1
|
Pei H, Shepherd TM, Wang Y, Liu F, Sodickson DK, Ben-Eliezer N, Feng L. DeepEMC-T 2 mapping: Deep learning-enabled T 2 mapping based on echo modulation curve modeling. Magn Reson Med 2024; 92:2707-2722. [PMID: 39129209 PMCID: PMC11436299 DOI: 10.1002/mrm.30239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE Echo modulation curve (EMC) modeling enables accurate quantification of T2 relaxation times in multi-echo spin-echo (MESE) imaging. The standard EMC-T2 mapping framework, however, requires sufficient echoes and cumbersome pixel-wise dictionary-matching steps. This work proposes a deep learning version of EMC-T2 mapping, called DeepEMC-T2 mapping, to efficiently estimate accurate T2 maps from fewer echoes. METHODS DeepEMC-T2 mapping was developed using a modified U-Net to estimate both T2 and proton density (PD) maps directly from MESE images. The network implements several new features to improve the accuracy of T2/PD estimation. A total of 67 MESE datasets acquired in axial orientation were used for network training and evaluation. An additional 57 datasets acquired in coronal orientation with different scan parameters were used to evaluate the generalizability of the framework. The performance of DeepEMC-T2 mapping was evaluated in seven experiments. RESULTS Compared to the reference, DeepEMC-T2 mapping achieved T2 estimation errors from 1% to 11% and PD estimation errors from 0.4% to 1.5% with ten/seven/five/three echoes, which are more accurate than standard EMC-T2 mapping. By incorporating datasets acquired with different scan parameters and orientations for joint training, DeepEMC-T2 exhibits robust generalizability across varying imaging protocols. Increasing the echo spacing and including longer echoes improve the accuracy of parameter estimation. The new features proposed in DeepEMC-T2 mapping all enabled more accurate T2 estimation. CONCLUSIONS DeepEMC-T2 mapping enables simplified, efficient, and accurate T2 quantification directly from MESE images without dictionary matching. Accurate T2 estimation from fewer echoes allows for increased volumetric coverage and/or higher slice resolution without prolonging total scan times.
Collapse
Affiliation(s)
- Haoyang Pei
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, USA
- Department of Electrical and Computer Engineering and Department of Biomedical Engineering, NYU Tandon School of Engineering, New York, NY, USA
| | - Timothy M. Shepherd
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, USA
| | - Yao Wang
- Department of Electrical and Computer Engineering and Department of Biomedical Engineering, NYU Tandon School of Engineering, New York, NY, USA
| | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel K Sodickson
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, USA
| | - Noam Ben-Eliezer
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, USA
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - Li Feng
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, USA
| |
Collapse
|
2
|
Alzaidi AA, Panek R, Blockley NP. Quantitative BOLD (qBOLD) imaging of oxygen metabolism and blood oxygenation in the human body: A scoping review. Magn Reson Med 2024; 92:1822-1837. [PMID: 39072791 DOI: 10.1002/mrm.30165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE There are many approaches to the quantitative BOLD (qBOLD) technique described in the literature, differing in pulse sequences, MRI parameters and data processing. Thus, in this review, we summarized the acquisition methods, approaches used for oxygenation quantification and clinical populations investigated. METHODS Three databases were systematically searched (Medline, Embase, and Web of Science) for published research that used qBOLD methods for quantification of oxygen metabolism. Data extraction and synthesis were performed by one author and reviewed by a second author. RESULTS A total of 93 relevant papers were identified. Acquisition strategies were summarized, and oxygenation parameters were found to have been investigated in many pathologies such as steno-occlusive diseases, stroke, glioma, and multiple sclerosis disease. CONCLUSION A summary of qBOLD approaches for oxygenation measurements and applications could help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.
Collapse
Affiliation(s)
- Ahlam A Alzaidi
- David Greenfield Human Physiology Unit, School of Life Sciences, University of Nottingham, Nottingham, UK
- Radiology Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Rafal Panek
- Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Nicholas P Blockley
- David Greenfield Human Physiology Unit, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Frank F, Kaczmarz S, Preibisch C, Deichmann R, Nöth U, Wagner M, Seiler A. Pial collaterals limit stroke progression and metabolic stress in hypoperfused tissue: An MRI perfusion and mq-BOLD study. J Neuroimaging 2024. [PMID: 38932469 DOI: 10.1111/jon.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND PURPOSE In acute ischemic stroke (AIS) due to large-vessel occlusion (LVO), the relationship between cerebral oxygen extraction fraction (OEF) as the hallmark of the ischemic penumbra and leptomeningeal collateral supply is not well established. We aimed to investigate the relationship between pial collateralization and tissue oxygen extraction in patients with LVO using magnetic resonance imaging (MRI). METHODS Data from 14 patients with anterior circulation LVO who underwent MRI before acute stroke treatment were analyzed. In addition to diffusion-weighted imaging and perfusion-weighted imaging (PWI), the protocol comprised sequences for multiparametric quantitative blood-oxygen-level-dependent imaging for the calculation of relative OEF (rOEF). Pial collateral supply was quantitatively assessed by analyzing the signal variance in T2*-weighted PWI time series. Relationships between collateral supply, infarct volume, rOEF in peri-infarct hypoperfused tissue, and clinical stroke severity were assessed. RESULTS The PWI-based parameter quantifying collateral supply was negatively correlated with baseline ischemic core volume and rOEF in the hypoperfused peri-infarct area (p < .01). Both reduced collateral supply and increased rOEF correlated significantly with higher scores on the National Institutes of Health Stroke Scale (p < .05). Increased rOEF within hypoperfused tissue was associated with higher baseline (p = .043) and follow-up infarct volume (p = .009). CONCLUSIONS Signal variance-based mapping of collaterals with PWI depicts pial collateral supply, which is closely tied to tissue pathophysiology and clinical and imaging outcomes. Magnetic-resonance-derived mapping of cerebral rOEF reveals penumbral characteristics of hypoperfused tissue and might provide a promising imaging biomarker in AIS.
Collapse
Affiliation(s)
- Franziska Frank
- Department of Neurology, University Hospital Frankfurt (Goethe University), Frankfurt, Germany
| | - Stephan Kaczmarz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
- Clinic of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Marlies Wagner
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Neuroradiology, University Hospital Frankfurt (Goethe University), Frankfurt, Germany
| | - Alexander Seiler
- Department of Neurology, University Hospital Frankfurt (Goethe University), Frankfurt, Germany
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
- Department of Neurology and Neurovascular Center, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
4
|
Ben-Atya H, Freiman M. P 2T 2: A physically-primed deep-neural-network approach for robust T 2 distribution estimation from quantitative T 2-weighted MRI. Comput Med Imaging Graph 2023; 107:102240. [PMID: 37224742 DOI: 10.1016/j.compmedimag.2023.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/26/2023]
Abstract
Estimating T2 relaxation time distributions from multi-echo T2-weighted MRI (T2W) data can provide valuable biomarkers for assessing inflammation, demyelination, edema, and cartilage composition in various pathologies, including neurodegenerative disorders, osteoarthritis, and tumors. Deep neural network (DNN) based methods have been proposed to address the complex inverse problem of estimating T2 distributions from MRI data, but they are not yet robust enough for clinical data with low Signal-to-Noise ratio (SNR) and are highly sensitive to distribution shifts such as variations in echo-times (TE) used during acquisition. Consequently, their application is hindered in clinical practice and large-scale multi-institutional trials with heterogeneous acquisition protocols. We propose a physically-primed DNN approach, called P2T2, that incorporates the signal decay forward model in addition to the MRI signal into the DNN architecture to improve the accuracy and robustness of T2 distribution estimation. We evaluated our P2T2 model in comparison to both DNN-based methods and classical methods for T2 distribution estimation using 1D and 2D numerical simulations along with clinical data. Our model improved the baseline model's accuracy for low SNR levels (SNR<80) which are common in the clinical setting. Further, our model achieved a ∼35% improvement in robustness against distribution shifts in the acquisition process compared to previously proposed DNN models. Finally, Our P2T2 model produces the most detailed Myelin-Water fraction maps compared to baseline approaches when applied to real human MRI data. Our P2T2 model offers a reliable and precise means of estimating T2 distributions from MRI data and shows promise for use in large-scale multi-institutional trials with heterogeneous acquisition protocols. Our source code is available at: https://github.com/Hben-atya/P2T2-Robust-T2-estimation.git.
Collapse
Affiliation(s)
- Hadas Ben-Atya
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Moti Freiman
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Meng Y, Li CX, Zhang X. Quantitative Evaluation of Oxygen Extraction Fraction Changes in the Monkey Brain during Acute Stroke by Using Quantitative Susceptibility Mapping. Life (Basel) 2023; 13:1008. [PMID: 37109537 PMCID: PMC10146121 DOI: 10.3390/life13041008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The oxygen extraction fraction (OEF) indicates the brain's oxygen consumption and can be estimated by using the quantitative susceptibility mapping (QSM) MRI technique. Recent studies have suggested that OEF alteration following stroke is associated with the viability of at-risk tissue. In the present study, the temporal evolution of OEF in the monkey brain during acute stroke was investigated using QSM. METHODS Ischemic stroke was induced in adult rhesus monkeys (n = 8) with permanent middle cerebral artery occlusion (pMCAO) by using an interventional approach. Diffusion-, T2-, and T2*-weighted images were conducted on day 0, day 2, and day 4 post-stroke using a clinical 3T scanner. Progressive changes in magnetic susceptibility and OEF, along with their correlations with the transverse relaxation rates and diffusion indices, were examined. RESULTS The magnetic susceptibility and OEF in injured gray matter of the brain significantly increased during the hyperacute phase, and then decreased significantly on day 2 and day 4. Moreover, the temporal changes of OEF in gray matter were moderately correlated with mean diffusivity (MD) (r = 0.52; p = 0.046) from day 0 to day 4. Magnetic susceptibility in white matter progressively increased (from negative values to near zero) during acute stroke, and significant increases were seen on day 2 (p = 0.08) and day 4 (p = 0.003) when white matter was significantly degenerated. However, significant reduction of OEF in white matter was not seen until day 4 post-stroke. CONCLUSION The preliminary results demonstrate that QSM-derived OEF is a robust approach to examine the progressive changes of gray matter in the ischemic brain from the hyperacute phase to the subacute phase of stroke. The changes of OEF in gray matter were more prominent than those in white matter following stroke insult. The findings suggest that QSM-derived OEF may provide complementary information for understanding the neuropathology of the brain tissue following stroke and predicting stroke outcomes.
Collapse
Affiliation(s)
- Yuguang Meng
- EPC Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Chun-Xia Li
- EPC Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Xiaodong Zhang
- EPC Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
6
|
An Intermodal Correlation Study among Imaging, Histology, Procedural and Clinical Parameters in Cerebral Thrombi Retrieved from Anterior Circulation Ischemic Stroke Patients. J Clin Med 2022; 11:jcm11195976. [PMID: 36233842 PMCID: PMC9572771 DOI: 10.3390/jcm11195976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
The precise characterization of cerebral thrombi prior to an interventional procedure can ease the procedure and increase its success. This study investigates how well cerebral thrombi can be characterized by computed tomography (CT), magnetic resonance (MR) and histology, and how parameters obtained by these methods correlate with each other as well as with the interventional procedure and clinical parameters. Cerebral thrombi of 25 patients diagnosed by CT with acute ischemic stroke were acquired by mechanical thrombectomy and, subsequently, scanned by a high spatial-resolution 3D MRI including T1-weighted imaging, apparent diffusion coefficient (ADC), T2 mapping and then finally analyzed by histology. Parameter pairs with Pearson correlation coefficient more than 0.5 were further considered by explaining a possible cause for the correlation and its impact on the difficulty of the interventional procedure and the treatment outcome. Significant correlations were found between the variability of ADC and the duration of the mechanical recanalization, the deviation in average Hounsfield units (HU) and the number of passes with the thrombectomy device, length of the thrombus, its RBC content and many others. This study also demonstrates the clinical potentials of high spatial resolution multiparametric MRI in characterization of thrombi and its use for interventional procedure planning.
Collapse
|
7
|
Zhang T, Guo R, Li Y, Zhao Y, Li Y, Liang ZP. T 2 ' mapping of the brain from water-unsuppressed 1 H-MRSI and turbo spin-echo data. Magn Reson Med 2022; 88:2198-2207. [PMID: 35844075 DOI: 10.1002/mrm.29386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE To obtain high-quality T 2 ' $$ {\mathrm{T}}_2^{\prime } $$ maps of brain tissues from water-unsuppressed magnetic resonance spectroscopic imaging (MRSI) and turbo spin-echo (TSE) data. METHODS T 2 ' $$ {\mathrm{T}}_2^{\prime } $$ mapping can be achieved using T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping from water-unsuppressed MRSI data and T 2 $$ {\mathrm{T}}_2 $$ mapping from TSE data. However, T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping often suffers from signal dephasing and distortions caused by B 0 $$ {\mathrm{B}}_0 $$ field inhomogeneity; T 2 $$ {\mathrm{T}}_2 $$ measurements may be biased due to system imperfections, especially for T 2 $$ {\mathrm{T}}_2 $$ -weighted image with small number of TEs. In this work, we corrected the B 0 $$ {\mathrm{B}}_0 $$ field inhomogeneity effect on T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping using a subspace model-based method, incorporating pre-learned spectral basis functions of the water signals. T 2 $$ {\mathrm{T}}_2 $$ estimation bias was corrected using a TE-adjustment method, which modeled the deviation between measured and reference T 2 $$ {\mathrm{T}}_2 $$ decays as TE shifts. RESULTS In vivo experiments were performed to evaluate the performance of the proposed method. High-quality T 2 * $$ {\mathrm{T}}_2^{\ast } $$ maps were obtained in the presence of large field inhomogeneity in the prefrontal cortex. Bias in T 2 $$ {\mathrm{T}}_2 $$ measurements obtained from TSE data was effectively reduced. Based on the T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and T 2 $$ {\mathrm{T}}_2 $$ measurements produced by the proposed method, high-quality T 2 ' $$ {\mathrm{T}}_2^{\prime } $$ maps were obtained, along with neurometabolite maps, from MRSI and TSE data that were acquired in about 9 min. The results obtained from acute stroke and glioma patients demonstrated the feasibility of the proposed method in the clinical setting. CONCLUSIONS High-quality T 2 ' $$ {\mathrm{T}}_2^{\prime } $$ maps can be obtained from water-unsuppressed 1 H-MRSI and TSE data using the proposed method. With further development, this method may lay a foundation for simultaneously imaging oxygenation and neurometabolic alterations of brain disorders.
Collapse
Affiliation(s)
- Tianxiao Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Guo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yudu Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yibo Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Pei Liang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn Reson Med 2022; 88:575-600. [PMID: 35510696 PMCID: PMC9233013 DOI: 10.1002/mrm.29272] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Zhang J, Chen J, Chen Q, Chen J, Luo K, Pan L, Zhang Y, Dou W, Xing W. Can R 2 ' mapping evaluate hypoxia in renal ischemia reperfusion injury quantitatively? An experimental study. Magn Reson Med 2021; 86:974-983. [PMID: 33724527 DOI: 10.1002/mrm.28696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE To explore if R2 ' mapping can assess renal hypoxia in rabbits with ischemia reperfusion injury (IRI). METHODS Forty rabbits were randomly divided into 4 groups according to the clipping time: the sham group and 45 min, 60 min, and 75 min for the mild, moderate, and severe groups (with n = 10 each group), respectively. Intravenous furosemide (FU) was administered 24 h after IRI. All rabbits were performed 5 times (IRIpre , IRI24h , FU5min , FU12min , and FU24min ) with a 3.0 Tesla MR. The R2 ' values and the hypoxic scores were then recorded. The repeated measurement analysis of variance and Spearman correlation analysis was used for statistical analysis. RESULTS Compared to the baseline, the medullary R2 ' values increased significantly 24 h after the IRI (baseline 19.31 ± 1.21 s-1 , mild group 20.05 ± 1.26 s-1 , moderate group 25.38 ± 1.38 s-1 , and severe group 25.79 ± 1.10 s-1 ; each P < .001). FU led to a significant decrease in the medullary R2 ' value (sham group 11.17 ± 4.33 s-1 , mild group 7.80 ± 0.74 s-1 , moderate group 3.92 ± 0.28 s-1 , and severe group 3.82 ± 0.23 s-1 ; each P < .05). Quantitative hypoxic scores revealed significant differences among the 4 groups in the outer medulla (P < .001 each). The medullary R2 ' differences (before and after intravenous FU) were significantly correlated with the hypoxic scores, respectively (P < .001). CONCLUSION R2 ' mapping can evaluate the renal hypoxia in the procession of IRI in rabbits and might serve as a quantitative biomarker for IRI.
Collapse
Affiliation(s)
- Jinggang Zhang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Jie Chen
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Qin Chen
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Jing Chen
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Kai Luo
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Liang Pan
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Yongcheng Zhang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Weiqiang Dou
- MR research China, GE Healthcare, Beijing, People's Republic of China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| |
Collapse
|
10
|
Hermann I, Martínez-Heras E, Rieger B, Schmidt R, Golla AK, Hong JS, Lee WK, Yu-Te W, Nagtegaal M, Solana E, Llufriu S, Gass A, Schad LR, Weingärtner S, Zöllner FG. Accelerated white matter lesion analysis based on simultaneous T 1 and T 2 ∗ quantification using magnetic resonance fingerprinting and deep learning. Magn Reson Med 2021; 86:471-486. [PMID: 33547656 DOI: 10.1002/mrm.28688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop an accelerated postprocessing pipeline for reproducible and efficient assessment of white matter lesions using quantitative magnetic resonance fingerprinting (MRF) and deep learning. METHODS MRF using echo-planar imaging (EPI) scans with varying repetition and echo times were acquired for whole brain quantification of T 1 and T 2 ∗ in 50 subjects with multiple sclerosis (MS) and 10 healthy volunteers along 2 centers. MRF T 1 and T 2 ∗ parametric maps were distortion corrected and denoised. A CNN was trained to reconstruct the T 1 and T 2 ∗ parametric maps, and the WM and GM probability maps. RESULTS Deep learning-based postprocessing reduced reconstruction and image processing times from hours to a few seconds while maintaining high accuracy, reliability, and precision. Mean absolute error performed the best for T 1 (deviations 5.6%) and the logarithmic hyperbolic cosinus loss the best for T 2 ∗ (deviations 6.0%). CONCLUSIONS MRF is a fast and robust tool for quantitative T 1 and T 2 ∗ mapping. Its long reconstruction and several postprocessing steps can be facilitated and accelerated using deep learning.
Collapse
Affiliation(s)
- Ingo Hermann
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Eloy Martínez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Benedikt Rieger
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ralf Schmidt
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alena-Kathrin Golla
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jia-Sheng Hong
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Kai Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wu Yu-Te
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Institute of Biophotonics and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Martijn Nagtegaal
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
11
|
Cheng B, Boutitie F, Nickel A, Wouters A, Cho TH, Ebinger M, Endres M, Fiebach JB, Fiehler J, Galinovic I, Puig J, Thijs V, Lemmens R, Muir KW, Nighoghossian N, Pedraza S, Simonsen CZ, Gerloff C, Thomalla G, Golsari A, Alegiani A, Beck C, Choe CU, Voget D, Hoppe J, Schröder J, Rozanski M, Nave AH, Wollboldt C, van Sloten I, Göhler J, Herm J, Jungehülsing J, Lückl J, Kröber JM, Schurig J, Koehler L, Schlemm L, Knops M, Roennefarth M, Ipsen N, Harmel P, Bathe-Peters R, Fleischmann R, Ganeshan R, Geran R, Hellwig S, Schmidt S, Tütüncü S, Krause T, Gramse V, Röther J, Michels P, Michalski D, Pelz J, Schulz A, Hobohm C, Weise C, Weise G, Orthgieß J, Pomrehn K, Wegscheider M, Mueller AK, Hennerici M, Griebe M, Alonso A, Filipov A, Marzina A, Anders B, Bähr C, Hoyer C, Schwarzbach C, Weber C, Hornberger E, Pledl HW, Klockziem M, Stuermlinger M, Wittayer M, Wolf M, Meyer N, Eisele P, Steinert S, Sauer T, Held V, Ringleb P, Nagel S, Veltkamp R, Schwarting S, Schwarz A, Gumbinger C, Hametner C, Amiri H, Purrucker J, Ciatipis M, Menn O, Mundiyanapurath S, Schieber S, Kessler T, Reiff T, Panitz V, Singer O, Foerch C, Lauer A, Männer A, Seiler A, Guerzoglu D, Schäfer JH, Filipski K, Lorenz M, Kurka N, Zeiner P, Pfeilschifter W, Dziewas R, Minnerup J, Albiker C, Ritter M, Seidel M, Dittrich R, Kallmünzer B, Bobinger T, Madzar D, Stark D, Sembill J, Macha K, Winder K, Breuer L, Koehrmann M, Spruegel M, Gerner S, Kraft P, Mackenrodt D, Kleinschnitz C, Elhfnawy A, Heinen F, Gunreben I, Poli S, Ziemann U, Gaenslen A, Schlak D, Haertig F, Russo F, Richter H, Ebner M, Ribitsch M, Wolf M, Weimar C, Zegarac V, Chen HC, Althaus K, Neugebauer H, Jüttler E, Meier J, Stösser S, Puetz V, Bodechtel U, Ostergaard L, Møller A, Damgaard D, Dupont KH, Poulsen M, Hjort N, de Morales NR, von Weitzel P, Harbo T, Marstrand J, Hansen A, Christensen H, Aegidius K, Jeppesen L, Meden P, Rosenbaum S, Iversen H, Hansen J, Michelsen L, Truelsen T, Modrau B, Vestergaard K, Oppel L, Sygehus A, Aalborg S, Swinnen B, Smets I, Demeestere J, Dobbels L, Brouns R, De Smedt A, DeKeyser J, Yperzeele L, Van Hooff RJ, Peeters A, Dusart A, Etexberria A, Hanseeuw B, London F, Leempoel J, Hohenbichler K, Younan N, Maqueda V, Laloux P, De Coene B, De Maeseneire C, Turine G, Vandermeeren Y, De Klippel N, Willems C, de Hollander I, Soors P, Hermans S, Hemelsoet D, Desfontaines P, Vanacker P, Rutgers M, Druart C, Peeters D, Bruneel B, Vancaester E, Vanhee F, Meersman G, Bourgeois P, Vanderdonckt P, Benoit A, Derex L, Mechthouff L, Berhoune N, Ritzenthaler T, Amarenco P, Hobeanu C, Gancedo EM, Calvet D, Ladoux A, Machet A, Lamy C, Mellerio C, Oppenheim C, Rodriguez-Regent C, Bodiguel E, Turc G, Birchenall J, Legrand L, Morin L, Edjali-Goujon M, Naggara O, Raphaelle S, Godon-Hardy S, Domigo V, Guiraud V, Samson Y, Leger A, Rosso C, Baronnet-Chauvet F, Crozier S, Deltour S, Yger M, Sibon I, Renou P, Sagnier S, Zuber M, Tamazyan R, Rodier G, Morel N, Felix S, Vadot W, Wolff V, Aniculaesei A, Yalo B, Bindila D, Quenardelle V, Blanc-Lasserre K, Landrault E, Breynaert L, Cakmak S, Peysson S, Viguier A, Lebely C, Raposo N, Vallet AE, Vallet P, Brugirard S, Cheripelli B, Kalladka D, Moreton F, Dani K, Tawil SE, Ramachandran S, Huang X, Warburton E, Evans N, Perry R, Patel B, Cloud G, Pereira A, Moynihan B, Lovelock C, Choy L, Khan U, Roffe C, Tyrell P, Smith C, Dixit A, Louw S, Broughton D, Shetty A, Appleton J, Sprigg N, Acosta BR, van Eendenburg C, Leal JS, Mar Castellanos Rodrigo MD, Izaga MT, Guillamon OB, Arenillas J, Calleja A, Cortijo E, Mulero P, de la Ossa NP, Garrido A, Martinez A, Esperón CG, Guerrero C, Carrera D, Vilas D, Lopez-cancio E, Palomeras E, Lucente G, Gomis M, Isern I, Becerra JL, Vicente JH, Sánchez J, Dorado L, Grau L, Ispierto L, Prats L, Almendrote M, Hernández M, Jimenez M, Sánchez ML, Torne MM, Presas S, Ustrell X, Pellisé A, Navalpotro I, Luna A, Schonewille W, Nederkoorn P, Majoie C, van den Berg L, van den Berg S, Zonneveld T, Remmers M, Fazekas F, Pichler A, Fandler S, Gattringer T, Mutzenbach J, Weber J, Höfner E, Kohlfürst H, Weinstich K, Kellert L, Bayer-Karpinska A, Opherk C, Wollenweber F, Klein M, Neumann- Haefelin T, Pierskalla A, Harloff A, Bardutzky J, Buggle F, von Schrader J, Kollmar R, Schill J, Löbbe AM, Moulin T, Bouamra B, Bonnet L, Touzé E, Bonnet AL, Touze E, Cogez J, Li L, Guettier S, Kar A, Sivagnanaratham A, Geraghty O, Bojaryn U, Nallasivan A, Gonzales MB, Rodríguez-Yáñez M, Tembl J, Gorriz D, Oberndorfer S, Prohaska E. Quantitative Signal Intensity in Fluid-Attenuated Inversion Recovery and Treatment Effect in the WAKE-UP Trial. Stroke 2020; 51:209-215. [DOI: 10.1161/strokeaha.119.027390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Relative signal intensity of acute ischemic stroke lesions in fluid-attenuated inversion recovery (fluid-attenuated inversion recovery relative signal intensity [FLAIR-rSI]) magnetic resonance imaging is associated with time elapsed since stroke onset with higher intensities signifying longer time intervals. In the randomized controlled WAKE-UP trial (Efficacy and Safety of MRI-Based Thrombolysis in Wake-Up Stroke Trial), intravenous alteplase was effective in patients with unknown onset stroke selected by visual assessment of diffusion weighted imaging fluid-attenuated inversion recovery mismatch, that is, in those with no marked fluid-attenuated inversion recovery hyperintensity in the region of the acute diffusion weighted imaging lesion. In this post hoc analysis, we investigated whether quantitatively measured FLAIR-rSI modifies treatment effect of intravenous alteplase.
Methods—
FLAIR-rSI of stroke lesions was measured relative to signal intensity in a mirrored region in the contralesional hemisphere. The relationship between FLAIR-rSI and treatment effect on functional outcome assessed by the modified Rankin Scale (mRS) after 90 days was analyzed by binary logistic regression using different end points, that is, favorable outcome defined as mRS score of 0 to 1, independent outcome defined as mRS score of 0 to 2, ordinal analysis of mRS scores (shift analysis). All models were adjusted for National Institutes of Health Stroke Scale at symptom onset and stroke lesion volume.
Results—
FLAIR-rSI was successfully quantified in stroke lesions in 433 patients (86% of 503 patients included in WAKE-UP). Mean FLAIR-rSI was 1.06 (SD, 0.09). Interaction of FLAIR-rSI and treatment effect was not significant for mRS score of 0 to 1 (
P
=0.169) and shift analysis (
P
=0.086) but reached significance for mRS score of 0 to 2 (
P
=0.004). We observed a smooth continuing trend of decreasing treatment effects in relation to clinical end points with increasing FLAIR-rSI.
Conclusions—
In patients in whom no marked parenchymal fluid-attenuated inversion recovery hyperintensity was detected by visual judgement in the WAKE-UP trial, higher FLAIR-rSI of diffusion weighted imaging lesions was associated with decreased treatment effects of intravenous thrombolysis. This parallels the known association of treatment effect and elapsing time of stroke onset.
Collapse
Affiliation(s)
- Bastian Cheng
- From the Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum (B.C., A.N., C.G., G.T.), University Medical Center Hamburg-Eppendorf, Germany
| | - Florent Boutitie
- Service de Biostatistique, Hospices Civils de Lyon, France (F.B.)
- Université Lyon 1, Villeurbanne, France (F.B.)
- CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Villeurbanne, France (F.B.)
| | - Alina Nickel
- From the Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum (B.C., A.N., C.G., G.T.), University Medical Center Hamburg-Eppendorf, Germany
| | - Anke Wouters
- Department of Neurology, University Hospitals Leuven, Belgium (A.W., R.L.)
- Department of Neurosciences, Experimental Neurology, KU Leuven–University of Leuven, Belgium (A.W., R.L.)
- VIB, Center for Brain and Disease Research, Laboratory of Neurobiology, Campus Gasthuisberg, Leuven, Belgium (A.W., R.L.)
| | - Tae-Hee Cho
- Department of Stroke Medicine, Université Claude Bernard Lyon 1, CREATIS CNRS UMR 5220-INSERM U1206, INSA-Lyon, France (T.-H.C., N.N.)
- Hospices Civils de Lyon, France (T.-H.C., N.N.)
| | - Martin Ebinger
- Centrum für Schlaganfallforschung Berlin, Charité–Universitätsmedizin Berlin, Campus Mitte, Germany (M. Ebinger, M. Endres, J.B.F., I.G.)
- Neurologie der Rehaklinik Medical Park Humboldtmühle, Berlin, Germany (M. Ebinger)
| | - Matthias Endres
- Centrum für Schlaganfallforschung Berlin, Charité–Universitätsmedizin Berlin, Campus Mitte, Germany (M. Ebinger, M. Endres, J.B.F., I.G.)
- Klinik und Hochschulambulanz für Neurologie, Charité–Universitätsmedizin Berlin, Germany (M. Endres)
| | - Jochen B. Fiebach
- Centrum für Schlaganfallforschung Berlin, Charité–Universitätsmedizin Berlin, Campus Mitte, Germany (M. Ebinger, M. Endres, J.B.F., I.G.)
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology (J.F.), University Medical Center Hamburg-Eppendorf, Germany
| | - Ivana Galinovic
- Centrum für Schlaganfallforschung Berlin, Charité–Universitätsmedizin Berlin, Campus Mitte, Germany (M. Ebinger, M. Endres, J.B.F., I.G.)
| | - Josep Puig
- Department of Radiology, Institut de Diagnostic per la Image, Hospital Dr Josep Trueta, Institut d’Investigació Biomèdica de Girona, Parc Hospitalari Martí i Julià de Salt, Girona, Spain (J.P., S.P.)
| | - Vincent Thijs
- Stroke Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia (V.T.)
- Austin Health, Department of Neurology, VIC, Australia (V.T.)
| | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, Belgium (A.W., R.L.)
- Department of Neurosciences, Experimental Neurology, KU Leuven–University of Leuven, Belgium (A.W., R.L.)
- VIB, Center for Brain and Disease Research, Laboratory of Neurobiology, Campus Gasthuisberg, Leuven, Belgium (A.W., R.L.)
| | - Keith W. Muir
- Institute of Neuroscience and Psychology, University of Glasgow, United Kingdom (K.W.M.)
| | - Norbert Nighoghossian
- Department of Stroke Medicine, Université Claude Bernard Lyon 1, CREATIS CNRS UMR 5220-INSERM U1206, INSA-Lyon, France (T.-H.C., N.N.)
- Hospices Civils de Lyon, France (T.-H.C., N.N.)
| | - Salvador Pedraza
- Department of Radiology, Institut de Diagnostic per la Image, Hospital Dr Josep Trueta, Institut d’Investigació Biomèdica de Girona, Parc Hospitalari Martí i Julià de Salt, Girona, Spain (J.P., S.P.)
| | - Claus Z. Simonsen
- Department of Neurology, Aarhus University Hospital, Denmark (C.Z.S.)
| | - Christian Gerloff
- From the Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum (B.C., A.N., C.G., G.T.), University Medical Center Hamburg-Eppendorf, Germany
| | - Götz Thomalla
- From the Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum (B.C., A.N., C.G., G.T.), University Medical Center Hamburg-Eppendorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Balasubramanian M, Polimeni JR, Mulkern RV. In vivo measurements of irreversible and reversible transverse relaxation rates in human basal ganglia at 7 T: making inferences about the microscopic and mesoscopic structure of iron and calcification deposits. NMR IN BIOMEDICINE 2019; 32:e4140. [PMID: 31322331 PMCID: PMC6817385 DOI: 10.1002/nbm.4140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/29/2019] [Accepted: 06/12/2019] [Indexed: 05/24/2023]
Abstract
The goal of this study was to measure irreversible and reversible transverse relaxation rates in the globus pallidus and putamen at 7 T, and to use these rates to make inferences about the sub-voxel structure of iron and calcification deposits. Gradient Echo Sampling of a Spin Echo (GESSE) data were acquired at 7 T on eighteen volunteers spanning a large range of ages (23-85 years), with calcifications in the globus pallidus incidentally observed in one volunteer. Maps of transverse relaxation rates were derived from the GESSE data, and the mean value of these rates in globus pallidus and putamen was estimated for each volunteer. Both irreversible and reversible transverse relaxation rates increased with the expected age-dependent iron content in these structures, except for the individual with calcifications for whom extremely large reversible relaxation rates but normal irreversible relaxation rates were found in the globus pallidus. Given the sensitivity of irreversible and reversible transverse relaxation rates to microscopic and mesoscopic field variations, respectively, our findings suggest that joint consideration of these rates may yield information not only about the amount of iron and calcification deposited in the brain, but also about the sub-voxel structure of these deposits, perhaps revealing certain aspects of their geometry and cellular distribution.
Collapse
Affiliation(s)
- Mukund Balasubramanian
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
| | - Jonathan R. Polimeni
- Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert V. Mulkern
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Seiler A, Kammerer S, Gühl A, Schüre JR, Deichmann R, Nöth U, Pfeilschifter W, Hattingen E, Keese M, Pilatus U, Wagner M. Revascularization of High-Grade Carotid Stenosis Restores Global Cerebral Energy Metabolism. Stroke 2019; 50:1742-1750. [PMID: 31164069 DOI: 10.1161/strokeaha.118.023559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Chronic cerebral hemodynamic impairment due to high-grade occlusive carotid disease may lead to compromised energy metabolism. This might result in chronic subtle tissue damage, even in patients without overt brain infarction. The aim of this study was to investigate hypoperfusion-related changes of cerebral energy metabolism and their potential restitution after revascularization. For this purpose, 3-dimensional 31P magnetic resonance spectroscopy and oxygenation-sensitive T2' magnetic resonance imaging were used (with 1/T2'=1/T2*-1/T2), which were expected to cross-validate each other. Methods- Ten patients with unilateral high-grade carotid artery stenosis resulting in a transient ischemic attack or a nondisabling cerebral ischemia were included. Then, high-energy metabolites, intracellular pH, and oxygenation-sensitive quantitative (q)T2' values were determined in noninfarcted hypoperfused areas delineated on time-to-peak maps from perfusion-weighted imaging and in unaffected contralateral areas before and shortly after carotid stenting/endarterectomy. Repeated measures ANOVA was used to test for intervention effects. Results- Within dependent hypoperfused areas ipsilateral to the stenosis, qT2' was significantly decreased ( P<0.05) as compared to corresponding contralateral areas before carotid intervention. There was a significant effect of carotid intervention on qT2' values in both hemispheres ( P<0.001). No differences between hemispheres were found for qT2' after revascularization. Intracellular pH and qT2' values showed a significant negative relationship ( P=0.005) irrespective of time point and hemisphere. Conclusions- After revascularization of unilateral high-grade carotid stenosis, previously decreased qT2' in the dependent hypoperfused territory as marker of hypoxia reincreases not only in the dependent territory but also in corresponding contralateral brain tissue. This might indicate a restriction of the whole-brain oxygen metabolism in case of unilateral high-grade carotid stenosis and an improvement of whole-brain oxygenation after revascularization that goes beyond acute clinically apparent affection of the dependent territory. Furthermore, tissue oxygen supply seems to be closely linked to intracellular pH.
Collapse
Affiliation(s)
- Alexander Seiler
- From the Department of Neurology (A.S., W.P.), Goethe University Frankfurt, Germany
| | - Sara Kammerer
- Institute of Neuroradiology (S.K., A.G., J.R.S., E.H., U.P., M.W.), Goethe University Frankfurt, Germany
| | - Alexander Gühl
- Institute of Neuroradiology (S.K., A.G., J.R.S., E.H., U.P., M.W.), Goethe University Frankfurt, Germany
| | - Jan Rüdiger Schüre
- Institute of Neuroradiology (S.K., A.G., J.R.S., E.H., U.P., M.W.), Goethe University Frankfurt, Germany
| | - Ralf Deichmann
- Brain Imaging Center (R.D., U.N.), Goethe University Frankfurt, Germany
| | - Ulrike Nöth
- Brain Imaging Center (R.D., U.N.), Goethe University Frankfurt, Germany
| | | | - Elke Hattingen
- Institute of Neuroradiology (S.K., A.G., J.R.S., E.H., U.P., M.W.), Goethe University Frankfurt, Germany
| | - Michael Keese
- Department of Vascular Surgery (M.K.), Goethe University Frankfurt, Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology (S.K., A.G., J.R.S., E.H., U.P., M.W.), Goethe University Frankfurt, Germany
| | - Marlies Wagner
- Institute of Neuroradiology (S.K., A.G., J.R.S., E.H., U.P., M.W.), Goethe University Frankfurt, Germany
| |
Collapse
|
14
|
Stone AJ, Harston GWJ, Carone D, Okell TW, Kennedy J, Blockley NP. Prospects for investigating brain oxygenation in acute stroke: Experience with a non-contrast quantitative BOLD based approach. Hum Brain Mapp 2019; 40:2853-2866. [PMID: 30860660 PMCID: PMC6563088 DOI: 10.1002/hbm.24564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolic markers of baseline brain oxygenation and tissue perfusion have an important role to play in the early identification of ischaemic tissue in acute stroke. Although well established MRI techniques exist for mapping brain perfusion, quantitative imaging of brain oxygenation is poorly served. Streamlined-qBOLD (sqBOLD) is a recently developed technique for mapping oxygenation that is well suited to the challenge of investigating acute stroke. In this study a noninvasive serial imaging protocol was implemented, incorporating sqBOLD and arterial spin labelling to map blood oxygenation and perfusion, respectively. The utility of these parameters was investigated using imaging based definitions of tissue outcome (ischaemic core, infarct growth and contralateral tissue). Voxel wise analysis revealed significant differences between all tissue outcomes using pairwise comparisons for the transverse reversible relaxation rate (R 2 '), deoxygenated blood volume (DBV) and deoxyghaemoglobin concentration ([dHb]; p < 0.01 in all cases). At the patient level (n = 9), a significant difference was observed for [dHb] between ischaemic core and contralateral tissue. Furthermore, serial analysis at the patient level (n = 6) revealed significant changes in R 2 ' between the presentation and 1 week scans for both ischaemic core (p < 0.01) and infarct growth (p < 0.05). In conclusion, this study presents evidence supporting the potential of sqBOLD for imaging oxygenation in stroke.
Collapse
Affiliation(s)
- Alan J Stone
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - George W J Harston
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Davide Carone
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - James Kennedy
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas P Blockley
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Seiler A, Blockley NP, Deichmann R, Nöth U, Singer OC, Chappell MA, Klein JC, Wagner M. The relationship between blood flow impairment and oxygen depletion in acute ischemic stroke imaged with magnetic resonance imaging. J Cereb Blood Flow Metab 2019; 39:454-465. [PMID: 28929836 PMCID: PMC6421246 DOI: 10.1177/0271678x17732448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oxygenation-sensitive spin relaxation time T2' and relaxation rate R2' (1/T2') are presumed to be markers of the cerebral oxygen extraction fraction (OEF) in acute ischemic stroke. In this study, we investigate the relationship of T2'/R2' with dynamic susceptibility contrast-based relative cerebral blood flow (rCBF) in acute ischemic stroke to assess their plausibility as surrogate markers of the ischemic penumbra. Twenty-one consecutive patients with internal carotid artery and/or middle cerebral artery occlusion were studied at 3.0 T. A physiological model of the cerebral vasculature (VM) was used to process PWI raw data in addition to a conventional deconvolution technique. T2', R2', and rCBF values were extracted from the ischemic core and hypoperfused areas. Within hypoperfused tissue, no correlation was found between deconvolved rCBF and T2' ( r = -0.05, p = 0.788), or R2' ( r = 0.039, p = 0.836). In contrast, we found a strong positive correlation with T2' ( r = 0.444, p = 0.006) and negative correlation with R2' ( r = -0.494, p = 0.0025) for rCBFVM, indicating increasing OEF with decreasing CBF and that rCBF based on the vascular model may be more closely related to metabolic disturbances. Further research to refine and validate these techniques may enable their use as MRI-based surrogate markers of the ischemic penumbra for selecting stroke patients for interventional treatment strategies.
Collapse
Affiliation(s)
- Alexander Seiler
- 1 Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany
| | - Nicholas P Blockley
- 2 Nuffield Department of Clinical Neurosciences, Oxford Center for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Ralf Deichmann
- 3 Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Ulrike Nöth
- 3 Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Oliver C Singer
- 1 Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany
| | - Michael A Chappell
- 2 Nuffield Department of Clinical Neurosciences, Oxford Center for Functional MRI of the Brain, University of Oxford, Oxford, UK.,4 Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Johannes C Klein
- 5 Nuffield Department of Clinical Neurosciences, Oxford University, and Department of Neurology, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Marlies Wagner
- 6 Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
16
|
Liu L, Chen S, Zhang F, Wu FX, Pan Y, Wang J. Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04096-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Vietti Violi N, Hilbert T, Bastiaansen JAM, Knebel JF, Ledoux JB, Stemmer A, Meuli R, Kober T, Schmidt S. Patient respiratory-triggered quantitative T 2 mapping in the pancreas. J Magn Reson Imaging 2019; 50:410-416. [PMID: 30637852 PMCID: PMC6766866 DOI: 10.1002/jmri.26612] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Long acquisition times and motion sensitivity limit T2 mapping in the abdomen. Accelerated mapping at 3 T may allow for quantitative assessment of diffuse pancreatic disease in patients during free‐breathing. Purpose To test the feasibility of respiratory‐triggered quantitative T2 analysis in the pancreas and correlate T2‐values with age, body mass index, pancreatic location, main pancreatic duct dilatation, and underlying pathology. Study Type Retrospective single‐center pilot study. Population Eighty‐eight adults. Field Strength/Sequence Ten‐fold accelerated multiecho‐spin‐echo 3 T MRI sequence to quantify T2 at 3 T. Assessment Two radiologists independently delineated three regions of interest inside the pancreatic head, body, and tail for each acquisition. Means and standard deviations for T2 values in these regions were determined. T2‐value variation with demographic data, intraparenchymal location, pancreatic duct dilation, and underlying pancreatic disease was assessed. Statistical Tests Interreader reliability was determined by calculating the interclass coefficient (ICCs). T2 values were compared for different pancreatic locations by analysis of variance (ANOVA). Interpatient associations between T2 values and demographical, clinical, and radiological data were calculated (ANOVA). Results The accelerated T2 mapping sequence was successfully performed in all participants (mean acquisition time, 2:48 ± 0:43 min). Low T2 value variability was observed across all patients (intersubject) (head: 60.2 ± 8.3 msec, body: 63.9 ± 11.5 msec, tail: 66.8 ± 16.4 msec). Interreader agreement was good (ICC, 0.82, 95% confidence interval: 0.77–0.86). T2‐values differed significantly depending on age (P < 0.001), location (P < 0.001), main pancreatic duct dilatation (P < 0.001), and diffuse pancreatic disease (P < 0.03). Data Conclusion The feasibility of accelerated T2 mapping at 3 T in moving abdominal organs was demonstrated in the pancreas, since T2 values were stable and reproducible. In the pancreatic parenchyma, T2‐values were significantly dependent on demographic and clinical parameters. Level of Evidence: 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:410–416.
Collapse
Affiliation(s)
- Naïk Vietti Violi
- Department of Radiology, University hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Tom Hilbert
- Department of Radiology, University hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jessica A M Bastiaansen
- Department of Radiology, University hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jean-Francois Knebel
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Laboratory for investigative neurophysiology (The LINE), Department of Radiology and Department of Clinical Neurosciences, University hospital center and University of Lausanne, Lausanne, Switzerland
| | - Jean-Baptiste Ledoux
- Department of Radiology, University hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | | | - Reto Meuli
- Department of Radiology, University hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Tobias Kober
- Department of Radiology, University hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sabine Schmidt
- Department of Radiology, University hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
18
|
Abstract
Gaining insights into brain oxygen metabolism has been one of the key areas of research in neurosciences. Extensive efforts have been devoted to developing approaches capable of providing measures of brain oxygen metabolism not only under normal physiological conditions but, more importantly, in various pathophysiological conditions such as cerebral ischemia. In particular, quantitative measures of cerebral metabolic rate of oxygen using positron emission tomography (PET) have been shown to be capable of discerning brain tissue viability during ischemic insults. However, the complex logistics associated with oxygen-15 PET have substantially hampered its wide clinical applicability. In contrast, magnetic resonance imaging (MRI)-based approaches have provided quantitative measures of cerebral oxygen metabolism similar to that obtained using PET. Given the wide availability, MRI-based approaches may have broader clinical impacts, particularly in cerebral ischemia, when time is a critical factor in deciding treatment selection. In this article, we review the pathophysiological basis of altered cerebral hemodynamics and oxygen metabolism in cerebral ischemia, how quantitative measures of cerebral metabolism were obtained using the Kety-Schmidt approach, the physical concepts of non-invasive oxygen metabolism imaging approaches, and, finally, clinical applications of the discussed imaging approaches.
Collapse
Affiliation(s)
- Weili Lin
- 1 Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,2 Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William J Powers
- 2 Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Complete Restitution of the Ischemic Penumbra after Successful Thrombectomy : A Pilot Study Using Quantitative MRI. Clin Neuroradiol 2018; 29:415-423. [PMID: 29460141 DOI: 10.1007/s00062-018-0675-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/25/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE Endovascular thrombectomy is highly effective in patients with proximal large artery occlusion but the relevance of reperfusion injury after recanalization is a matter of debate. The aim of this study was to investigate potential residual metabolic distress and microstructural tissue damage or edema after reperfusion using quantitative oxygen-sensitive T2' and T2-mapping in patients successfully treated by thrombectomy. METHODS Included in this study were 11 patients (mean age 70 ± 11.4 years) with acute ischemic stroke due to internal carotid artery and/or middle cerebral artery occlusion. Quantitative T2 and T2' (1/T2' = 1/T2* - 1/T2) were determined within the ischemic core and hypoperfused but salvaged tissue with delayed time-to-peak (TTP) in patients before and after successful thrombectomy and compared to a control region within the unaffected hemisphere. RESULTS Decreased T2' values within hypoperfused tissue before thrombectomy showed a normalization after recanalization (p < 0.01). In formerly hypoperfused but salvaged tissue, T2 values increased significantly after thrombectomy (p < 0.05) but did not differ from reference values in the control region. In salvaged tissue, increases of quantitative T2' and T2 to follow-up were more pronounced in areas with severe TTP delay. CONCLUSION After successful recanalization, T2' re-increased back to normal in formerly hypoperfused areas as a sign of prompt normalization of oxygen metabolism. Furthermore, quantitative T2 in the formerly hypoperfused tissue did not differ from reference values in unaffected tissue. These results indicate complete restitution of salvaged tissue after reperfusion and support the overall safety of endovascular thrombectomy with respect to microstructural tissue integrity.
Collapse
|
20
|
Alves GS, de Carvalho LDA, Sudo FK, Briand L, Laks J, Engelhardt E. A panel of clinical and neuropathological features of cerebrovascular disease through the novel neuroimaging methods. Dement Neuropsychol 2017; 11:343-355. [PMID: 29354214 PMCID: PMC5769992 DOI: 10.1590/1980-57642016dn11-040003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The last decade has witnessed substantial progress in acquiring diagnostic biomarkers for the diagnostic workup of cerebrovascular disease (CVD). Advanced neuroimaging methods not only provide a strategic contribution for the differential diagnosis of vascular dementia (VaD) and vascular cognitive impairment (VCI), but also help elucidate the pathophysiological mechanisms ultimately leading to small vessel disease (SVD) throughout its course. OBJECTIVE In this review, the novel imaging methods, both structural and metabolic, were summarized and their impact on the diagnostic workup of age-related CVD was analysed. Methods: An electronic search between January 2010 and 2017 was carried out on PubMed/MEDLINE, Institute for Scientific Information Web of Knowledge and EMBASE. RESULTS The use of full functional multimodality in simultaneous Magnetic Resonance (MR)/Positron emission tomography (PET) may potentially improve the clinical characterization of VCI-VaD; for structural imaging, MRI at 3.0 T enables higher-resolution scanning with greater imaging matrices, thinner slices and more detail on the anatomical structure of vascular lesions. CONCLUSION Although the importance of most of these techniques in the clinical setting has yet to be recognized, there is great expectancy in achieving earlier and more refined therapeutic interventions for the effective management of VCI-VaD.
Collapse
Affiliation(s)
| | | | - Felipe Kenji Sudo
- Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, RJ, Brazil
- Instituto D'Or de Ensino e Pesquisa, Rio de Janeiro, RJ, Brazil
| | - Lucas Briand
- Departamento de Medicina Interna, Universidade Federal do Ceará, CE, Brazil
| | - Jerson Laks
- Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Biomedicina Translacional (BIOTRANS), Unigranrio, Duque de Caxias, RJ, Brazil
| | - Eliasz Engelhardt
- Setor de Neurologia Cognitiva e do Comportamento, Instituto de Neurologia Deolindo Couto (INDC-CDA/IPUB), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
Jensen-Kondering U, Manavaki R, Ejaz S, Sawiak SJ, Carpenter TA, Fryer TD, Aigbirhio FI, Williamson DJ, Baron JC. Brain hypoxia mapping in acute stroke: Back-to-back T2' MR versus 18F-fluoromisonidazole PET in rodents. Int J Stroke 2017; 12:752-760. [PMID: 28523963 DOI: 10.1177/1747493017706221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Mapping the hypoxic brain in acute ischemic stroke has considerable potential for both diagnosis and treatment monitoring. PET using 18F-fluoro-misonidazole (FMISO) is the reference method; however, it lacks clinical accessibility and involves radiation exposure. MR-based T2' mapping may identify tissue hypoxia and holds clinical potential. However, its validation against FMISO imaging is lacking. Here we implemented back-to-back FMISO-PET and T2' MR in rodents subjected to acute middle cerebral artery occlusion. For direct clinical relevance, regions of interest delineating reduced T2' signal areas were manually drawn. Methods Wistar rats were subjected to filament middle cerebral artery occlusion, immediately followed by intravenous FMISO injection. Multi-echo T2 and T2* sequences were acquired twice during FMISO brain uptake, interleaved with diffusion-weighted imaging. Perfusion-weighted MR was also acquired whenever feasible. Immediately following MR, PET data reflecting the history of FMISO brain uptake during MR acquisition were acquired. T2' maps were generated voxel-wise from T2 and T2*. Two raters independently drew T2' lesion regions of interest. FMISO uptake and perfusion data were obtained within T2' consensus regions of interest, and their overlap with the automatically generated FMISO lesion and apparent diffusion coefficient lesion regions of interest was computed. Results As predicted, consensus T2' lesion regions of interest exhibited high FMISO uptake as well as substantial overlap with the FMISO lesion and significant hypoperfusion, but only small overlap with the apparent diffusion coefficient lesion. Overlap of the T2' lesion regions of interest between the two raters was ∼50%. Conclusions This study provides formal validation of T2' to map non-core hypoxic tissue in acute stroke. T2' lesion delineation reproducibility was suboptimal, reflecting unclear lesion borders.
Collapse
Affiliation(s)
- Ulf Jensen-Kondering
- 1 Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,3 Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Roido Manavaki
- 4 Department of Radiology, University of Cambridge, Cambridge, UK
| | - Sohail Ejaz
- 1 Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stephen J Sawiak
- 2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - T Adrian Carpenter
- 2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- 2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Franklin I Aigbirhio
- 2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David J Williamson
- 2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jean-Claude Baron
- 1 Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,5 INSERM U894, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France
| |
Collapse
|
22
|
Seiler A, Deichmann R, Nöth U, Pfeilschifter W, Berkefeld J, Singer OC, Klein JC, Wagner M. Oxygenation-Sensitive Magnetic Resonance Imaging in Acute Ischemic Stroke Using T2'/R2' Mapping: Influence of Relative Cerebral Blood Volume. Stroke 2017; 48:1671-1674. [PMID: 28455319 DOI: 10.1161/strokeaha.117.017086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/16/2017] [Accepted: 03/08/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Quantitative T2'/R2' mapping detect locally increased concentrations of deoxygenated hemoglobin-causing a decrease of T2' and increase of R2'-and might reflect increased cerebral oxygen extraction fraction. Because increases of (relative) cerebral blood volume (rCBV) may influence T2' and R2' through accumulation of deoxygenated hemoglobin, we aimed to investigate the impact of rCBV on T2'/R2' in patients with ischemic stroke. METHODS Data from patients with acute internal carotid artery and middle cerebral artery occlusion were analyzed. T2', R2', and rCBV were measured within the ischemic core, slightly and severely hypoperfused areas, and their relationship was examined. RESULTS A strong negative correlation with rCBV was found for R2' (r=-0.544; P=0.002), and T2' correlated positively with rCBV (r=0.546; P=0.001) in time-to-peak-delayed areas. T2'/R2' within hypoperfused tissue remained unchanged at normal or elevated rCBV levels. CONCLUSIONS T2' decrease/R2' increase within hypoperfused areas in ischemic stroke is not caused by local elevations of rCBV but most probably only by increased cerebral oxygen extraction fraction. However, considering rCBV is crucial to assess extent of oxygen extraction fraction changes by means of T2'/R2'.
Collapse
Affiliation(s)
- Alexander Seiler
- From the Department of Neurology (A.S., W.P., O.C.S.), Brain Imaging Center and Institute of Neuroradiology (R.D., U.N.), and Institute of Neuroradiology (J.B., M.W.), Goethe University Frankfurt, Germany; Nuffield Department of Clinical Neurosciences, Oxford University, United Kingdom (J.C.K.); and Department of Neurology, Oxford University Hospitals NHS Trust, United Kingdom (J.C.K.).
| | - Ralf Deichmann
- From the Department of Neurology (A.S., W.P., O.C.S.), Brain Imaging Center and Institute of Neuroradiology (R.D., U.N.), and Institute of Neuroradiology (J.B., M.W.), Goethe University Frankfurt, Germany; Nuffield Department of Clinical Neurosciences, Oxford University, United Kingdom (J.C.K.); and Department of Neurology, Oxford University Hospitals NHS Trust, United Kingdom (J.C.K.)
| | - Ulrike Nöth
- From the Department of Neurology (A.S., W.P., O.C.S.), Brain Imaging Center and Institute of Neuroradiology (R.D., U.N.), and Institute of Neuroradiology (J.B., M.W.), Goethe University Frankfurt, Germany; Nuffield Department of Clinical Neurosciences, Oxford University, United Kingdom (J.C.K.); and Department of Neurology, Oxford University Hospitals NHS Trust, United Kingdom (J.C.K.)
| | - Waltraud Pfeilschifter
- From the Department of Neurology (A.S., W.P., O.C.S.), Brain Imaging Center and Institute of Neuroradiology (R.D., U.N.), and Institute of Neuroradiology (J.B., M.W.), Goethe University Frankfurt, Germany; Nuffield Department of Clinical Neurosciences, Oxford University, United Kingdom (J.C.K.); and Department of Neurology, Oxford University Hospitals NHS Trust, United Kingdom (J.C.K.)
| | - Joachim Berkefeld
- From the Department of Neurology (A.S., W.P., O.C.S.), Brain Imaging Center and Institute of Neuroradiology (R.D., U.N.), and Institute of Neuroradiology (J.B., M.W.), Goethe University Frankfurt, Germany; Nuffield Department of Clinical Neurosciences, Oxford University, United Kingdom (J.C.K.); and Department of Neurology, Oxford University Hospitals NHS Trust, United Kingdom (J.C.K.)
| | - Oliver C Singer
- From the Department of Neurology (A.S., W.P., O.C.S.), Brain Imaging Center and Institute of Neuroradiology (R.D., U.N.), and Institute of Neuroradiology (J.B., M.W.), Goethe University Frankfurt, Germany; Nuffield Department of Clinical Neurosciences, Oxford University, United Kingdom (J.C.K.); and Department of Neurology, Oxford University Hospitals NHS Trust, United Kingdom (J.C.K.)
| | - Johannes C Klein
- From the Department of Neurology (A.S., W.P., O.C.S.), Brain Imaging Center and Institute of Neuroradiology (R.D., U.N.), and Institute of Neuroradiology (J.B., M.W.), Goethe University Frankfurt, Germany; Nuffield Department of Clinical Neurosciences, Oxford University, United Kingdom (J.C.K.); and Department of Neurology, Oxford University Hospitals NHS Trust, United Kingdom (J.C.K.)
| | - Marlies Wagner
- From the Department of Neurology (A.S., W.P., O.C.S.), Brain Imaging Center and Institute of Neuroradiology (R.D., U.N.), and Institute of Neuroradiology (J.B., M.W.), Goethe University Frankfurt, Germany; Nuffield Department of Clinical Neurosciences, Oxford University, United Kingdom (J.C.K.); and Department of Neurology, Oxford University Hospitals NHS Trust, United Kingdom (J.C.K.)
| |
Collapse
|
23
|
Seiler A, Deichmann R, Pfeilschifter W, Hattingen E, Singer OC, Wagner M. T2-Imaging to Assess Cerebral Oxygen Extraction Fraction in Carotid Occlusive Disease: Influence of Cerebral Autoregulation and Cerebral Blood Volume. PLoS One 2016; 11:e0161408. [PMID: 27560515 PMCID: PMC4999181 DOI: 10.1371/journal.pone.0161408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/04/2016] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Quantitative T2'-mapping detects regional changes of the relation of oxygenated and deoxygenated hemoglobin (Hb) by using their different magnetic properties in gradient echo imaging and might therefore be a surrogate marker of increased oxygen extraction fraction (OEF) in cerebral hypoperfusion. Since elevations of cerebral blood volume (CBV) with consecutive accumulation of Hb might also increase the fraction of deoxygenated Hb and, through this, decrease the T2'-values in these patients we evaluated the relationship between T2'-values and CBV in patients with unilateral high-grade large-artery stenosis. MATERIALS AND METHODS Data from 16 patients (13 male, 3 female; mean age 53 years) with unilateral symptomatic or asymptomatic high-grade internal carotid artery (ICA) or middle cerebral artery (MCA) stenosis/occlusion were analyzed. MRI included perfusion-weighted imaging and high-resolution T2'-mapping. Representative relative (r)CBV-values were analyzed in areas of decreased T2' with different degrees of perfusion delay and compared to corresponding contralateral areas. RESULTS No significant elevations in cerebral rCBV were detected within areas with significantly decreased T2'-values. In contrast, rCBV was significantly decreased (p<0.05) in regions with severe perfusion delay and decreased T2'. Furthermore, no significant correlation between T2'- and rCBV-values was found. CONCLUSIONS rCBV is not significantly increased in areas of decreased T2' and in areas of restricted perfusion in patients with unilateral high-grade stenosis. Therefore, T2' should only be influenced by changes of oxygen metabolism, regarding our patient collective especially by an increase of the OEF. T2'-mapping is suitable to detect altered oxygen consumption in chronic cerebrovascular disease.
Collapse
Affiliation(s)
- Alexander Seiler
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany
- * E-mail:
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Elke Hattingen
- Department of Neuroradiology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Oliver C. Singer
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany
- Department of Neurology, Helios HSK Hospital, Wiesbaden, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
24
|
Xu J, Chen A, Xiao J, Jiang Z, Tian Y, Tang Q, Cao P, Dai Y, Krainik A, Shen J. Evaluation of tumour vascular distribution and function using immunohistochemistry and BOLD fMRI with carbogen inhalation. Clin Radiol 2016; 71:1255-1262. [PMID: 27170218 DOI: 10.1016/j.crad.2016.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/18/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
Abstract
AIM To evaluate oxygenation changes in rat subcutaneous C6 gliomas using blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) combined with non-haemodynamic response function (non-HRF) analysis. MATERIALS AND METHODS BOLD fMRI were performed during carbogen inhalation in 20 Wistar rats bearing gliomas. Statistical maps of spatial oxygenation changes were computed by a dedicated non-HRF analysis algorithm. Three types of regions of interest (ROIs) were defined: (1) maximum re-oxygenation zone (ROImax), (2) re-oxygenation zones that were less than the maximum re-oxygenation (ROInon-max), and (3) zones without significant re-oxygenation (ROInone). The values of percent BOLD signal change (PSC), percent enhancement (ΔSI), and significant re-oxygenation (T) were extracted from each ROI. Tumours were sectioned for histology using the fMRI scan orientation and were stained with haematoxylin and eosin and CD105. The number of microvessels (MVN) in each ROI was counted. Differences and correlations among the values for T, PSC, ΔSI, and MVN were determined. RESULTS After carbogen inhalation, the PSC significantly increased in the ROImax areas (p<0.01) located in the tumour parenchyma. No changes occurred in any of the ROInone areas (20/20). Some changes occurred in a minority of the ROInon-max areas (3/60) corresponding to tumour necrosis. MVN and PSC (R=0.59, p=0.01) were significantly correlated in the ROImax areas. In the ROInon-max areas, MVN was significantly correlated with PSC (R=0.55, p=0.00) and ΔSI (R=0.37, p=0.00). CONCLUSIONS Statistical maps obtained via BOLD fMRI with non-HRF analysis can assess the re-oxygenation of gliomas.
Collapse
Affiliation(s)
- J Xu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - A Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - J Xiao
- Department of Radiology, The Central Hospital of Wuhan, Wuhan, China
| | - Z Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.
| | - Y Tian
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China; Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Q Tang
- Department of Radiology, Wuxi People's Hospital, Wuxi, China
| | - P Cao
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Y Dai
- Magnetic Resonance Imaging Institute for Biomedical Research, Wayne State University, Detroit, MI, USA
| | - A Krainik
- Department of Neuroradiology and MRI, CHU Grenoble-IFR1, Grenoble, France
| | - J Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Quantitative T2* mapping reveals early temporo-spatial dynamics in an ischemic stroke model. J Neurosci Methods 2016; 259:83-89. [DOI: 10.1016/j.jneumeth.2015.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 11/17/2022]
|
26
|
Mapping of cerebral metabolic rate of oxygen using dynamic susceptibility contrast and blood oxygen level dependent MR imaging in acute ischemic stroke. Neuroradiology 2015; 57:1253-61. [DOI: 10.1007/s00234-015-1592-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022]
|
27
|
McPhee KC, Wilman AH. T2 quantification from only proton density and T2-weighted MRI by modelling actual refocusing angles. Neuroimage 2015; 118:642-50. [DOI: 10.1016/j.neuroimage.2015.05.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 11/30/2022] Open
|