1
|
Garbarino VR, Palavicini JP, Melendez J, Barthelemy N, He Y, Kautz TF, Lopez-Cruzan M, Mathews JJ, Xu P, Zhan B, Saliba A, Ragi N, Sharma K, Craft S, Petersen RC, Espindola-Netto JM, Xue A, Tchkonia T, Kirkland JL, Seshadri S, Salardini A, Musi N, Bateman RJ, Gonzales MM, Orr ME. Evaluation of Exploratory Fluid Biomarker Results from a Phase 1 Senolytic Trial in Mild Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-3994894. [PMID: 38496619 PMCID: PMC10942554 DOI: 10.21203/rs.3.rs-3994894/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Senescent cell accumulation contributes to the progression of age-related disorders including Alzheimer's disease (AD). Clinical trials evaluating senolytics, drugs that clear senescent cells, are underway, but lack standardized outcome measures. Our team recently published data from the first open-label trial to evaluate senolytics (dasatinib plus quercetin) in AD. After 12-weeks of intermittent treatment, we reported brain exposure to dasatinib, favorable safety and tolerability, and modest post-treatment changes in cerebrospinal fluid (CSF) inflammatory and AD biomarkers using commercially available assays. Herein, we present more comprehensive exploratory analyses of senolytic associated changes in AD relevant proteins, metabolites, lipids, and transcripts measured across blood, CSF, and urine. These analyses included mass spectrometry for precise quantification of amyloid beta (Aß) and tau in CSF; immunoassays to assess senescence associated secretory factors in plasma, CSF, and urine; mass spectrometry analysis of urinary metabolites and lipids in blood and CSF; and transcriptomic analyses relevant to chronic stress measured in peripheral blood cells. Levels of Aß and tau species remained stable. Targeted cytokine and chemokine analyses revealed treatment-associated increases in inflammatory plasma fractalkine and MMP-7 and CSF IL-6. Urinary metabolites remained unchanged. Modest treatment-associated lipid profile changes suggestive of decreased inflammation were observed both peripherally and centrally. Blood transcriptomic analysis indicated downregulation of inflammatory genes including FOS, FOSB, IL1β, IL8, JUN, JUNB, PTGS2. These data provide a foundation for developing standardized outcome measures across senolytic studies and indicate distinct biofluid-specific signatures that will require validation in future studies. ClinicalTrials.gov: NCT04063124.
Collapse
Affiliation(s)
- Valentina R. Garbarino
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Juan Pablo Palavicini
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Justin Melendez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Nicolas Barthelemy
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Yingxin He
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Tiffany F. Kautz
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Marisa Lopez-Cruzan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Julia J. Mathews
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Afaf Saliba
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nagarjunachary Ragi
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kumar Sharma
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Suzanne Craft
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Ailing Xue
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Arash Salardini
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Miranda E. Orr
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Salisbury VA Medical Center, Salisbury, NC, 28144, USA
| |
Collapse
|
2
|
Luo C, Zha AH, Luo RY, Hu ZL, Shen WY, Dai RP. ProBDNF contributed to patrolling monocyte infiltration and renal damage in systemic lupus erythematosus. Clin Immunol 2024; 259:109880. [PMID: 38142902 DOI: 10.1016/j.clim.2023.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Monocyte aberrations have been increasingly recognized as contributors to renal damage in systemic lupus erythematosus (SLE), however, recognition of the underlying mechanisms and modulating strategies is at an early stage. Our studies have demonstrated that brain-derived neurotrophic factor precursor (proBDNF) drives the progress of SLE by perturbing antibody-secreting B cells, and proBDNF facilitates pro-inflammatory responses in monocytes. By utilizing peripheral blood from patients with SLE, GEO database and spontaneous MRL/lpr lupus mice, we demonstrated in the present study that CX3CR1+ patrolling monocytes (PMo) numbers were decreased in SLE. ProBDNF was specifically expressed in CX3CR1+ PMo and was closely correlated with disease activity and the degree of renal injury in SLE patients. In MRL/lpr mice, elevated proBDNF was found in circulating PMo and the kidney, and blockade of proBDNF restored the balance of circulating and kidney-infiltrating PMo. This blockade also led to the reversal of pro-inflammatory responses in monocytes and a noticeable improvement in renal damage in lupus mice. Overall, the results indicate that the upregulation of proBDNF in PMo plays a crucial role in their infiltration into the kidney, thereby contributing to nephritis in SLE. Targeting of proBDNF offers a potential therapeutic role in modulating monocyte-driven renal damage in SLE.
Collapse
Affiliation(s)
- Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China
| | - An-Hui Zha
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China
| | - Ru-Yi Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China
| | - Wei-Yun Shen
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China.
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China.
| |
Collapse
|
3
|
Mikosz A, Ni K, Gally F, Pratte KA, Winfree S, Lin Q, Echelman I, Wetmore B, Cao D, Justice MJ, Sandhaus RA, Maier L, Strange C, Bowler RP, Petrache I, Serban KA. Alpha-1 antitrypsin inhibits fractalkine-mediated monocyte-lung endothelial cell interactions. Am J Physiol Lung Cell Mol Physiol 2023; 325:L711-L725. [PMID: 37814796 PMCID: PMC11068395 DOI: 10.1152/ajplung.00023.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by nonresolving inflammation fueled by breach in the endothelial barrier and leukocyte recruitment into the airspaces. Among the ligand-receptor axes that control leukocyte recruitment, the full-length fractalkine ligand (CX3CL1)-receptor (CX3CR1) ensures homeostatic endothelial-leukocyte interactions. Cigarette smoke (CS) exposure and respiratory pathogens increase expression of endothelial sheddases, such as a-disintegrin-and-metalloproteinase-domain 17 (ADAM17, TACE), inhibited by the anti-protease α-1 antitrypsin (AAT). In the systemic endothelium, TACE cleaves CX3CL1 to release soluble CX3CL1 (sCX3CL1). During CS exposure, it is not known whether AAT inhibits sCX3CL1 shedding and CX3CR1+ leukocyte transendothelial migration across lung microvasculature. We investigated the mechanism of sCX3CL1 shedding, its role in endothelial-monocyte interactions, and AAT effect on these interactions during acute inflammation. We used two, CS and lipopolysaccharide (LPS) models of acute inflammation in transgenic Cx3cr1gfp/gfp mice and primary human endothelial cells and monocytes to study sCX3CL1-mediated CX3CR1+ monocyte adhesion and migration. We measured sCX3CL1 levels in plasma and bronchoalveolar lavage (BALF) of individuals with COPD. Both sCX3CL1 shedding and CX3CR1+ monocytes transendothelial migration were triggered by LPS and CS exposure in mice, and were significantly attenuated by AAT. The inhibition of monocyte-endothelial adhesion and migration by AAT was TACE-dependent. Compared with healthy controls, sCX3CL1 levels were increased in plasma and BALF of individuals with COPD, and were associated with clinical parameters of emphysema. Our results indicate that inhibition of sCX3CL1 as well as AAT augmentation may be effective approaches to decrease excessive monocyte lung recruitment during acute and chronic inflammatory states.NEW & NOTEWORTHY Our novel findings that AAT and other inhibitors of TACE, the sheddase that controls full-length fractalkine (CX3CL1) endothelial expression, may provide fine-tuning of the CX3CL1-CX3CR1 axis specifically involved in endothelial-monocyte cross talk and leukocyte recruitment to the alveolar space, suggests that AAT and inhibitors of sCX3CL1 signaling may be harnessed to reduce lung inflammation.
Collapse
Affiliation(s)
- Andrew Mikosz
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Kevin Ni
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Fabienne Gally
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, United States
| | - Katherine A Pratte
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Seth Winfree
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana, United States
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, Indiana, United States
| | - Qiong Lin
- Department of Medicine, Fuzhou First Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China
| | - Isabelle Echelman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Brianna Wetmore
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Danting Cao
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Colorado, Anschutz Medical Center, Aurora, Colorado, United States
| | - Matthew J Justice
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Robert A Sandhaus
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Lisa Maier
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Colorado, Anschutz Medical Center, Aurora, Colorado, United States
| | - Charlie Strange
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Russell P Bowler
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Colorado, Anschutz Medical Center, Aurora, Colorado, United States
| | - Irina Petrache
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Colorado, Anschutz Medical Center, Aurora, Colorado, United States
| | - Karina A Serban
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Colorado, Anschutz Medical Center, Aurora, Colorado, United States
| |
Collapse
|
4
|
Jones C, Parkitny L, Strath L, Wagener BM, Barker A, Younger J. Altered response to Toll-like receptor 4 activation in fibromyalgia: A low-dose, human experimental endotoxemia pilot study. Brain Behav Immun Health 2023; 34:100707. [PMID: 38020479 PMCID: PMC10679487 DOI: 10.1016/j.bbih.2023.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
In this pilot study, a human intravenous injection of low-dose endotoxin (lipopolysaccharide, LPS) model was used to test if fibromyalgia is associated with altered immune responses to Toll-like receptor 4 (TLR4) activation. Eight women with moderately-severe fibromyalgia and eight healthy women were administered LPS at 0.1 ng/kg in session one and 0.4 ng/kg in session two. Blood draws were collected hourly to characterize the immune response. The primary analytes of interest, leptin and fractalkine, were assayed via commercial radioimmunoassay and enzyme-linked immunosorbent assay kits, respectively. Exploratory analyses were performed on 20 secreted cytokine assays by multiplex cytokine panels, collected hourly. Exploratory analyses were also performed on testosterone, estrogen, and cortisol levels, collected hourly. Additionally, standard clinical complete blood counts with differential (CBC-D) were collected before LPS administration and at the end of the session. The fibromyalgia group demonstrated enhanced leptin and suppressed fractalkine responses to LPS administration. In the exploratory analyses, the fibromyalgia group showed a lower release of IFN-γ, CXCL10, IL-17A, and IL-12 and higher release of IL-15, TARC, MDC, and eotaxin than the healthy group. The results of this study suggest that fibromyalgia may involve an altered immune response to TLR4 activation.
Collapse
Affiliation(s)
- Chloe Jones
- Department of Psychology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Luke Parkitny
- Departments of Neurology and Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Larissa Strath
- Pain Research and Intervention Center of Excellence, The University of Florida, Gainesville, FL, USA
- College of Medicine, Department of Health Outcomes and Biomedical Informatics, The University of Florida, Gainesville, FL, USA
| | - Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew Barker
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarred Younger
- Department of Psychology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| |
Collapse
|
5
|
Fractalkine/CX3CR1-Dependent Modulation of Synaptic and Network Plasticity in Health and Disease. Neural Plast 2023; 2023:4637073. [PMID: 36644710 PMCID: PMC9833910 DOI: 10.1155/2023/4637073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 01/06/2023] Open
Abstract
CX3CR1 is a G protein-coupled receptor that is expressed exclusively by microglia within the brain parenchyma. The only known physiological CX3CR1 ligand is the chemokine fractalkine (FKN), which is constitutively expressed in neuronal cell membranes and tonically released by them. Through its key role in microglia-neuron communication, the FKN/CX3CR1 axis regulates microglial state, neuronal survival, synaptic plasticity, and a variety of synaptic functions, as well as neuronal excitability via cytokine release modulation, chemotaxis, and phagocytosis. Thus, the absence of CX3CR1 or any failure in the FKN/CX3CR1 axis has been linked to alterations in different brain functions, including changes in synaptic and network plasticity in structures such as the hippocampus, cortex, brainstem, and spinal cord. Since synaptic plasticity is a basic phenomenon in neural circuit integration and adjustment, here, we will review its modulation by the FKN/CX3CR1 axis in diverse brain circuits and its impact on brain function and adaptation in health and disease.
Collapse
|
6
|
CX3CL1 inhibits NLRP3 inflammasome-induced microglial pyroptosis and improves neuronal function in mice with experimentally-induced ischemic stroke. Life Sci 2022; 300:120564. [DOI: 10.1016/j.lfs.2022.120564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022]
|
7
|
Gupta M, Paliwal VK, Babu GN. Serum fractalkine and 3-nitrotyrosine levels correlate with disease severity in Parkinson's disease: a pilot study. Metab Brain Dis 2022; 37:209-217. [PMID: 34342811 DOI: 10.1007/s11011-021-00801-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) and Parkinsonian syndromes; Progressive supranuclear palsy (PSP), and Multiple system atrophy (MSA) are debilitating neurodegenerative disorders. Fractalkine is a chemokine involved in neuroinflammation, whereas, 3-nitrotyrosine (3-NT) is a marker of early neurodegenerative cellular-damage. We measured Fractalkine and 3-NT levels in the serum of these patients to examine the neuroinflammation hypothesis and also to decipher the propensity of these biologics to be used as early (5 years from onset) biochemical markers in neurodegenerative Parkinsonism. The diagnoses of PD, PSP and MSA were performed as per the respective clinical criteria. 21 PD, 9 PSP and 8 MSA patients along with controls participated in this study. Serum concentrations of Fractalkine and 3-NT were measured by ELISA. Fractalkine levels were increased in PD, PSP and MSA cohorts in comparison with controls with p < 0.001, p < 0.05 and p < 0.05 respectively. Levels of 3-NT also showed elevation in PD (p < 0.01) vs. controls. However, Pearson plot showed that Fractalkine levels were high in the patients with unified Parkinson's disease rating scale (UPDRS) part III motor score of 1, meaning slight disability, but gradually dropped in patients with motor score of 4, which is a measure of severe motor disability. This negative correlation (- .565, p < .0.01) also accentuates the neuroprotectant/anti-inflammatory nature of Fractalkine in PD. Continuous rise of 3-NT in PD, positively correlating (.512, p < 0.05) with worsening motor symptoms points to deleterious consequences of nitrosative stress. To our knowledge, this is the first report providing evidence that serum Fractalkine and 3-NT have early diagnostic/prognostic significance as PD biomarkers.
Collapse
Affiliation(s)
- Manjeet Gupta
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, UP, 226014, India
| | - Vimal Kumar Paliwal
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, UP, 226014, India
| | - G Nagesh Babu
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, UP, 226014, India.
| |
Collapse
|
8
|
Haidar MA, Ibeh S, Shakkour Z, Reslan MA, Nwaiwu J, Moqidem YA, Sader G, Nickles RG, Babale I, Jaffa AA, Salama M, Shaito A, Kobeissy F. Crosstalk between Microglia and Neurons in Neurotrauma: An Overview of the Underlying Mechanisms. Curr Neuropharmacol 2022; 20:2050-2065. [PMID: 34856905 PMCID: PMC9886840 DOI: 10.2174/1570159x19666211202123322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
Microglia are the resident immune cells of the brain and play a crucial role in housekeeping and maintaining homeostasis of the brain microenvironment. Upon injury or disease, microglial cells become activated, at least partly, via signals initiated by injured neurons. Activated microglia, thereby, contribute to both neuroprotection and neuroinflammation. However, sustained microglial activation initiates a chronic neuroinflammatory response which can disturb neuronal health and disrupt communications between neurons and microglia. Thus, microglia-neuron crosstalk is critical in a healthy brain as well as during states of injury or disease. As most studies focus on how neurons and microglia act in isolation during neurotrauma, there is a need to understand the interplay between these cells in brain pathophysiology. This review highlights how neurons and microglia reciprocally communicate under physiological conditions and during brain injury and disease. Furthermore, the modes of microglia-neuron communication are exposed, focusing on cell-contact dependent signaling and communication by the secretion of soluble factors like cytokines and growth factors. In addition, it has been discussed that how microglia-neuron interactions could exert either beneficial neurotrophic effects or pathologic proinflammatory responses. We further explore how aberrations in microglia-neuron crosstalk may be involved in central nervous system (CNS) anomalies, namely traumatic brain injury (TBI), neurodegeneration, and ischemic stroke. A clear understanding of how the microglia-neuron crosstalk contributes to the pathogenesis of brain pathologies may offer novel therapeutic avenues of brain trauma treatment.
Collapse
Affiliation(s)
- Muhammad Ali Haidar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Stanley Ibeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Judith Nwaiwu
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yomna Adel Moqidem
- Biotechnology Program, School of Science and Engineering, The American University in Cairo, Cairo, Egypt
| | - Georgio Sader
- Faculty of Medicine, University of Balamand, Balamand, Lebanon
| | - Rachel G. Nickles
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Ismail Babale
- Department of Biomedical Engineering, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Aneese A. Jaffa
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo, New Cairo 11835, Egypt
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biomedical Engineering, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Doroszkiewicz J, Mroczko P, Kulczyńska-Przybik A. Inflammation in the CNS - understanding various aspects of the pathogenesis of Alzheimer's disease. Curr Alzheimer Res 2021; 19:16-31. [PMID: 34856902 PMCID: PMC9127729 DOI: 10.2174/1567205018666211202143935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is a progressive and deadly neurodegenerative disorder, and one of the most common causes of dementia in the world. Current, insufficiently sensitive and specific methods of early diagnosis and monitoring of this disease prompt a search for new tools. Numerous literature data indicate that the pathogenesis of Alzheimer's disease (AD) is not limited to the neuronal compartment, but involves various immunological mechanisms. Neuroinflammation has been recognized as a very important process in AD pathology. It seems to play pleiotropic roles, both neuroprotective as well as neurodegenerative, in the development of cognitive impairment depending on the stage of the disease. Mounting evidence demonstrates that inflammatory proteins could be considered biomarkers of disease progression. Therefore, the present review summarizes the role of some inflammatory molecules and their potential utility in the detection and monitoring of dementia severity. The paper also provides a valuable insight into new mechanisms leading to the development of dementia, which might be useful in discovering possible anti-inflammatory treatment.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok. Poland
| | - Piotr Mroczko
- Department of Criminal Law and Criminology, Faculty of Law, University of Bialystok, Bialystok. Poland
| | | |
Collapse
|
10
|
Alia C, Cangi D, Massa V, Salluzzo M, Vignozzi L, Caleo M, Spalletti C. Cell-to-Cell Interactions Mediating Functional Recovery after Stroke. Cells 2021; 10:3050. [PMID: 34831273 PMCID: PMC8623942 DOI: 10.3390/cells10113050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Ischemic damage in brain tissue triggers a cascade of molecular and structural plastic changes, thus influencing a wide range of cell-to-cell interactions. Understanding and manipulating this scenario of intercellular connections is the Holy Grail for post-stroke neurorehabilitation. Here, we discuss the main findings in the literature related to post-stroke alterations in cell-to-cell interactions, which may be either detrimental or supportive for functional recovery. We consider both neural and non-neural cells, starting from astrocytes and reactive astrogliosis and moving to the roles of the oligodendrocytes in the support of vulnerable neurons and sprouting inhibition. We discuss the controversial role of microglia in neural inflammation after injury and we conclude with the description of post-stroke alterations in pyramidal and GABAergic cells interactions. For all of these sections, we review not only the spontaneous evolution in cellular interactions after ischemic injury, but also the experimental strategies which have targeted these interactions and that are inspiring novel therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Claudia Alia
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Daniele Cangi
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Verediana Massa
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Marco Salluzzo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Livia Vignozzi
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Cristina Spalletti
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| |
Collapse
|
11
|
Biomarkers Predictive of Long-Term Outcome After Ischemic Stroke: A Meta-Analysis. World Neurosurg 2021; 163:e1-e42. [PMID: 34728391 DOI: 10.1016/j.wneu.2021.10.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE The goal of this study was to systematically review the utility of serum biomarkers in the setting of ischemic stroke (IS) to predict long-term outcome. METHODS A systematic literature review was performed using the PubMed and MEDLINE databases for studies published between 1986-2018. All studies assessing long-term functional outcome (defined as 30 days or greater) following IS with respect to serum biomarkers were included. Data were extracted and pooled using a meta-analysis of odds ratios. RESULTS Of the total 2928 articles in the original literature search, 183 studies were ultimately selected. A total of 127 serum biomarkers were included. Biomarkers were grouped into several categories: inflammatory (32), peptide/enzymatic (30), oxidative/metabolic (28), hormone/steroid based (23), and hematologic/vascular (14). The most commonly studied biomarkers in each category were found to be CRP, S100β, albumin, copeptin, and D-dimer. With the exception of S100β, all were found to be statistically associated with >30-day outcome after ischemic stroke. CONCLUSIONS Serum-based biomarkers have the potential to predict functional outcome in IS patients. This meta-analysis has identified CRP, albumin, copeptin, and D-dimer to be significantly associated with long-term outcome after IS. These biomarkers have the potential to serve as a platform for prognosticating stroke outcomes after 30 days. These serum biomarkers, some of which are routinely ordered, can be combined with imaging biomarkers and used in artificial intelligence algorithms to provide refined predictive outcomes after injury. Ultimately these tools will assist physicians in providing guidance to families with regards to long-term independence of patients.
Collapse
|
12
|
Hassanshahi G, Roohi MA, Esmaeili SA, Pourghadamyari H, Nosratabadi R. Involvement of various chemokine/chemokine receptor axes in trafficking and oriented locomotion of mesenchymal stem cells in multiple sclerosis patients. Cytokine 2021; 148:155706. [PMID: 34583254 DOI: 10.1016/j.cyto.2021.155706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a specific type of chronic immune-mediated disease in which the immune responses are almost run against the central nervous system (CNS). Despite intensive research, a known treatment for MS disease yet to be introduced. Thus, the development of novel and safe medications needs to be considered for the disease management. Application of mesenchymal stem cells (MSCs) as an emerging approach was recruited forthe treatment of MS. MSCs have several sources and they can be derived from the umbilical cord, adipose tissue, and bone marrow. Chemokines are low molecular weight proteins that their functional activities are achieved by binding to the cell surface G protein-coupled receptors (GPCRs). Chemokine and chemokine receptors are of the most important and effective molecules in MSC trafficking within the different tissues in hemostatic and non-hemostatic circumstances. Chemokine/chemokine receptor axes play a pivotal role in the recruitment and oriented trafficking of immune cells both towards and within the CNS and it appears that chemokine/chemokine receptor signaling may be the most important leading mechanisms in the pathogenesis of MS. In this article, we hypothesized that the chemokine/chemokine receptor axes network have crucial and efficacious impacts on behavior of the MSCs, nonetheless, the exact responsibility of these axes on the targeted tropism of MSCs to the CNS of MS patients yet remained to be fully elucidated. Therefore, we reviewed the ability of MSCs to migrate and home into the CNS of MS patients via expression of various chemokine receptors in response to chemokines expressed by cells of CNS tissue, to provide a great source of knowledge.
Collapse
Affiliation(s)
- Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Amin Roohi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
13
|
Cytokine-Laden Extracellular Vesicles Predict Patient Prognosis after Cerebrovascular Accident. Int J Mol Sci 2021; 22:ijms22157847. [PMID: 34360613 PMCID: PMC8345931 DOI: 10.3390/ijms22157847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Background: A major contributor to disability after hemorrhagic stroke is secondary brain damage induced by the inflammatory response. Following stroke, global increases in numerous cytokines—many associated with worse outcomes—occur within the brain, cerebrospinal fluid, and peripheral blood. Extracellular vesicles (EVs) may traffic inflammatory cytokines from damaged tissue within the brain, as well as peripheral sources, across the blood–brain barrier, and they may be a critical component of post-stroke neuroinflammatory signaling. Methods: We performed a comprehensive analysis of cytokine concentrations bound to plasma EV surfaces and/or sequestered within the vesicles themselves. These concentrations were correlated to patient acute neurological condition by the Glasgow Coma Scale (GCS) and to chronic, long-term outcome via the Glasgow Outcome Scale-Extended (GOS-E). Results: Pro-inflammatory cytokines detected from plasma EVs were correlated to worse outcomes in hemorrhagic stroke patients. Anti-inflammatory cytokines detected within EVs were still correlated to poor outcomes despite their putative neuroprotective properties. Inflammatory cytokines macrophage-derived chemokine (MDC/CCL2), colony stimulating factor 1 (CSF1), interleukin 7 (IL7), and monokine induced by gamma interferon (MIG/CXCL9) were significantly correlated to both negative GCS and GOS-E when bound to plasma EV membranes. Conclusions: These findings correlate plasma-derived EV cytokine content with detrimental outcomes after stroke, highlighting the potential for EVs to provide cytokines with a means of long-range delivery of inflammatory signals that perpetuate neuroinflammation after stroke, thus hindering recovery.
Collapse
|
14
|
Kulczyńska-Przybik A, Słowik A, Mroczko P, Borawski B, Groblewska M, Borawska R, Mroczko B. Cerebrospinal Fluid and Blood CX3CL1 as a Potential Biomarker in Early Diagnosis and Prognosis of Dementia. Curr Alzheimer Res 2020; 17:709-721. [PMID: 33167838 DOI: 10.2174/1567205017666201109095657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/11/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND A growing body of evidence highlights the crucial role of neuroinflammation and chemokine involvement in cognitive impairment pathophysiology. Fractalkine (CX3CL1) appears to be a relevant causative factor in the development of dementia, particularly at the early stages of the disease. However, limited data are available on the levels of CX3CL1 in the cerebrospinal fluid (CSF) and blood. Additionally, to date, its utility as a biomarker for MCI or AD has not been studied. OBJECTIVE The aim of the present study was to evaluate the clinical utility of CX3CL1 in the early diagnosis of cognitive impairment. We also compared the diagnostic usefulness of CX3CL1 with other biomarkers associated with neuroinflammation. METHODS A total of 60 patients with cognitive impairment, including 42 patients with AD and 18 subjects with MCI, as well as 20 cognitively healthy controls were enrolled in the study. CSF and blood concentrations of CX3CL1, CCL-2, and YKL-40 were measured by ELISA. RESULTS Significantly higher CSF and blood concentrations of CX3CL1 were observed in MCI and AD patients compared to older individuals without cognitive impairment. The increase in the levels of CX3CL1 and YKL-40 in non-demented subjects was associated with MCI. The area under the ROC curve for CX3CL1 in MCI subjects was larger in comparison to classical AD markers. CONCLUSION Presented results indicate a crucial role of CX3CL1 in the pathology of cognitive impairment and the potential usefulness of this protein in the early diagnosis of MCI and AD.
Collapse
Affiliation(s)
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, Krakow, Poland
| | - Piotr Mroczko
- Department of Criminal Law and Criminology, Faculty of Law, University of Bialystok, Bialystok, Poland
| | - Bartłomiej Borawski
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona, Bialystok, Poland
| | - Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Bialystok, Bialystok, Poland
| | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona, Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona, Bialystok, Poland.,Department of Biochemical Diagnostics, University Hospital in Bialystok, Bialystok, Poland.,Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
15
|
Distinct systemic cytokine networks in symptomatic and asymptomatic carotid stenosis. Sci Rep 2020; 10:21963. [PMID: 33319833 PMCID: PMC7738491 DOI: 10.1038/s41598-020-78941-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammatory processes are crucial in atherosclerosis and atherothrombosis. This study aimed to identify a cytokine-pattern that is associated with plaque-vulnerability or symptomatic state in comprehensively investigated patients with symptomatic (sCS) and asymptomatic carotid stenosis (aCS). Twenty-two patients with sCS and twenty-four patients with aCS undergoing carotid endarterectomy (CEA) were considered. A cytokine-panel was measured in plasma-specimens prior to surgery and at a 90 day follow-up. Doppler-ultrasound detecting microembolic signals (MES) in the ipsilateral middle cerebral artery was performed. Carotid plaques were analysed regarding histopathological criteria of plaque-vulnerability and presence of chemokine receptor CXCR4. Correction for multiple comparisons and logistic regression analysis adjusting for vascular risk factors, grade of stenosis, antithrombotic and statin pretreatment were applied. In sCS-patients higher plasma-levels of Fractalkine (CX3CL1), IFN-α2, IL-1β, IL-2, IL-3, IL-7 were found compared to aCS-patients. CXCR4-expression on inflammatory cells was more evident in sCS- compared to aCS-plaques and was associated with vulnerability-criteria. In contrast, plasma-cytokine-levels were not related to CXCR4-expression or other vulnerability-criteria or MES. However, in both groups distinct inter-cytokine correlation patterns, which persisted at follow-up and were more pronounced in the sCS-group could be detected. In conclusion, we identified a distinct cytokine/chemokine-network in sCS-patients with elevated and closely correlated mediators of diverse functions.
Collapse
|
16
|
Yang G, Liu Z, Wang L, Chen X, Wang X, Dong Q, Zhang D, Yang Z, Zhou Q, Sun J, Xue L, Wang X, Gao M, Li L, Yi R, Ilgiz G, Ai J, Zhao S. MicroRNA-195 protection against focal cerebral ischemia by targeting CX3CR1. J Neurosurg 2019; 131:1445-1454. [PMID: 30497184 DOI: 10.3171/2018.5.jns173061] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/29/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE It has been reported that microRNA-195 (miR-195) protects against chronic brain injury induced by chronic brain hypoperfusion. However, neither the expression profile of miR-195 nor its potential role during acute ischemic stroke has been investigated. In this study, the authors' aim was to verify the mechanism of miR-195 in acute ischemic stroke. METHODS The plasma levels of miR-195 expression were assessed using real-time PCR in 96 patients with acute ischemic stroke, and the correlation with the National Institutes of Health Stroke Scale score was evaluated. In addition, cerebral infarct volume, neurological score, and levels of miR-195 and CX3CL1/CX3CR1 mRNA and protein expression were assessed in mice subjected to middle cerebral artery occlusion (MCAO) with or without intra-cerebroventricular infusion of lentiviral vector. The inflammatory cytokines tumor necrosis factor-α (TNFα), interleukin (IL)-1β, and IL-6 of mouse brains after MCAO and BV2 cells treated with oxygen-glucose deprivation were measured using enzyme-linked immunosorbent assay, and apoptotic proteins were examined by Western blotting. Direct targeting of CX3CL1/CX3CR1 by miR-195 was determined by immunoblotting and dual luciferase assay. RESULTS In ischemic stroke patients, miR-195 was significantly downregulated and expression levels of miR-195 in these patients negatively correlated with the National Institutes of Health Stroke Scale score. In mice after MCAO, miR-195 overexpression decreased infarct volume, alleviated neurological deficits, and most importantly, suppressed an inflammatory response. Meanwhile, miR-195 suppressed the expression of the inflammatory cytokines TNFα, IL-1β, and IL-6 in vitro and in vivo. The authors further discovered that both CX3CL1 and CX3CR1 are direct targets of miR-195, but miR-195 exerts neuroprotective roles mainly through inhibiting CX3CR1-mediated neuroinflammation and subsequent neuronal cell apoptosis. CONCLUSIONS Taken together, these findings suggest that miR-195 promotes neuronal cell survival against chronic cerebral ischemic damage by inhibiting CX3CR1-mediated neuroinflammation. This indicates that miR-195 may represent a novel target that regulates neuroinflammation and brain injury, thus offering a new treatment strategy for cerebral ischemic disorders.
Collapse
Affiliation(s)
- Guang Yang
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Zhendong Liu
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Lu Wang
- 3Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin
| | - Xin Chen
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Xiaoxiong Wang
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Qi Dong
- 4Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin
| | - Daming Zhang
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Zhao Yang
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Qi Zhou
- 5Research Administration Office, The First Affiliated Hospital of Harbin Medical University, Harbin
| | - Jingxian Sun
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Linmeng Xue
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Xinzhuang Wang
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Ming Gao
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Lili Li
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
| | - Ran Yi
- 6Department of Endocrinology and Metabolism, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gareev Ilgiz
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 7Department of Medical Rehabilitation with courses of Neurosurgery and Acupuncture IAPE, Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia; and
| | - Jing Ai
- 8Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Shiguang Zhao
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| |
Collapse
|
17
|
Aspirin in stroke patients modifies the immunomodulatory interactions of marrow stromal cells and monocytes. Brain Res 2019; 1720:146298. [PMID: 31220426 DOI: 10.1016/j.brainres.2019.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Most stroke patients are prescribed aspirin (ASA) to adjust blood coagulability. Marrow stromal cells (MSCs) are being tested in clinical trials for stroke patients who likely are prescribed aspirin. One of the principal mechanisms of action of MSCs and ASA is modulation of the inflammatory response, including those mediated by monocytes (Mo). Thus, here we tested if aspirin can modify anti-inflammatory properties of MSCs or Mo alone, and in combination. METHODS Mo were isolated at 24 h of stroke onset from ischemic stroke patients with NIHSS ranging from 11 to 20 or from healthy controls. Human bone marrow-derived MSCs from healthy subjects were used at passage 3. Mo, MSCs, and MSCs-Mo co-cultures were exposed to ASA at clinically relevant doses. The secretome profile of inflammatory mediators was measured using Magpix multiplex cytokine array. Viability was measured using MTT assay. Linear mixed effect model was used for statistical analysis. RESULTS Overall Mo from control subjects exposed to ASA showed increased secretion of IL-1RA, IL-8, MCP-1, and TNF-α and Mo from stroke patients showed greater release of IL-1RA and MCP-1. In MSCs-Mo co-cultures, ASA added to co-cultures of control Mo reduced fractalkine secretion while it increased the fractalkine secretion when added to Mo from stroke patients. In addition, in co-cultures independent of Mo origin, ASA reduced IL-6, IL-8, MCP-1, and TNF-α. CONCLUSIONS Aspirin in acute stroke patients may modulate the secretome profile of Mo and MSCs, thus potentially modulating immune and inflammatory responses associated with stroke. Our results suggest that stroke trials involving the use of intravenous MSCs should consider the effect of aspirin as a confounding factor.
Collapse
|
18
|
Li G, Yu H, Liu N, Zhang P, Tang Y, Hu Y, Zhang Y, Pan C, Deng H, Wang J, Li Q, Tang Z. Overexpression of CX3CR1 in Adipose-Derived Stem Cells Promotes Cell Migration and Functional Recovery After Experimental Intracerebral Hemorrhage. Front Neurosci 2019; 13:462. [PMID: 31133793 PMCID: PMC6517499 DOI: 10.3389/fnins.2019.00462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy has emerged as a new promising therapeutic strategy for intracerebral hemorrhage (ICH). However, the efficiency of stem cell therapy is partially limited by low retention and engraftment of the delivered cells. Therefore, it’s necessary to improve the migration ability of stem cells to the injured area in order to save the costs and duration of cell preparation. This study aimed to investigate whether overexpression of CX3CR1, the specific receptor of chemokine fractalkine (FKN), in adipose-derived stem cells (ADSCs) can stimulate the cell migration to the injured area in the brain, improve functional recovery and protect against cell death following experimental ICH. ADSCs were isolated from subcutaneous adipose tissues of rats. ICH was induced by means of an injection of collagenase type VII. ELISA showed that the expression levels of fractalkine/FKN were increased at early time points, with a peak at day 3 after ICH. And it was found that different passages of ADSCs could express the chemokine receptor CX3CR1. Besides, the chemotactic movements of ADSCs toward fractalkine have been verified by transwell migration assay. ADSCs overexpressing CX3CR1 were established through lentivirus transfection. We found that after overexpression of CX3CR1 receptor, the migration ability of ADSCs was increased both in vitro and in vivo. In addition, reduced cell death and improved sensory and motor functions were seen in the mice ICH model. Thus, ADSCs overexpression CX3CR1 might be taken as a promising therapeutic strategy for the treatment of ICH.
Collapse
Affiliation(s)
- Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haihan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Hu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Luo P, Chu SF, Zhang Z, Xia CY, Chen NH. Fractalkine/CX3CR1 is involved in the cross-talk between neuron and glia in neurological diseases. Brain Res Bull 2018; 146:12-21. [PMID: 30496784 DOI: 10.1016/j.brainresbull.2018.11.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/17/2018] [Accepted: 11/23/2018] [Indexed: 01/27/2023]
Abstract
Fractalkine (CX3C chemokine ligand 1, CX3CL1) is an essential chemokine, for regulating adhesion and chemotaxis through binding to CX3CR1, which plays a critical role in the crosstalk between glial cells and neurons by direct or indirect ways in the central nervous system (CNS). Fractalkine/CX3CR1 axis regulates microglial activation and function, neuronal survival and synaptic function by controlling the release of inflammatory cytokines and synaptic plasticity in the course of the neurological disease. The multiple functions of fractalkine/CX3CR1 make it exert neuroprotective or neurotoxic effects, which determines the pathogenesis. However, the role of fractalkine/CX3CR1 in the CNS remains controversial. Whether it can be used as a therapeutic target for neurological diseases needs to be further investigated. In this review, we summarize the studies highlighting fractalkine/CX3CR1-mediated effects and discuss the potential neurotoxic and neuroprotective actions of fractalkine/CX3CR1 in brain injury for providing useful insights into the potential applications of fractalkine/CX3CR1 in neurological diseases.
Collapse
Affiliation(s)
- Piao Luo
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Nai-Hong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
20
|
High Serum Fractalkine/CX3CL1 in Patients with Chronic Obstructive Pulmonary Disease: Relationship with Emphysema Severity and Frequent Exacerbation. Lung 2018; 197:29-35. [PMID: 30382361 DOI: 10.1007/s00408-018-0176-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/26/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the relationship between serum fractalkine (CX3CL1/FKN) level and the multi-slice spiral computed tomography (MSCT) emphysema index in Chinese patients with chronic obstructive pulmonary disease (COPD). METHODS We detected chemokine CX3CL1 in serum from 95 Chinese patients with COPD by using an enzyme-linked immunosorbent assay. According to the MSCT emphysema index, the selected cases were divided into an emphysema-dominant group (n = 25) and a non-emphysema-dominant group (n = 70). RESULTS There were significant differences in body mass index and lung function between the two groups. The serum level of CX3CL1 in the emphysema-dominant group was significantly higher than that in the non-emphysema-dominant group. Through multivariate logistic regression analysis, it was found that high serum CX3CL1 levels were independently associated with emphysema, with a relative risk of 2.617 (95% CI 1.018-6.121; P = 0.029). The percentage of frequent acute exacerbations during the first year of follow-up was significantly higher in the high-level serum CX3CL1 group (P = 0.039). After 3 years of follow-up, there was no significant difference in the CT emphysema index between the high and low serum CX3CL1 groups (P = 0.503). CONCLUSION Our results suggest that the serum level of CX3CL1 is related to the MSCT emphysema index. Chemokine CX3CL1 might be a useful predictor for identifying frequent exacerbation and emphysema severity in patients with COPD.
Collapse
|
21
|
Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional Microglia-Neuron Communication in Health and Disease. Front Cell Neurosci 2018; 12:323. [PMID: 30319362 PMCID: PMC6170615 DOI: 10.3389/fncel.2018.00323] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia are ramified cells that exhibit highly motile processes, which continuously survey the brain parenchyma and react to any insult to the CNS homeostasis. Although microglia have long been recognized as a crucial player in generating and maintaining inflammatory responses in the CNS, now it has become clear, that their function are much more diverse, particularly in the healthy brain. The innate immune response and phagocytosis represent only a little segment of microglia functional repertoire that also includes maintenance of biochemical homeostasis, neuronal circuit maturation during development and experience-dependent remodeling of neuronal circuits in the adult brain. Being equipped by numerous receptors and cell surface molecules microglia can perform bidirectional interactions with other cell types in the CNS. There is accumulating evidence showing that neurons inform microglia about their status and thus are capable of controlling microglial activation and motility while microglia also modulate neuronal activities. This review addresses the topic: how microglia communicate with other cell types in the brain, including fractalkine signaling, secreted soluble factors and extracellular vesicles. We summarize the current state of knowledge of physiological role and function of microglia during brain development and in the mature brain and further highlight microglial contribution to brain pathologies such as Alzheimer’s and Parkinson’s disease, brain ischemia, traumatic brain injury, brain tumor as well as neuropsychiatric diseases (depression, bipolar disorder, and schizophrenia).
Collapse
Affiliation(s)
- Zsuzsanna Szepesi
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oscar Manouchehrian
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Bachiller
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Matarredona ER, Talaverón R, Pastor AM. Interactions Between Neural Progenitor Cells and Microglia in the Subventricular Zone: Physiological Implications in the Neurogenic Niche and After Implantation in the Injured Brain. Front Cell Neurosci 2018; 12:268. [PMID: 30177874 PMCID: PMC6109750 DOI: 10.3389/fncel.2018.00268] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
The adult subventricular zone (SVZ) of the mammalian brain contains neural progenitor cells (NPCs) that continuously produce neuroblasts throughout life. These neuroblasts migrate towards the olfactory bulb where they differentiate into local interneurons. The neurogenic niche of the SVZ includes, in addition to NPCs and neuroblasts, astrocytes, ependymal cells, blood vessels and the molecules released by these cell types. In the last few years, microglial cells have also been included as a key component of the SVZ neurogenic niche. Microglia in the SVZ display unique phenotypic features, and are more densely populated and activated than in non-neurogenic regions. In this article we will review literature reporting microglia-NPC interactions in the SVZ and the role of this bilateral communication in microglial function and in NPC biology. This interaction can take place through the release of soluble factors, extracellular vesicles or gap junctional communication. In addition, as NPCs are used for cell replacement therapies, they can establish therapeutically relevant crosstalks with host microglia which will also be summarized throughout the article.
Collapse
Affiliation(s)
| | - Rocío Talaverón
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
23
|
Chen C, Chu SF, Liu DD, Zhang Z, Kong LL, Zhou X, Chen NH. Chemokines play complex roles in cerebral ischemia. Neurochem Int 2018. [DOI: 10.1016/j.neuint.2017.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Ren H, Liu X, Wang L, Gao Y. Lymphocyte-to-Monocyte Ratio: A Novel Predictor of the Prognosis of Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2017; 26:2595-2602. [PMID: 28847530 DOI: 10.1016/j.jstrokecerebrovasdis.2017.06.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Lymphocyte-to-monocyte ratio (LMR) is associated with diverse malignancies and cardiovascular diseases. However, it has not yet been identified whether LMR is correlated with stroke severity and prognosis. We aimed to explore the relationship between LMR and stroke severity, prognosis, and the predictive value of LMR on a 3-month functional outcome in patients with acute ischemic stroke (AIS). MATERIALS AND METHODS A total of 512 patients were enrolled in this study. Baseline demographic and clinical data of all patients were collected. Based on the LMR value on admission (>4.83, 2.97-4.83, <2.97), patients were divided into 3 groups. Moderate to severe stroke was defined as a National Institutes of Health Stroke Scale score of 6 or higher. Poor outcome was defined as a modified Rankin Scale score of 3 or higher. We used the Spearman rank correlation to evaluate the relationship between LMR and stroke severity. Binary logistic regression analysis was used to assess risk factors of stroke severity and prognosis. The receiver operating characteristic (ROC) curve was used to estimate the predictive value of LMR on prognosis. RESULTS LMR was inversely correlated with stroke severity (r = -.014, P = .019). Moreover, LMR was an independent protective factor of stroke severity (odds ratio [OR] .891, 95% confidence interval [CI] .815-.973, P = .010) and prognosis (OR .507, 95% CI .437-.590, P < .001). ROC indicated that an LMR lower than 2.99 predicted a poor outcome, with a sensitivity of 69.3% and a specificity of 86.6%. CONCLUSION A lower LMR on admission was independently associated with severe stroke and 3-month poor outcome in patients with AIS.
Collapse
Affiliation(s)
- Hao Ren
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xiao Liu
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Lin Wang
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yanjun Gao
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde, China.
| |
Collapse
|
25
|
Enam SF, Krieger JR, Saxena T, Watts BE, Olingy CE, Botchwey EA, Bellamkonda RV. Enrichment of endogenous fractalkine and anti-inflammatory cells via aptamer-functionalized hydrogels. Biomaterials 2017; 142:52-61. [PMID: 28727998 DOI: 10.1016/j.biomaterials.2017.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/27/2017] [Accepted: 07/09/2017] [Indexed: 12/27/2022]
Abstract
Early recruitment of non-classical monocytes and their macrophage derivatives is associated with augmented tissue repair and improved integration of biomaterial constructs. A promising therapeutic approach to recruit these subpopulations is by elevating local concentrations of chemoattractants such as fractalkine (FKN, CX3CL1). However, delivering recombinant or purified proteins is not ideal due to their short half-lives, suboptimal efficacy, immunogenic potential, batch variabilities, and cost. Here we report an approach to enrich endogenous FKN, obviating the need for delivery of exogenous proteins. In this study, modified FKN-binding-aptamers are integrated with poly(ethylene glycol) diacrylate to form aptamer-functionalized hydrogels ("aptagels") that localize, dramatically enrich and passively release FKN in vitro for at least one week. Implantation in a mouse model of excisional skin injury demonstrates that aptagels enrich endogenous FKN and stimulate significant local increases in Ly6CloCX3CR1hi non-classical monocytes and CD206+ M2-like macrophages. The results demonstrate that orchestrators of inflammation can be manipulated without delivery of foreign proteins or cells and FKN-aptamer functionalized biomaterials may be a promising approach to recruit anti-inflammatory subpopulations to sites of injury. Aptagels are readily synthesized, highly customizable and could combine different aptamers to treat complex diseases in which regulation or enrichment of multiple proteins may be therapeutic.
Collapse
Affiliation(s)
- Syed Faaiz Enam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jack R Krieger
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brian E Watts
- Duke Human Vaccine Institute, Duke University, Durham, NC 27708, USA
| | - Claire E Olingy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Edward A Botchwey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
26
|
Bonaventura A, Liberale L, Vecchié A, Casula M, Carbone F, Dallegri F, Montecucco F. Update on Inflammatory Biomarkers and Treatments in Ischemic Stroke. Int J Mol Sci 2016; 17:1967. [PMID: 27898011 PMCID: PMC5187767 DOI: 10.3390/ijms17121967] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022] Open
Abstract
After an acute ischemic stroke (AIS), inflammatory processes are able to concomitantly induce both beneficial and detrimental effects. In this narrative review, we updated evidence on the inflammatory pathways and mediators that are investigated as promising therapeutic targets. We searched for papers on PubMed and MEDLINE up to August 2016. The terms searched alone or in combination were: ischemic stroke, inflammation, oxidative stress, ischemia reperfusion, innate immunity, adaptive immunity, autoimmunity. Inflammation in AIS is characterized by a storm of cytokines, chemokines, and Damage-Associated Molecular Patterns (DAMPs) released by several cells contributing to exacerbate the tissue injury both in the acute and reparative phases. Interestingly, many biomarkers have been studied, but none of these reflected the complexity of systemic immune response. Reperfusion therapies showed a good efficacy in the recovery after an AIS. New therapies appear promising both in pre-clinical and clinical studies, but still need more detailed studies to be translated in the ordinary clinical practice. In spite of clinical progresses, no beneficial long-term interventions targeting inflammation are currently available. Our knowledge about cells, biomarkers, and inflammatory markers is growing and is hoped to better evaluate the impact of new treatments, such as monoclonal antibodies and cell-based therapies.
Collapse
Affiliation(s)
- Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Alessandra Vecchié
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Matteo Casula
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova, 10 Largo Benzi, 16132 Genoa, Italy.
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova, 10 Largo Benzi, 16132 Genoa, Italy.
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy.
| |
Collapse
|
27
|
McMillin M, Grant S, Frampton G, Andry S, Brown A, DeMorrow S. Fractalkine suppression during hepatic encephalopathy promotes neuroinflammation in mice. J Neuroinflammation 2016; 13:198. [PMID: 27561705 PMCID: PMC5000400 DOI: 10.1186/s12974-016-0674-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 08/17/2016] [Indexed: 12/31/2022] Open
Abstract
Background Acute liver failure is associated with numerous systemic consequences including neurological dysfunction, termed hepatic encephalopathy, which contributes to mortality and is a challenge to manage in the clinic. During hepatic encephalopathy, microglia activation and neuroinflammation occur due to dysregulated cell signaling and an increase of toxic metabolites in the brain. Fractalkine is a chemokine that is expressed primarily in neurons and through signaling with its receptor CX3CR1 on microglia, leads to microglia remaining in a quiescent state. Fractalkine is often suppressed during neuropathies that are characterized by neuroinflammation. However, the expression and subsequent role of fractalkine on microglia activation and the pathogenesis of hepatic encephalopathy due to acute liver failure is unknown. Methods Hepatic encephalopathy was induced in mice via injection of azoxymethane (AOM) or saline for controls. Subsets of these mice were implanted with osmotic minipumps that infused soluble fractalkine or saline into the lateral ventricle of the brain. Neurological decline and the latency to coma were recorded in these mice, and brain, serum, and liver samples were collected. Neurons or microglia were isolated from whole brain samples using immunoprecipitation. Liver damage was assessed using hematoxylin and eosin staining and by measuring serum liver enzyme concentrations. Fractalkine and CX3CR1 expression were assessed by real-time PCR, and proinflammatory cytokine expression was assessed using ELISA assays. Results Following AOM administration, fractalkine expression is suppressed in the cortex and in isolated neurons compared to vehicle-treated mice. CX3CR1 is suppressed in isolated microglia from AOM-treated mice. Soluble fractalkine infusion into the brain significantly reduced neurological decline in AOM-treated mice compared to saline-infused AOM-treated mice. Infusion of soluble fractalkine into AOM-treated mice reduced liver damage, lessened microglia activation, and suppressed expression of chemokine ligand 2, interleukin-6, and tumor necrosis factor alpha compared to saline-infused mice. Conclusions These findings suggest that fractalkine-mediated signaling is suppressed in the brain following the development of hepatic encephalopathy. Supplementation of AOM-treated mice with soluble fractalkine led to improved outcomes, which identifies this pathway as a possible therapeutic target for the management of hepatic encephalopathy following acute liver injury.
Collapse
Affiliation(s)
- Matthew McMillin
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA.,Central Texas Veterans Healthcare System, 1901 S. 1st Street, Building 205, Temple, TX, 76504, USA
| | - Stephanie Grant
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA.,Central Texas Veterans Healthcare System, 1901 S. 1st Street, Building 205, Temple, TX, 76504, USA
| | - Gabriel Frampton
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA.,Central Texas Veterans Healthcare System, 1901 S. 1st Street, Building 205, Temple, TX, 76504, USA
| | - Sarah Andry
- Department of Internal Medicine, Baylor Scott & White Health, 2401 S. 31st Street, Temple, TX, 76508, USA
| | - Adam Brown
- Department of Internal Medicine, Baylor Scott & White Health, 2401 S. 31st Street, Temple, TX, 76508, USA
| | - Sharon DeMorrow
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA. .,Central Texas Veterans Healthcare System, 1901 S. 1st Street, Building 205, Temple, TX, 76504, USA.
| |
Collapse
|
28
|
Liu W, Jiang L, Bian C, Liang Y, Xing R, Yishakea M, Dong J. Role of CX3CL1 in Diseases. Arch Immunol Ther Exp (Warsz) 2016; 64:371-83. [PMID: 27098399 DOI: 10.1007/s00005-016-0395-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/21/2016] [Indexed: 01/04/2023]
Abstract
Chemokines are a family of small 8-10 kDa inducible cytokines. Initially characterized as chemotactic factors, they are now considered to affect not just cellular recruitment. CX3CL1 is a unique chemokine that can exist in a soluble form, as a chemotactic cytokine, or in a membrane-attached form that acts as a binding molecule. Recently, the effects of CX3CL1 on diseases, such as inflammation and cancer, have been supported and confirmed by numerous publications. However, due to its dual effects, CX3CL1 exerts numerous effects on pathophysiological conditions that have both negative and positive consequences on pathogenesis and outcome. This review article summarizes the important scientific and clinical data that now point to a critical role for CX3CL1 in diseases.
Collapse
Affiliation(s)
- WangMi Liu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chong Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yun Liang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Rong Xing
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Mumingjiang Yishakea
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
29
|
Xing C, Lo EH. Help-me signaling: Non-cell autonomous mechanisms of neuroprotection and neurorecovery. Prog Neurobiol 2016; 152:181-199. [PMID: 27079786 DOI: 10.1016/j.pneurobio.2016.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Self-preservation is required for life. At the cellular level, this fundamental principle is expressed in the form of molecular mechanisms for preconditioning and tolerance. When the cell is threatened, internal cascades of survival signaling become triggered to protect against cell death and defend against future insults. Recently, however, emerging findings suggest that this principle of self-preservation may involve not only intracellular signals; the release of extracellular signals may provide a way to recruit adjacent cells into an amplified protective program. In the central nervous system where multiple cell types co-exist, this mechanism would allow threatened neurons to "ask for help" from glial and vascular compartments. In this review, we describe this new concept of help-me signaling, wherein damaged or diseased neurons release signals that may shift glial and vascular cells into potentially beneficial phenotypes, and help remodel the neurovascular unit. Understanding and dissecting these non-cell autonomous mechanisms of self-preservation in the CNS may lead to novel opportunities for neuroprotection and neurorecovery.
Collapse
Affiliation(s)
- Changhong Xing
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Eng H Lo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
30
|
Shen YC, Lu CK, Liou KT, Hou YC, Lin YL, Wang YH, Sun HJ, Liao KH, Wang HW. Common and unique mechanisms of Chinese herbal remedies on ischemic stroke mice revealed by transcriptome analyses. JOURNAL OF ETHNOPHARMACOLOGY 2015; 173:370-382. [PMID: 26239152 DOI: 10.1016/j.jep.2015.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/26/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Four traditional Chinese herbal remedies (CHR) including Buyang Huanwu decoction (BHD), Xuefu Zhuyu decoction (XZD), Tianma Gouteng decoction (TGD) and Shengyu decoction (SYD) are popular used in treating brain-related dysfunction clinically with different syndrome/pattern based on traditional Chinese medicine (TCM) principles, yet their neuroprotective mechanisms are still unclear. MATERIALS AND METHODS Mice were subjected to an acute ischemic stroke to examine the efficacy and molecular mechanisms of action underlying these CHR. RESULTS CHR treatment significantly enhanced the survival rate of stroke mice, with BHD being the most effective CHR. All CHR were superior to recombinant tissue-type plasminogen activator (rt-PA) treatment in successfully ameliorating brain function, infarction, and neurological deficits in stroke mice that also paralleled to improvements in blood-brain barrier damage, inflammation, apoptosis, and neurogenesis. Transcriptome analyses reveals that a total of 774 ischemia-induced probe sets were significantly modulated by four CHR, including 52 commonly upregulated genes and 54 commonly downregulated ones. Among them, activation of neurogenesis-associated signaling pathways and down-regulating inflammation and apoptosis pathways are key common mechanisms in ischemic stroke protection by all CHR. Besides, levels of plasma CX3CL1 and S100a9 in patients could be used as biomarkers for therapeutic evaluation before functional recovery could be observed. CONCLUSION Our results suggest that using CHR, a combinatory cocktail therapy, is a better way than rt-PA for treating cerebral ischemic-associated diseases through modulating a common as well as a specific group of genes/pathways that may partially explain the syndrome differentiation and treatment principle in TCM.
Collapse
Affiliation(s)
- Yuh-Chiang Shen
- National Research Institute of Chinese Medicine, Taipei, Taiwan; Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan; National Taipei University of Nursing and Health Science, , Taipei,Taiwan.
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Kuo-Tong Liou
- Department of Chinese Martial Arts and Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei, Taiwan
| | - Yu-Chang Hou
- Department of Traditional Medicine, Tao-yuan General Hospital, Department of Health, Tao-yuan, Taiwan; Department of Bioscience Technology, Chuan‑yuan Christian University, Taoyuan, Taiwan
| | - Yun-Lan Lin
- National Research Institute of Chinese Medicine, Taipei, Taiwan; School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Yea-Hwey Wang
- Division of Neurovascular Disease, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; National Taipei University of Nursing and Health Science, , Taipei,Taiwan
| | - Hsing-Jen Sun
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ko-Hsun Liao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Hsei-Wei Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan; Cancer Research Center and Genome Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan; Departments of Education and Research, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Le Thuc O, Blondeau N, Nahon JL, Rovère C. The complex contribution of chemokines to neuroinflammation: switching from beneficial to detrimental effects. Ann N Y Acad Sci 2015; 1351:127-40. [PMID: 26251227 DOI: 10.1111/nyas.12855] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation is an innate mechanism that defends organisms against harmful stimuli. Inflammation leads to the production and secretion of proinflammatory mediators that activate and recruit immune cells to damaged tissues, including the brain, to resolve the cause of inflammation. In the central nervous system, inflammation is referred to as neuroinflammation, which occurs in various pathological conditions of the brain. The primary role of neuroinflammation is to protect the brain. However, prolonged and/or inappropriate inflammation can be harmful for the brain, from individual cells to the whole tissue. This review focuses on a particular type of inflammatory mediator, chemokines, and describes their complex effects both under physiological and pathophysiological conditions of the brain. The clinical relevance of the multiple characters of chemokines is highlighted with respect to acute and chronic inflammation of the brain, including their actions in stroke and Alzheimer's disease, respectively.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Université de Nice Sophia Antipolis, Nice, France, and Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Nicolas Blondeau
- Université de Nice Sophia Antipolis, Nice, France, and Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Jean-Louis Nahon
- Université de Nice Sophia Antipolis, Nice, France, and Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Carole Rovère
- Université de Nice Sophia Antipolis, Nice, France, and Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
32
|
Lauro C, Catalano M, Trettel F, Limatola C. Fractalkine in the nervous system: neuroprotective or neurotoxic molecule? Ann N Y Acad Sci 2015; 1351:141-8. [DOI: 10.1111/nyas.12805] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Clotilde Lauro
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti; Sapienza University of Rome; Rome Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti; Sapienza University of Rome; Rome Italy
- IRCCS NeuroMed; Pozzilli Italy
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti; Sapienza University of Rome; Rome Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti; Sapienza University of Rome; Rome Italy
- IRCCS NeuroMed; Pozzilli Italy
| |
Collapse
|
33
|
Flierl U, Bauersachs J, Schäfer A. Modulation of platelet and monocyte function by the chemokine fractalkine (CX3 CL1) in cardiovascular disease. Eur J Clin Invest 2015; 45:624-33. [PMID: 25832902 DOI: 10.1111/eci.12443] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND The chemokine fractalkine, CX3CL1, bears unique features within the chemokine family: it exists in a membrane bound form acting as an adhesion molecule and surface receptor; however, when cleaved by ADAM 10, it functions as a soluble chemokine. Fractalkine and its chemokine receptor CX3CR1 are known to have multiple roles in diverse human diseases, for example inflammatory diseases, rheumatoid arthritis, renal diseases and atherosclerosis. MATERIALS AND METHODS This review is based on the material obtained via PubMed up to November 2014. The key search terms used were 'fractalkine', 'CX3CL1', 'CX3CR1', 'cardiovascular disease', 'platelets', 'monocytes' and 'platelet-monocyte complexes'. RESULTS Atherosclerosis is recognized as a highly inflammatory disease, and it has become increasingly evident that the immune system plays an important role in atherogenesis and atheroprogression. Two blood cell populations are crucially involved in the early development of atherosclerotic lesions: monocytes and platelets. They are detected at vascular sites of endothelial dysfunction and are involved in inflammatory immune responses. These cells directly interact with each other, forming platelet-monocyte complexes that are increased in cardiovascular diseases. During the development of atherosclerosis, fractalkine mediates leukocyte recruitment to the inflamed endothelium, which promotes early formation of lesions. This process only effectively works in the presence of activated platelets. It has been suggested that fractalkine and its receptor contribute to platelet-monocyte aggregate formation underlining the two important impacts of this chemokine for platelets as well as monocytes. CONCLUSION Interesting data hint at a role of fractalkine for platelet activation, adhesion and subsequent monocyte recruitment to activated endothelial cells in cardiovascular diseases. However, the exact mechanisms remain to become unravelled.
Collapse
Affiliation(s)
- Ulrike Flierl
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Andreas Schäfer
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
34
|
Amantea D, Micieli G, Tassorelli C, Cuartero MI, Ballesteros I, Certo M, Moro MA, Lizasoain I, Bagetta G. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci 2015; 9:147. [PMID: 25972779 PMCID: PMC4413676 DOI: 10.3389/fnins.2015.00147] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023] Open
Abstract
The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs) that contribute to blood–brain barrier (BBB) disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF)-β, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate toward several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13, or TGF-β. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair. Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction.
Collapse
Affiliation(s)
- Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy
| | | | - Cristina Tassorelli
- C. Mondino National Neurological Institute Pavia, Italy ; Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - María I Cuartero
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Iván Ballesteros
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Michelangelo Certo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy
| | - María A Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy ; Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University Consortium for Adaptive Disorders and Head Pain, University of Calabria Rende, Italy
| |
Collapse
|
35
|
Zhang Y, Zheng J, Zhou Z, Zhou H, Wang Y, Gong Z, Zhu J. Fractalkine promotes chemotaxis of bone marrow-derived mesenchymal stem cells towards ischemic brain lesions through Jak2 signaling and cytoskeletal reorganization. FEBS J 2015; 282:891-903. [PMID: 25559502 DOI: 10.1111/febs.13187] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/01/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Abstract
The fractalkine (FKN)-CX3CR1 (FKN receptor) axis reportedly plays an important role in the progression of many neural pathologies. However, its role in the recruitment of bone marrow-derived progenitor cells for neurogenesis remains elusive. The chemokine-based mechanism underlying the migration of bone marrow-derived mesenchymal stem cells (BMSCs) was investigated in a double-chamber transmigration model with recombinant FKN and endogenous FKN extract, and the results confirmed the involvement of FKN in migration. This chemotactic response was CX3CR1-dependent and FKN-sensitive. Western blotting, immunoprecipitation and transmigration assays revealed that the Janus kinase (Jak)2-signal transducer and activator of transcription (Stat)5α-extracellular signal-related kinase (ERK)1/2 pathway was activated by FKN. Confocal laser scanning microscopy was used to demonstrate cytoskeletal reorganization caused by remodeling of the surface receptor integrin α5β1, intracellular phosphorylation of Fak and Pax, and upregulation of intercellular adhesion molecule-1 during BMSC migration. Moreover, significant inhibition of signaling and migration was detected after treatment of cells with Jak2-interfering RNA or the antagonist AG490. In addition, the results of a fluorescence immunohistochemical analysis of an in vivo chemotactic model, developed via transplantation of BMSCs into transient middle cerebral artery-occluded rats, were consistent with the in vitro results. These findings suggest that FKN activates Jak2-Stat5α-ERK1/2 signaling through CX3CR1, thereby triggering integrin-dependent machinery reorganization to allow chemotactic migration of BMSCs towards an ischemic cerebral lesion.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Taylor RA, Hammond MD, Ai Y, Sansing LH. CX3CR1 signaling on monocytes is dispensable after intracerebral hemorrhage. PLoS One 2014; 9:e114472. [PMID: 25469644 PMCID: PMC4255025 DOI: 10.1371/journal.pone.0114472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/07/2014] [Indexed: 12/20/2022] Open
Abstract
Intracerebral hemorrhage is a subset of stroke for which there is no specific treatment. The Ly6Chi CCR2+ monocytes have been shown to contribute to acute injury after intracerebral hemorrhage. The other murine monocyte subset expresses CX3CR1 and lower Ly6C levels, and contributes to repair in other disease models. We hypothesized that the Ly6Clo CX3CR1+ monocytes would contribute to recovery after intracerebral hemorrhage. Intracerebral hemorrhage was modeled by blood injection in WT and CX3CR1-null bone marrow chimeras. Neurological outcomes and leukocyte recruitment were quantified at various time points. Functional outcomes were equal at 1, 3, 7, and 14 days after intracerebral hemorrhage in both genotypes. No differences were observed in leukocyte recruitment between genotypes on either 3 or 7 days after intracerebral hemorrhage. A few hundred Ly6Clo monocytes were found in the ipsilateral hemisphere in each genotype and they did not change over time. Peripherally derived CX3CR1+ monocytes were observed in the perihematomal brain 7 and 14 days after intracerebral hemorrhage. Our data suggests CX3CR1 signaling on monocytes does not play an influential role in acute injury or functional recovery after intracerebral hemorrhage and therefore CX3CR1 is not a therapeutic target to improve outcome after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Roslyn A. Taylor
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Matthew D. Hammond
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Youxi Ai
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
37
|
Guo Y, Apostalakis S, Blann AD, Lip GYH. Plasma CX3CL1 levels and long term outcomes of patients with atrial fibrillation: the West Birmingham Atrial Fibrillation Project. Cerebrovasc Dis 2014; 38:204-11. [PMID: 25301077 DOI: 10.1159/000365841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is growing evidence that chemokines are potentially important mediators of the pathogenesis of atherosclerotic disease. Major atherothrombotic complications, such as stroke and myocardial infarction, are common among atrial fibrillation (AF) patients. This increase in risk of adverse events may be predicted by a score based on the presence of certain clinical features of chronic heart failure, hypertension, age 75 years or greater, diabetes and stroke (the CHADS2 score). Our objective was to assess the prognostic value of plasma chemokines CCL2, CXCL4 and CX3CL1, and their relationship with the CHADS2 score, in AF patients. METHODS Plasma CCL2, CXCL4 and CX3CL1 were measured in 441 patients (59% male, mean age 75 years, 12% paroxysmal, 99% on warfarin) with AF. Baseline clinical and demographic factors were used to define each subject's CHADS2 score. Patients were followed up for a mean 2.1 years, and major adverse cardiovascular and cerebrovascular events (MACCE) were sought, being the combination of cardiovascular death, acute coronary events, stroke and systemic embolism. RESULTS Fifty-five of the AF patients suffered a MACCE (6% per year). Those in the lowest CX3CL1 quartile (≤ 0.24 ng/ml) had fewest MACCE (p = 0.02). In the Cox regression analysis, CX3CL1 levels >0.24 ng/ml (Hazard ratio 2.8, 95% CI 1.02-8.2, p = 0.045) and age (p = 0.042) were independently linked with adverse outcomes. The CX3CL1 levels rose directly with the CHADS2 risk score (p = 0.009). The addition of CX3CL1 did not significantly increased the discriminatory ability of the CHADS2 clinical factor-based risk stratification (c-index 0.60 for CHADS2 alone versus 0.67 for CHADS2 plus CX3CL1 >0.24 ng/ml, p = 0.1). Aspirin use was associated with lower levels of CX3CL1 (p = 0.0002) and diabetes with higher levels (p = 0.031). There was no association between CXCL4 and CCL2 plasma levels and outcomes. CONCLUSION There is an independent association between low plasma CX3CL1 levels and low risk of major cardiovascular events in AF patients, as well as a linear association between CX3CL1 plasma levels and CHADS2-defined cardiovascular risk. The potential for CX3CL1 in refining risk stratification in AF patients merits consideration.
Collapse
Affiliation(s)
- Yutao Guo
- Haemostasis, Thrombosis and Vascular Biology Unit, University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UK
| | | | | | | |
Collapse
|
38
|
Limatola C, Ransohoff RM. Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Front Cell Neurosci 2014; 8:229. [PMID: 25152714 PMCID: PMC4126442 DOI: 10.3389/fncel.2014.00229] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/23/2014] [Indexed: 12/30/2022] Open
Abstract
Since the initial cloning of fractalkine/CX3CL1, it was proposed that the only known member of the CX3C or δ subfamily of chemotactic cytokines could play some significant role in the nervous system, due to its high expression on neurons. The pivotal description of the localization of the unique CX3CL1 receptor, CX3CR1, on microglial cells, firmed up by the generation of cx3cr1GFP/GFP mice, opened the road to the hypothesis of some specific key interactions between microglia and neurons mediated by this pair. This expectation has been indeed supported by recent exciting evidence indicating that CX3CL1-mediated microglia-neuron interaction modulates basic physiological activities during development, adulthood and aging, including: synaptic pruning; promoting survival of neurons and neural precursors; modulating synaptic transmission and plasticity; enhancing synapse and network maturation; and facilitating the establishment of neuropathic pain circuits. Beyond playing such fascinating roles in physiological conditions, CX3CL1 signaling has been implicated in different neuropathologies. Early papers demonstrated that the levels of CX3CL1 may be modulated by various toxic stimuli in vitro and that CX3CL1 signaling is positively or negatively regulated in EAE and MS, in HIV infection and LPS challenge, in epilepsy, in brain tumors, and in other neuropathologies. In this review we focus on the experimental evidence of CX3CL1 involvement in neuroprotection and survey the common molecular and cellular mechanisms described in different brain diseases.
Collapse
Affiliation(s)
- Cristina Limatola
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy ; Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Istituto Neurologico Mediterraneo Pozzilli, Italy
| | - Richard M Ransohoff
- Neuroinflammation Research Center, Lerner Research Institute and Cleveland Clinic Lerner College of Medicine Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
39
|
Grosse GM, Tryc AB, Dirks M, Schuppner R, Pflugrad H, Lichtinghagen R, Weissenborn K, Worthmann H. The temporal dynamics of plasma fractalkine levels in ischemic stroke: association with clinical severity and outcome. J Neuroinflammation 2014; 11:74. [PMID: 24722201 PMCID: PMC4022085 DOI: 10.1186/1742-2094-11-74] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/28/2014] [Indexed: 01/18/2023] Open
Abstract
Background The chemokine fractalkine (CX3CL1, FKN) is involved in neural-microglial interactions and is regarded as neuroprotective according to several in vivo studies of inflammatory and degenerative states of the brain. Recently, an association with outcome in human ischemic stroke has been proposed. In this study, we aimed to investigate the temporal pattern of FKN levels in acute ischemic stroke in relation to stroke severity and outcome. Methods FKN levels were measured in plasma specimens of fifty-five patients with acute ischemic stroke. Blood was available for time points 6 hours (h), 12 h, 3 days (d), 7 d and 90 d after stroke onset. Clinical outcome was evaluated using the modified Rankin Scale (mRS) at 7 d and 90 d. Results The time course of FKN significantly differs depending on stroke severity, with higher FKN levels linked to a lower severity. FKN levels in patients with moderate to severe strokes differ significantly from controls. In outcome analysis, we found an association of dynamics of FKN with clinical outcome. Decrease of FKN is pronounced in patients with worse outcome. Multivariate analysis including stroke severity and stroke etiology revealed that deltaFKN between 6 h and 3 d is independently associated with mRS at 90 d. In addition deltaFKN is inversely correlated with the extent of brain damage, as measured by S100B. Conclusions FKN dynamics are independently associated with stroke outcome. Further studies might give insight on whether FKN is actively involved in the inflammatory cascade after acute ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hans Worthmann
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str, 1, 30625 Hannover, Germany.
| |
Collapse
|
40
|
Qin W, Li Z, Luo S, Wu R, Pei Z, Huang R. Exogenous fractalkine enhances proliferation of endothelial cells, promotes migration of endothelial progenitor cells and improves neurological deficits in a rat model of ischemic stroke. Neurosci Lett 2014; 569:80-4. [PMID: 24704182 DOI: 10.1016/j.neulet.2014.03.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/18/2022]
Abstract
Fractalkine/CX3CL1, also called neurotactin, has been described as an angiogenic agent, and its expression is up-regulated in the penumbra after ischemia. This study was conducted to investigate the neovascular potential of fractalkine on rat models of transient middle cerebral artery occlusion (MCAO). Rats receiving intracerebroventricular injections of fractalkine were found to have improved neurological deficits, reduced cerebral infarct size and increased neuron survival for both doses (100ng and 1μg). Fractalkine exerted angiogenic effects that showed dose-dependent higher vascular densities in the peri-infarct area. Furthermore, exogenous fractalkine increased the proliferation of endothelial cells in a dose-dependent manner and enhanced the migration of endothelial progenitor cells at the higher dose (1μg) in ischemic penumbra. In conclusion, intracerebroventricular administration of fractalkine reduces ischemic damage by promoting neuroprotection and by inducing endothelial cell proliferation and endothelial progenitor cell migration, thereby enhancing neovascularization in the peri-infarct region.
Collapse
Affiliation(s)
- Wenjing Qin
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Zhendong Li
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China.
| | - Shijian Luo
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Rui Wu
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Zhong Pei
- Department of Neurology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruxun Huang
- Department of Neurology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
41
|
Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol 2013; 2013:746068. [PMID: 24223607 PMCID: PMC3810327 DOI: 10.1155/2013/746068] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/06/2013] [Accepted: 08/28/2013] [Indexed: 12/18/2022]
Abstract
Stroke is a leading cause of death worldwide. Ischemic stroke is caused by blockage of blood vessels in the brain leading to tissue death, while intracerebral hemorrhage (ICH) occurs when a blood vessel ruptures, exposing the brain to blood components. Both are associated with glial toxicity and neuroinflammation. Microglia, as the resident immune cells of the central nervous system (CNS), continually sample the environment for signs of injury and infection. Under homeostatic conditions, they have a ramified morphology and phagocytose debris. After stroke, microglia become activated, obtain an amoeboid morphology, and release inflammatory cytokines (the M1 phenotype). However, microglia can also be alternatively activated, performing crucial roles in limiting inflammation and phagocytosing tissue debris (the M2 phenotype). In rodent models, microglial activation occurs very early after stroke and ICH; however, their specific roles in injury and repair remain unclear. This review summarizes the literature on microglial responses after ischemic stroke and ICH, highlighting the mediators of microglial activation and potential therapeutic targets for each condition.
Collapse
|
42
|
Blaylock RL. Immunology primer for neurosurgeons and neurologists part 2: Innate brain immunity. Surg Neurol Int 2013; 4:118. [PMID: 24083053 PMCID: PMC3784951 DOI: 10.4103/2152-7806.118349] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 12/27/2022] Open
Abstract
Over the past several decades we have learned a great deal about microglia and innate brain immunity. While microglia are the principle innate immune cells, other cell types also play a role, including invading macrophages, astrocytes, neurons, and endothelial cells. The fastest reacting cell is the microglia and despite its name, resting microglia (also called ramified microglia) are in fact quite active. Motion photomicrographs demonstrate a constant movement of ramified microglial foot processes, which appear to be testing the microenvironment for dangerous alteration in extracellular fluid content. These foot processes, in particular, interact with synapses and play a role in synaptic function. In event of excitatory overactivity, these foot processes can strip selected synapses, thus reducing activation states as a neuroprotective mechanism. They can also clear extracellular glutamate so as to reduce the risk of excitotoxicity. Microglia also appear to have a number of activation phenotypes, such as: (1) phagocytic, (2) neuroprotective and growth promoting, or (3) primarily neurodestructive. These innate immune cells can migrate a great distance under pathological conditions and appear to have anatomic specificity, meaning they can accumulate in specifically selected areas of the brain. There is some evidence that there are several types of microglia. Macrophage infiltration into the embryonic brain is the source of resident microglia and in adulthood macrophages can infiltrate the brain and are for the most part pathologically indistinguishable from resident microglia, but may react differently. Activation itself does not imply a destructive phenotype and can be mostly neuroprotective via phagocytosis of debris, neuron parts and dying cells and by the release of neurotrophins such as nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF). Evidence is accumulating that microglia undergo dynamic fluctuations in phenotype as the neuropathology evolves. For example, in the early stages of neurotrauma and stroke, microglia play a mostly neuroprotective role and only later switch to a neurodestructive mode. A great number of biological systems alter microglia function, including neurohormones, cannabinoids, other neurotransmitters, adenosine triphosphate (ATP), adenosine, and corticosteroids. One can appreciate that with aging many of these systems are altered by the aging process itself or by disease thus changing the sensitivity of the innate immune system.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences Research, LLC, Neurosurgeon (Ret), Ridgeland, MS
| |
Collapse
|
43
|
Franco L, Williams FMK, Trofimov S, Surdulescu G, Spector T, Livshits G. Elevated plasma fractalkine levels are associated with higher levels of IL-6, Apo-B, LDL-C and insulin, but not with body composition in a large female twin sample. Metabolism 2013; 62:1081-7. [PMID: 23477808 DOI: 10.1016/j.metabol.2013.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/13/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Plasma fractalkine (FRACT) is involved in the development of numerous inflammatory conditions including atherosclerosis. It is associated with type 2 diabetes mellitus and adipose inflammation. However, whether FRACT is associated with major risk factors for cardiovascular disease, in particular obesity, metabolic syndrome and blood lipids, is virtually unknown. METHODS The study included a large community-based sample of 3306 middle-aged women drawn from the general UK population. Blood samples were analyzed for circulating levels of FRACT, leptin, insulin, glucose, LDL-C, HDL-C, Apo-A, ApoB and IL-6. Obesity was assessed by fat body mass (FBM) using dual-energy x-ray absorptiometry and by body mass index (BMI). RESULTS We found no association between FRACT and body composition, in particular adiposity. Obese and non obese subjects with metabolic syndrome tended to have higher levels of FRACT compared with non-obese subjects without metabolic syndrome but this did not reach statistical significance. Most importantly we report significant correlations between FRACT and circulating IL-6, Apo-B, LDL-C and insulin. The associations with IL-6 and Apo-B were particularly significant (P-value<0.001), and survived correction for multiple testing and adjustment for age and other covariates. CONCLUSION Higher FRACT levels correlated with elevated levels of IL-6, Apo-B, LDL-C and insulin, all known risk factors for several clinical related diseases suggesting a potential role of FRACT in inflammation and tissue injury. Variations of FRACT levels are not influenced by body composition and are not correlated with leptin indicating that fat mass alone is not responsible for elevation of FRACT seen in obese individuals.
Collapse
Affiliation(s)
- Liran Franco
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | |
Collapse
|