal Medicine, Department of Medicine, Emory University Department of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Joe R Nocera
- Department of Veterans Affairs Health Care System, Decatur, Georgia.,Center for Visual and Neurocognitive Rehabilitation, Department of Veterans Affairs Health Care System, Decatur, Georgia.,Departments of Neurology and Rehabilitation Medicine, Emory University Department of Medicine, Atlanta, Georgia
| | - Ihab Hajjar
- Department of Neurology, Emory University Department of Medicine, Atlanta, Georgia
| | - W Charles O'Neill
- Division of Renal Medicine, Department of Medicine, Emory University Department of Medicine, Atlanta, Georgia
| | - James Bailey
- Division of Renal Medicine, Department of Medicine, Emory University Department of Medicine, Atlanta, Georgia
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University Department of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia.,Center for Visual and Neurocognitive Rehabilitation, Department of Veterans Affairs Health Care System, Decatur, Georgia
| |
Collapse
|
27
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
28
|
van Campen C(LM, Rowe PC, Visser FC. Cerebral Blood Flow Is Reduced in Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients During Mild Orthostatic Stress Testing: An Exploratory Study at 20 Degrees of Head-Up Tilt Testing. Healthcare (Basel) 2020; 8:healthcare8020169. [PMID: 32545797 PMCID: PMC7349207 DOI: 10.3390/healthcare8020169] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction: In a study of 429 adults with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), we demonstrated that 86% had symptoms of orthostatic intolerance in daily life. Using extracranial Doppler measurements of the internal carotid and vertebral arteries during a 30-min head-up tilt to 70 degrees, 90% had an abnormal reduction in cerebral blood flow (CBF). A standard head-up tilt test of this duration might not be tolerated by the most severely affected bed-ridden ME/CFS patients. This study examined whether a shorter 15-min test at a lower 20 degree tilt angle would be sufficient to provoke reductions in cerebral blood flow in severe ME/CFS patients. Methods and results: Nineteen severe ME/CFS patients with orthostatic intolerance complaints in daily life were studied: 18 females. The mean (SD) age was 35(14) years, body surface area (BSA) was 1.8(0.2) m2 and BMI was 24.0(5.4) kg/m2. The median disease duration was 14 (IQR 5–18) years. Heart rate increased, and stroke volume index and end-tidal CO2 decreased significantly during the test (p ranging from <0.001 to <0.0001). The cardiac index decreased by 26(7)%: p < 0.0001. CBF decreased from 617(72) to 452(63) mL/min, a 27(5)% decline. All 19 severely affected ME/CFS patients met the criteria for an abnormal CBF reduction. Conclusions: Using a less demanding 20 degree tilt test for 15 min in severe ME/CFS patients resulted in a mean CBF decline of 27%. This is comparable to the mean 26% decline previously noted in less severely affected patients studied during a 30-min 70 degree head-up tilt. These observations have implications for the evaluation and treatment of severely affected individuals with ME/CFS.
Collapse
Affiliation(s)
| | - Peter C. Rowe
- Department of Paediatrics, John Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | |
Collapse
|
29
|
Reed JT, Pareek T, Sriramula S, Pabbidi MR. Aging influences cerebrovascular myogenic reactivity and BK channel function in a sex-specific manner. Cardiovasc Res 2020; 116:1372-1385. [PMID: 31738403 DOI: 10.1093/cvr/cvz314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 11/14/2022] Open
Abstract
AIMS The myogenic reactivity of the middle cerebral arteries (MCA) protects the brain by altering the diameter in response to changes in lumen pressure. Large conductance potassium (BK) channels are known to regulate the myogenic reactivity, yet, it is not clear how aging alters the myogenic reactivity via the BK channel in males and females. Thus, we hypothesize that age-associated changes in BK channel subunits modulate the myogenic reactivity in a sex-specific manner. METHODS AND RESULTS We used vascular reactivity, patch-clamp, and biochemical methods to measure myogenic reactivity, BK channel function, and expression, respectively in cerebral vessels of adult and aged male and female Sprague Dawley rats. Our results suggest that aging and ovariectomy (OVX) exaggerated the myogenic reactivity of MCA in females but attenuated it in males. Aging induced outward eutrophic remodelling in females but inward hypertrophic remodelling in males. Aging decreased total, Kv, BK channel currents, and spontaneous transient outward currents (STOC) in vascular smooth muscle cells isolated from females, but not in males. Aging increased BKα subunit mRNA and protein both in males and females. However, aging decreased BKβ1 subunit protein and mRNA in females only. In males, BKβ1 mRNA is increased, but protein is decreased. Iberiotoxin-induced MCA constriction is lower in aged females but higher in aged males. Activation of BKα (10 µM NS1619) and BKβ1 (10 µM S-Equol) subunits failed to increase STOCs and were unable to decrease the myogenic reactivity of MCA in aged female but not in aged male rats. OVX decreased, but chronic supplementation of oestradiol restored BK channel expression and function. CONCLUSION Overall our results suggest that aging or OVX-associated downregulation of the BKβ1 expression and function in females results in exaggerated myogenic reactivity of MCA. However, age-associated increase in BK channel function in males attenuated myogenic reactivity of MCA.
Collapse
Affiliation(s)
- Joseph T Reed
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | - Tanya Pareek
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC 27834-4300, USA
| | - Mallikarjuna R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| |
Collapse
|
30
|
Labrecque L, Drapeau A, Rahimaly K, Imhoff S, Billaut F, Brassard P. Comparable blood velocity changes in middle and posterior cerebral arteries during and following acute high-intensity exercise in young fit women. Physiol Rep 2020; 8:e14430. [PMID: 32342622 PMCID: PMC7186567 DOI: 10.14814/phy2.14430] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
The cerebral blood flow response to high-intensity interval training (HIIT) remains unclear. HIIT induces surges in mean arterial pressure (MAP), which could be transmitted to the brain, especially early after exercise onset. The aim of this study was to describe regional cerebral blood velocity changes during and following 30 s of high-intensity exercise. Ten women (age: 27 ± 6 years; VO2max : 48.6 ± 3.8 ml·kg·min-1 ) cycled for 30 s at the workload reached at V ˙ O2max followed by 3min of passive recovery. Middle (MCAvmean ) and posterior cerebral artery mean blood velocities (PCAvmean ; transcranial Doppler ultrasound), MAP (finger photoplethysmography), and end-tidal carbon dioxide partial pressure (PET CO2 ; gaz analyzer) were measured. MCAvmean (+19 ± 10%) and PCAvmean (+21 ± 14%) increased early after exercise onset, returning toward baseline values afterward. MAP increased throughout exercise (p < .0001). PET CO2 initially decreased by 3 ± 2 mmHg (p < .0001) before returning to baseline values at end-exercise. During recovery, MCAvmean (+43 ± 15%), PCAvmean (+42 ± 15%), and PET CO2 (+11 ± 3 mmHg; p < .0001) increased. In young fit women, cerebral blood velocity quickly increases at the onset of a 30-s exercise performed at maximal workload, before returning to baseline values through the end of the exercise. During recovery, cerebral blood velocity augments in both arteries, along with PET CO2 .
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec‐Université LavalQuébecQuébecCanada
| | - Audrey Drapeau
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec‐Université LavalQuébecQuébecCanada
| | - Kevan Rahimaly
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec‐Université LavalQuébecQuébecCanada
| | - Sarah Imhoff
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec‐Université LavalQuébecQuébecCanada
| | - François Billaut
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec‐Université LavalQuébecQuébecCanada
| | - Patrice Brassard
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec‐Université LavalQuébecQuébecCanada
| |
Collapse
|
31
|
Favre ME, Lim V, Falvo MJ, Serrador JM. Cerebrovascular reactivity and cerebral autoregulation are improved in the supine posture compared to upright in healthy men and women. PLoS One 2020; 15:e0229049. [PMID: 32119678 PMCID: PMC7051088 DOI: 10.1371/journal.pone.0229049] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/28/2020] [Indexed: 12/04/2022] Open
Abstract
Cerebrovascular reactivity and cerebral autoregulation are two major mechanisms that regulate cerebral blood flow. Both mechanisms are typically assessed in either supine or seated postures, but the effects of body position and sex differences remain unclear. This study examined the effects of body posture (supine vs. seated vs. standing) on cerebrovascular reactivity during hyper and hypocapnia and on cerebral autoregulation during spontaneous and slow-paced breathing in healthy men and women using transcranial Doppler ultrasonography of the middle cerebral artery. Results indicated significantly improved cerebrovascular reactivity in the supine compared with seated and standing postures (supine = 3.45±0.67, seated = 2.72±0.53, standing = 2.91±0.62%/mmHg, P<0.0167). Similarly, cerebral autoregulatory measures showed significant improvement in the supine posture during slow-paced breathing. Transfer function measures of gain significantly decreased and phase significantly increased in the supine posture compared with seated and standing postures (gain: supine = 1.98±0.56, seated = 2.37±0.53, standing = 2.36±0.71%/mmHg; phase: supine = 59.3±21.7, seated = 39.8±12.5, standing = 36.5±9.7°; all P<0.0167). In contrast, body posture had no effect on cerebral autoregulatory measures during spontaneous breathing. Men and women had similar cerebrovascular reactivity and similar cerebral autoregulation during both spontaneous and slow-paced breathing. These data highlight the importance of making comparisons within the same body position to ensure there is not a confounding effect of posture.
Collapse
Affiliation(s)
- Michelle E. Favre
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
| | - Valerie Lim
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
| | - Michael J. Falvo
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
- Department of Physical Medicine and Rehabilitation, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
- Department of Veterans Affairs, War Related Illness and Injury Study Center, East Orange, New Jersey, United States of America
| | - Jorge M. Serrador
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
- Department of Cardiovascular Electronics, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| |
Collapse
|
32
|
Newman L, Nolan H, Carey D, Reilly RB, Kenny RA. Age and sex differences in frontal lobe cerebral oxygenation in older adults—Normative values using novel, scalable technology: Findings from the Irish Longitudinal Study on Ageing (TILDA). Arch Gerontol Geriatr 2020; 87:103988. [DOI: 10.1016/j.archger.2019.103988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/10/2019] [Accepted: 11/17/2019] [Indexed: 01/06/2023]
|
33
|
Cerebral and peripheral vascular differences between pre- and postmenopausal women. ACTA ACUST UNITED AC 2020; 27:170-182. [DOI: 10.1097/gme.0000000000001442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Blanken AE, Nation DA. Does Gender Influence the Relationship Between High Blood Pressure and Dementia? Highlighting Areas for Further Investigation. J Alzheimers Dis 2020; 78:23-48. [PMID: 32955459 PMCID: PMC8011824 DOI: 10.3233/jad-200245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Gender differences have been noted in studies linking blood pressure to all-cause dementia, and the two most common forms of dementia: Alzheimer's disease (AD) and vascular dementia (VaD). However, how gender modifies the relationship between blood pressure and dementia remains unclear. OBJECTIVE To review evidence for a gender modifying effect on the link between blood pressure and all-cause dementia. METHODS A systematic review was conducted according to PRISMA guidelines. Sixteen out of 256 reviewed articles met inclusion criteria. RESULTS For women, higher midlife systolic blood pressure (SBP) and hypertension were both associated with greater risk of all-cause dementia, AD, and VaD, in six out of seven studies. Two of these studies reported higher midlife SBP/hypertension were associated with greater risk for all-cause dementia in women, but not men. One study reported higher midlife SBP associated with greater AD risk in women, but not men. However, another study reported that midlife hypertension associated with AD risk in men, but not women. No clear gender differences were reported in the relationship between late-life high blood pressure/hypertension with all-cause dementia or AD. CONCLUSION Studies rarely, and inconsistently, analyzed or reported gender effects. Therefore, interpretation of available evidence regarding the role of gender in blood pressure associated dementia was difficult. Several studies indicated higher midlife SBP was associated with greater risk of all-cause dementia for women, compared to men. Future studies should evaluate women-specific aging processes that occur in midlife when considering the association between blood pressure and dementia risk.
Collapse
Affiliation(s)
- Anna E. Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Daniel A. Nation
- Department of Psychological Science, University of California Irvine, Irvine, CA, USA
- Institute for Memory Disorders and Neurological Impairments, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
35
|
Llwyd O, Haunton V, Salinet ASM, Nath M, Lam MY, Saeed NP, Brodie F, Robinson TG, Panerai RB. Can we assess dynamic cerebral autoregulation in stroke patients with high rates of cardiac ectopicity? Med Biol Eng Comput 2019; 57:2731-2739. [PMID: 31734767 DOI: 10.1007/s11517-019-02064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
Abstract
It is unclear whether physiological recordings containing high numbers of ectopic heartbeats can be used to measure the cerebral autoregulation (CA) of blood flow. This study evaluated the utility of such data for assessing dynamic CA capacity. Physiological recordings of cerebral blood flow velocity, heart rate, end-tidal CO2 and beat-to-beat blood pressure from acute ischaemic stroke (AIS) patients (n = 46) containing ectopic heartbeats of varying number (0.2 to 25 occurrences per minute) were analysed. Dynamic CA was determined using the autoregulation index (ARI) and the normalised mean square error (NMSE) was used to evaluate the fitting of the step response between BP and CBFV to Tiecks' model. We fitted linear mixed models on the CA variables incorporating ectopic burden, age, sex and hemisphere as predictor variables. Ectopic activity demonstrated an association with mean coherence (p = 0.006) but not with ARI (p = 0.162), impaired CA based on dichotomised ARI (p = 0.859) or NMSE (p = 0.671). Dynamic CA could be reliably assessed in AIS patients using physiological recordings with high rates of cardiac ectopic activity. This provides supportive data for future studies evaluating CA capability in AIS patients, with the potential to develop more individualised treatment strategies. Graphical Abstract.
Collapse
Affiliation(s)
- Osian Llwyd
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Room 225, Level 2, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | - Victoria Haunton
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Room 225, Level 2, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Angela S M Salinet
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Room 225, Level 2, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | - Mintu Nath
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Room 225, Level 2, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Man Y Lam
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Room 225, Level 2, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | - Nazia P Saeed
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Room 225, Level 2, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | - Fiona Brodie
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Room 225, Level 2, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Room 225, Level 2, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Room 225, Level 2, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK. .,NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
| |
Collapse
|
36
|
Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide. Compr Physiol 2019; 9:1101-1154. [DOI: 10.1002/cphy.c180021] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Favre ME, Serrador JM. Sex differences in cerebral autoregulation are unaffected by menstrual cycle phase in young, healthy women. Am J Physiol Heart Circ Physiol 2019; 316:H920-H933. [DOI: 10.1152/ajpheart.00474.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex is known to affect the prevalence of conditions such as stroke. However, effects of sex on cerebral blood flow regulation are still not well understood. Critical to this understanding is how fluctuations in hormones across the menstrual cycle affect cerebral autoregulation. We measured autoregulation in the early follicular, late follicular, and midluteal phases during spontaneous and induced blood pressure oscillations in 26 young, healthy individuals (13 women and 13 men, age: 26 ± 4 yr). Men participated three times, ~1–3 wk apart. Beat-by-beat blood pressure, heart rate, end-tidal CO2, and transcranial Doppler ultrasonography of the middle (MCA) and anterior (ACA) cerebral arteries were obtained. We did not find a difference in cerebral autoregulation across the menstrual cycle in women but found significantly improved autoregulation in the MCA and ACA of women compared with men. Women demonstrated significantly lower MCA gain (0.97 ± 0.13 vs. 1.17 ± 0.14%/mmHg, P = 0.001), higher MCA phase (46.1 ± 12.6 vs. 35.8 ± 7.9°, P = 0.019), and higher ACA phase (40.5 ± 10.8 vs 31.5 ± 8.5°, P = 0.040) during repeated squat-to-stand maneuvers. Women also had lower MCA gain (1.50 ± 0.11 vs. 1.72 ± 0.30%/mmHg, P = 0.029) during spontaneous fluctuations in pressure while standing and less of a decrease in MCA flow velocity (−18.7 ± 2.7 vs. −23.2 ± 6.0%, P = 0.014) during sit-to-stand maneuvers. Our results suggest that young women have improved cerebral autoregulation compared with young men regardless of menstrual cycle phase and that autoregulation is relatively robust to acute fluctuations in female sex hormones. NEW & NOTEWORTHY This is the first study to investigate thoroughly the effects of menstrual cycle phase and sex differences in cerebral autoregulation in young, healthy individuals. Cerebral autoregulation was unaffected by menstrual cycle phase during both repeated squat-to-stand and sit-to-stand maneuvers. However, women demonstrated significantly improved cerebral autoregulation in the middle and anterior cerebral arteries, suggesting women were able to maintain cerebral blood flow during changes in blood pressure more efficiently than men.
Collapse
Affiliation(s)
- Michelle E. Favre
- Department of Pharmacology, Physiology and Neuroscience; Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Jorge M. Serrador
- Department of Pharmacology, Physiology and Neuroscience; Rutgers Biomedical and Health Sciences, Newark, New Jersey
- War-Related Illness and Injury Study Center, Department of Veterans Affairs, East Orange, New Jersey
- Department of Cardiovascular Electronics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
38
|
Joshi H, Edgell H. Sex differences in the ventilatory and cardiovascular response to supine and tilted metaboreflex activation. Physiol Rep 2019; 7:e14041. [PMID: 30916469 PMCID: PMC6436143 DOI: 10.14814/phy2.14041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/26/2022] Open
Abstract
Women have attenuated exercise pressor responses compared to men; however, their cerebrovascular and ventilatory responses have not been previously measured. Furthermore, recent evidence has shown that posture change can influence the response of the metaboreflex but this has only been tested in men. Young and healthy men (n = 14; age: 21 ± 2) and women (n = 11; age: 19 ± 1) underwent 40% MVC static handgrip exercise (HG) for 2 min followed by 3 min of post-exercise circulatory occlusion (PECO) in the supine and 70° tilted postures. In supine position during HG and PECO only men had an increase in ventilation (Men: Baseline: 12.5 ± 1.7 L/min, HG: 18.6 ± 5.3 L/min, PECO: 17.7 ± 10.3 L/min; Women: Baseline: 12.0 ± 1.5 L/min, HG: 12.4 ± 1.2 L/min, PECO: 11.5 ± 1.3 L/min; Sex × Time interaction P = 0.037). In supine position during HG and PECO men and women had similar reductions in cerebrovascular conductance (Men: Baseline: 0.79 ± 0.13 cm/sec/mmHg, HG: 0.68 ± 0.18 cm/sec/mmHg, PECO: 0.61 ± 0.19 cm/s/mmHg; Women: Baseline: 0.87 ± 0.13 cm/sec/mmHg, HG: 0.83 ± 0.14 cm/sec/mmHg, PECO: 0.75 ± 0.17 cm/sec/mmHg; P < 0.015 HG/PECO vs. baseline). When comparing the response to PECO in the supine versus upright postures there was a significant attenuation in the increase in mean arterial pressure in both men and women (Supine posture: Men: +23.3 ± 14.5 mmHg, Women: +12.0 ± 7.3 mmHg; Upright posture: Men: +15.7 ± 14.1 mmHg, Women: +7.7 ± 6.7 mmHg; Main effect of sex P = 0.042, Main effect of posture P < 0.001). Our results indicate sexually dimorphic ventilatory responses to HG and PECO which could be due to different interactions of the metaboreflex and chemoreflex. We have also shown evidence of attenuated metaboreflex function in the upright posture in both men and women.
Collapse
Affiliation(s)
- Hitesh Joshi
- School of Kinesiology and Health SciencesYork UniversityTorontoOntarioCanada
| | - Heather Edgell
- School of Kinesiology and Health SciencesYork UniversityTorontoOntarioCanada
- Muscle Health Research CentreYork UniversityTorontoOntarioCanada
| |
Collapse
|
39
|
|
40
|
Wojszel ZB, Kasiukiewicz A, Magnuszewski L. Health and Functional Determinants of Orthostatic Hypotension in Geriatric Ward Patients: A Retrospective Cross Sectional Cohort Study. J Nutr Health Aging 2019; 23:509-517. [PMID: 31233071 PMCID: PMC6586688 DOI: 10.1007/s12603-019-1201-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Orthostatic hypotension (OH) is a common problem in older people. Although it is indicated that OH can be a marker of frailty there are no studies that evaluate this relationship in hospitalized patients. The aim of the study was to assess the prevalence of OH in geriatric ward patients and its association with health and functional ability characteristics and patients' frailty status. DESIGN AND SETTING A retrospective cross-sectional cohort study was conducted among patients aged 60 or over hospitalized in the geriatric ward. PARTICIPANTS Patients' medical records were analyzed and those with Active Standing Test (AST) results were included in the study. MEASUREMENTS Orthostatic hypotension was defined by a drop in blood pressure of at least 20mmHg for systolic blood pressure and at least 10mmHg for diastolic blood pressure within 3minutes of standing up in AST. The database included sociodemographic characteristics, nutritional, functional and cognitive state, comorbidity and medical treatment. Frailty syndrome was diagnosed with Clinical Frailty Scale. Correlations with OH were counted and multivariable logistic regression models were built. RESULTS 416 patients were hospitalized in the study period and 353 (84.9%) were included, 78 (22.1%) men and 298 (84.4%) 75+ year-old. AST was not available in patients significantly more dependent in ADL and more frail. OH was diagnosed in 57 (16.2%) patients, significantly more frequently in men (systolic- 45,5%, systolic-diastolic- 40,0%). The significant independent predictors of OH were lower diastolic blood pressure at admittance, nutritional risk in MNA-SF, Parkinson disease, α1-blockers, neuroleptics and memantine, and not the frailty syndrome diagnosed with Clinical Frailty Scale. CONCLUSIONS OH affects a significant percentage of patients in the geriatric ward, although this problem may be underestimated due to limitations in the performance of AST in very frail and functionally dependent patients.
Collapse
Affiliation(s)
- Z B Wojszel
- Zyta B. Wojszel, M.D., Ph.D. Department of Geriatrics, Medical University of Bialystok, Fabryczna str. 27, 15-471 Bialystok, Poland, Phone:+48 85 869 4982, e-mail:
| | | | | |
Collapse
|
41
|
Labrecque L, Rahimaly K, Imhoff S, Paquette M, Le Blanc O, Malenfant S, Drapeau A, Smirl JD, Bailey DM, Brassard P. Dynamic cerebral autoregulation is attenuated in young fit women. Physiol Rep 2019; 7:e13984. [PMID: 30652420 PMCID: PMC6335382 DOI: 10.14814/phy2.13984] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
Young women exhibit higher prevalence of orthostatic hypotension with presyncopal symptoms compared to men. These symptoms could be influenced by an attenuated ability of the cerebrovasculature to respond to rapid blood pressure (BP) changes [dynamic cerebral autoregulation (dCA)]. The influence of sex on dCA remains unclear. dCA in 11 fit women (25 ± 2 years) and 11 age-matched men (24 ± 1 years) was compared using a multimodal approach including a sit-to-stand (STS) and forced BP oscillations (repeated squat-stand performed at 0.05 and 0.10 Hz). Prevalence of initial orthostatic hypotension (IOH; decrease in systolic ≥ 40 mmHg and/or diastolic BP ≥ 20 mmHg) during the first 15 sec of STS was determined as a functional outcome. In women, the decrease in mean middle cerebral artery blood velocity (MCAvmean ) following the STS was greater (-20 ± 8 vs. -11 ± 7 cm sec-1 ; P = 0.018) and the onset of the regulatory change (time lapse between the beginning of the STS and the increase in the conductance index (MCAvmean /mean arterial pressure) was delayed (P = 0.007). Transfer function analysis gain during 0.05 Hz squat-stand was ~48% higher in women (6.4 ± 1.3 vs. 3.8 ± 2.3 cm sec-1 mmHg-1 ; P = 0.017). Prevalence of IOH was comparable between groups (women: 4/9 vs. men: 5/9, P = 0.637). These results indicate the cerebrovasculature of fit women has an attenuated ability to react to rapid changes in BP in the face of preserved orthostasis, which could be related to higher resting cerebral blood flow allowing women to better face transient hypotension.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Kevan Rahimaly
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Sarah Imhoff
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Myriam Paquette
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Olivier Le Blanc
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Simon Malenfant
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Audrey Drapeau
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Jonathan D. Smirl
- Concussion Research LaboratoryHealth and Exercise SciencesUniversity of British Columbia OkanaganBritish ColumbiaCanada
| | - Damian M. Bailey
- Neurovascular Research LaboratoryFaculty of Life Sciences and EducationUniversity of South WalesSouth WalesUnited Kingdom
| | - Patrice Brassard
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| |
Collapse
|
42
|
Robison LS, Gannon OJ, Salinero AE, Zuloaga KL. Contributions of sex to cerebrovascular function and pathology. Brain Res 2018; 1710:43-60. [PMID: 30580011 DOI: 10.1016/j.brainres.2018.12.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Sex differences exist in how cerebral blood vessels function under both physiological and pathological conditions, contributing to observed sex differences in risk and outcomes of cerebrovascular diseases (CBVDs), such as vascular contributions to cognitive impairment and dementia (VCID) and stroke. Throughout most of the lifespan, women are protected from CBVDs; however, risk increases following menopause, suggesting sex hormones may play a significant role in this protection. The cerebrovasculature is a target for sex hormones, including estrogens, progestins, and androgens, where they can influence numerous vascular functions and pathologies. While there is a plethora of information on estrogen, the effects of progestins and androgens on the cerebrovasculature are less well-defined. Estrogen decreases cerebral tone and increases cerebral blood flow, while androgens increase tone. Both estrogens and androgens enhance angiogenesis/cerebrovascular remodeling. While both estrogens and androgens attenuate cerebrovascular inflammation, pro-inflammatory effects of androgens under physiological conditions have also been demonstrated. Sex hormones exert additional neuroprotective effects by attenuating oxidative stress and maintaining integrity and function of the blood brain barrier. Most animal studies utilize young, healthy, gonadectomized animals, which do not mimic the clinical conditions of aging individuals likely to get CBVDs. This is also concerning, as sex hormones appear to mediate cerebrovascular function differently based on age and disease state (e.g. metabolic syndrome). Through this review, we hope to inspire others to consider sex as a key biological variable in cerebrovascular research, as greater understanding of sex differences in cerebrovascular function will assist in developing personalized approaches to prevent and treat CBVDs.
Collapse
Affiliation(s)
- Lisa S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| | - Olivia J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| | - Abigail E Salinero
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| |
Collapse
|
43
|
Minhas JS, Panerai RB, Robinson TG. Sex differences in cerebral haemodynamics across the physiological range of PaCO 2. Physiol Meas 2018; 39:105009. [PMID: 30256215 DOI: 10.1088/1361-6579/aae469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Cerebral blood flow (CBF) is influenced by changes in arterial CO2 (PaCO2). Recently, cerebral haemodynamic parameters were demonstrated to follow a four parameter logistic curve offering simultaneous assessment of dCA and CO2 vasoreactivity. However, the effects of sex on cerebral haemodynamics have yet to be described over a wide range of PaCO2. APPROACH CBF velocity (CBFV, transcranial Doppler), blood pressure (BP, Finometer) and end-tidal CO2 (EtCO2, capnography) were measured in healthy volunteers at baseline, and in response to hypo- (-5 mmHg and -10 mmHg below baseline) and hypercapnia (5% and 8% CO2), applied in random order. MAIN RESULTS Forty-five subjects (19 male, 26 female, mean age 37.5 years) showed significant differences between males and females in CBFV (50.9 ± 10.4 versus 61.5 ± 12.3 cm · s-1, p = 0.004), EtCO2 (39.2 ± 2.8 versus 36.9 ± 3.0 mmHg, p = 0.005), RAP (1.16 ± 0.23 versus 0.94 ± 0.40 mmHg cm · s-1, p = 0.005) and systolic BP (125.2 ± 8.0 versus 114.6 ± 12.4 mmHg, p = 0.0372), respectively. Significant differences between sexes were observed in the four logistic parameters: y min, y max, k (exponential coefficient) and x (EtCO2 level) across the haemodynamic variables. Significant differences included the CBFV-EtCO2 and ARI-EtCO2 relationship; ARImin (p = 0.036) and CBFVmax (p = 0.001), respectively. Furthermore, significant differences were observed for both CrCPmin (p = 0.045) and CrCPmax (p = 0.005) and RAPmin (p < 0.001) and RAPmax (p < 0.001). SIGNIFICANCE This is the first study to examine sex individually within the context of a multi-level CO2 protocol. The demonstration that the logistic curve parameters are influenced by sex, highlights the need to take into account sex differences between participants in both physiological and clinical studies.
Collapse
Affiliation(s)
- J S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHIASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
44
|
Tran NN, Kumar SR, Hodge FS, Macey PM. Cerebral Autoregulation in Neonates With and Without Congenital Heart Disease. Am J Crit Care 2018; 27:410-416. [PMID: 30173174 DOI: 10.4037/ajcc2018672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) is a leading birth defect in the United States, affecting about 40 000 neonates each year. Despite efforts to prevent developmental delays, many children with CHD have neurological deficits that last into adulthood, influencing employability, self-care, and quality of life. OBJECTIVE To determine if neonates with CHD have impaired cerebral autoregulation and poorer neurodevelopmental outcomes compared with healthy controls. METHODS A total of 44 full-term neonates, 28 with CHD and 16 without, were enrolled in the study. Inclusion criteria included confirmed diagnosis of CHD, stable hemodynamic status, and being no more than 12 days old. Exclusion criteria included intraventricular hemorrhage and intubation. Cerebral autoregulation was determined by measuring regional cerebral oxygenation during a postural change. The Einstein Neonatal Neurobehavioral Assessment Scale was used to measure overall neurodevelopmental outcomes (motor, visual, and auditory functions). RESULTS Of the 28 neonates with CHD, 8 had single-ventricle physiology. A χ2 analysis indicated no significant difference in impaired cerebral autoregulation between neonates with CHD and controls (P = .38). Neonates with CHD had lower regional cerebral oxygenation than did neonates without CHD (P < .001). Regression analyses with adjustments for cerebral autoregulation indicated that neonates with CHD had poorer total neurodevelopmental outcomes scores (β = 9.3; P = .02) and motor scores (β = 7.6; P = .04). CONCLUSION Preoperative neonates with CHD have poorer developmental outcomes and more hypoxemia than do controls.
Collapse
Affiliation(s)
- Nhu N. Tran
- Nhu N. Tran is a clinical research nurse III, Department of Cardiothoracic Surgery, Children’s Hospital Los Angeles, Los Angeles, California. Ram Kumar is an assistant professor of surgery, Keck School of Medicine, University of Southern California, Los Angeles, California. Felicia S. Hodge is a professor and Paul M. Macey is an associate professor, School of Nursing, University of California, Los Angeles
| | - S. Ram Kumar
- Nhu N. Tran is a clinical research nurse III, Department of Cardiothoracic Surgery, Children’s Hospital Los Angeles, Los Angeles, California. Ram Kumar is an assistant professor of surgery, Keck School of Medicine, University of Southern California, Los Angeles, California. Felicia S. Hodge is a professor and Paul M. Macey is an associate professor, School of Nursing, University of California, Los Angeles
| | - Felicia S. Hodge
- Nhu N. Tran is a clinical research nurse III, Department of Cardiothoracic Surgery, Children’s Hospital Los Angeles, Los Angeles, California. Ram Kumar is an assistant professor of surgery, Keck School of Medicine, University of Southern California, Los Angeles, California. Felicia S. Hodge is a professor and Paul M. Macey is an associate professor, School of Nursing, University of California, Los Angeles
| | - Paul M. Macey
- Nhu N. Tran is a clinical research nurse III, Department of Cardiothoracic Surgery, Children’s Hospital Los Angeles, Los Angeles, California. Ram Kumar is an assistant professor of surgery, Keck School of Medicine, University of Southern California, Los Angeles, California. Felicia S. Hodge is a professor and Paul M. Macey is an associate professor, School of Nursing, University of California, Los Angeles
| |
Collapse
|
45
|
de Heus RA, de Jong DL, Sanders ML, van Spijker GJ, Oudegeest-Sander MH, Hopman MT, Lawlor BA, Olde Rikkert MG, Claassen JA. Dynamic Regulation of Cerebral Blood Flow in Patients With Alzheimer Disease. Hypertension 2018; 72:139-150. [DOI: 10.1161/hypertensionaha.118.10900] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/09/2018] [Accepted: 04/05/2018] [Indexed: 01/18/2023]
Abstract
Cerebral autoregulation and baroreflex sensitivity are key mechanisms that maintain cerebral blood flow. This study assessed whether these control mechanisms are affected in patients with dementia and mild cognitive impairment due to Alzheimer disease, as this would increase the risks of antihypertensive treatment. We studied 53 patients with dementia (73.1 years [95% confidence interval (CI), 71.4–74.8]), 37 patients with mild cognitive impairment (69.2 years [95% CI, 66.4–72.0]), and 47 controls (69.4 years [95% CI, 68.3–70.5]). Beat-to-beat blood pressure (photoplethysmography), heart rate, and cerebral blood flow velocity (transcranial Doppler) were measured during 5-minute rest (sitting) and 5 minutes of orthostatic challenges, using repeated sit-to-stand maneuvers. Cerebral autoregulation was assessed using transfer function analysis and the autoregulatory index. Baroreflex sensitivity was estimated with transfer function analysis and by calculating the heart rate response to blood pressure changes during the orthostatic challenges. Dementia patients had the lowest cerebral blood flow velocity (
P
=0.004). During rest, neither transfer function analysis nor the autoregulatory index indicated impairments in cerebral autoregulation. During the orthostatic challenges, higher autoregulatory index (
P
=0.011) and lower transfer function gain (
P
=0.017), indicating better cerebral autoregulation, were found in dementia (4.56 arb. unit [95% CI, 4.14–4.97]; 0.59 cm/s per mm Hg [95% CI, 0.51–0.66]) and mild cognitive impairment (4.59 arb. unit [95% CI, 4.04–5.13]; 0.51 cm/s per mm Hg [95% CI, 0.44–0.59]) compared with controls (3.71 arb. unit [95% CI, 3.35–4.07]; 0.67 cm/s per mm Hg [95% CI, 0.59–0.74]). Baroreflex sensitivity measures did not differ between groups. In conclusion, the key mechanisms to control blood pressure and cerebral blood flow are not reduced in 2 stages of Alzheimer disease compared with controls, both in rest and during orthostatic changes that reflect daily life challenges.
Collapse
Affiliation(s)
- Rianne A.A. de Heus
- From the Department of Geriatric Medicine, Radboud Alzheimer Centre (R.A.A.d.H., D.L.K.d.J., M.L.S., G.J.v.S., M.H.O.-S., M.G.M.O.R., J.A.H.R.C.)
- Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands (R.A.A.d.H., D.L.K.d.J., M.L.S., G.J.v.S., M.H.O.-S., M.G.M.O.R., J.A.H.R.C.)
| | - Daan L.K. de Jong
- From the Department of Geriatric Medicine, Radboud Alzheimer Centre (R.A.A.d.H., D.L.K.d.J., M.L.S., G.J.v.S., M.H.O.-S., M.G.M.O.R., J.A.H.R.C.)
- Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands (R.A.A.d.H., D.L.K.d.J., M.L.S., G.J.v.S., M.H.O.-S., M.G.M.O.R., J.A.H.R.C.)
| | - Marit L. Sanders
- From the Department of Geriatric Medicine, Radboud Alzheimer Centre (R.A.A.d.H., D.L.K.d.J., M.L.S., G.J.v.S., M.H.O.-S., M.G.M.O.R., J.A.H.R.C.)
- Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands (R.A.A.d.H., D.L.K.d.J., M.L.S., G.J.v.S., M.H.O.-S., M.G.M.O.R., J.A.H.R.C.)
| | - Gerrita J. van Spijker
- From the Department of Geriatric Medicine, Radboud Alzheimer Centre (R.A.A.d.H., D.L.K.d.J., M.L.S., G.J.v.S., M.H.O.-S., M.G.M.O.R., J.A.H.R.C.)
- Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands (R.A.A.d.H., D.L.K.d.J., M.L.S., G.J.v.S., M.H.O.-S., M.G.M.O.R., J.A.H.R.C.)
| | - Madelijn H. Oudegeest-Sander
- From the Department of Geriatric Medicine, Radboud Alzheimer Centre (R.A.A.d.H., D.L.K.d.J., M.L.S., G.J.v.S., M.H.O.-S., M.G.M.O.R., J.A.H.R.C.)
- Department of Physiology (M.H.O.-S., M.T.H.), Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands (R.A.A.d.H., D.L.K.d.J., M.L.S., G.J.v.S., M.H.O.-S., M.G.M.O.R., J.A.H.R.C.)
| | - Maria T. Hopman
- Department of Physiology (M.H.O.-S., M.T.H.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brian A. Lawlor
- Mercer's Institute for Research on Ageing, St. James's Hospital and Global Brain Health Institute, Trinity College Dublin, Ireland (B.A.L.)
| | - Marcel G.M. Olde Rikkert
- From the Department of Geriatric Medicine, Radboud Alzheimer Centre (R.A.A.d.H., D.L.K.d.J., M.L.S., G.J.v.S., M.H.O.-S., M.G.M.O.R., J.A.H.R.C.)
- Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands (R.A.A.d.H., D.L.K.d.J., M.L.S., G.J.v.S., M.H.O.-S., M.G.M.O.R., J.A.H.R.C.)
| | - Jurgen A.H.R. Claassen
- From the Department of Geriatric Medicine, Radboud Alzheimer Centre (R.A.A.d.H., D.L.K.d.J., M.L.S., G.J.v.S., M.H.O.-S., M.G.M.O.R., J.A.H.R.C.)
- Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands (R.A.A.d.H., D.L.K.d.J., M.L.S., G.J.v.S., M.H.O.-S., M.G.M.O.R., J.A.H.R.C.)
| |
Collapse
|
46
|
Caldas JR, Panerai RB, Salinet AM, Seng-Shu E, Ferreira GSR, Camara L, Passos RH, Galas FRBG, Almeida JP, Nogueira RC, de Lima Oliveira M, Robinson TG, Hajjar LA. Dynamic cerebral autoregulation is impaired during submaximal isometric handgrip in patients with heart failure. Am J Physiol Heart Circ Physiol 2018; 315:H254-H261. [PMID: 29652541 DOI: 10.1152/ajpheart.00727.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of neurological complications, including stroke and cognitive dysfunction, is elevated in patients with heart failure (HF) with reduced ejection fraction. We hypothesized that the cerebrovascular response to isometric handgrip (iHG) is altered in patients with HF. Adults with HF and healthy volunteers were included. Cerebral blood velocity (CBV; transcranial Doppler, middle cerebral artery) and arterial blood pressure (BP; Finometer) were continuously recorded supine for 6 min, corresponding to 1 min of baseline and 3 min of iHG exercise, at 30% maximum voluntary contraction, followed by 2 min of recovery. The resistance-area product was calculated from the instantaneous BP-CBV relationship. Dynamic cerebral autoregulation (dCA) was assessed with the time-varying autoregulation index estimated from the CBV step response derived by an autoregressive moving-average time-domain model. Forty patients with HF and 23 BP-matched healthy volunteers were studied. Median left ventricular ejection fraction was 38.5% (interquartile range: 0.075%) in the HF group. Compared with control subjects, patients with HF exhibited lower time-varying autoregulation index during iHG, indicating impaired dCA ( P < 0.025). During iHG, there were steep rises in CBV, BP, and heart rate in control subjects but with different temporal patterns in HF, which, together with the temporal evolution of resistance-area product, confirmed the disturbance in dCA in HF. Patients with HF were more likely to have impaired dCA during iHG compared with age-matched control subjects. Our results also suggest an impairment of myogenic, neurogenic, and metabolic control mechanisms in HF. The relationship between impaired dCA and neurological complications in patients with HF during exercise deserves further investigation. NEW & NOTEWORTHY Our findings provide the first direct evidence that cerebral blood flow regulatory mechanisms can be affected in patients with heart failure during isometric handgrip exercise. As a consequence, eventual blood pressure modulations are buffered less efficiently and metabolic demands may not be met during common daily activities. These deficits in cerebral autoregulation are compounded by limitations of the systemic response to isometric exercise, suggesting that patients with heart failure may be at greater risk for cerebral events during exercise.
Collapse
Affiliation(s)
- J R Caldas
- Department of Anesthesia, Heart Institute, University of Sao Paulo , Sao Paulo , Brazil.,Department of Neurosurgery, Hospital das Clinicas, University of São Paulo , São Paulo , Brazil.,Critical Care Unit, Hospital São Rafael , Salvador , Brazil
| | - R B Panerai
- Department of Cardiovascular Sciences, University of Leicester , Leicester , United Kingdom.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital , Leicester , United Kingdom
| | | | - E Seng-Shu
- Department of Neurosurgery, Hospital das Clinicas, University of São Paulo , São Paulo , Brazil
| | - G S R Ferreira
- Department of Anesthesia, Heart Institute, University of Sao Paulo , Sao Paulo , Brazil
| | - L Camara
- Department of Anesthesia, Heart Institute, University of Sao Paulo , Sao Paulo , Brazil
| | - R H Passos
- Critical Care Unit, Hospital São Rafael , Salvador , Brazil
| | - F R B G Galas
- Department of Anesthesia, Heart Institute, University of Sao Paulo , Sao Paulo , Brazil
| | | | - R C Nogueira
- Department of Neurosurgery, Hospital das Clinicas, University of São Paulo , São Paulo , Brazil
| | - M de Lima Oliveira
- Department of Neurosurgery, Hospital das Clinicas, University of São Paulo , São Paulo , Brazil
| | - T G Robinson
- Department of Cardiovascular Sciences, University of Leicester , Leicester , United Kingdom.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital , Leicester , United Kingdom
| | - L A Hajjar
- Department of Cardiopneumology, Heart Institute, University of Sao Paulo , São Paulo , Brazil
| |
Collapse
|
47
|
Abstract
Sex and gender, as biological and social factors, significantly influence health outcomes. Among the biological factors, sex differences in vascular physiology may be one specific mechanism contributing to the observed differences in clinical presentation, response to treatment, and clinical outcomes in several vascular disorders. This review focuses on the cerebrovascular bed and summarizes the existing literature on sex differences in cerebrovascular hemodynamics to highlight the knowledge deficit that exists in this domain. The available evidence is used to generate mechanistically plausible and testable hypotheses to underscore the unmet need in understanding sex-specific mechanisms as targets for more effective therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Cristina Duque
- Division of Stroke and Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Neurology, Coimbra University Hospital Center, Coimbra, Portugal
| | - Steven K Feske
- Division of Stroke, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Farzaneh A Sorond
- Division of Stroke and Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
48
|
de Jong DLK, Tarumi T, Liu J, Zhang R, Claassen JAHR. Lack of linear correlation between dynamic and steady-state cerebral autoregulation. J Physiol 2017; 595:5623-5636. [PMID: 28597991 PMCID: PMC5556173 DOI: 10.1113/jp274304] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/06/2017] [Indexed: 01/15/2023] Open
Abstract
Key points For correct application and interpretation of cerebral autoregulation (CA) measurements in research and in clinical care, it is essential to understand differences and similarities between dynamic and steady‐state CA. The present study found no correlation between dynamic and steady‐state CA indices in healthy older adults. There was variability between individuals in all (steady‐state and dynamic) autoregulatory indices, ranging from low (almost absent) to highly efficient CA in this healthy population. These findings challenge the assumption that assessment of a single CA parameter or a single set of parameters can be generalized to overall CA functioning. Therefore, depending on specific research purposes, the choice for either steady‐state or dynamic measures or both should be weighed carefully.
Abstract The present study aimed to investigate the relationship between dynamic (dCA) and steady‐state cerebral autoregulation (sCA). In 28 healthy older adults, sCA was quantified by a linear regression slope of proportionate (%) changes in cerebrovascular resistance (CVR) in response to proportionate (%) changes in mean blood pressure (BP) induced by stepwise sodium nitroprusside (SNP) and phenylephrine (PhE) infusion. Cerebral blood flow (CBF) was measured at the internal carotid artery (ICA) and vertebral artery (VA) and CBF velocity at the middle cerebral artery (MCA). With CVR = BP/CBF, Slope‐CVRICA, Slope‐CVRVA and Slope‐CVRiMCA were derived. dCA was assessed (i) in supine rest, analysed with transfer function analysis (gain and phase) and autoregulatory index (ARI) fit from spontaneous oscillations (ARIBaseline), and (ii) with transient changes in BP using a bolus injection of SNP (ARISNP) and PhE (ARIPhE). Comparison of sCA and dCA parameters (using Pearson's r for continuous and Spearman's ρ for ordinal parameters) demonstrated a lack of linear correlations between sCA and dCA measures. However, comparisons of parameters within dCA and within sCA were correlated. For sCA slope‐CVRVA with Slope‐CVRiMCA (r = 0.45, P < 0.03); for dCA ARISNP with ARIPhE (ρ = 0.50, P = 0.03), ARIBaseline (ρ = 0.57, P = 0.03) and PhaseLF (ρ = 0.48, P = 0.03); and for GainVLF with GainLF (r = 0.51, P = 0.01). By contrast to the commonly held assumption based on an earlier study, there were no linear correlations between sCA and dCA. As an additional observation, there was strong inter‐individual variability, both in dCA and sCA, in this healthy group of elderly, in a range from low to high CA efficiency. For correct application and interpretation of cerebral autoregulation (CA) measurements in research and in clinical care, it is essential to understand differences and similarities between dynamic and steady‐state CA. The present study found no correlation between dynamic and steady‐state CA indices in healthy older adults. There was variability between individuals in all (steady‐state and dynamic) autoregulatory indices, ranging from low (almost absent) to highly efficient CA in this healthy population. These findings challenge the assumption that assessment of a single CA parameter or a single set of parameters can be generalized to overall CA functioning. Therefore, depending on specific research purposes, the choice for either steady‐state or dynamic measures or both should be weighed carefully.
Collapse
Affiliation(s)
- Daan L K de Jong
- Donders Institute for Brain, Cognition and Behavior, Radboud Alzheimer Center, and Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas, USA.,Department of Internal Medicine
| | - Jie Liu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas, USA.,Department of Internal Medicine
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas, USA.,Department of Internal Medicine.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Texas, USA
| | - Jurgen A H R Claassen
- Donders Institute for Brain, Cognition and Behavior, Radboud Alzheimer Center, and Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Abidi S, Nili M, Serna S, Kim S, Hazlett C, Edgell H. Influence of sex, menstrual cycle, and oral contraceptives on cerebrovascular resistance and cardiorespiratory function during Valsalva or standing. J Appl Physiol (1985) 2017; 123:375-386. [PMID: 28522756 DOI: 10.1152/japplphysiol.00035.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 01/11/2023] Open
Abstract
Women experience orthostatic intolerance more than men, and they experience faintness more in the early follicular [i.e., low-hormone (LH)] than luteal [i.e., high-hormone (HH)] phase of the menstrual cycle. Men (n = 13, 25.8 ± 1.8 yr old) and women in the LH (days 2-5; placebo) and HH (days 18-24; high dose) phases of the menstrual cycle with (OC; n = 14, 22.0 ± 0.8 yr old) or without (NOC; n = 12, 21.8 ± 0.5 yr old) oral contraceptive (OC) use underwent the Valsalva maneuver and a supine-sit-stand protocol. Blood pressure, normalized stroke volume [stroke volume index (SVi)], cardiac output index, heart rate, end-tidal CO2, and middle cerebral artery (MCA) blood flow velocity were measured. When subjected to the Valsalva maneuver, all women had a greater increase in diastolic and mean MCA blood flow velocity than men (P ≤ 0.065), with no significant effect of menstrual cycle phase or OC use. When subjected to the supine-sit-stand protocol, men had lower MCA blood flow velocity (P < 0.038) than all women, and SVi was higher in men than in the NOC group in all postures (P < 0.011) and in the OC group in the LH phase of the menstrual cycle during standing (P = 0.010). Only men experienced higher resistance index (P < 0.001) and pulsatility index (P < 0.001) with standing. The OC group had lower end-tidal CO2 (P = 0.002) than the NOC group (P = 0.030) and men (P ≤ 0.067). SVi (P = 0.004) and cardiac output index (P = 0.008) were higher in the OC than NOC group. A tendency toward a lower mean MCA blood flow velocity (P = 0.058) and higher SVi (P = 0.059) and pulsatility index (P = 0.058) was noted in the HH than LH phase. Mean arterial pressure was higher in the OC than NOC group in the LH phase (P = 0.049) and lower in the HH than LH phase (P = 0.014). Our results indicate that cycling estrogens/progestins can influence ventilatory, cardiovascular, and/or cerebrovascular physiology.NEW & NOTEWORTHY We have found sex differences in the cerebrovascular response to the Valsalva maneuver and standing. Men have greater cerebral vasoconstriction (or women have greater cerebral vasodilation) during late phase II of the Valsalva maneuver, and the cerebrovascular resistance index increases in men, but not in women, during standing. Furthermore, our findings indicate that both the menstrual cycle phase and oral contraceptive use can influence cardiovascular function both at rest and during active standing.
Collapse
Affiliation(s)
- Syed Abidi
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada; and
| | - Misha Nili
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada; and
| | - Stephania Serna
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada; and
| | - Simon Kim
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada; and
| | - Christopher Hazlett
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada; and
| | - Heather Edgell
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada; and .,Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
50
|
O'Hare C, McCrory C, O'Connell MD, Kenny RA. Sub-clinical orthostatic hypotension is associated with greater subjective memory impairment in older adults. Int J Geriatr Psychiatry 2017; 32:429-438. [PMID: 27245850 DOI: 10.1002/gps.4485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Orthostatic blood pressure (BP) is a measure of cardiovascular autonomic function. Orthostatic BP dysregulation may lie on the causal pathway to dementia. Subjective memory impairment (SMI) is commonly reported by older people some of whom may progress to dementia. We hypothesised that sub-clinical orthostatic hypotension would be associated with SMI and explored these associations according to sex. METHODS Cross-sectional analysis of data from 4340 participants aged 50 and over collected during the first wave (2009-2011) of the cohort study, The Irish Longitudinal Study on Ageing. Subjective memory was rated according to a 5-point scale ranging from 'poor' to 'excellent'. BP was measured during orthostatic stress using continuous non-invasive beat-to-beat recording over 2 min. RESULTS 2% reported 'poor' subjective memory, 12.3% 'fair' , 38% 'good', 33% 'very good' and 14.6% 'excellent'. After controlling for several potential confounding factors including cardiovascular risk, objective cognition, and depressive symptoms mean systolic orthostatic BP was lowest in those with poor subjective memory: 92.2 mmHg (CI95% = 87.1, 97.3) versus excellent 99.3 mmHg (CI95% = 97.4, 101.2); p = 0.011. Further adjustment for supine systolic BP suggested that men with poor subjective memory reached the lowest average systolic orthostatic BP and had the greatest impairment in systolic orthostatic BP stabilisation to baseline levels at 10 s post-stand (-6.64 mmHg; CI95% = -11.49, -1.79; p = 0.007). CONCLUSIONS Sub-clinical orthostatic hypotension is associated with SMI, and there are sex-specific relationships evident in this population-based cohort. Subtle cardiovascular autonomic dysfunction may represent a modifiable risk marker at an early stage of cognitive decline in older adults. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Celia O'Hare
- Department of Psychiatry, Trinity College Dublin
| | - Cathal McCrory
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland
| | - Matthew Dl O'Connell
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|