1
|
Santini T, Shim A, Liou J, Rahman N, Varela‐Mattatall G, Budde MD, Inoue W, Everling S, Baron CA. Investigating microstructural changes between in vivo and perfused ex vivo marmoset brains using oscillating gradient and b-tensor encoded diffusion MRI at 9.4 T. Magn Reson Med 2025; 93:788-802. [PMID: 39323069 PMCID: PMC11604852 DOI: 10.1002/mrm.30298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE To investigate microstructural alterations induced by perfusion fixation in brain tissues using advanced diffusion MRI techniques and estimate their potential impact on the application of ex vivo models to in vivo microstructure. METHODS We used oscillating gradient spin echo (OGSE) and b-tensor encoding diffusion MRI to examine in vivo and ex vivo microstructural differences in the marmoset brain. OGSE was used to shorten effective diffusion times, whereas b-tensor encoding allowed for the differentiation of isotropic and anisotropic kurtosis. Additionally, we performed Monte Carlo simulations to estimate the potential microstructural changes in the tissues. RESULTS We report large changes (˜50%-60%) in kurtosis frequency dispersion (OGSE) and in both anisotropic and isotropic kurtosis (b-tensor encoding) after perfusion fixation. Structural MRI showed an average volume reduction of about 10%. Monte Carlo simulations indicated that these alterations could likely be attributed to extracellular fluid loss possibly combined with axon beading and increased dot compartment signal fraction. Little evidence was observed for reductions in axonal caliber. CONCLUSION Our findings shed light on advanced MRI parameter changes that are induced by perfusion fixation and potential microstructural sources for these changes. This work also suggests that caution should be exercised when applying ex vivo models to infer in vivo tissue microstructure, as significant differences may arise.
Collapse
Affiliation(s)
- Tales Santini
- Western University
LondonOntarioCanada
- University of PittsburghPittsburghPennsylvaniaUSA
| | | | - Jr‐Jiun Liou
- University of PittsburghPittsburghPennsylvaniaUSA
| | | | | | | | | | | | | |
Collapse
|
2
|
Koska IO, Selver A, Gelal F, Uluc ME, Çetinoğlu YK, Yurttutan N, Serındere M, Dicle O. End-to-end deep learning patient level classification of affected territory of ischemic stroke patients in DW-MRI. Neuroradiology 2025; 67:137-151. [PMID: 39656236 DOI: 10.1007/s00234-024-03520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 12/02/2024] [Indexed: 02/07/2025]
Abstract
PURPOSE To develop an end-to-end DL model for automated classification of affected territory in DWI of stroke patients. MATERIALS AND METHODS In this retrospective multicenter study, brain DWI studies from January 2017 to April 2020 from Center 1, from June 2020 to December 2020 from Center 2, and from November 2019 to April 2020 from Center 3 were included. Four radiologists labeled images into five classes: anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior circulation (PC), and watershed (WS) regions, as well as normal images. Additionally, for Center 1, clinical information was encoded as a domain knowledge vector to incorporate into image embeddings. 3D convolutional neural network (CNN) and attention gate integrated versions for direct 3D encoding, long short-term memory (LSTM-CNN), and time-distributed layer for slice-based encoding were employed. Balanced classification accuracy, macro averaged f1 score, AUC, and interrater Cohen's kappa were calculated. RESULTS Overall, 624 DWI MRIs from 3 centers were utilized (mean age, interval: 66.89 years, 29-95 years; 345 male) with 439 patients in the training, 103 in the validation, and 82 in the test sets. The best model was a slice-based parallel encoding model with 0.88 balanced accuracy, 0.80 macro-f1 score, and an AUC of 0.98. Clinical domain knowledge integration improved the performance with 0.93 best overall accuracy with parallel stream model embeddings and support vector machine classifiers. The mean kappa value for interrater agreement was 0.87. CONCLUSION Developed end-to-end deep learning models performed well in classifying affected regions from stroke in DWI. CLINICAL RELEVANCE STATEMENT The end-to-end deep learning model with a parallel stream encoding strategy for classifying stroke regions in DWI has performed comparably with radiologists.
Collapse
Affiliation(s)
- Ilker Ozgur Koska
- Department of Radiology, Behçet Uz Children's Hospital, Izmir, Turkey.
- Department of Biomedical Technologies, Dokuz Eylül Universtiy The Graduate School of Natural and Applied Sciences, Buca, Izmir, Turkey.
| | - Alper Selver
- Department of Biomedical Technologies, Dokuz Eylül Universtiy The Graduate School of Natural and Applied Sciences, Buca, Izmir, Turkey
- Department of Electrical and Electronics Engineering, Dokuz Eylül University Engineering Faculty, Adatepe Mahallesi Doğuş Caddesi, Buca, İzmir, 35390, Turkey
- Bioizmir Izmir Health Technologies Development and Accelerator, Dokuz Eylül University, 15 Temmuz Sağlık Sanat Yerleşkesi / İnciraltı, Izmir, 35330, Türkiye
| | - Fazıl Gelal
- Department of Radiology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Basin Sitesi, Izmir, 35360, Turkey
| | - Muhsın Engın Uluc
- Department of Radiology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Basin Sitesi, Izmir, 35360, Turkey
| | | | - Nursel Yurttutan
- Department of Radiology, Kahramanmaraş Sütçü İmam University Hospital, Kahramanmaraş, Turkey
| | - Mehmet Serındere
- Department of Radiology, Hatay Training and Research Hospital, Güzelburç/ Hatay, Turkey
| | - Oğuz Dicle
- Dokuz Eylül Üniversitesi, Dokuz Eylül University Department of Radiology, 15 Temmuz Sağlık Sanat Yerleşkesi / İnciraltı, İzmir, 35340, Turkey
| |
Collapse
|
3
|
Koska IO, Selver MA, Gelal F, Uluc ME, Çetinoğlu YK, Yurttutan N, Serindere M, Dicle O. Voxel level dense prediction of acute stroke territory in DWI using deep learning segmentation models and image enhancement strategies. Jpn J Radiol 2024; 42:962-972. [PMID: 38727961 DOI: 10.1007/s11604-024-01582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/23/2024] [Indexed: 08/31/2024]
Abstract
PURPOSE To build a stroke territory classifier model in DWI by designing the problem as a multiclass segmentation task by defining each stroke territory as distinct segmentation targets and leveraging the guidance of voxel wise dense predictions. MATERIALS AND METHODS Retrospective analysis of DWI images of 218 consecutive acute anterior or posterior ischemic stroke patients examined between January 2017 to April 2020 in a single center was carried out. Each stroke area was defined as distinct segmentation target with different class labels. U-Net based network was trained followed by majority voting of the voxel wise predictions of the model to transform them into patient level stroke territory classes. Effects of bias field correction and registration to a common space were explored. RESULTS Of the 218 patients included in this study, 141 (65%) were anterior stroke, and 77 were posterior stroke (35%) whereas 117 (53%) were male and 101 (47%) were female. The model built with original images reached 0.77 accuracy, while the model built with N4 bias corrected images reached 0.80 and the model built with images which were N4 bias corrected and then registered into a common space reached 0.83 accuracy values. CONCLUSION Voxel wise dense prediction coupled with bias field correction to eliminate artificial signal increase and registration to a common space help models for better performance than using original images. Knowing the properties of target domain while designing deep learning models is important for the overall success of these models.
Collapse
Affiliation(s)
- Ilker Ozgur Koska
- Department of Radiology, Behçet Uz Children's Hospital, Izmir, Turkey.
- Dokuz Eylül University The Graduate School of Natural and Applied Sciences, Dokuz Eylül Universtiy, Izmir, Turkey.
| | - M Alper Selver
- Engineering Faculty, Department of Electrical and Electronics Engineering, Dokuz Eylül University, Izmir, 35390, Turkey
- İzmir Health Technologies Development and Accelerator (BioIzmir), Dokuz Eylül University, Izmir, Turkey
| | - Fazil Gelal
- Department of Radiology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Basin Sitesi, Izmir, 35360, Turkey
| | - Muhsin Engin Uluc
- Department of Radiology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Basin Sitesi, Izmir, 35360, Turkey
| | | | - Nursel Yurttutan
- Department of Radiology, Kahramanmaraş Sütçü İmam University Hospital, Kahramanmaraş, Turkey
| | - Mehmet Serindere
- Department of Radiology, Hatay Training and Research Hospital, Güzelburç/Hatay, Turkey
| | - Oğuz Dicle
- Medicine Faculty, Department of Radiology, Dokuz Eylül University, 15 Temmuz Sağlık Sanat Yerleşkesi/İnciraltı, İzmir, 35340, Turkey
| |
Collapse
|
4
|
Han N, Zhang X, Zhang Y, Liu Y, Ma H, Ge H, Wang Y, Li S, Yan X, Li T, Wu Y, Ma J, Shi W, Zhang G, Tian Y, Chang M. Endovascular thrombectomy versus medical management on outcomes with infarct volumes more than 70 mL. Ann Clin Transl Neurol 2024; 11:2040-2048. [PMID: 38858521 PMCID: PMC11330213 DOI: 10.1002/acn3.52124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVE Endovascular thrombectomy (EVT) in patients with large infarct volume remains controversial. The aim of this study is to compare clinical outcomes between EVT and medical management in acute large vessel occlusion with infarct volumes larger than 70 mL on diffusion-weighted magnetic resonance imaging (DWI). METHODS A prospective observational cohort study was conducted, including patients with anterior cerebral circulation occlusion due to ischemic stroke with infarct volumes larger than 70 mL within 24 h of onset between July 2018 and June 2023. Eligible patients were divided into two groups: the EVT group and the medical management (non-EVT) group. The main outcomes were functional independence and mortality at 90 days. To assess clinical endpoints, we selected variables including age, NIHSS score, infarct volume, and occlusion location for 1:1 propensity score (PS) matching and PS adjustment using inverse probability of treatment weighting (IPTW). RESULTS Among the 131 identified patients (mean [SD] age, 69.9 [13.7] years; 58 female), the median infarct volume was 123.6 mL. Of these patients, 75 (57.3%) underwent EVT. After PS adjustment, EVT was not associated with functional independence (10.9% vs. 10.9%; p = 1.000) or mortality (43.5% vs. 47.8%; p = 0.675). Additionally, after PS adjustment using IPTW, EVT was also not associated with a functional independence (15.8% vs. 13.7%; p = 0.767) or mortality (46.8% vs. 44.0%; p = 0.762). CONCLUSION This study provides real-world evidence regarding infarct volumes larger than 70 mL, indicating that EVT does not provide benefits compared to medical management alone when considering age, NIHSS score, infarct volume, and occlusion location.
Collapse
Affiliation(s)
- Nannan Han
- Department of NeurologyThe Affiliated Hospital of Northwest UniversityXi'anChina
| | - Xiaobo Zhang
- The College of Life SciencesNorthwest UniversityXi'anChina
| | - Yu Zhang
- The College of Life SciencesNorthwest UniversityXi'anChina
| | - Yu Liu
- School of Information Science and TechnologyNorthwest UniversityXi'anChina
| | - Haojun Ma
- Department of NeurologyThe Affiliated Hospital of Northwest UniversityXi'anChina
| | - Hanming Ge
- Department of NeurologyThe Affiliated Hospital of Northwest UniversityXi'anChina
| | - Yanfei Wang
- Department of NeurologyThe Affiliated Hospital of Northwest UniversityXi'anChina
| | - Shilin Li
- Department of NeurologyThe Affiliated Hospital of Northwest UniversityXi'anChina
| | - Xudong Yan
- Department of NeurologyThe Affiliated Hospital of Northwest UniversityXi'anChina
| | - Tengfei Li
- Department of NeurologyThe Affiliated Hospital of Northwest UniversityXi'anChina
| | - Yulun Wu
- Department of NeurologyThe Affiliated Hospital of Northwest UniversityXi'anChina
| | - Juan Ma
- Department of NeurologyThe Affiliated Hospital of Northwest UniversityXi'anChina
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular DiseasesThe Affiliated Hospital of Northwest UniversityXi'anChina
- Clinical Medical Research CenterThe Affiliated Hospital of Northwest UniversityXi'anChina
| | - Gejuan Zhang
- Department of NeurologyThe Affiliated Hospital of Northwest UniversityXi'anChina
| | - Ye Tian
- Department of NeurologyThe Affiliated Hospital of Northwest UniversityXi'anChina
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular DiseasesThe Affiliated Hospital of Northwest UniversityXi'anChina
- Clinical Medical Research CenterThe Affiliated Hospital of Northwest UniversityXi'anChina
| | - Mingze Chang
- Department of NeurologyThe Affiliated Hospital of Northwest UniversityXi'anChina
| |
Collapse
|
5
|
Wu D, Lee HH, Ba R, Turnbill V, Wang X, Luo Y, Walczak P, Fieremans E, Novikov DS, Martin LJ, Northington FJ, Zhang J. In vivo mapping of cellular resolution neuropathology in brain ischemia with diffusion MRI. SCIENCE ADVANCES 2024; 10:eadk1817. [PMID: 39018390 PMCID: PMC466947 DOI: 10.1126/sciadv.adk1817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Noninvasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent advances in diffusion magnetic resonance imaging enabled in vivo examination of tissue microstructures well beyond the imaging resolution. Here, we proposed to use diffusion time-dependent diffusion kurtosis imaging (tDKI) to simultaneously assess cellular morphology and transmembrane permeability in hypoxic-ischemic (HI) brain injury. Through numerical simulations and organoid imaging, we demonstrated the feasibility of capturing effective size and permeability changes using tDKI. In vivo MRI of HI-injured mouse brains detected a shift of the tDKI peak to longer diffusion times, suggesting swelling of the cellular processes. Furthermore, we observed a faster decrease of the tDKI tail, reflecting increased transmembrane permeability associated with up-regulated water exchange or necrosis. Such information, unavailable from a single diffusion time, can predict salvageable tissues. Preliminary applications of tDKI in patients with ischemic stroke suggested increased transmembrane permeability in stroke regions, illustrating tDKI's potential for detecting pathological changes in the clinics.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong-Hsi Lee
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ruicheng Ba
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Victoria Turnbill
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical School, Weifang, Shandong, China
| | - Yu Luo
- Department of Radiology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Piotr Walczak
- Department of Radiology, University of Maryland, Baltimore, MD, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lee J. Martin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances J. Northington
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiangyang Zhang
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Zhou M, Stobbe R, Szczepankiewicz F, Budde M, Buck B, Kate M, Lloret M, Fairall P, Butcher K, Shuaib A, Emery D, Nilsson M, Westin CF, Beaulieu C. Tensor-valued diffusion MRI of human acute stroke. Magn Reson Med 2024; 91:2126-2141. [PMID: 38156813 DOI: 10.1002/mrm.29975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Tensor-valued diffusion encoding can disentangle orientation dispersion and subvoxel anisotropy, potentially offering insight into microstructural changes after cerebral ischemia. The purpose was to evaluate tensor-valued diffusion MRI in human acute ischemic stroke, assess potential confounders from diffusion time dependencies, and compare to Monte Carlo diffusion simulations of axon beading. METHODS Linear (LTE) and spherical (STE) b-tensor encoding with inherently different effective diffusion times were acquired in 21 acute ischemic stroke patients between 3 and 57 h post-onset at 3 T in 2.5 min. In an additional 10 patients, STE with 2 LTE yielding different effective diffusion times were acquired for comparison. Diffusional variance decomposition (DIVIDE) was used to estimate microscopic anisotropy (μFA), as well as anisotropic, isotropic, and total diffusional variance (MKA , MKI , MKT ). DIVIDE parameters, and diffusion tensor imaging (DTI)-derived mean diffusivity and fractional anisotropy (FA) were compared in lesion versus contralateral white matter. Monte Carlo diffusion simulations of various cylindrical geometries for all b-tensor protocols were used to interpret parameter measurements. RESULTS MD was ˜40% lower in lesions for all LTE/STE protocols. The DIVIDE parameters varied with effective diffusion time: higher μFA and MKA in lesion versus contralateral white matter for STE with longer effective diffusion time LTE, whereas the shorter effective diffusion time LTE protocol yielded lower μFA and MKA in lesions. Both protocols, regardless of diffusion time, were consistent with simulations of greater beading amplitude and intracellular volume fraction. CONCLUSION DIVIDE parameters depend on diffusion time in acute stroke but consistently indicate neurite beading and larger intracellular volume fraction.
Collapse
Affiliation(s)
- Mi Zhou
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Stobbe
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | | | - Matthew Budde
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian Buck
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Mahesh Kate
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Mar Lloret
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Paige Fairall
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Ken Butcher
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ashfaq Shuaib
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Derek Emery
- Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Markus Nilsson
- Clinical Sciences Lund, Lund University, Lund, Scania, Sweden
| | - Carl-Fredrik Westin
- Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Beaulieu
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Wu D, Kang L, Li H, Ba R, Cao Z, Liu Q, Tan Y, Zhang Q, Li B, Yuan J. Developing an AI-empowered head-only ultra-high-performance gradient MRI system for high spatiotemporal neuroimaging. Neuroimage 2024; 290:120553. [PMID: 38403092 DOI: 10.1016/j.neuroimage.2024.120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
Recent advances in neuroscience requires high-resolution MRI to decipher the structural and functional details of the brain. Developing a high-performance gradient system is an ongoing effort in the field to facilitate high spatial and temporal encoding. Here, we proposed a head-only gradient system NeuroFrontier, dedicated for neuroimaging with an ultra-high gradient strength of 650 mT/m and 600 T/m/s. The proposed system features in 1) ultra-high power of 7MW achieved by running two gradient power amplifiers using a novel paralleling method; 2) a force/torque balanced gradient coil design with a two-step mechanical structure that allows high-efficiency and flexible optimization of the peripheral nerve stimulation; 3) a high-density integrated RF system that is miniaturized and customized for the head-only system; 4) an AI-empowered compressed sensing technique that enables ultra-fast acquisition of high-resolution images and AI-based acceleration in q-t space for diffusion MRI (dMRI); and 5) a prospective head motion correction technique that effectively corrects motion artifacts in real-time with 3D optical tracking. We demonstrated the potential advantages of the proposed system in imaging resolution, speed, and signal-to-noise ratio for 3D structural MRI (sMRI), functional MRI (fMRI) and dMRI in neuroscience applications of submillimeter layer-specific fMRI and dMRI. We also illustrated the unique strength of this system for dMRI-based microstructural mapping, e.g., enhanced lesion contrast at short diffusion-times or high b-values, and improved estimation accuracy for cellular microstructures using diffusion-time-dependent dMRI or for neurite microstructures using q-space approaches.
Collapse
Affiliation(s)
- Dan Wu
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, China.
| | - Liyi Kang
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Haotian Li
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Ruicheng Ba
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Zuozhen Cao
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Qian Liu
- United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Yingchao Tan
- United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Qinwei Zhang
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Bo Li
- United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Jianmin Yuan
- United Imaging Healthcare Co., Ltd, Shanghai, China
| |
Collapse
|
8
|
Chowdhury R, Wan J, Gardier R, Rafael-Patino J, Thiran JP, Gibou F, Mukherjee A. Molecular Imaging with Aquaporin-Based Reporter Genes: Quantitative Considerations from Monte Carlo Diffusion Simulations. ACS Synth Biol 2023; 12:3041-3049. [PMID: 37793076 PMCID: PMC11604347 DOI: 10.1021/acssynbio.3c00372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Aquaporins provide a unique approach for imaging genetic activity in deep tissues by increasing the rate of cellular water diffusion, which generates a magnetic resonance contrast. However, distinguishing aquaporin signals from the tissue background is challenging because water diffusion is influenced by structural factors, such as cell size and packing density. Here, we developed a Monte Carlo model to analyze how cell radius and intracellular volume fraction quantitatively affect aquaporin signals. We demonstrated that a differential imaging approach based on subtracting signals at two diffusion times can improve specificity by unambiguously isolating aquaporin signals from the tissue background. We further used Monte Carlo simulations to analyze the connection between diffusivity and the percentage of cells engineered to express aquaporin and established a mapping that accurately determined the volume fraction of aquaporin-expressing cells in mixed populations. The quantitative framework developed in this study will enable a broad range of applications in biomedical synthetic biology, requiring the use of aquaporins to noninvasively monitor the location and function of genetically engineered devices in live animals.
Collapse
Affiliation(s)
- Rochishnu Chowdhury
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Jinyang Wan
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Remy Gardier
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Rafael-Patino
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Frederic Gibou
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Computer Science, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Biological Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
9
|
Dai E, Zhu A, Yang GK, Quah K, Tan ET, Fiveland E, Foo TKF, McNab JA. Frequency-dependent diffusion kurtosis imaging in the human brain using an oscillating gradient spin echo sequence and a high-performance head-only gradient. Neuroimage 2023; 279:120328. [PMID: 37586445 PMCID: PMC10529993 DOI: 10.1016/j.neuroimage.2023.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023] Open
Abstract
Measuring the time/frequency dependence of diffusion MRI is a promising approach to distinguish between the effects of different tissue microenvironments, such as membrane restriction, tissue heterogeneity, and compartmental water exchange. In this study, we measure the frequency dependence of diffusivity (D) and kurtosis (K) with oscillating gradient diffusion encoding waveforms and a diffusion kurtosis imaging (DKI) model in human brains using a high-performance, head-only MAGNUS gradient system, with a combination of b-values, oscillating frequencies (f), and echo time that has not been achieved in human studies before. Frequency dependence of diffusivity and kurtosis are observed in both global and local white matter (WM) and gray matter (GM) regions and characterized with a power-law model ∼Λ*fθ. The frequency dependences of diffusivity and kurtosis (including changes between fmin and fmax, Λ, and θ) vary over different WM and GM regions, indicating potential microstructural differences between regions. A trend of decreasing kurtosis over frequency in the short-time limit is successfully captured for in vivo human brains. The effects of gradient nonlinearity (GNL) on frequency-dependent diffusivity and kurtosis measurements are investigated and corrected. Our results show that the GNL has prominent scaling effects on the measured diffusivity values (3.5∼5.5% difference in the global WM and 6∼8% difference in the global cortex) and subsequently affects the corresponding power-law parameters (Λ, θ) while having a marginal influence on the measured kurtosis values (<0.05% difference) and power-law parameters (Λ, θ). This study expands previous OGSE studies and further demonstrates the translatability of frequency-dependent diffusivity and kurtosis measurements to human brains, which may provide new opportunities to probe human brain microstructure in health and disease.
Collapse
Affiliation(s)
- Erpeng Dai
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | | | - Grant K Yang
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Kristin Quah
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Ek T Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | | | | | | |
Collapse
|
10
|
Wu D, Turnbill V, Lee HH, Wang X, Ba R, Walczak P, Martin LJ, Fieremans E, Novikov DS, Northington FJ, Zhang J. In vivo Mapping of Cellular Resolution Neuropathology in Brain Ischemia by Diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552374. [PMID: 37609182 PMCID: PMC10441332 DOI: 10.1101/2023.08.08.552374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Non-invasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent developments in diffusion MRI have produced new tools for examining tissue microstructure at a level well below the imaging resolution. Here, we report the use of diffusion time ( t )-dependent diffusion kurtosis imaging ( t DKI) to simultaneously assess the morphology and transmembrane permeability of cells and their processes in the context of pathological changes in hypoxic-ischemic brain (HI) injury. Through Monte Carlo simulations and cell culture organoid imaging, we demonstrate feasibility in measuring effective size and permeability changes based on the peak and tail of t DKI curves. In a mouse model of HI, in vivo imaging at 11.7T detects a marked shift of the t DKI peak to longer t in brain edema, suggesting swelling and beading associated with the astrocytic processes and neuronal neurites. Furthermore, we observed a faster decrease of the t DKI tail in injured brain regions, reflecting increased membrane permeability that was associated with upregulated water exchange upon astrocyte activation at acute stage as well as necrosis with disrupted membrane integrity at subacute stage. Such information, unavailable with conventional diffusion MRI at a single t, can predict salvageable tissues. For a proof-of-concept, t DKI at 3T on an ischemic stroke patient suggested increased membrane permeability in the stroke region. This work therefore demonstrates the potential of t DKI for in vivo detection of the pathological changes in microstructural morphology and transmembrane permeability after ischemic injury using a clinically translatable protocol.
Collapse
|
11
|
Chowdhury R, Wan J, Gardier R, Rafael-Patino J, Thiran JP, Gibou F, Mukherjee A. Molecular imaging with aquaporin-based reporter genes: quantitative considerations from Monte Carlo diffusion simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544324. [PMID: 37333205 PMCID: PMC10274877 DOI: 10.1101/2023.06.09.544324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Aquaporins provide a new class of genetic tools for imaging molecular activity in deep tissues by increasing the rate of cellular water diffusion, which generates magnetic resonance contrast. However, distinguishing aquaporin contrast from the tissue background is challenging because water diffusion is also influenced by structural factors such as cell size and packing density. Here, we developed and experimentally validated a Monte Carlo model to analyze how cell radius and intracellular volume fraction quantitatively affect aquaporin signals. We demonstrated that a differential imaging approach based on time-dependent changes in diffusivity can improve specificity by unambiguously isolating aquaporin-driven contrast from the tissue background. Finally, we used Monte Carlo simulations to analyze the connection between diffusivity and the percentage of cells engineered to express aquaporin, and established a simple mapping that accurately determined the volume fraction of aquaporin-expressing cells in mixed populations. This study creates a framework for broad applications of aquaporins, particularly in biomedicine and in vivo synthetic biology, where quantitative methods to measure the location and performance of genetic devices in whole vertebrates are necessary.
Collapse
Affiliation(s)
- Rochishnu Chowdhury
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Jinyang Wan
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Remy Gardier
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Rafael-Patino
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Frederic Gibou
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Computer Science, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Biological Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
12
|
de Vries L, Emmer BJ, Majoie CBLM, Marquering HA, Gavves E. PerfU-Net: Baseline infarct estimation from CT perfusion source data for acute ischemic stroke. Med Image Anal 2023; 85:102749. [PMID: 36731276 DOI: 10.1016/j.media.2023.102749] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
CT perfusion imaging is commonly used for infarct core quantification in acute ischemic stroke patients. The outcomes and perfusion maps of CT perfusion software, however, show many discrepancies between vendors. We aim to perform infarct core segmentation directly from CT perfusion source data using machine learning, excluding the need to use the perfusion maps from standard CT perfusion software. To this end, we present a symmetry-aware spatio-temporal segmentation model that encodes the micro-perfusion dynamics in the brain, while decoding a static segmentation map for infarct core assessment. Our proposed spatio-temporal PerfU-Net employs an attention module on the skip-connections to match the dimensions of the encoder and decoder. We train and evaluate the method on 94 and 62 scans, respectively, using the Ischemic Stroke Lesion Segmentation (ISLES) 2018 challenge data. We achieve state-of-the-art results compared to methods that only use CT perfusion source imaging with a Dice score of 0.46. We are almost on par with methods that use perfusion maps from third party software, whilst it is known that there is a large variation in these perfusion maps from various vendors. Moreover, we achieve improved performance compared to simple perfusion map analysis, which is used in clinical practice.
Collapse
Affiliation(s)
- Lucas de Vries
- Amsterdam UMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Amsterdam UMC, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; University of Amsterdam, Informatics Institute, Science Park 900, Amsterdam, 1098 XH, The Netherlands.
| | - Bart J Emmer
- Amsterdam UMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Charles B L M Majoie
- Amsterdam UMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Henk A Marquering
- Amsterdam UMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Amsterdam UMC, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Efstratios Gavves
- University of Amsterdam, Informatics Institute, Science Park 900, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
13
|
Otgonbaatar C, Lee JY, Jung KH, Hwang I, Yoo RE, Kang KM, Yun TJ, Choi SH, Kim JH, Sohn CH. Quantifying infarct core volume in ischemic stroke: What is the optimal threshold and parameters of computed tomography perfusion? J Stroke Cerebrovasc Dis 2023; 32:107062. [PMID: 36948076 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/22/2023] Open
Abstract
OBJECTIVE Although computed tomography perfusion (CTP) is used to select and guide decision-making processes in patients with acute ischemic stroke, there is no clear standardization of the optimal threshold to predict ischemic core volume accurately. The infarct core volume with a relative cerebral blood flow(rCBF) threshold of < 30% is commonly used. We aimed to assess the volumetric agreement of the infarct core volume with different CTP parameters and thresholds using CTP software (RAPID, VITREA) and the infarct volume on diffusion-weighted imaging (DWI), with a short interval time (within 60 min) between CTP and follow-up DWI. MATERIALS AND METHODS This retrospective study included 42 acute ischemic stroke patients with occlusion of the large artery in the anterior circulation between April 2017-November 2020. RAPID identified infarct core as tissue rCBF < 20-38%. VITREA defined the infarct core as cerebral blood volume (CBV) < 26-56%. Olea Sphere was used to measure infarct core volume on DWI. The CTP-infarct core volume with different thresholds of perfusion parameters (CBF threshold vs CBV threshold) were compared with DWI-infarct core volumes. RESULTS The median time between CTP and DWI was 37.5min. The commonly used threshold of CBV< 41% (4.3 mL) resulted in lower median infarct core volume difference compared to the commonly used thresholds of rCBF < 30% (8.2mL). On the other hand, the optimal thresholds of CBV < 26% (-1.0mL; 95% CI, -53.9 to 58.1 mL; 0.945) resulted in the lowest median infarct core volume difference, narrowest limits of agreement, and largest interclass correlation coefficient compared with the optimal thresholds of rCBF < 38% (4.9 mL; 95% CI, -36.4 to 62.9 mL; 0.939). CONCLUSION Our study found that the both optimal and commonly used thresholds of CBV provided a more accurate prediction of the infarct core volume in patients with AIS than rCBF.
Collapse
Affiliation(s)
| | - Ji Ye Lee
- Department of Radiology, Seoul National University Hospital, #101 Daehangno, Jongno-gu, Seoul 110-744, Republic of Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Inpyeong Hwang
- Department of Radiology, Seoul National University Hospital, #101 Daehangno, Jongno-gu, Seoul 110-744, Republic of Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University Hospital, #101 Daehangno, Jongno-gu, Seoul 110-744, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, #101 Daehangno, Jongno-gu, Seoul 110-744, Republic of Korea
| | - Tae Jin Yun
- Department of Radiology, Seoul National University Hospital, #101 Daehangno, Jongno-gu, Seoul 110-744, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, College of Medicine, Seoul National University, Seoul, Republic of Korea; Department of Radiology, Seoul National University Hospital, #101 Daehangno, Jongno-gu, Seoul 110-744, Republic of Korea
| | - Ji-Hoon Kim
- Department of Radiology, College of Medicine, Seoul National University, Seoul, Republic of Korea; Department of Radiology, Seoul National University Hospital, #101 Daehangno, Jongno-gu, Seoul 110-744, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, College of Medicine, Seoul National University, Seoul, Republic of Korea; Department of Radiology, Seoul National University Hospital, #101 Daehangno, Jongno-gu, Seoul 110-744, Republic of Korea.
| |
Collapse
|
14
|
Maekawa T, Hori M, Murata K, Feiweier T, Kamiya K, Andica C, Hagiwara A, Fujita S, Kamagata K, Wada A, Abe O, Aoki S. Investigation of time-dependent diffusion in extra-axial brain tumors using oscillating-gradient spin-echo. Magn Reson Imaging 2023; 96:67-74. [PMID: 36423796 DOI: 10.1016/j.mri.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Oscillating gradient spin-echo (OGSE) sequences provide access to short diffusion times and may provide insight into micro-scale internal structures of pathologic lesions based on an analysis of changes in diffusivity with differing diffusion times. We hypothesized that changes in diffusivity acquired with a shorter diffusion time may permit elucidation of properties related to the internal structure of extra-axial brain tumors. This study aimed to investigate the utility of changes in diffusivity between short and long diffusion times for characterizing extra-axial brain tumors. In total, 12 patients with meningothelial meningiomas, 13 patients with acoustic neuromas, and 11 patients with pituitary adenomas were scanned with a 3 T magnetic resonance imaging (MRI) scanner with diffusion-weighted imaging (DWI) using OGSE and pulsed gradient spin-echo (PGSE) (effective diffusion times [Δeff]: 6.5 ms and 35.2 ms) with b-values of 0 and 1000 s/mm2. Relative percentage changes between shorter and longer diffusion times were calculated using region-of-interest (ROI) analysis of brain tumors on λ1, λ2, λ3, and mean diffusivity (MD) maps. The diffusivities of PGSE, OGSE, and relative percentage changes were compared among each tumor type using a multiple comparisons Steel-Dwass test. The mean (standard deviation) MD at Δeff of 6.5 ms was 1.07 ± 0.23 10-3 mm2/s, 1.19 ± 0.18 10-3 mm2/s, 1.19 ± 0.21 10-3 mm2/s for meningothelial meningiomas, acoustic neuromas, and pituitary adenomas, respectively. The mean (standard deviation) MD at Δeff of 35.2 ms was 0.93 ± 0.22 10-3 mm2/s, 1.07 ± 0.19 10-3 mm2/s, 0.82 ± 0.21 10-3 mm2/s for meningothelial meningiomas, acoustic neuromas, and pituitary adenomas, respectively. The mean (standard deviation) of the relative percentage change was 15.7 ± 4.4%, 12.4 ± 8.2%, 46.8 ± 11.3% for meningothelial meningiomas, acoustic neuromas, and pituitary adenomas, respectively. Compared to meningiomas and acoustic neuromas, pituitary adenoma exhibited stronger diffusion time-dependence with diffusion times between 6.5 ms and 35.2 ms (P < 0.05). In conclusion, differences in diffusion time-dependence may be attributed to differences in the internal structures of brain tumors. DWI with a short diffusion time may provide additional information on the microstructure of each tumor and contribute to tumor diagnosis.
Collapse
Affiliation(s)
- Tomoko Maekawa
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Diagnostic Radiology, Toho University Omori Medical Center, 6-11-1, Omori-Nishi, Ota-Ku, Tokyo, Japan
| | - Katsutoshi Murata
- Siemens Healthcare Japan KK, Gate City Osaki West Tower, 11-1 Osaki 1-Chome, Shinagawa-ku, Tokyo 141-8644, Japan
| | | | - Kouhei Kamiya
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Diagnostic Radiology, Toho University Omori Medical Center, 6-11-1, Omori-Nishi, Ota-Ku, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba 279-0013, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
15
|
Lee KY, Liu CC, Chen DYT, Weng CL, Chiu HW, Chiang CH. Automatic detection and vascular territory classification of hyperacute staged ischemic stroke on diffusion weighted image using convolutional neural networks. Sci Rep 2023; 13:404. [PMID: 36624122 PMCID: PMC9829896 DOI: 10.1038/s41598-023-27621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Automated ischemic stroke detection and classification according to its vascular territory is an essential step in stroke image evaluation, especially at hyperacute stage where mechanical thrombectomy may improve patients' outcome. This study aimed to evaluate the performance of various convolutional neural network (CNN) models on hyperacute staged diffusion-weighted images (DWI) for detection of ischemic stroke and classification into anterior circulation infarct (ACI), posterior circulation infarct (PCI) and normal image slices. In this retrospective study, 253 cases of hyperacute staged DWI were identified, downloaded and reviewed. After exclusion, DWI from 127 cases were used and we created a dataset containing total of 2119 image slices, and separates it into three groups, namely ACI (618 slices), PCI (149 slices) and normal (1352 slices). Two transfer learning based CNN models, namely Inception-v3, EfficientNet-b0 and one self-derived modified LeNet model were used. The performance of the models was evaluated and activation maps using gradient-weighted class activation mapping (Grad-Cam) technique were made. Inception-v3 had the best overall accuracy (86.3%), weighted F1 score (86.2%) and kappa score (0.715), followed by the modified LeNet (85.2% accuracy, 84.7% weighted F1 score and 0.693 kappa score). The EfficientNet-b0 had the poorest performance of 83.6% accuracy, 83% weighted F1 score and 0.662 kappa score. The activation map showed that one possible explanation for misclassification is due to susceptibility artifact. A sufficiently high performance can be achieved by using CNN model to detect ischemic stroke on hyperacute staged DWI and classify it according to vascular territory.
Collapse
Affiliation(s)
- Kun-Yu Lee
- grid.412955.e0000 0004 0419 7197Department of Medical Image, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 23561 Taiwan, ROC ,grid.412896.00000 0000 9337 0481Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei City, 11031 Taiwan, ROC
| | - Chia-Chuan Liu
- grid.412955.e0000 0004 0419 7197Department of Medical Image, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 23561 Taiwan, ROC ,grid.412896.00000 0000 9337 0481Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei City, 11031 Taiwan, ROC
| | - David Yen-Ting Chen
- grid.412955.e0000 0004 0419 7197Department of Medical Image, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 23561 Taiwan, ROC ,grid.412896.00000 0000 9337 0481Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei City, 11031 Taiwan, ROC
| | - Chi-Lun Weng
- grid.413878.10000 0004 0572 9327Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, No. 539, Zhongxiao Rd., East Dist., Chiayi City, 600566 Taiwan, ROC
| | - Hung-Wen Chiu
- grid.412896.00000 0000 9337 0481Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University TW, No. 250 Wu-Hsing Street, Taipei City, 11031 Taiwan, ROC
| | - Chen-Hua Chiang
- Department of Medical Image, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan, ROC. .,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei City, 11031, Taiwan, ROC.
| |
Collapse
|
16
|
García AO, Brambati SM, Desautels A, Marcotte K. Timing stroke: A review on stroke pathophysiology and its influence over time on diffusion measures. J Neurol Sci 2022; 441:120377. [DOI: 10.1016/j.jns.2022.120377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/30/2022] [Accepted: 07/31/2022] [Indexed: 11/26/2022]
|
17
|
Rosenberg JT, Grant SC, Topgaard D. Nonparametric 5D D-R 2 distribution imaging with single-shot EPI at 21.1 T: Initial results for in vivo rat brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 341:107256. [PMID: 35753184 PMCID: PMC9339475 DOI: 10.1016/j.jmr.2022.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In vivo human diffusion MRI is by default performed using single-shot EPI with greater than 50-ms echo times and associated signal loss from transverse relaxation. The individual benefits of the current trends of increasing B0 to boost SNR and employing more advanced signal preparation schemes to improve the specificity for selected microstructural properties eventually may be cancelled by increased relaxation rates at high B0 and echo times with advanced encoding. Here, initial attempts to translate state-of-the-art diffusion-relaxation correlation methods from 3 T to 21.1 T are made to identify hurdles that need to be overcome to fulfill the promises of both high SNR and readily interpretable microstructural information.
Collapse
Affiliation(s)
- Jens T Rosenberg
- National High Magnetic Field Laboratory, Florida State University, Tallahassee FL, United States.
| | - Samuel C Grant
- National High Magnetic Field Laboratory, Florida State University, Tallahassee FL, United States; Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States.
| | | |
Collapse
|
18
|
Impact of tissue properties on time-dependent alterations in apparent diffusion coefficient: a phantom study using oscillating-gradient spin-echo and pulsed-gradient spin-echo sequences. Jpn J Radiol 2022; 40:970-978. [PMID: 35523921 PMCID: PMC9441423 DOI: 10.1007/s11604-022-01281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
Purpose The purpose of this study was to investigate whether the changes in apparent diffusion coefficients (ADCs) due to differences in diffusion time reflect tissue properties in actual measurements of phantoms. Materials and methods Various n-alkane phantoms and sucrose/collagen phantoms with various collagen densities were set up with and without polyvinyl alcohol (PVA) foam with an average pore diameter of 300 μm. Thus, n-alkanes or sucrose/collagen represented substrate viscosity and the presence of PVA foam represented tissue structure with septum. Diffusion-weighted images with various diffusion times (7.71–60 ms) were acquired using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences. The ADCs of the phantoms with and without PVA foam were calculated. Results The ADCs of some of the phantoms without PVA decreased with diffusion times decreased. In the n-alkane phantoms, only C8H18 showed significantly different ADCs depending on the use of PVA foam in the OGSE sequence. On the other hand, sucrose/collagen phantoms showed significant differences according to diffusion time. The ADCs of the phantoms decreased as the molecular size of the n-alkanes or collagen density of the sucrose/collagen phantom increased. Compared to phantoms without PVA foam, the ADC of the phantoms with PVA foam decreased as the diffusion time increased. Conclusion Changes in ADCs due to differences in diffusion time reflect tissue properties in actual measurements of phantoms. These changes in ADCs can be used for tissue characterization in vivo.
Collapse
|
19
|
Novello L, Henriques RN, Ianuş A, Feiweier T, Shemesh N, Jovicich J. In vivo Correlation Tensor MRI reveals microscopic kurtosis in the human brain on a clinical 3T scanner. Neuroimage 2022; 254:119137. [PMID: 35339682 DOI: 10.1016/j.neuroimage.2022.119137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Diffusion MRI (dMRI) has become one of the most important imaging modalities for noninvasively probing tissue microstructure. Diffusional Kurtosis MRI (DKI) quantifies the degree of non-gaussian diffusion, which in turn has been shown to increase sensitivity towards, e.g., disease and orientation mapping in neural tissue. However, the specificity of DKI is limited as different sources can contribute to the total intravoxel diffusional kurtosis, including: variance in diffusion tensor magnitudes (Kiso), variance due to diffusion anisotropy (Kaniso), and microscopic kurtosis (μK) related to restricted diffusion, microstructural disorder, and/or exchange. Interestingly, μK is typically ignored in diffusion MRI signal modeling as it is assumed to be negligible in neural tissues. However, recently, Correlation Tensor MRI (CTI) based on Double-Diffusion-Encoding (DDE) was introduced for kurtosis source separation, revealing non negligible μK in preclinical imaging. Here, we implemented CTI for the first time on a clinical 3T scanner and investigated the sources of total kurtosis in healthy subjects. A robust framework for kurtosis source separation in humans is introduced, followed by estimation of μK (and the other kurtosis sources) in the healthy brain. Using this clinical CTI approach, we find that μK significantly contributes to total diffusional kurtosis both in gray and white matter tissue but, as expected, not in the ventricles. The first μK maps of the human brain are presented, revealing that the spatial distribution of μK provides a unique source of contrast, appearing different from isotropic and anisotropic kurtosis counterparts. Moreover, group average templates of these kurtosis sources have been generated for the first time, which corroborated our findings at the underlying individual-level maps. We further show that the common practice of ignoring μK and assuming the multiple gaussian component approximation for kurtosis source estimation introduces significant bias in the estimation of other kurtosis sources and, perhaps even worse, compromises their interpretation. Finally, a twofold acceleration of CTI is discussed in the context of potential future clinical applications. We conclude that CTI has much potential for future in vivo microstructural characterizations in healthy and pathological tissue.
Collapse
Affiliation(s)
- Lisa Novello
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.
| | | | - Andrada Ianuş
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| |
Collapse
|
20
|
DiBella EVR, Sharma A, Richards L, Prabhakaran V, Majersik JJ, HashemizadehKolowri SK. Beyond Diffusion Tensor MRI Methods for Improved Characterization of the Brain after Ischemic Stroke: A Review. AJNR Am J Neuroradiol 2022; 43:661-669. [PMID: 35272983 PMCID: PMC9089249 DOI: 10.3174/ajnr.a7414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022]
Abstract
Ischemic stroke is a worldwide problem, with 15 million people experiencing a stroke annually. MR imaging is a valuable tool for understanding and assessing brain changes after stroke and predicting recovery. Of particular interest is the use of diffusion MR imaging in the nonacute stage 1-30 days poststroke. Thousands of articles have been published on the use of diffusion MR imaging in stroke, including several recent articles reviewing the use of DTI for stroke. The goal of this work was to survey and put into context the recent use of diffusion MR imaging methods beyond DTI, including diffusional kurtosis, generalized fractional anisotropy, spherical harmonics methods, and neurite orientation and dispersion models, in patients poststroke. Early studies report that these types of beyond-DTI methods outperform DTI metrics either in being more sensitive to poststroke changes or by better predicting outcome motor scores. More and larger studies are needed to confirm the improved prediction of stroke recovery with the beyond-DTI methods.
Collapse
Affiliation(s)
- E V R DiBella
- From the Departments of Radiology and Imaging Sciences (E.V.R.D., A.S., S.K.H.)
| | - A Sharma
- From the Departments of Radiology and Imaging Sciences (E.V.R.D., A.S., S.K.H.)
| | - L Richards
- Occupational and Recreational Therapies (L.R.)
| | - V Prabhakaran
- Department of Radiology (V.P.), University of Wisconsin, Madison, Wisconsin
| | - J J Majersik
- Neurology (J.J.M.), University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
21
|
Hori M, Maekawa T, Kamiya K, Hagiwara A, Goto M, Takemura MY, Fujita S, Andica C, Kamagata K, Cohen-Adad J, Aoki S. Advanced Diffusion MR Imaging for Multiple Sclerosis in the Brain and Spinal Cord. Magn Reson Med Sci 2022; 21:58-70. [PMID: 35173096 PMCID: PMC9199983 DOI: 10.2463/mrms.rev.2021-0091] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diffusion tensor imaging (DTI) has been established its usefulness in evaluating normal-appearing white matter (NAWM) and other lesions that are difficult to evaluate with routine clinical MRI in the evaluation of the brain and spinal cord lesions in multiple sclerosis (MS), a demyelinating disease. With the recent advances in the software and hardware of MRI systems, increasingly complex and sophisticated MRI and analysis methods, such as q-space imaging, diffusional kurtosis imaging, neurite orientation dispersion and density imaging, white matter tract integrity, and multiple diffusion encoding, referred to as advanced diffusion MRI, have been proposed. These are capable of capturing in vivo microstructural changes in the brain and spinal cord in normal and pathological states in greater detail than DTI. This paper reviews the current status of recent advanced diffusion MRI for assessing MS in vivo as part of an issue celebrating two decades of magnetic resonance in medical sciences (MRMS), an official journal of the Japanese Society of Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center.,Department of Radiology, Juntendo University School of Medicine
| | - Tomoko Maekawa
- Department of Radiology, Juntendo University School of Medicine
| | - Kouhei Kamiya
- Department of Radiology, Toho University Omori Medical Center.,Department of Radiology, Juntendo University School of Medicine
| | | | - Masami Goto
- Department of Radiological Technology, Faculty of Health Science, Juntendo University
| | | | - Shohei Fujita
- Department of Radiology, Juntendo University School of Medicine
| | | | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine
| | | | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine
| |
Collapse
|
22
|
Valsamis JJ, Dubovan PI, Baron CA. Characterization and correction of time-varying eddy currents for diffusion MRI. Magn Reson Med 2021; 87:2209-2223. [PMID: 34894640 DOI: 10.1002/mrm.29124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To develop and test a method for reducing artifacts due to time-varying eddy currents in oscillating gradient spin-echo (OGSE) diffusion images. METHODS An in-house algorithm (TVEDDY), that for the first time retrospectively models eddy current decay, was tested on pulsed gradient spin echo and OGSE brain images acquired at 7 T. Image pairs were acquired using opposite polarity diffusion gradients. A three-parameter exponential decay model (two amplitudes and a time constant) was used to characterize and correct eddy current distortions by minimizing the intensity difference between image pairs. Correction performance was compared with conventional correction methods by evaluating the mean squared error (MSE) between diffusion-weighted images acquired with opposite polarity diffusion gradients. As a ground-truth comparison, images were corrected using field dynamics up to third order in space, measured using a field monitoring system. RESULTS Time-varying eddy currents were observed for OGSE, which introduced blurring that was not reduced using the traditional approach but was diminished considerably with TVEDDY and field monitoring-informed model-based reconstruction. No MSE difference was observed between the conventional approach and TVEDDY for pulsed gradient spin echo, but for OGSE TVEDDY resulted in significantly lower MSE than the conventional approach. The field-monitoring reconstruction had the lowest MSE for both pulsed gradient spin echo and OGSE. CONCLUSION This work establishes that it is possible to estimate time-varying eddy currents from the actual diffusion data, which provides substantial image-quality improvements for gradient-intensive diffusion MRI acquisitions like OGSE.
Collapse
Affiliation(s)
- Jake J Valsamis
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, London, Ontario, Canada
| | - Paul I Dubovan
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, London, Ontario, Canada
| | - Corey A Baron
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
23
|
Rahman N, Xu K, Omer M, Budde MD, Brown A, Baron CA. Test-retest reproducibility of in vivo oscillating gradient and microscopic anisotropy diffusion MRI in mice at 9.4 Tesla. PLoS One 2021; 16:e0255711. [PMID: 34739479 PMCID: PMC8570471 DOI: 10.1371/journal.pone.0255711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Microstructure imaging with advanced diffusion MRI (dMRI) techniques have shown increased sensitivity and specificity to microstructural changes in various disease and injury models. Oscillating gradient spin echo (OGSE) dMRI, implemented by varying the oscillating gradient frequency, and microscopic anisotropy (μA) dMRI, implemented via tensor valued diffusion encoding, may provide additional insight by increasing sensitivity to smaller spatial scales and disentangling fiber orientation dispersion from true microstructural changes, respectively. The aims of this study were to characterize the test-retest reproducibility of in vivo OGSE and μA dMRI metrics in the mouse brain at 9.4 Tesla and provide estimates of required sample sizes for future investigations. METHODS Twelve adult C57Bl/6 mice were scanned twice (5 days apart). Each imaging session consisted of multifrequency OGSE and μA dMRI protocols. Metrics investigated included μA, linear diffusion kurtosis, isotropic diffusion kurtosis, and the diffusion dispersion rate (Λ), which explores the power-law frequency dependence of mean diffusivity. The dMRI metric maps were analyzed with mean region-of-interest (ROI) and whole brain voxel-wise analysis. Bland-Altman plots and coefficients of variation (CV) were used to assess the reproducibility of OGSE and μA metrics. Furthermore, we estimated sample sizes required to detect a variety of effect sizes. RESULTS Bland-Altman plots showed negligible biases between test and retest sessions. ROI-based CVs revealed high reproducibility for most metrics (CVs < 15%). Voxel-wise CV maps revealed high reproducibility for μA (CVs ~ 10%), but low reproducibility for OGSE metrics (CVs ~ 50%). CONCLUSION Most of the μA dMRI metrics are reproducible in both ROI-based and voxel-wise analysis, while the OGSE dMRI metrics are only reproducible in ROI-based analysis. Given feasible sample sizes (10-15), μA metrics and OGSE metrics may provide sensitivity to subtle microstructural changes (4-8%) and moderate changes (> 6%), respectively.
Collapse
Affiliation(s)
- Naila Rahman
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kathy Xu
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mohammad Omer
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Arthur Brown
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Corey A. Baron
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
24
|
Abstract
This article discusses new diffusion-weighted imaging (DWI) sequences, diffusion tensor imaging (DTI), and fiber tractography (FT), as well as more advanced diffusion imaging in pediatric brain and spine. Underlying disorder and pathophysiology causing diffusion abnormalities are discussed. Multishot echo planar imaging (EPI) DWI and non-EPI DWI provide higher spatial resolution with less susceptibility artifact and distortion, which are replacing conventional single-shot EPI DWI. DTI and FT have established clinical significance in pediatric brain and spine. This article discusses advanced diffusion imaging, including diffusion kurtosis imaging, neurite orientation dispersion and density imaging, diffusion spectrum imaging, intravoxel incoherent motion, and oscillating-gradient spin-echo.
Collapse
Affiliation(s)
- Toshio Moritani
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2 A209K, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Gao F, Shen X, Zhang H, Ba R, Ma X, Lai C, Zhang J, Zhang Y, Wu D. Feasibility of oscillating and pulsed gradient diffusion MRI to assess neonatal hypoxia-ischemia on clinical systems. J Cereb Blood Flow Metab 2021; 41:1240-1250. [PMID: 32811261 PMCID: PMC8142137 DOI: 10.1177/0271678x20944353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Diffusion-time- (td) dependent diffusion MRI (dMRI) extends our ability to characterize brain microstructure by measuring dMRI signals at varying td. The use of oscillating gradient (OG) is essential for accessing short td but is technically challenging on clinical MRI systems. This study aims to investigate the clinical feasibility and value of td-dependent dMRI in neonatal hypoxic-ischemic encephalopathy (HIE). Eighteen HIE neonates and six normal term-born neonates were scanned on a 3 T scanner, with OG-dMRI at an oscillating frequency of 33 Hz (equivalent td ≈ 7.5 ms) and pulsed gradient (PG)-dMRI at a td of 82.8 ms and b-value of 700 s/mm2. The td-dependence, as quantified by the difference in apparent diffusivity coefficients between OG- and PG-dMRI (ΔADC), was observed in the normal neonatal brains, and the ΔADC was higher in the subcortical white matter than the deep grey matter. In HIE neonates with severe and moderate injury, ΔADC significantly increased in the basal ganglia (BG) compared to the controls (23.7% and 10.6%, respectively). In contrast, the conventional PG-ADC showed a 12.6% reduction only in the severe HIE group. White matter edema regions also demonstrated increased ΔADC, where PG-ADC did not show apparent changes. Our result demonstrated that td-dependent dMRI provided high sensitivity in detecting moderate-to-severe HIE.
Collapse
Affiliation(s)
- Fusheng Gao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoxia Shen
- Department of Neonatal Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruicheng Ba
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xiaolu Ma
- Department of Neonatal Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Can Lai
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiangyang Zhang
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Wu D, Zhang Y, Cheng B, Mori S, Reeves RH, Gao FJ. Time-dependent diffusion MRI probes cerebellar microstructural alterations in a mouse model of Down syndrome. Brain Commun 2021; 3:fcab062. [PMID: 33937769 PMCID: PMC8063586 DOI: 10.1093/braincomms/fcab062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 01/27/2023] Open
Abstract
The cerebellum is a complex system with distinct cortical laminar organization. Alterations in cerebellar microstructure are common and associated with many factors such as genetics, cancer and ageing. Diffusion MRI (dMRI) provides a non-invasive tool to map the brain structural organization, and the recently proposed diffusion-time (td )-dependent dMRI further improves its capability to probe the cellular and axonal/dendritic microstructures by measuring water diffusion at multiple spatial scales. The td -dependent diffusion profile in the cerebellum and its utility in detecting cerebellar disorders, however, are not yet elucidated. Here, we first deciphered the spatial correspondence between dMRI contrast and cerebellar layers, based on which the cerebellar layer-specific td -dependent dMRI patterns were characterized in both euploid and Ts65Dn mice, a mouse model of Down syndrome. Using oscillating gradient dMRI, which accesses diffusion at short td 's by modulating the oscillating frequency, we detected subtle changes in the apparent diffusivity coefficient of the cerebellar internal granular layer and Purkinje cell layer of Ts65Dn mice that were not detectable by conventional pulsed gradient dMRI. The detection sensitivity of oscillating gradient dMRI increased with the oscillating frequency at both the neonatal and adult stages. The td -dependence, quantified by ΔADC map, was reduced in Ts65Dn mice, likely associated with the reduced granule cell density and abnormal dendritic arborization of Purkinje cells as revealed from histological evidence. Our study demonstrates superior sensitivity of short-td diffusion using oscillating gradient dMRI to detect cerebellar microstructural changes in Down syndrome, suggesting the potential application of this technique in cerebellar disorders.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bei Cheng
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Feng J Gao
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Lampinen B, Lätt J, Wasselius J, van Westen D, Nilsson M. Time dependence in diffusion MRI predicts tissue outcome in ischemic stroke patients. Magn Reson Med 2021; 86:754-764. [PMID: 33755261 PMCID: PMC8445077 DOI: 10.1002/mrm.28743] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022]
Abstract
Purpose: Reperfusion therapy enables effective treatment of ischemic stroke presenting within 4–6 hours. However, tissue progression from ischemia to infarction is variable, and some patients benefit from treatment up until 24 hours. Improved imaging techniques are needed to identify these patients. Here, it was hypothesized that time dependence in diffusion MRI may predict tissue outcome in ischemic stroke. Methods: Diffusion MRI data were acquired with multiple diffusion times in five non-reperfused patients at 2, 9, and 100 days after stroke onset. Maps of “rate of kurtosis change” (k), mean kurtosis, ADC, and fractional anisotropy were derived. The ADC maps defined lesions, normal-appearing tissue, and the lesion tissue that would either be infarcted or remain viable by day 100. Diffusion parameters were compared (1) between lesions and normal-appearing tissue, and (2) between lesion tissue that would be infarcted or remain viable. Results: Positive values of k were observed within stroke lesions on day 2 (P = .001) and on day 9 (P = .023), indicating diffusional exchange. On day 100, high ADC values indicated infarction of 50 ± 20% of the lesion volumes. Tissue infarction was predicted by high k values both on day 2 (P = .026) and on day 9 (P = .046), by low mean kurtosis values on day 2 (P = .043), and by low fractional anisotropy values on day 9 (P = .029), but not by low ADC values. Conclusions: Diffusion time dependence predicted tissue outcome in ischemic stroke more accurately than the ADC, and may be useful for predicting reperfusion benefit.
Collapse
Affiliation(s)
- Björn Lampinen
- Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Jimmy Lätt
- Center for Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Johan Wasselius
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| | | | - Markus Nilsson
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Abstract
Diffusion-weighted images provide a unique contrast that shows the ability to assess tissue structure and condition on a micrometer scale. Notably, these equations are necessary to understand diffusion MR imaging as a theory but not for real imaging, particularly in clinical practice. The diffusion phenomenon can be observed only through MR measurements. One of the emerging fields of diffusion MRI is to probe the tissue microstructure by altering the diffusion time t, the time interval over which spin displacements are sampled. However, the diffusion time is, in a sense, more important than the b-value for diffusion-weighted images and their quantitative metrics.
Collapse
|
29
|
Reymbaut A, Caron AV, Gilbert G, Szczepankiewicz F, Nilsson M, Warfield SK, Descoteaux M, Scherrer B. Magic DIAMOND: Multi-fascicle diffusion compartment imaging with tensor distribution modeling and tensor-valued diffusion encoding. Med Image Anal 2021; 70:101988. [PMID: 33611054 DOI: 10.1016/j.media.2021.101988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 01/05/2023]
Abstract
Diffusion tensor imaging provides increased sensitivity to microstructural tissue changes compared to conventional anatomical imaging but also presents limited specificity. To tackle this problem, the DIAMOND model subdivides the voxel content into diffusion compartments and draws from diffusion-weighted data to estimate compartmental non-central matrix-variate Gamma distributions of diffusion tensors. It models each sub-voxel fascicle separately, resolving crossing white-matter pathways and allowing for a fascicle-element (fixel) based analysis of microstructural features. Alternatively, specific features of the intra-voxel diffusion tensor distribution can be selectively measured using tensor-valued diffusion-weighted acquisition schemes. However, the impact of such schemes on estimating brain microstructural features has only been studied in a handful of parametric single-fascicle models. In this work, we derive a general Laplace transform for the non-central matrix-variate Gamma distribution, which enables the extension of DIAMOND to tensor-valued encoded data. We then evaluate this "Magic DIAMOND" model in silico and in vivo on various combinations of tensor-valued encoded data. Assessing uncertainty on parameter estimation via stratified bootstrap, we investigate both voxel-based and fixel-based metrics by carrying out multi-peak tractography. We demonstrate using in silico evaluations that tensor-valued diffusion encoding significantly improves Magic DIAMOND's accuracy. Most importantly, we show in vivo that our estimated metrics can be robustly mapped along tracks across regions of fiber crossing, which opens new perspectives for tractometry and microstructure mapping along specific white-matter tracts.
Collapse
Affiliation(s)
| | | | - Guillaume Gilbert
- MR Clinical Science, Philips Healthcare Canada, Markham, ON L6C 2S3, Canada
| | - Filip Szczepankiewicz
- Department of Clinical Sciences, Lund University, 22184, Lund, Sweden; Random Walk Imaging AB, 22224, Lund, Sweden
| | - Markus Nilsson
- Department of Clinical Sciences, Lund University, 22184, Lund, Sweden
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, United States
| | | | - Benoit Scherrer
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, United States
| |
Collapse
|
30
|
Xu J. Probing neural tissues at small scales: Recent progress of oscillating gradient spin echo (OGSE) neuroimaging in humans. J Neurosci Methods 2020; 349:109024. [PMID: 33333089 PMCID: PMC10124150 DOI: 10.1016/j.jneumeth.2020.109024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
The detection sensitivity of diffusion MRI (dMRI) is dependent on diffusion times. A shorter diffusion time can increase the sensitivity to smaller length scales. However, the conventional dMRI uses the pulse gradient spin echo (PGSE) sequence that probes relatively long diffusion times only. To overcome this, the oscillating gradient spin echo (OGSE) sequence has been developed to probe much shorter diffusion times with hardware limitations on preclinical and clinical MRI systems. The OGSE sequence has been previously used on preclinical animal MRI systems. Recently, several studies have translated the OGSE sequence to humans on clinical MRI systems and achieved new information that is invisible using conventional PGSE sequence. This paper provides an overview of the recent progress of the OGSE neuroimaging in humans, including the technical improvements in the translation of the OGSE sequence to human imaging and various applications in different neurological disorders and stroke. Some possible future directions of the OGSE sequence are also discussed.
Collapse
Affiliation(s)
- Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
31
|
Reymbaut A, Mezzani P, de Almeida Martins JP, Topgaard D. Accuracy and precision of statistical descriptors obtained from multidimensional diffusion signal inversion algorithms. NMR IN BIOMEDICINE 2020; 33:e4267. [PMID: 32067322 DOI: 10.1002/nbm.4267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 05/22/2023]
Abstract
In biological tissues, typical MRI voxels comprise multiple microscopic environments, the local organization of which can be captured by microscopic diffusion tensors. The measured diffusion MRI signal can, therefore, be written as the multidimensional Laplace transform of an intravoxel diffusion tensor distribution (DTD). Tensor-valued diffusion encoding schemes have been designed to probe specific features of the DTD, and several algorithms have been introduced to invert such data and estimate statistical descriptors of the DTD, such as the mean diffusivity, the variance of isotropic diffusivities, and the mean squared diffusion anisotropy. However, the accuracy and precision of these estimations have not been assessed systematically and compared across methods. In this article, we perform and compare such estimations in silico for a one-dimensional Gamma fit, a generalized two-term cumulant approach, and two-dimensional and four-dimensional Monte-Carlo-based inversion techniques, using a clinically feasible tensor-valued acquisition scheme. In particular, we compare their performance at different signal-to-noise ratios (SNRs) for voxel contents varying in terms of the aforementioned statistical descriptors, orientational order, and fractions of isotropic and anisotropic components. We find that all inversion techniques share similar precision (except for a lower precision of the two-dimensional Monte Carlo inversion) but differ in terms of accuracy. While the Gamma fit exhibits infinite-SNR biases when the signal deviates strongly from monoexponentiality and is unaffected by orientational order, the generalized cumulant approach shows infinite-SNR biases when this deviation originates from the variance in isotropic diffusivities or from the low orientational order of anisotropic diffusion components. The two-dimensional Monte Carlo inversion shows remarkable accuracy in all systems studied, given that the acquisition scheme possesses enough directions to yield a rotationally invariant powder average. The four-dimensional Monte Carlo inversion presents no infinite-SNR bias, but suffers significantly from noise in the data, while preserving good contrast in most systems investigated.
Collapse
Affiliation(s)
- Alexis Reymbaut
- Physical Chemistry Department, Lund University, Lund, Sweden
- Random Walk Imaging AB, Lund, Sweden
| | - Paolo Mezzani
- Physical Chemistry Department, Lund University, Lund, Sweden
- Physics Department, Università degli Studi di Milano, Milan, Italy
| | | | - Daniel Topgaard
- Physical Chemistry Department, Lund University, Lund, Sweden
- Random Walk Imaging AB, Lund, Sweden
| |
Collapse
|
32
|
Endovascular stroke treatment using balloon guide catheters may reduce penumbral tissue damage and improve long-term outcome. Eur Radiol 2020; 31:2191-2198. [PMID: 33037911 PMCID: PMC7979594 DOI: 10.1007/s00330-020-07260-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/01/2020] [Accepted: 09/04/2020] [Indexed: 12/27/2022]
Abstract
Objectives During mechanical recanalization of large vessel occlusions (LVO), the use of proximal flow arrest with balloon guide catheters (BGC) was shown to be associated with better angiographic and even clinical outcome. The aim of the study was to analyze the impact of BGC use on microstructural alterations in the salvaged penumbra. Methods All patients who underwent mechanical recanalization of LVO of the anterior circulation were reviewed within a prospective stroke registry of a single comprehensive stroke center. Fifty-two patients received an admission CT perfusion together with post-interventional diffusion tensor imaging. Technical details such as BGC usage were correlated with microstructural integrity changes of the salvaged gray matter through the mean diffusivity (MD) index. Moderation analysis was performed to test the interaction of BGC on the correlation between angiographic and clinical outcomes. Results For all patients with complete reperfusion, microstructural integrity changes with lowered MD index were found within the salvaged penumbra for cases of non-BGC usage (mean − 0.02) compared to cases with BGC usage (0.01, p = 0.04). The importance of complete reperfusion for good clinical outcome is predominantly based on patients treated with BGC (effect 2.78, p = 0.01 vs. for non-BGC: 0.3, p = 0.71). Conclusions The lowered MD index early after mechanical recanalization without BGC usage can be interpreted as microstructural ischemic damage of the salvaged penumbra. It was shown that achieving complete reperfusion in a setting of BGC usage with proximal flow arrest minimizes penumbral damage and improves long-term outcomes. Key Points • Microstructural ischemic damage can be reduced by using proximal flow arrest during endovascular treatment with balloon guide catheter. • Complete reperfusion in a setting of balloon guide catheter minimizes penumbral damage and improves long-term outcome. Electronic supplementary material The online version of this article (10.1007/s00330-020-07260-3) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Jelescu IO, Palombo M, Bagnato F, Schilling KG. Challenges for biophysical modeling of microstructure. J Neurosci Methods 2020; 344:108861. [PMID: 32692999 PMCID: PMC10163379 DOI: 10.1016/j.jneumeth.2020.108861] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The biophysical modeling efforts in diffusion MRI have grown considerably over the past 25 years. In this review, we dwell on the various challenges along the journey of bringing a biophysical model from initial design to clinical implementation, identifying both hurdles that have been already overcome and outstanding issues. First, we describe the critical initial task of selecting which features of tissue microstructure can be estimated using a model and which acquisition protocol needs to be implemented to make the estimation possible. The model performance should necessarily be tested in realistic numerical simulations and in experimental data - adapting the fitting strategy accordingly, and parameter estimates should be validated against complementary techniques, when/if available. Secondly, the model performance and validity should be explored in pathological conditions, and, if appropriate, dedicated models for pathology should be developed. We build on examples from tumors, ischemia and demyelinating diseases. We then discuss the challenges associated with clinical translation and added value. Finally, we single out four major unresolved challenges that are related to: the availability of a microstructural ground truth, the validation of model parameters which cannot be accessed with complementary techniques, the development of a generalized standard model for any brain region and pathology, and the seamless communication between different parties involved in the development and application of biophysical models of diffusion.
Collapse
|
34
|
Ifergan H, Amelot A, Ismail M, Gaudron M, Cottier JP, Narata AP. Stroke-mimics in stroke-units. Evaluation after changes imposed by randomized trials. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:88-95. [PMID: 32159722 DOI: 10.1590/0004-282x20190154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND A larger therapeutic window for stroke treatment requires a significant change in the organization of emergency services, avoiding the increase in number of imaging exams and indirectly the time to treatment. OBJECTIVE To highlight the relation between faster clinical evaluation and stroke over-suspicion and consequently excessive imaging acquisition. To identify predictors of ischemic stroke and stroke mimics (SM), aiming for better patient selection for comprehensive neuroimaging and reperfusion therapies. METHODS Retrospective, cohort, observational, single-center study that reviewed all consecutive files of patients presenting with acute neurological symptoms who underwent CT scan or MRI from July 1, 2016 to July 1, 2017. RESULTS 736 patient files were reviewed. 385 patients (52.3%) presented with confirmed acute ischemic infarct, 93 (12.6%) had another brain lesion mimicking acute ischemia, and 258 (35.1%) had normal imaging. Acute stroke was more frequent in elderly patients with atrial fibrillation, arterial hypertension, or dysarthria or right motor impairment. Stroke mimic was associated with female patients with low vascular risk factors, low NIHSS, and patients with decreased level of consciousness or symptoms suggestive of posterior circulation. DISCUSSION 47.7% of all patients seen at the stroke unit did not have acute stroke lesions. Clinical assessment data have been used to provide indicators of acute stroke and stroke mimic patients, and symptoms corresponding to acute stroke and stroke mimic seem to be similar in the literature. CONCLUSION Considering that the number of patients admitted for stroke treatment will increase even further with a larger therapeutic window for mechanical thrombectomy and for thrombolysis, a diagnostic decision-making algorithm for stroke patients is required in order to reinforce the suspicion of stroke indicating an urgent MRI.
Collapse
Affiliation(s)
- Héloïse Ifergan
- Service de neuroradiologie diagnostique et interventionnelle, Centre Hospitalier Régional et Universitaire de Tours, France
| | - Aymeric Amelot
- Service de neurochirurgie, Centre Hospitalier Régional et Universitaire de Tours, France
| | - Mohammad Ismail
- Service de neuroradiologie diagnostique et interventionnelle, Centre Hospitalier Régional et Universitaire de Tours, France
| | - Marie Gaudron
- Service de neurologie vasculaire, Centre Hospitalier Régional et Universitaire de Tours, France
| | - Jean-Philippe Cottier
- Service de neuroradiologie diagnostique et interventionnelle, Centre Hospitalier Régional et Universitaire de Tours, France
| | - Ana Paula Narata
- Service de neuroradiologie diagnostique et interventionnelle, Centre Hospitalier Régional et Universitaire de Tours, France
| |
Collapse
|
35
|
Lee HH, Jespersen SN, Fieremans E, Novikov DS. The impact of realistic axonal shape on axon diameter estimation using diffusion MRI. Neuroimage 2020; 223:117228. [PMID: 32798676 PMCID: PMC7806404 DOI: 10.1016/j.neuroimage.2020.117228] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022] Open
Abstract
To study axonal microstructure with diffusion MRI, axons are typically modeled as straight impermeable cylinders, whereby the transverse diffusion MRI signal can be made sensitive to the cylinder’s inner diameter. However, the shape of a real axon varies along the axon direction, which couples the longitudinal and transverse diffusion of the overall axon direction. Here we develop a theory of the intra-axonal diffusion MRI signal based on coarse-graining of the axonal shape by 3-dimensional diffusion. We demonstrate how the estimate of the inner diameter is confounded by the diameter variations (beading), and by the local variations in direction (undulations) along the axon. We analytically relate diffusion MRI metrics, such as time-dependent radial diffusivity D⊥(t) and kurtosis K⊥(t), to the axonal shape, and validate our theory using Monte Carlo simulations in synthetic undulating axons with randomly positioned beads, and in realistic axons reconstructed from electron microscopy images of mouse brain white matter. We show that (i) In the narrow pulse limit, the inner diameter from D⊥(t) is overestimated by about twofold due to a combination of axon caliber variations and undulations (each contributing a comparable effect size); (ii) The narrow-pulse kurtosis K⊥∣t→∞ deviates from that in an ideal cylinder due to caliber variations; we also numerically calculate the fourth-order cumulant for an ideal cylinder in the wide pulse limit, which is relevant for inner diameter overestimation; (iii) In the wide pulse limit, the axon diameter overestimation is mainly due to undulations at low diffusion weightings b; and (iv) The effect of undulations can be considerably reduced by directional averaging of high-b signals, with the apparent inner diameter given by a combination of the axon caliber (dominated by the thickest axons), caliber variations, and the residual contribution of undulations.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA.
| | - Sune N Jespersen
- CFIN/MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| |
Collapse
|
36
|
Wu D, Liu D, Hsu YC, Li H, Sun Y, Qin Q, Zhang Y. Diffusion-prepared 3D gradient spin-echo sequence for improved oscillating gradient diffusion MRI. Magn Reson Med 2020; 85:78-88. [PMID: 32643240 DOI: 10.1002/mrm.28401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Oscillating gradient (OG) enables the access of short diffusion times for time-dependent diffusion MRI (dMRI); however, it poses several technical challenges for clinical use. This study proposes a 3D oscillating gradient-prepared gradient spin-echo (OGprep-GRASE) sequence to improve SNR and shorten acquisition time for OG dMRI on clinical scanners. METHODS The 3D OGprep-GRASE sequence consisted of global saturation, diffusion encoding, fat saturation, and GRASE readout modules. Multiplexed sensitivity-encoding reconstruction was used to correct the phase errors between multiple shots. We compared the scan time and SNR of the proposed sequence and the conventional 2D-EPI sequence for OG dMRI at 30-90-mm slice coverage. We also examined the time-dependent diffusivity changes with OG dMRI acquired at frequencies of 50 Hz and 25 Hz and pulsed-gradient dMRI at diffusion times of 30 ms and 60 ms. RESULTS The OGprep-GRASE sequence reduced the scan time by a factor of 1.38, and increased the SNR by 1.74-2.27 times compared with 2D EPI for relatively thick slice coverage (60-90 mm). The SNR gain led to improved diffusion-tensor reconstruction in the multishot protocols. Image distortion in 2D-EPI images was also reduced in GRASE images. Diffusivity measurements from the pulsed-gradient dMRI and OG dMRI showed clear diffusion-time dependency in the white matter and gray matter of the human brain, using both the GRASE and EPI sequences. CONCLUSION The 3D OGprep-GRASE sequence improved scan time and SNR and reduced image distortion compared with the 2D multislice acquisition for OG dMRI on a 3T clinical system, which may facilitate the clinical translation of time-dependent dMRI.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Csenter for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare China, Shanghai, China
| | - Haotian Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare China, Shanghai, China
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Csenter for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Maekawa T, Kamiya K, Murata K, Feiweier T, Hori M, Aoki S. Time-dependent Diffusion in Transient Splenial Lesion: Comparison between Oscillating-gradient Spin-echo Measurements and Monte-Carlo Simulation. Magn Reson Med Sci 2020; 20:227-230. [PMID: 32611990 PMCID: PMC8203477 DOI: 10.2463/mrms.bc.2020-0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The microstructural underpinnings of reduced diffusivity in transient splenial lesion remain unclear. Here, we report findings from oscillating gradient spin-echo (OGSE) diffusion imaging in a case of transient splenial lesion. Compared with normal-appearing white matter, the splenial lesion exhibited greater differences between diffusion time t = 6.5 and 35.2 ms, indicating microstructural changes occurring within the corresponding length scale. We also conducted 2D Monte-Carlo simulation. The results suggested that emergence of small and non-exchanging compartment, as often imagined in intramyelinic edema, does not fit well with the in vivo observation. Simulations with axonal swelling and microglial infiltration yielded results closer to the in vivo observations. The present report exemplifies the importance of controlling t for more specific radiological image interpretations.
Collapse
Affiliation(s)
- Tomoko Maekawa
- Department of Radiology, Juntendo University School of Medicine.,Department of Radiology, The University of Tokyo
| | - Kouhei Kamiya
- Department of Radiology, Juntendo University School of Medicine.,Department of Radiology, The University of Tokyo.,Department of Radiology, Toho University
| | | | | | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine.,Department of Radiology, Toho University
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine
| |
Collapse
|
38
|
Differentiation of high-grade and low-grade intra-axial brain tumors by time-dependent diffusion MRI. Magn Reson Imaging 2020; 72:34-41. [PMID: 32599021 DOI: 10.1016/j.mri.2020.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/27/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Oscillating gradient spin-echo (OGSE) sequences enable acquisitions with shorter diffusion times. There is growing interest in the effect of diffusion time on apparent diffusion coefficient (ADC) values in patients with cancer. However, little evidence exists regarding its usefulness for differentiating between high-grade and low-grade brain tumors. The purpose of this study is to investigate the utility of changes in the ADC value between short and long diffusion times in distinguishing low-grade and high-grade brain tumors. MATERIAL AND METHODS Eleven patients with high-grade brain tumors and ten patients with low-grade brain tumors were scanned using a 3 T magnetic resonance imaging with diffusion-weighted imaging (DWI) using OGSE and PGSE (effective diffusion time [Δeff]: 6.5 ms and 35.2 ms) and b-values of 0 and 1000 s/mm2. Using a region of interest (ROI) analysis of the brain tumors, we measured the ADC for two Δeff (ADCΔeff) values and computed the subtraction ADC (ΔADC = ADC6.5 ms - ADC35.2 ms) and the relative ADC (ΔADC = (ADC6.5 ms - ADC35.2 ms) / ADC35.2 ms × 100). The maximum values for the subtraction ADC (ΔADCmax) and the relative ADC (rADCmax) on the ROI were compared between low-grade and high-grade tumors using the Wilcoxon rank-sum test. A P-value <.05 was considered significant. The ROIs were also placed in the normal white matter of patients with high- and low-grade brain tumors, and ΔADCmax values were determined. RESULTS High-grade tumors had significantly higher ΔADCmax and rADCmax than low-grade tumors. The ΔADCmax values of the normal white matter were lower than the ΔADCmax of high- and low-grade brain tumors. CONCLUSION The dependence of ADC values on diffusion time between 6.5 ms and 35.2 ms was stronger in high-grade tumors than in low-grade tumors, suggesting differences in internal tissue structure. This finding highlights the importance of reporting diffusion times in ADC evaluations and might contribute to the grading of brain tumors using DWI.
Collapse
|
39
|
Lee JK, Liu D, Raven EP, Jiang D, Liu P, Qin Q, Kulikowicz E, Santos PT, Adams S, Zhang J, Koehler RC, Martin LJ, Tekes A. Mean Diffusivity in Striatum Correlates With Acute Neuronal Death but Not Lesser Neuronal Injury in a Pilot Study of Neonatal Piglets With Encephalopathy. J Magn Reson Imaging 2020; 52:1216-1226. [PMID: 32396711 DOI: 10.1002/jmri.27181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Diffusion MRI is routinely used to evaluate brain injury in neonatal encephalopathy. Although abnormal mean diffusivity (MD) is often attributed to cytotoxic edema, the specific contribution from neuronal pathology is unclear. PURPOSE To determine whether MD from high-resolution diffusion tensor imaging (DTI) can detect variable degrees of neuronal degeneration and pathology in piglets with brain injury induced by excitotoxicity or global hypoxia-ischemia (HI) with or without overt infarction. STUDY TYPE Prospective. ANIMAL MODEL Excitotoxic brain injury was induced in six neonatal piglets by intrastriatal stereotaxic injection of the glutamate receptor agonist quinolinic acid (QA). Three piglets underwent global HI or a sham procedure. Piglets recovered for 20-96 hours before undergoing MRI (n = 9). FIELD STRENGTH/SEQUENCE 3.0T MRI with DTI, T1 - and T2 -weighted imaging. ASSESSMENT MD, fractional anisotropy (FA), and qualitative T2 injury were assessed in the putamen and caudate. The cell bodies of normal neurons, degenerating neurons (excitotoxic necrosis, ischemic necrosis, or necrosis-apoptosis cell death continuum), and injured neurons with equivocal degeneration were counted by histopathology. STATISTICAL TESTS Spearman correlations were used to compare MD and FA to normal, degenerating, and injured neurons. T2 injury and neuron counts were evaluated by descriptive analysis. RESULTS The QA insult generated titratable levels of neuronal pathology. In QA, HI, and sham piglets, lower MD correlated with higher ratios of degenerating-to-total neurons (P < 0.05), lower ratios of normal-to-total neurons (P < 0.05), and greater numbers of degenerating neurons (P < 0.05). MD did not correlate with abnormal neurons exhibiting nascent injury (P > 0.99). Neuron counts were not related to FA (P > 0.30) or to qualitative injury from T2 -weighted MRI. DATA CONCLUSION MD is more accurate than FA for detecting neuronal degeneration and loss during acute recovery from neonatal excitotoxic and HI brain injury. MD does not reliably detect nonfulminant, nascent, and potentially reversible neuronal injury. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2 J. Magn. Reson. Imaging 2020;52:1216-1226.
Collapse
Affiliation(s)
- Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University (JHU), Baltimore, Maryland, USA
| | - Dapeng Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Erika P Raven
- Department of Radiology, New York University (NYU), New York, New York, USA
| | - Dengrong Jiang
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qin Qin
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University (JHU), Baltimore, Maryland, USA
| | - Polan T Santos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University (JHU), Baltimore, Maryland, USA
| | - Shawn Adams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University (JHU), Baltimore, Maryland, USA
| | - Jiangyang Zhang
- Department of Radiology, New York University (NYU), New York, New York, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University (JHU), Baltimore, Maryland, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aylin Tekes
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Stabinska J, Ljimani A, Frenken M, Feiweier T, Lanzman RS, Wittsack HJ. Comparison of PGSE and STEAM DTI acquisitions with varying diffusion times for probing anisotropic structures in human kidneys. Magn Reson Med 2020; 84:1518-1525. [PMID: 32072674 DOI: 10.1002/mrm.28217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate the sensitivity of stimulated-echo acquisition mode (STEAM) and pulsed-gradient spin-echo (PGSE) diffusion tensor imaging (DTI) acquisitions with different diffusion times for measuring renal tissue anisotropy. METHODS Twelve healthy volunteers underwent an MRI examination at a 3T scanner including STEAM and PGSE DTI with variable diffusion times Δ (20.3, 37 and 125 ms). Three volunteers were scanned twice to test the reproducibility for repeated examinations. Diffusion parameters fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in the automatically segmented cortical and medullary regions of interests in both kidneys were calculated and averaged over all subjects for further analysis. Moreover, 5-grade qualitative evaluation of the FA and ADC maps from each sequence was conducted by two experienced radiologists in a consensus. RESULTS The cortex-medulla difference in the STEAM sequence was significantly higher than that in PGSE with short ∆ = 20.3 ms (P < 0.001) and in PGSE with intermediate ∆ = 37 ms (P < 0.05) diffusion times. Reproducibility of the FA/ADC measurements was very good and comparable for all acquisition modes investigated. For the FA maps, the PGSE sequence with intermediate diffusion time scored highest in the subjective visual assessment of radiologists. CONCLUSION The delineation of anisotropy in renal tissue is depending on the used diffusion time of the DTI sequence. A PGSE acquisition at a diffusion time of about 37 ms provides reproducible results with optimal corticomedullary contrast in FA and ADC maps and good image quality.
Collapse
Affiliation(s)
- Julia Stabinska
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Miriam Frenken
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Feiweier
- Diagnostic Imaging, Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Germany
| | - Rotem Shlomo Lanzman
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
41
|
Veraart J, Nunes D, Rudrapatna U, Fieremans E, Jones DK, Novikov DS, Shemesh N. Nonivasive quantification of axon radii using diffusion MRI. eLife 2020; 9:e49855. [PMID: 32048987 PMCID: PMC7015669 DOI: 10.7554/elife.49855] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Axon caliber plays a crucial role in determining conduction velocity and, consequently, in the timing and synchronization of neural activation. Noninvasive measurement of axon radii could have significant impact on the understanding of healthy and diseased neural processes. Until now, accurate axon radius mapping has eluded in vivo neuroimaging, mainly due to a lack of sensitivity of the MRI signal to micron-sized axons. Here, we show how - when confounding factors such as extra-axonal water and axonal orientation dispersion are eliminated - heavily diffusion-weighted MRI signals become sensitive to axon radii. However, diffusion MRI is only capable of estimating a single metric, the effective radius, representing the entire axon radius distribution within a voxel that emphasizes the larger axons. Our findings, both in rodents and humans, enable noninvasive mapping of critical information on axon radii, as well as resolve the long-standing debate on whether axon radii can be quantified.
Collapse
Affiliation(s)
- Jelle Veraart
- Champalimaud ResearchChampalimaud Centre for the UnknownLisbonPortugal
- Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkUnited States
- imec-Vision Lab, Department of PhysicsUniversity of AntwerpAntwerpBelgium
| | - Daniel Nunes
- Champalimaud ResearchChampalimaud Centre for the UnknownLisbonPortugal
| | - Umesh Rudrapatna
- CUBRIC, School of PsychologyCardiff UniversityCardiffUnited Kingdom
| | - Els Fieremans
- Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkUnited States
| | - Derek K Jones
- CUBRIC, School of PsychologyCardiff UniversityCardiffUnited Kingdom
- Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneAustralia
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkUnited States
| | - Noam Shemesh
- Champalimaud ResearchChampalimaud Centre for the UnknownLisbonPortugal
| |
Collapse
|
42
|
Berndt MT, Maegerlein C, Boeckh-Behrens T, Wunderlich S, Zimmer C, Wirth S, Mück FG, Mönch S, Friedrich B, Kaesmacher J. Microstructural Integrity of Salvaged Penumbra after Mechanical Thrombectomy. AJNR Am J Neuroradiol 2019; 41:79-85. [PMID: 31857324 DOI: 10.3174/ajnr.a6364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/24/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE There are sparse data on the microstructural integrity of salvaged penumbral tissue after mechanical thrombectomy of large-vessel occlusions. The aim of the study was to analyze possible microstructural alteration in the penumbra and their association with clinical symptoms as well as angiographic reperfusion success in patients undergoing mechanical thrombectomy. MATERIALS AND METHODS All patients who underwent mechanical thrombectomy for large-vessel occlusions in the anterior circulation and who received an admission CT perfusion together with postinterventional DTIs were included (n = 65). Angiographic reperfusion success by means of modified Thrombolysis in Cerebral Infarction (mTICI) scale and clinical outcome were recorded. Microstructural integrity was assessed by DTI evaluating the mean diffusivity index within the salvaged gray matter of the former penumbra. RESULTS The mean diffusivity index was higher in completely recanalized patients (mTICI 3: -0.001 ± 0.034 versus mTICI <3: -0.030 ± 0.055, P = .03). There was a positive correlation between the mean diffusivity index and NIHSS score improvement (r = 0.49, P = .003) and the mean diffusivity index was associated with midterm functional outcome (r = -0.37, P = .04) after adjustment for confounders. In mediation analysis, the mean diffusivity index and infarction growth mediated the association between reperfusion success and clinical outcomes. CONCLUSIONS The macroscopic salvaged penumbra included areas of microstructural integrity changes, most likely related to the initial hypoperfusion. These abnormalities were found early after mechanical thrombectomy, were dependent on angiographic results, and correlated with the clinical outcome. When confirmed, these findings prompt the evaluation of therapies for protection of the penumbral tissue integrity.
Collapse
Affiliation(s)
- M T Berndt
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - C Maegerlein
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - T Boeckh-Behrens
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - S Wunderlich
- Neurology (S.W.), Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - C Zimmer
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - S Wirth
- Department of Radiology (S.W., F.G.M.), Donauisar Hospital, Deggendorf, Germany
| | - F G Mück
- Department of Radiology (S.W., F.G.M.), Donauisar Hospital, Deggendorf, Germany
| | - S Mönch
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - B Friedrich
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - J Kaesmacher
- Department of Neuroradiology (J.K.), Inselspital, University Hospital Bern, University Bern, Bern, Switzerland
| |
Collapse
|
43
|
Arbabi A, Kai J, Khan AR, Baron CA. Diffusion dispersion imaging: Mapping oscillating gradient spin-echo frequency dependence in the human brain. Magn Reson Med 2019; 83:2197-2208. [PMID: 31762110 DOI: 10.1002/mrm.28083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Oscillating gradient spin-echo (OGSE) diffusion MRI provides information about the microstructure of biological tissues by means of the frequency dependence of the apparent diffusion coefficient (ADC). ADC dependence on OGSE frequency has been explored in numerous rodent studies, but applications in the human brain have been limited and have suffered from low contrast between different frequencies, long scan times, and a limited exploration of the nature of the ADC dependence on frequency. THEORY AND METHODS Multiple frequency OGSE acquisitions were acquired in healthy subjects at 7T to explore the power-law frequency dependence of ADC, the "diffusion dispersion." Furthermore, a method for optimizing the estimation of the ADC difference between different OGSE frequencies was developed, which enabled the design of a highly efficient protocol for mapping diffusion dispersion. RESULTS For the first time, evidence of a linear dependence of ADC on the square root of frequency in healthy human white matter was obtained. Using the optimized protocol, high-quality, full-brain maps of apparent diffusion dispersion rate were also demonstrated at an isotropic resolution of 2 mm in a scan time of 6 min. CONCLUSIONS This work sheds light on the nature of diffusion dispersion in the healthy human brain and introduces full-brain diffusion dispersion mapping at clinically relevant scan times. These advances may lead to new biomarkers of pathology or improved microstructural modeling.
Collapse
Affiliation(s)
- Aidin Arbabi
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Jason Kai
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Ali R Khan
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Corey A Baron
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
44
|
Bertalan G, Boehm-Sturm P, Schreyer S, Morr AS, Steiner B, Tzschätzsch H, Braun J, Guo J, Sack I. The influence of body temperature on tissue stiffness, blood perfusion, and water diffusion in the mouse brain. Acta Biomater 2019; 96:412-420. [PMID: 31247381 DOI: 10.1016/j.actbio.2019.06.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/28/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022]
Abstract
While hypothermia of the brain is used to reduce neuronal damage in patients with conditions such as traumatic brain injury or stroke, little is known about how temperature affects the biophysical properties of in vivo brain tissue. Therefore, we measured shear wave speed (SWS), apparent diffusion coefficient (ADC), and cerebral blood flow (CBF) in the mouse brain at different body temperatures to investigate the relationship between temperature and tissue stiffness, water diffusion, and blood perfusion in the living brain. Multifrequency magnetic resonance elastography (MRE), diffusion-weighted imaging (DWI), and arterial spin labeling (ASL) were performed in seven mice while increasing and recording body temperature from hypothermia (28-30 °C) to normothermia (36-38 °C). SWS, ADC, and CBF were analyzed in regions of whole brain, cortex, hippocampus, and diencephalon. Our results show that SWS decreases while ADC and CBF increase from hypothermia to normothermia (whole brain SWS: -6.2%, ADC: +34.0%, CBF: +80.2%; cortex SWS: -10.1%, ADC: +30.9%, CBF: +82.4%; all p > 0.05). We found a significant inverse correlation between SWS and both ADC and CBF in all analyzed regions except diencephalon (whole brain SWS-ADC: r = -0.8, p < 0.005; SWS-CBF: r = -0.84, p < 0.005; cortex SWS-ADC: r = -0.74, p < 0.05; SWS-CBF: r = -0.65, p < 0.05). These results show that in vivo brain stiffness is inversely correlated with temperature, extracellular water mobility, and microvascular blood flow. Regional differences indicate that cortical areas are more markedly affected by hypothermia than central regions such as diencephalon. Temperature should be considered as a confounder in elastographic measurements, especially in preclinical settings. STATEMENT OF SIGNIFICANCE: Hibernating mammals lower their body temperature and metabolic activity. A hypothermic state can also be induced for medical purposes to reduce the risk of neural damage in patients with neurological disease or injury. However, little is known how physical soft-tissue properties of the in-vivo brain such as water diffusion, blood perfusion or mechanical parameters correlate with each other when temperature changes. Our study demonstrates for the first time that those quantitative imaging markers are tightly linked to changes in body temperature. While water diffusion and blood perfusion are reduced during hypothermia, brain stiffness significantly increases, suggesting that multiparametric quantitative MRI should be used for the noninvasive assessment of brain metabolic activity.
Collapse
|
45
|
Moulton E, Magno S, Valabregue R, Amor-Sahli M, Pires C, Lehéricy S, Leger A, Samson Y, Rosso C. Acute Diffusivity Biomarkers for Prediction of Motor and Language Outcome in Mild-to-Severe Stroke Patients. Stroke 2019; 50:2050-2056. [DOI: 10.1161/strokeaha.119.024946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background and Purpose—
Early severity of stroke symptoms—especially in mild-to-severe stroke patients—are imperfect predictors of long-term motor and aphasia outcome. Motor function and language processing heavily rely on the preservation of important white matter fasciculi in the brain. Axial diffusivity (AD) from the diffusion tensor imaging model has repeatedly shown to accurately reflect acute axonal damage and is thus optimal to probe the integrity of important white matter bundles and their relationship with long-term outcome. Our aim was to investigate the independent prognostic value of the AD of white matter tracts in the motor and language network evaluated at 24 hours poststroke for motor and aphasia outcome at 3 months poststroke.
Methods—
Seventeen (motor cohort) and 28 (aphasia cohort) thrombolyzed patients with initial mild-to-severe stroke underwent a diffusion tensor imaging sequence at 24 hours poststroke. Motor and language outcome were evaluated at 3 months poststroke with a composite motor score and the aphasia handicap scale. We first used stepwise regression to determine which classic (age, initial motor or aphasia severity, and lesion volume) and imaging (ratio of affected/unaffected AD of motor and language fasciculi) factors were related to outcome. Second, to determine the specificity of our a priori choices of fasciculi, we performed voxel-based analyses to determine if the same, additional, or altogether new regions were associated with long-term outcome.
Results—
The ratio of AD in the corticospinal tract was the sole predictor of long-term motor outcome, and the ratio of AD in the arcuate fasciculus—along with age and initial aphasia severity—was an independent predictor of 3-month aphasia outcome. White matter regions overlapping with these fasciculi naturally emerged in the corresponding voxel-based analyses.
Conclusions—
AD of the corticospinal tract and arcuate fasciculus are effective biomarkers of long-term motor and aphasia outcome, respectively.
Collapse
Affiliation(s)
- Eric Moulton
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
| | - Serena Magno
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
| | - Romain Valabregue
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
- Centre de Neuro-Imagerie de Recherche, CENIR, ICM, Paris, France (S.L., R.V.)
| | - Melika Amor-Sahli
- Department of Neuroradiology, AP-HP (M.A.-S., S.L.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Christine Pires
- AP-HP, Urgences Cérébro-Vasculaires (C.P., A.L., Y.S., C.R.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehéricy
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
- Centre de Neuro-Imagerie de Recherche, CENIR, ICM, Paris, France (S.L., R.V.)
- ICM team Movement Investigation and Therapeutics (S.L., C.R.)
- Department of Neuroradiology, AP-HP (M.A.-S., S.L.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Anne Leger
- AP-HP, Urgences Cérébro-Vasculaires (C.P., A.L., Y.S., C.R.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Yves Samson
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
- AP-HP, Urgences Cérébro-Vasculaires (C.P., A.L., Y.S., C.R.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Charlotte Rosso
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
- ICM team Movement Investigation and Therapeutics (S.L., C.R.)
- AP-HP, Urgences Cérébro-Vasculaires (C.P., A.L., Y.S., C.R.), Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
46
|
Wu D, Martin LJ, Northington FJ, Zhang J. Oscillating-gradient diffusion magnetic resonance imaging detects acute subcellular structural changes in the mouse forebrain after neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 2019; 39:1336-1348. [PMID: 29436246 PMCID: PMC6668516 DOI: 10.1177/0271678x18759859] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The recently developed oscillating-gradient diffusion MRI (OG-dMRI) technique extends our ability to examine brain structures at different spatial scales. In this study, we investigated the sensitivity of OG-dMRI in detecting cellular and subcellular structural changes in a mouse model of neonatal hypoxia ischemia (HI). Neonatal mice received unilateral HI injury or sham injury at postnatal day 10, followed by in vivo T2-weighted and diffusion MRI of the brains at 3-6 h and 24 h after HI. Apparent diffusion coefficient (ADC) maps were acquired using conventional pulsed-gradient dMRI (PG-dMRI) and OG-dMRI with oscillating frequencies from 50 to 200 Hz. Pathology at cellular and subcellular levels was evaluated using neuronal, glial, and mitochondrial markers. We found significantly higher rates of ADC increase with oscillating frequencies (ΔfADC) in the ipsilateral edema region, compared to the contralateral side, starting as early as 3 h after HI. Even in injured regions that showed no apparent change in PG-ADC or pseudo-normalized PG-ADC measurements, ΔfADC remained significantly elevated. Histopathology showed swelling of sub-cellular structures in these regions with no apparent whole-cell level change. These results suggest that OG-dMRI is sensitive to subcellular structural changes in the brain after HI and is less susceptible to pseudo-normalization than PG-dMRI.
Collapse
Affiliation(s)
- Dan Wu
- 1 Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.,2 Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lee J Martin
- 3 Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,4 Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances J Northington
- 5 Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiangyang Zhang
- 6 Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
47
|
Moura LM, Luccas R, de Paiva JPQ, Amaro E, Leemans A, Leite CDC, Otaduy MCG, Conforto AB. Diffusion Tensor Imaging Biomarkers to Predict Motor Outcomes in Stroke: A Narrative Review. Front Neurol 2019; 10:445. [PMID: 31156529 PMCID: PMC6530391 DOI: 10.3389/fneur.2019.00445] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
Stroke is a leading cause of disability worldwide. Motor impairments occur in most of the patients with stroke in the acute phase and contribute substantially to disability. Diffusion tensor imaging (DTI) biomarkers such as fractional anisotropy (FA) measured at an early phase after stroke have emerged as potential predictors of motor recovery. In this narrative review, we: (1) review key concepts of diffusion MRI (dMRI); (2) present an overview of state-of-art methodological aspects of data collection, analysis and reporting; and (3) critically review challenges of DTI in stroke as well as results of studies that investigated the correlation between DTI metrics within the corticospinal tract and motor outcomes at different stages after stroke. We reviewed studies published between January, 2008 and December, 2018, that reported correlations between DTI metrics collected within the first 24 h (hyperacute), 2-7 days (acute), and >7-90 days (early subacute) after stroke. Nineteen studies were included. Our review shows that there is no consensus about gold standards for DTI data collection or processing. We found great methodological differences across studies that evaluated DTI metrics within the corticospinal tract. Despite heterogeneity in stroke lesions and analysis approaches, the majority of studies reported significant correlations between DTI biomarkers and motor impairments. It remains to be determined whether DTI results could enhance the predictive value of motor disability models based on clinical and neurophysiological variables.
Collapse
Affiliation(s)
- Luciana M. Moura
- Neurostimulation Laboratory, Neurology Department, Hospital das Clínicas/São Paulo University, São Paulo, Brazil
| | - Rafael Luccas
- Neurostimulation Laboratory, Neurology Department, Hospital das Clínicas/São Paulo University, São Paulo, Brazil
| | | | - Edson Amaro
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Lim 44, Department of Radiology and Oncology, Faculdade de Medicina, Hospital das Clínicas/São Paulo University, São Paulo, Brazil
| | - Alexander Leemans
- PROVIDI Lab, Image Sciences Institute, UMC Utrecht, Utrecht, Netherlands
| | - Claudia da C. Leite
- Lim 44, Department of Radiology and Oncology, Faculdade de Medicina, Hospital das Clínicas/São Paulo University, São Paulo, Brazil
| | - Maria C. G. Otaduy
- Lim 44, Department of Radiology and Oncology, Faculdade de Medicina, Hospital das Clínicas/São Paulo University, São Paulo, Brazil
| | - Adriana B. Conforto
- Neurostimulation Laboratory, Neurology Department, Hospital das Clínicas/São Paulo University, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
48
|
Moulton E, Valabregue R, Lehéricy S, Samson Y, Rosso C. Multivariate prediction of functional outcome using lesion topography characterized by acute diffusion tensor imaging. Neuroimage Clin 2019; 23:101821. [PMID: 30991303 PMCID: PMC6462821 DOI: 10.1016/j.nicl.2019.101821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 11/07/2022]
Abstract
The relationship between stroke topography and functional outcome has largely been studied with binary manual lesion segmentations. However, stroke topography may be better characterized by continuous variables capable of reflecting the severity of ischemia, which may be more pertinent for long-term outcome. Diffusion Tensor Imaging (DTI) constitutes a powerful means of quantifying the degree of acute ischemia and its potential relation to functional outcome. Our aim was to investigate whether using more clinically pertinent imaging parameters with powerful machine learning techniques could improve prediction models and thus provide valuable insight on critical brain areas important for long-term outcome. Eighty-seven thrombolyzed patients underwent a DTI sequence at 24 h post-stroke. Functional outcome was evaluated at 3 months post-stroke with the modified Rankin Score and was dichotomized into good (mRS ≤ 2) and poor (mRS > 2) outcome. We used support vector machines (SVM) to classify patients into good vs. poor outcome and evaluate the accuracy of different models built with fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity asymmetry maps, and lesion segmentations in combination with lesion volume, age, recanalization status, and thrombectomy treatment. SVM classifiers built with axial diffusivity maps yielded the best accuracy of all imaging parameters (median [IQR] accuracy = 82.8 [79.3-86.2]%), compared to that of lesion segmentations (76.7 [73.3-82.8]%) when predicting 3-month functional outcome. The analysis revealed a strong contribution of clinical variables, notably - in descending order - lesion volume, thrombectomy treatment, and recanalization status, in addition to the deep white matter at the crossroads of major white matter tracts, represented by brain regions where model weights were highest. Axial diffusivity is a more appropriate imaging marker to characterize stroke topography for predicting long-term outcome than binary lesion segmentations.
Collapse
Affiliation(s)
- Eric Moulton
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France
| | - Romain Valabregue
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France; Centre de Neuro-Imagerie de Recherche, CENIR, ICM, Paris, France
| | - Stéphane Lehéricy
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France; Centre de Neuro-Imagerie de Recherche, CENIR, ICM, Paris, France; ICM Team Movement Investigation and Therapeutics, France; AP-HP, Department of Neuroradiology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Yves Samson
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France; AP-HP, Urgences Cérébro-Vasculaires, Hôpital Pitié-Salpêtrière, Paris, France
| | - Charlotte Rosso
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France; ICM Team Movement Investigation and Therapeutics, France; AP-HP, Urgences Cérébro-Vasculaires, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
49
|
Choroid plexus cysts analyzed using diffusion-weighted imaging with short diffusion-time. Magn Reson Imaging 2019; 57:323-327. [DOI: 10.1016/j.mri.2018.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/11/2018] [Accepted: 12/30/2018] [Indexed: 12/21/2022]
|
50
|
Novikov DS, Fieremans E, Jespersen SN, Kiselev VG. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. NMR IN BIOMEDICINE 2019; 32:e3998. [PMID: 30321478 PMCID: PMC6481929 DOI: 10.1002/nbm.3998] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 05/18/2023]
Abstract
We review, systematize and discuss models of diffusion in neuronal tissue, by putting them into an overarching physical context of coarse-graining over an increasing diffusion length scale. From this perspective, we view research on quantifying brain microstructure as occurring along three major avenues. The first avenue focusses on transient, or time-dependent, effects in diffusion. These effects signify the gradual coarse-graining of tissue structure, which occurs qualitatively differently in different brain tissue compartments. We show that transient effects contain information about the relevant length scales for neuronal tissue, such as the packing correlation length for neuronal fibers, as well as the degree of structural disorder along the neurites. The second avenue corresponds to the long-time limit, when the observed signal can be approximated as a sum of multiple nonexchanging anisotropic Gaussian components. Here, the challenge lies in parameter estimation and in resolving its hidden degeneracies. The third avenue employs multiple diffusion encoding techniques, able to access information not contained in the conventional diffusion propagator. We conclude with our outlook on future directions that could open exciting possibilities for designing quantitative markers of tissue physiology and pathology, based on methods of studying mesoscopic transport in disordered systems.
Collapse
Affiliation(s)
- Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Sune N. Jespersen
- CFIN/MINDLab, Department of Clinical Medicine and Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Valerij G. Kiselev
- Medical Physics, Deptartment of Radiology, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|