1
|
Zhu Y, Li X, Lei X, Tang L, Wen D, Zeng B, Zhang X, Huang Z, Guo Z. The potential mechanism and clinical application value of remote ischemic conditioning in stroke. Neural Regen Res 2025; 20:1613-1627. [PMID: 38845225 DOI: 10.4103/nrr.nrr-d-23-01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 08/07/2024] Open
Abstract
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
Collapse
Affiliation(s)
- Yajun Zhu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Pugazenthi S, Norris AJ, Lauzier DC, Lele AV, Huguenard A, Dhar R, Zipfel GJ, Athiraman U. Conditioning-based therapeutics for aneurysmal subarachnoid hemorrhage - A critical review. J Cereb Blood Flow Metab 2024; 44:317-332. [PMID: 38017387 PMCID: PMC10870969 DOI: 10.1177/0271678x231218908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) carries significant mortality and morbidity, with nearly half of SAH survivors having major cognitive dysfunction that impairs their functional status, emotional health, and quality of life. Apart from the initial hemorrhage severity, secondary brain injury due to early brain injury and delayed cerebral ischemia plays a leading role in patient outcome after SAH. While many strategies to combat secondary brain injury have been developed in preclinical studies and tested in late phase clinical trials, only one (nimodipine) has proven efficacious for improving long-term functional outcome. The causes of these failures are likely multitude, but include use of therapies targeting only one element of what has proven to be multifactorial brain injury process. Conditioning is a therapeutic strategy that leverages endogenous protective mechanisms to exert powerful and remarkably pleiotropic protective effects against injury to all major cell types of the CNS. The aim of this article is to review the current body of evidence for the use of conditioning agents in SAH, summarize the underlying neuroprotective mechanisms, and identify gaps in the current literature to guide future investigation with the long-term goal of identifying a conditioning-based therapeutic that significantly improves functional and cognitive outcomes for SAH patients.
Collapse
Affiliation(s)
- Sangami Pugazenthi
- Department of Neurological Surgery, Washington University, St. Louis MO, USA
| | - Aaron J Norris
- Department of Anesthesiology, Washington University, St. Louis MO, USA
| | - David C Lauzier
- Department of Neurological Surgery, University of California, Los Angeles, CA, USA
| | - Abhijit V Lele
- Department of Anesthesiology, University of Washington, Seattle, WA, USA
| | - Anna Huguenard
- Department of Neurological Surgery, Washington University, St. Louis MO, USA
| | - Rajat Dhar
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Gregory J Zipfel
- Departments of Neurological Surgery and Neurology, Washington University, St. Louis, MO, USA
| | - Umeshkumar Athiraman
- Department of Anesthesiology and Neurological Surgery, Washington University, St. Louis, MO, USA
| |
Collapse
|
3
|
Zhu Y, Li X, Wen D, Huang Z, Yan J, Zhang Z, Wang Y, Guo Z. Remote Ischemic Post-conditioning Reduces Cognitive Impairment in Rats Following Subarachnoid Hemorrhage: Possible Involvement in STAT3/STAT5 Phosphorylation and Th17/Treg Cell Homeostasis. Transl Stroke Res 2024:10.1007/s12975-024-01235-y. [PMID: 38356020 DOI: 10.1007/s12975-024-01235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The inflammatory response following subarachnoid hemorrhage (SAH) may lead to Early Brain Injury and subsequently contribute to poor prognosis such as cognitive impairment in patients. Currently, there is a lack of effective strategies for SAH to ameliorate inflammation and improve cognitive impairment in clinical. This study aims to examine the inhibitory impact of remote ischemic post-conditioning (RIPostC) on the body's inflammatory response by regulating Th17/Treg cell homeostasis after SAH. The ultimate goal is to search for potential early treatment targets for SAH. The rat SAH models were made by intravascular puncture of the internal carotid artery. The intervention of RIPostC was administered for three consecutive days immediately after successful modeling. Behavioral experiments including the Morris water maze and Y-maze tests were conducted to assess cognitive functions such as spatial memory, working memory, and learning abilities 2 weeks after successful modeling. The ratio of Th17 cells and Treg cells in the blood was detected using flow cytometry. Immunofluorescence was used to observe the infiltration of neutrophils into the brain. Signal transducers and activators of transcription 5 (STAT5) and signal transducers and activators of transcription 3 (STAT3) phosphorylation levels, receptor-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) levels were detected by Western blot. The levels of anti-inflammatory factors (IL-2, IL-10, IL-5, etc.) and pro-inflammatory factors (IL-6, IL-17, IL-18, TNF-α, IL-14, etc.) in blood were detected using Luminex Liquid Suspension Chip Assay. RIPostC significantly improved the cognitive impairment caused by SAH in rats. The results showed that infiltration of Th17 cells and neutrophils into brain tissue increased after SAH, leading to the release of pro-inflammatory factors (IL-6, IL-17, IL-18, and TNF-α). This response can be inhibited by RIPostC. Additionally, RIPostC facilitates the transfer of Treg from blood to the brain and triggers the release of anti-inflammatory (IL-2, IL-10, and IL-5) factors to suppress the inflammation following SAH. Finally, it was found that RIPostC increased the phosphorylation of STAT5 while decreasing the phosphorylation of STAT3. RIPostC reduces inflammation after SAH by partially balancing Th17/Treg cell homeostasis, which may be related to downregulation of STAT3 and upregulation of STAT5 phosphorylation, which ultimately alleviates cognitive impairment in rats. Targeting Th17/Treg cell homeostasis may be a promising strategy for early SAH treatment.
Collapse
Affiliation(s)
- Yajun Zhu
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Xiaoguo Li
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - DaoChen Wen
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zichao Huang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Jin Yan
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zhaosi Zhang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Yingwen Wang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zongduo Guo
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
4
|
Song S, Wu H, Liu Y, Lan D, Jiao B, Wan S, Guo Y, Zhou D, Ding Y, Ji X, Meng R. Remote ischemic conditioning-induced hyperacute and acute responses of plasma proteome in healthy young male adults: a quantitative proteomic analysis. Chin Med J (Engl) 2023; 136:150-158. [PMID: 36848171 PMCID: PMC10106146 DOI: 10.1097/cm9.0000000000002572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Long-term remote ischemic conditioning (RIC) has been proven to be beneficial in multiple diseases, such as cerebral and cardiovascular diseases. However, the hyperacute and acute effects of a single RIC stimulus are still not clear. Quantitative proteomic analyses of plasma proteins following RIC application have been conducted in preclinical and clinical studies but exhibit high heterogeneity in results due to wide variations in experimental setups and sampling procedures. Hence, this study aimed to explore the immediate effects of RIC on plasma proteome in healthy young adults to exclude confounding factors of disease entity, such as medications and gender. METHODS Young healthy male participants were enrolled after a systematic physical examination and 6-month lifestyle observation. Individual RIC sessions included five cycles of alternative ischemia and reperfusion, each lasting for 5 min in bilateral forearms. Blood samples were collected at baseline, 5 min after RIC, and 2 h after RIC, and then samples were processed for proteomic analysis using liquid chromatography-tandem mass spectrometry method. RESULTS Proteins related to lipid metabolism (e.g., Apolipoprotein F), coagulation factors (hepatocyte growth factor activator preproprotein), members of complement cascades (mannan-binding lectin serine protease 1 isoform 2 precursor), and inflammatory responses (carboxypeptidase N catalytic chain precursor) were differentially altered at their serum levels following the RIC intervention. The most enriched pathways were protein glycosylation and complement/coagulation cascades. CONCLUSIONS One-time RIC stimulus may induce instant cellular responses like anti-inflammation, coagulation, and fibrinolysis balancing, and lipid metabolism regulation which are protective in different perspectives. Protective effects of single RIC in hyperacute and acute phases may be exploited in clinical emergency settings due to apparently beneficial alterations in plasma proteome profile. Furthermore, the beneficial effects of long-term (repeated) RIC interventions in preventing chronic cardiovascular diseases among general populations can also be expected based on our study findings.
Collapse
Affiliation(s)
- Siying Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yunhuan Liu
- Department of Neurology, Huadong Hospital, Fudan University, Shanghai 200031, China
| | - Duo Lan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Baolian Jiao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuling Wan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yibing Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
5
|
Zhou S, Zhang J, Zhou C, Gong F, Zhu X, Pan X, Sun J, Gao X, Huang Y. DNA Methylation of Patatin-Like Phospholipase Domain-Containing Protein 6 Gene Contributes to the Risk of Intracranial Aneurysm in Males. Front Aging Neurosci 2022; 14:885680. [PMID: 35898327 PMCID: PMC9309567 DOI: 10.3389/fnagi.2022.885680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: This study is aimed to investigate the contribution of patatin-like phospholipase domain-containing protein 6 (PNPLA6) DNA methylation to the risk of intracranial aneurysm (IA) in the Han Chinese population. Methods: A total of 96 age- and sex-matched participants were recruited to evaluate PNPLA6 methylation via bisulfite pyrosequencing. The PNPLA6 mRNA expression in the plasma was determined using real-time quantitative reverse transcription-polymerase chain reaction. Human primary artery smooth muscle cells (HPCASMC) were used for the in vitro function study. Results: PNPLA6 methylation was significantly higher in patients with IA than in healthy controls (p < 0.01). Sex group analysis showed that this correlation appeared in the male group (p < 0.01) but not in the female group (p > 0.05). PNPLA6 methylation was significantly associated with age in all participants (r = 0.306, p = 0.003) and in the control group (r = 0.377, p = 0.008) but not in the IA group (r = 0.127, p = 0.402). Furthermore, the PNPLA6 mRNA expression significantly decreased in patients with IA than that in the controls (p = 0.016). PNPLA6 expression was significantly inversely correlated with elevated DNA methylation in participants (r = −0.825, p < 0.0001). In addition, PNPLA6 transcription was significantly enhanced following treatment with 5-aza-2’-deoxycytidine methylation inhibitor in HPCASMC.The receiver operating characteristic analyses of curves showed that the PNPLA6 mean methylation [area under the curve (AUC) = 0.74, p < 0.001] and mRNA expression (AUC = 0.86, p < 0.001) could have a diagnostic value for patients with IA. Conclusion: Although future functional experiments are required to test our hypothesis, our study demonstrated that PNPLA6 methylation and mRNA expression were significantly associated with the risk of IA; thus, they show potential for use in the early diagnosis of IA.
Collapse
Affiliation(s)
- Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
| | - Junjun Zhang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
| | - Fanyong Gong
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
| | - Xueli Zhu
- Department of Ultrasound, Ningbo First Hospital, Ningbo, China
| | - Xingqiang Pan
- Ningbo Center for Disease Control and Prevention, Ningbo, China
| | - Jie Sun
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
- *Correspondence: Jie Sun Xiang Gao Yi Huang
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
- *Correspondence: Jie Sun Xiang Gao Yi Huang
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Medical Research Center, Ningbo First Hospital, Ningbo, China
- *Correspondence: Jie Sun Xiang Gao Yi Huang
| |
Collapse
|
6
|
Mollet I, Martins C, Ângelo-Dias M, Carvalho AS, Aloria K, Matthiesen R, Baptista MV, Borrego LM, Vieira HL. Pilot study in human healthy volunteers on the mechanisms underlying remote ischemic conditioning (RIC) – Targeting circulating immune cells and immune-related proteins. J Neuroimmunol 2022; 367:577847. [DOI: 10.1016/j.jneuroim.2022.577847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/03/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
|
7
|
Liu S, Gao Z, Meng R, Song H, Tang T, Zhao Y, Chen R, Sheng Y, Fan Q, Jiang F, Zhang Q, Ding J, Huang X, Ma Q, Dong K, Xue S, Yu Z, Duan J, Chu C, Chen X, Huang X, Li S, Ovbiagele B, Zhao W, Ji X, Feng W. Preventing Ischemic Cerebrovascular Events in High-Risk Patients With Non-disabling Ischemic Cerebrovascular Events Using Remote Ischemic Conditioning: A Single-Arm Study. Front Neurol 2021; 12:748916. [PMID: 34975717 PMCID: PMC8716386 DOI: 10.3389/fneur.2021.748916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Secondary stroke prevention after a high-risk, non-disabling ischemic cerebrovascular event needs to be enhanced. The study was conducted to investigate whether remote ischemic conditioning (RIC) is effective in preventing recurrent ischemic events within 3 months. Methods: This was a four-center, single-arm, open-label Phase IIa futility trial (PICNIC-One Study). Adult patients (≥18 years of age) who had an acute minor ischemic stroke (AMIS) with a National Institutes of Health Stroke Scale score ≤ 3 or a transient ischemic attack (TIA) with moderate-to-high risk of stroke recurrence (ABCD score ≥ 4) within 14 days of symptom onset were recruited. Patients received RIC as adjunctive therapy to routine secondary stroke prevention regimen. RIC consisted of five cycles of 5-min inflation (200 mmHg) and 5-min deflation of cuffs (45 min) on bilateral upper limbs twice a day for 90 days. Results: A total of 285 patients met the study criteria, of which 167 provided signed informed consent and were enrolled. Data from 162 were analyzed with five subjects excluded. Recurrent AIS/TIA occurred in 6/162 (3.7%) patients within 3 months, with no occurrence of hemorrhagic stroke. The top three adverse events were upper limb pain (44/162, 27.2%), petechia (26/162, 16.0%), and heart palpitation (5/162, 3.1%). About 68 (42.0%) subjects completed ≥ 50% of 45-min RIC sessions. Conclusions: RIC is a safe add-on procedure and it has a potential benefit in reducing recurrent cerebrovascular events in patients with high-risk, non-disabling ischemic cerebrovascular events as the risk of stroke/TIA events is lower than expected; however, its compliance needs to be improved. Our study provides critical preliminary data to plan a large sample size, randomized controlled clinical study to systematically investigate the safety and efficacy of RIC in this population.
Collapse
Affiliation(s)
- Shimeng Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zongen Gao
- Department of Neurology, Shengli Oilfield Center Hospital, Dongying, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianping Tang
- Department of Neurology, Shengli Oilfield Center Hospital, Dongying, China
| | - Ya Zhao
- Department of Neurology, Taoyuan People's Hospital, Changde, China
| | - Rong Chen
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yanzhen Sheng
- Department of Neurology, Taoyuan People's Hospital, Changde, China
| | - Qianqian Fan
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Fang Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianping Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoqin Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kai Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sufang Xue
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Yu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiangang Duan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changbiao Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Chen
- Department of Neurology, Shengli Oilfield Center Hospital, Dongying, China
| | - Xingquan Huang
- Department of Neurology, Taoyuan People's Hospital, Changde, China
| | - Sijie Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bruce Ovbiagele
- Departmeng of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Wenle Zhao
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Beijing University of Aeronautics & Astronautics-China Capital Medical University (BUAA-CCMU) Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
- Xunming Ji
| | - Wuwei Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: Wuwei Feng
| |
Collapse
|
8
|
Quantitative Proteomic Analysis of Plasma after Remote Ischemic Conditioning in a Rhesus Monkey Ischemic Stroke Model. Biomolecules 2021; 11:biom11081164. [PMID: 34439830 PMCID: PMC8393806 DOI: 10.3390/biom11081164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Animal and clinical studies have shown that remote ischemic conditioning (RIC) has protective effects for cerebral vascular diseases, with induced humoral factor changes in the peripheral blood. However, many findings are heterogeneous, perhaps due to differences in the RIC intervention schemes, enrolled populations, and sample times. This study aimed to examine the RIC-induced changes in the plasma proteome using rhesus monkey models of strokes. Methods: Two adult rhesus monkeys with autologous blood clot-induced middle cerebral artery (MCA) occlusion underwent RIC interventions twice a week for five consecutive weeks. Each RIC treatment included five cycles of five minutes of ischemia alternating with five minutes of reperfusion of the forearm. The blood samples were taken from the median cubital vein of the monkeys at baseline and immediately after each week’s RIC stimulus. The plasma samples were isolated for a proteomic analysis using mass spectrometry (MS). Results: Several proteins related to lipid metabolism (Apolipoprotein A-II and Apolipoprotein C-II), coagulation (Fibrinogen alpha chain and serpin), immunoinflammatory responses (complement C3 and C1), and endovascular hemostasis (basement membrane-specific heparan sulfate proteoglycan) were significantly modulated after the RIC intervention. Many of these induced changes, such as in the lipid metabolism regulation and anticoagulation responses, starting as early as two weeks following the RIC intervention. The complementary activation and protection of the endovascular cells occurred more than three weeks postintervention. Conclusions: Multiple protective effects were induced by RIC and involved lipid metabolism regulation (anti-atherogenesis), anticoagulation (antithrombosis), complement activation, and endovascular homeostasis (anti-inflammation). In conclusion, this study indicates that RIC results in significant modulations of the plasma proteome. It also provides ideas for future research and screening targets.
Collapse
|
9
|
Kim BJ, Youn DH, Chang IB, Kang K, Jeon JP. Identification of Differentially-Methylated Genes and Pathways in Patients with Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage. J Korean Neurosurg Soc 2021; 65:4-12. [PMID: 34320780 PMCID: PMC8752893 DOI: 10.3340/jkns.2021.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/14/2021] [Indexed: 11/27/2022] Open
Abstract
Objective We reported the differentially methylated genes in patients with subarachnoid hemorrhage (SAH) using bioinformatics analyses to explore the biological characteristics of the development of delayed cerebral ischemia (DCI). Methods DNA methylation profiles obtained from 40 SAH patients from an epigenome-wide association study were analyzed. Functional enrichment analysis, protein-protein interaction (PPI) network, and module analyses were carried out. Results A total of 13 patients (32.5%) experienced DCI during the follow-up. In total, we categorized the genes into the two groups of hypermethylation (n=910) and hypomethylation (n=870). The hypermethylated genes referred to biological processes of organic cyclic compound biosynthesis, nucleobase-containing compound biosynthesis, heterocycle biosynthesis, aromatic compound biosynthesis and cellular nitrogen compound biosynthesis. The hypomethylated genes referred to biological processes of carbohydrate metabolism, the regulation of cell size, and the detection of a stimulus, and molecular functions of amylase activity, and hydrolase activity. Based on PPI network and module analysis, three hypermethylation modules were mainly associated with antigen-processing, Golgi-to-ER retrograde transport, and G alpha (i) signaling events, and two hypomethylation modules were associated with post-translational protein phosphorylation and the regulation of natural killer cell chemotaxis. VHL, KIF3A, KIFAP3, RACGAP1, and OPRM1 were identified as hub genes for hypermethylation, and ALB and IL5 as hub genes for hypomethylation. Conclusion This study provided novel insights into DCI pathogenesis following SAH. Differently methylated hub genes can be useful biomarkers for the accurate DCI diagnosis.
Collapse
Affiliation(s)
- Bong Jun Kim
- Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon, Korea
| | - In Bok Chang
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea.,Genetic and Research Inc., Chuncheon, Korea
| |
Collapse
|
10
|
Lin F, Chen Y, He Q, Zeng C, Zhang C, Chen X, Zhao Y, Wang S, Zhao J. Prognostic Value of Elevated Cardiac Troponin I After Aneurysmal Subarachnoid Hemorrhage. Front Neurol 2021; 12:677961. [PMID: 34135855 PMCID: PMC8200557 DOI: 10.3389/fneur.2021.677961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
Object: Patients with aneurysmal subarachnoid hemorrhage (aSAH) have an increased incidence of cardiac events and short-term unfavorable neurological outcomes during the acute phase of bleeding. We studied whether troponin I elevation after ictus can predict future major adverse cardiac events (MACEs) and long-term neurological outcomes after 2 years. Methods: Consecutive aSAH patients within 3 days of bleeding were eligible for review from a prospective observational cohort (ClinicalTrials.gov Identifier: NCT04785976). Potential predictors of future MACEs and unfavorable long-term neurological outcomes were calculated by Cox and logistic regression analyses. Additional Kaplan–Meier curves were performed. Results: A total of 213 patients were enrolled with an average follow-up duration of 34.3 months. Individuals were divided into two groups: elevated cTnI group and unelevated cTnI group. By the last available follow-up, 20 patients had died, with an overall all-cause mortality rate of 9.4% and an annual all-cause mortality rate of 3.8%. Patients with elevated cTnI had a significantly higher risk of future MACEs (10.6 vs. 2.1%, p = 0.024, and 95% CI: 1.256–23.875) and unfavorable neurological outcomes at discharge, 3-month, 1-, 2-years, and last follow-up (p = 0.001, p < 0.001, p = 0.001, p < 0.001, and p < 0.001, respectively). In the Cox analysis for future MACE, elevated cTnI was the only independent predictor (HR = 5.980; 95% CI: 1.428–25.407, and p = 0.014). In the multivariable logistic analysis for unfavorable neurological outcomes, peak cTnI was significant (OR = 2.951; 95% CI: 1.376–6.323; p = 0.005). Kaplan–Meier analysis indicated that the elevated cTnI was correlated with future MACE (log-rank test, p = 0.007) and subsequent death (log-rank test, p = 0.004). Conclusion: cTnI elevation after aSAH could predict future MACEs and unfavorable neurological outcomes.
Collapse
Affiliation(s)
- Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Chaoqi Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Sangeetha RP, Venkatapura RJ, Kamath S, Christopher R, Bhat DI, Arvinda HR, Chakrabarti D. Effect of remote ischemic preconditioning on cerebral vasospasm, biomarkers of cerebral ischemia, and functional outcomes in aneurysmal subarachnoid hemorrhage (ERVAS): A randomized controlled pilot trial. Brain Circ 2021; 7:104-110. [PMID: 34189353 PMCID: PMC8191538 DOI: 10.4103/bc.bc_13_21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Cerebral vasospasm can complicate aneurysmal subarachnoid hemorrhage (aSAH), contributing to cerebral ischemia. We explored the role of remote ischemic preconditioning (RIPC) in reducing cerebral vasospasm and ischemia and improving outcomes after aSAH. MATERIALS AND METHODS: Patients with ruptured cerebral aneurysm undergoing surgical clipping and meeting the trial criteria were randomized to true RIPC (n = 13) (inflating upper extremity blood pressure cuff thrice to 30 mmHg above systolic pressure for 5 min) or sham RIPC (n = 12) (inflating blood pressure cuff thrice to 30 mmHg for 5 min) after ethical approval. A blinded observer assessed outcome measures-cerebral vasospasm and biomarkers of cerebral ischemia. We also evaluated the feasibility and safety of RIPC in aSAH and Glasgow Outcome Scale-Extended (GOSE). RESULTS: Angiographic vasospasm was seen in 9/13 (69%) patients; 1/4 patients (25%) in true RIPC group, and 8/9 patients (89%) in sham RIPC group (P = 0.05). Vasospasm on transcranial Doppler study was diagnosed in 5/25 (20%) patients and 1/13 patients (7.7%) in true RIPC and 4/12 patients (33.3%) in sham RIPC group, (P = 0.16). There was no difference in S100B and neuron-specific enolase (NSE) levels over various time-points within groups (P = 0.32 and 0.49 for S100B, P = 0.66 and 0.17 for NSE in true and sham groups, respectively) and between groups (P = 0.56 for S100B and P = 0.31 for NSE). Higher GOSE scores were observed with true RIPC (P = 0.009) unlike sham RIPC (P = 0.847) over 6-month follow-up with significant between group difference (P = 0.003). No side effects were seen with RIPC. CONCLUSIONS: RIPC is feasible and safe in patients with aSAH and results in a lower incidence of vasospasm and better functional outcome.
Collapse
Affiliation(s)
- R P Sangeetha
- Department of Neuroanesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Ramesh J Venkatapura
- Department of Neuroanesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Sriganesh Kamath
- Department of Neuroanesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | | | - H R Arvinda
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Dhritiman Chakrabarti
- Department of Neuroanesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
12
|
Saber M, Rice AD, Christie I, Roberts RG, Knox KS, Nakaji P, Rowe RK, Wang T, Lifshitz J. Remote Ischemic Conditioning Reduced Acute Lung Injury After Traumatic Brain Injury in the Mouse. Shock 2021; 55:256-267. [PMID: 32769821 PMCID: PMC8878575 DOI: 10.1097/shk.0000000000001618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT Traumatic brain injury (TBI) can induce acute lung injury (ALI). The exact pathomechanism of TBI-induced ALI is poorly understood, limiting treatment options. Remote ischemic conditioning (RIC) can mitigate detrimental outcomes following transplants, cardiac arrests, and neurological injuries. In this study, we hypothesized that RIC would reduce TBI-induced ALI by regulating the sphingosine-1-phosphate (S1P)-dependent pathway, a central regulator of endothelial barrier integrity, lymphocyte, and myokine trafficking. Male mice were subjected to either diffuse TBI by midline fluid percussion or control sham injury and randomly assigned among four groups: sham, TBI, sham RIC, or TBI RIC; RIC was performed 1 h prior to TBI. Mice were euthanized at 1-h postinjury or 7 days post-injury (DPI) and lung tissue, bronchoalveolar lavage (BAL) fluid, and blood were collected. Lung tissue was analyzed for histopathology, irisin myokine levels, and S1P receptor levels. BAL fluid and blood were analyzed for cellularity and myokine/S1P levels, respectively. One-hour postinjury, TBI damaged lung alveoli and increased neutrophil infiltration; RIC preserved alveoli. BAL from TBI mice had more neutrophils and higher neutrophil/monocyte ratios compared with sham, where TBI RIC mice showed no injury-induced change. Further, S1P receptor 3 and irisin-associated protein levels were significantly increased in the lungs of TBI mice compared with sham, which was prevented by RIC. However, there was no RIC-associated change in plasma irisin or S1P. At 7 DPI, ALI in TBI mice was largely resolved, with evidence for residual lung pathology. Thus, RIC may be a viable intervention for TBI-induced ALI to preserve lung function and facilitate clinical management.
Collapse
Affiliation(s)
- Maha Saber
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
| | - Amanda D. Rice
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Immaculate Christie
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
| | - Rebecca G. Roberts
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Kenneth S. Knox
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Peter Nakaji
- Neurosurgery, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Rachel K. Rowe
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Phoenix VA Health Care System, Phoenix, AZ
| | - Ting Wang
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Jonathan Lifshitz
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Phoenix VA Health Care System, Phoenix, AZ
| |
Collapse
|
13
|
Kosiuk J, Langenhan K, Hindricks G, Bollmann A, Dagres N. Remote ischemic preconditioning in a setting of electrical cardioversion of early onset persistent atrial fibrillation (RIP CAF trial): Rationale and study design. J Cardiol 2021; 77:79-82. [PMID: 32847754 DOI: 10.1016/j.jjcc.2020.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The beneficial effect of remote ischemic preconditioning (RIP) on electrophysiological parameters resulting in lower inducibility and sustainability of atrial fibrillation (AF) in patients with paroxysmal AF has been recently demonstrated in a randomized trial. However, the potential clinical impact of RIP on persistent AF (CAF) has not been investigated. Therefore, we designed a randomized trial set in a setting of electrical cardioversion (CV) of early onset CAF. AIM The aim of the study is to answer the following questions: I) Does RIP have impact on rate of spontaneous conversion into sinus rhythm (SR) within 24 h after first RIP intervention? II) Does RIP have the potential to improve the acute outcome of CV following a standardized protocol? METHODS The presented study is a two-armed randomized, placebo-controlled, double-blinded, multi-center trial in a cohort of 588 patients with early onset CAF referred for electrical CV. The patients will undergo 3 sessions (immediately after randomization, the following morning, and directly before scheduled CV 24 h after randomization) of either RIP intervention or a sham procedure. The primary outcome of the study, i.e. documentation of SR 24 h after randomization as well secondary outcome i.e. stable SR first CV without usage of anti-arrhythmic drugs will be documented by 12-lead surface electrocardiography. CONCLUSION Previously observed positive effect of RIP on atrial electrophysiology might be also implemented in a clinical setting of CV and therefore simplified and improve patient treatment.
Collapse
Affiliation(s)
- Jedrzej Kosiuk
- Department of Rhythmology, Helios Clinic Kothen, Kothen, Germany.
| | | | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, Leipzig, Germany; Leipzig Heart Institute, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, Leipzig, Germany
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Li S, Ren C, Stone C, Chandra A, Xu J, Li N, Han C, Ding Y, Ji X, Shao G. Hamartin: An Endogenous Neuroprotective Molecule Induced by Hypoxic Preconditioning. Front Genet 2020; 11:582368. [PMID: 33193709 PMCID: PMC7556298 DOI: 10.3389/fgene.2020.582368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022] Open
Abstract
Hypoxic/ischemic preconditioning (HPC/IPC) is an innate neuroprotective mechanism in which a number of endogenous molecules are known to be involved. Tuberous sclerosis complex 1 (TSC1), also known as hamartin, is thought to be one such molecule. It is also known that hamartin is involved as a target in the rapamycin (mTOR) signaling pathway, which functions to integrate a variety of environmental triggers in order to exert control over cellular metabolism and homeostasis. Understanding the role of hamartin in ischemic/hypoxic neuroprotection will provide a novel target for the treatment of hypoxic-ischemic disease. Therefore, the proposed molecular mechanisms of this neuroprotective role and its preconditions are reviewed in this paper, with emphases on the mTOR pathway and the relationship between the expression of hamartin and DNA methylation.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ankush Chandra
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jiali Xu
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Han
- Department of Neurosurgery, The Fifth Medical Centre of PLA General Hospital, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guo Shao
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China.,Public Health Department, Biomedicine Research Center, Basic Medical College, Baotou, China.,Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, China
| |
Collapse
|
15
|
Raval RN, Small O, Magsino K, Chakravarthy V, Austin B, Applegate R, Dorotta I. Remote Ischemic Pre-conditioning in Subarachnoid Hemorrhage: A Prospective Pilot Trial. Neurocrit Care 2020; 34:968-973. [PMID: 33051793 DOI: 10.1007/s12028-020-01122-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cerebral injury from aneurysmal subarachnoid hemorrhage (aSAH) is twofold. The initial hemorrhage causes much of the injury; secondary injury can occur from delayed cerebral ischemia (DCI). Remote ischemic preconditioning (RIPC) is a mechanism of organ protection in response to transient ischemia within a distant organ. This pilot trial sought to apply RIPC in patients with aSAH to evaluate its effect on secondary cerebral injury and resultant outcomes. METHODS Patients were randomized to the high-pressure occlusion group (HPO) or the low-pressure occlusion group (LPO). Lower extremity RIPC treatment was initiated within 72 h of symptom onset and every other day for 14 days or until Intensive Care Unit (ICU) discharge. In HPO, each treatment consisted of 4 five-minute cycles of manual blood pressure cuff inflation with loss of distal pulses. LPO received cuff inflation with lower pressures while preserving distal pulses. Retrospectively matched controls were also analyzed. Efficacy of treatment was measured by total days spent in vasospasm out of study enrollment days, hospital and ICU length of stay (LOS), cerebral infarction, one and six month modified Rankin score, and mortality. RESULTS The final analysis included 33 patients with 11 in each group. Patient demographics, aneurysm location, admission airway status, Glasgow Coma Scale (GCS), modified Rankin score, Hunt and Hess score, modified Fisher Score and aneurysm management were not significantly different between groups. Hospital and ICU LOS was shorter in LPO compared to the control (p = 0·0468 and p = 0·0409, respectively). Total vasospasm days/study enrollment days, cerebral infarction, one and six month modified Rankin score, and mortality were not significantly different between the groups. CONCLUSIONS This pilot trial did demonstrate feasibility and safety. The shortened LOS in the LPO may implicate a protective role of RIPC and warrants future study.
Collapse
Affiliation(s)
- Ronak N Raval
- Department of Anesthesiology and Critical Care Center, Loma Linda University Medical Center, 11234 Anderson Street, Loma Linda, CA, 92354, USA. .,Department of Surgery, VA Loma Linda Healthcare System, Loma Linda, USA.
| | - Oliver Small
- Department of Anesthesiology, Swedish Medical Center, Seattle, USA
| | - Kristel Magsino
- Department of Anesthesiology and Critical Care Center, Loma Linda University Medical Center, 11234 Anderson Street, Loma Linda, CA, 92354, USA
| | - Vikram Chakravarthy
- Department of Neurosurgery, Cleveland Clinic of Case Western Reserve School of Medicine, Cleveland, USA
| | - Briahnna Austin
- Department of Anesthesiology and Critical Care Center, Loma Linda University Medical Center, 11234 Anderson Street, Loma Linda, CA, 92354, USA
| | - Richard Applegate
- Department of Anesthesiology, Davis Medical Center, University of California, Sacramento, USA
| | - Ihab Dorotta
- Department of Anesthesiology and Critical Care Center, Loma Linda University Medical Center, 11234 Anderson Street, Loma Linda, CA, 92354, USA
| |
Collapse
|
16
|
Cui J, Liu N, Chang Z, Gao Y, Bao M, Xie Y, Xu W, Liu X, Jiang S, Liu Y, Shi R, Xie W, Jia X, Shi J, Ren C, Gong K, Zhang C, Bade R, Shao G, Ji X. Exosomal MicroRNA-126 from RIPC Serum Is Involved in Hypoxia Tolerance in SH-SY5Y Cells by Downregulating DNMT3B. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:649-660. [PMID: 32380415 PMCID: PMC7210387 DOI: 10.1016/j.omtn.2020.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Ischemic tolerance in the brain can be induced by transient limb ischemia, and this phenomenon is termed remote ischemic preconditioning (RIPC). It still remains elusive how this transfer of tolerance occurs. Exosomes can cross the blood-brain barrier, and some molecules may transfer neuroprotective signals from the periphery to the brain. Serum miRNA-126 is associated with ischemic stroke, and exosomal miRNA-126 has shown protective effects against acute myocardial infarction. Therefore, this study aims to explore whether exosomal miRNA-126 from RIPC serum can play a similar neuroprotective role. Exosomes were isolated from the venous serum of four healthy young male subjects, both before and after RIPC. Exosomal miRNA-126 was measured by real-time PCR. The miRNA-126 target sequence was predicted by bioinformatics software. SH-SY5Y neuronal cells were incubated with exosomes, and the cell cycle was analyzed by flow cytometry. The expression and activity of DNA methyltransferase (DNMT) 3B, a potential target gene of miRNA-126, were examined in SH-SY5Y cells. The cell viability of SH-SY5Y cells exposed to oxygen-glucose deprivation (OGD) was also investigated. To confirm the association between miRNA-126 and DNMT3B, we overexpressed miRNA-126 in SH-SY5Y cells using lentiviral transfection. miRNA-126 expression was upregulated in RIPC exosomes, and bioinformatics prediction showed that miRNA-126 could bind with DNMT3B. DNMT levels and DNMT3B activity were downregulated in SH-SY5Y cells incubated with RIPC exosomes. After overexpression of miRNA-126 in SH-SY5Y cells, global methylation levels and DNMT3B gene expression were downregulated in these cells, consistent with the bioinformatics predictions. RIPC exosomes can affect the cell cycle and increase OGD tolerance in SH-SY5Y cells. RIPC seems to have neuroprotective effects by downregulating the expression of DNMTs in neural cells through the upregulation of serum exosomal miRNA-126.
Collapse
Affiliation(s)
- Junhe Cui
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Na Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Zhehan Chang
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Yongsheng Gao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Mulan Bao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Yabin Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Wenqiang Xu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Xiaolei Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Shuyuan Jiang
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - You Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Rui Shi
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Wei Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Xiaoe Jia
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Jinghua Shi
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia, China
| | - Rengui Bade
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC.
| | - Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC; Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia, China.
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC.
| |
Collapse
|
17
|
Bertogliat MJ, Morris-Blanco KC, Vemuganti R. Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem Int 2020; 133:104642. [PMID: 31838024 PMCID: PMC8074401 DOI: 10.1016/j.neuint.2019.104642] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Epigenetic modifications are emerging as major players in the pathogenesis of neurodegenerative disorders and susceptibility to acute brain injury. DNA and histone modifications act together with non-coding RNAs to form a complex gene expression machinery that adapts the brain to environmental stressors and injury response. These modifications influence cell-level operations like neurogenesis and DNA repair to large, intricate processes such as brain patterning, memory formation, motor function and cognition. Thus, epigenetic imbalance has been shown to influence the progression of many neurological disorders independent of aberrations in the genetic code. This review aims to highlight ways in which epigenetics applies to several commonly researched neurodegenerative diseases and forms of acute brain injury as well as shed light on the benefits of epigenetics-based treatments.
Collapse
Affiliation(s)
- Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| |
Collapse
|
18
|
Zhou D, Ding J, Ya J, Pan L, Wang Y, Ji X, Meng R. Remote ischemic conditioning: a promising therapeutic intervention for multi-organ protection. Aging (Albany NY) 2019; 10:1825-1855. [PMID: 30115811 PMCID: PMC6128414 DOI: 10.18632/aging.101527] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
Despite decades of formidable exploration, multi-organ ischemia-reperfusion injury (IRI) encountered, particularly amongst elderly patients with clinical scenarios, such as age-related arteriosclerotic vascular disease, heart surgery and organ transplantation, is still an unsettled conundrum that besets clinicians. Remote ischemic conditioning (RIC), delivered via transient, repetitive noninvasive IR interventions to distant organs or tissues, is regarded as an innovative approach against IRI. Based on the available evidence, RIC holds the potential of affording protection to multiple organs or tissues, which include not only the heart and brain, but also others that are likely susceptible to IRI, such as the kidney, lung, liver and skin. Neuronal and humoral signaling pathways appear to play requisite roles in the mechanisms of RIC-related beneficial effects, and these pathways also display inseparable interactions with each other. So far, several hurdles lying ahead of clinical translation that remain to be settled, such as establishment of biomarkers, modification of RIC regimen, and deep understanding of underlying minutiae through which RIC exerts its powerful function. As this approach has garnered an increasing interest, herein, we aim to encapsulate an overview of the basic concept and postulated protective mechanisms of RIC, highlight the main findings from proof-of-concept clinical studies in various clinical scenarios, and also to discuss potential obstacles that remain to be conquered. More well designed and comprehensive experimental work or clinical trials are warranted in future research to confirm whether RIC could be utilized as a non-invasive, inexpensive and efficient adjunct therapeutic intervention method for multi-organ protection.
Collapse
Affiliation(s)
- Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jiayue Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jingyuan Ya
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Liqun Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
19
|
Kosiuk J, Langenhan K, Stegmann C, Uhe T, Dagres N, Dinov B, Kircher S, Richter S, Sommer P, Bertagnolli L, Bollmann A, Hindricks G. Effect of remote ischemic preconditioning on electrophysiological parameters in nonvalvular paroxysmal atrial fibrillation: The RIPPAF Randomized Clinical Trial. Heart Rhythm 2019; 17:3-9. [PMID: 31356986 DOI: 10.1016/j.hrthm.2019.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) remains the most relevant arrhythmia with a prevalence of 2%. The treatment options are either highly invasive and cost-intensive or limited by potential side effects or insufficient efficacy. However, no direct means of prevention that could reduce the burden of AF have been tested. OBJECTIVE The purpose of this study was to determine whether remote ischemic preconditioning (RIPC) has an impact on inducibility and sustainability of AF. METHODS A total of 146 patients with paroxysmal AF undergoing electrophysiology study were randomized to receive either RIPC, performed by short episodes of forearm ischemia, or sham intervention (clinicaltrials.gov identifier: NCT02779660). Effective refractory periods, conduction times, velocities, and conduction delays measured were analyzed by pacing from the coronary sinus (CS). End points of the study were the inducibility and sustainability of AF after prespecified rapid pacing sequences. RESULTS RIPC significantly reduces the inducibility (odds ratio 0.35; 95% confidence interval 0.17-0.71; P = .003) and sustainability (odds ratio 0.36; 95% confidence interval 0.16-0.81; P = .01) of AF. Furthermore, it decreased dispersion of atrial refractory periods (16.0 ± 14.0 ms vs 22.7 ± 19.0 ms; P = .021) as well as atrial conduction delays (49.2 ± 19.6 ms vs 56.2 ± 22.5 ms; P = .049 for proximal CS and 42.4 ± 16.6 ms vs 49.8 ± 22.2 ms; P = .029 for distal CS). In the whole cohort, longer atrial conduction delay (57.6 ± 22.2 ms vs 50.0 ± 20.5 ms; P = .044) and slower conduction velocity (1.74 ± 0.3 mm/ms vs 1.93 ± 0.5 mm/ms; P = .006) were associated with inducibility of AF whereas a wider dispersion of effective refractory periods (25.9 ± 18.3 ms vs 15.7 ± 11.6 ms; P = .028) maintained AF episodes. CONCLUSION RIPC reduces the inducibility and sustainability of AF, which is possibly mediated by changes in electrophysiological properties of the atria. It may be used as a simple noninvasive procedure to reduce AF burden.
Collapse
Affiliation(s)
- Jedrzej Kosiuk
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany.
| | - Katharina Langenhan
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Clara Stegmann
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Tobias Uhe
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany; Department IV Cardiology, Division of Internal Medicine, Neurology and Dermatology, University of Leipzig, Leipzig, Germany
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Borislav Dinov
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Simon Kircher
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Sergio Richter
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Philipp Sommer
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany; Department of Electrophysiology, Heart and Diabetes Center NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Livio Bertagnolli
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| |
Collapse
|
20
|
Stone J, Mitrofanis J, Johnstone DM, Falsini B, Bisti S, Adam P, Nuevo AB, George-Weinstein M, Mason R, Eells J. Acquired Resilience: An Evolved System of Tissue Protection in Mammals. Dose Response 2018; 16:1559325818803428. [PMID: 30627064 PMCID: PMC6311597 DOI: 10.1177/1559325818803428] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
This review brings together observations on the stress-induced regulation of resilience mechanisms in body tissues. It is argued that the stresses that induce tissue resilience in mammals arise from everyday sources: sunlight, food, lack of food, hypoxia and physical stresses. At low levels, these stresses induce an organised protective response in probably all tissues; and, at some higher level, cause tissue destruction. This pattern of response to stress is well known to toxicologists, who have termed it hormesis. The phenotypes of resilience are diverse and reports of stress-induced resilience are to be found in journals of neuroscience, sports medicine, cancer, healthy ageing, dementia, parkinsonism, ophthalmology and more. This diversity makes the proposing of a general concept of induced resilience a significant task, which this review attempts. We suggest that a system of stress-induced tissue resilience has evolved to enhance the survival of animals. By analogy with acquired immunity, we term this system 'acquired resilience'. Evidence is reviewed that acquired resilience, like acquired immunity, fades with age. This fading is, we suggest, a major component of ageing. Understanding of acquired resilience may, we argue, open pathways for the maintenance of good health in the later decades of human life.
Collapse
Affiliation(s)
- Jonathan Stone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - John Mitrofanis
- Discipline of Anatomy and Histology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel M. Johnstone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Benedetto Falsini
- Facolta’ di Medicina e Chirurgia, Fondazione Policlinico A. Gemelli, Universita’ Cattolica del S. Cuore, Rome, Italy
| | - Silvia Bisti
- Department of Biotechnical and Applied Clinical Sciences, Università degli Studi dell’Aquila, IIT Istituto Italiano di Tecnologia Genova and INBB Istituto Nazionale Biosistemi e Biostrutture, Rome, Italy
| | - Paul Adam
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Arturo Bravo Nuevo
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Mindy George-Weinstein
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Rebecca Mason
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Janis Eells
- College of Health Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
21
|
Zhou G, Li MH, Tudor G, Lu HT, Kadirvel R, Kallmes D. Remote Ischemic Conditioning in Cerebral Diseases and Neurointerventional Procedures: Recent Research Progress. Front Neurol 2018; 9:339. [PMID: 29867745 PMCID: PMC5964135 DOI: 10.3389/fneur.2018.00339] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia and stroke are increasing in prevalence and are among the leading causes of morbidity and mortality in both developed and developing countries. Despite the progress in endovascular treatment, ischemia/reperfusion (IR) injury is an important contributor to post-surgical mortality and morbidity affecting a wide range of neurointerventional procedures. However, pharmacological recruitment of effective cerebral protective signaling has been largely disappointing to date. In remote ischemic conditioning (RIC), repetitive transient mechanical obstruction of vessels at a limb remote from the IR injury site protects vital organs from IR injury and confers infarction size reduction following prolonged arterial occlusion. Results of pharmacologic agents appear to be species specific, while RIC is based on the neuroprotective influences of phosphorylated protein kinase B, signaling proteins, nitric oxide, and transcriptional activators, the benefits of which have been confirmed in many species. Inducing RIC protection in patients undergoing cerebral vascular surgery or those who are at high risk of brain injury has been the subject of research and has been enacted in clinical settings. Its simplicity and non-invasive nature, as well as the flexibility of the timing of RIC stimulus, also makes it feasible to apply alongside neurointerventional procedures. Furthermore, despite nonuniform RIC protocols, emerging literature demonstrates improved clinical outcomes. The aims of this article are to summarize the potential mechanisms underlying different forms of conditioning, to explore the current translation of this paradigm from laboratory to neurovascular diseases, and to outline applications for patient care.
Collapse
Affiliation(s)
- Geng Zhou
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Mayo Clinic, Rochester, MN, United States
| | - Ming Hua Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | - Hai Tao Lu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | |
Collapse
|
22
|
Schneider U, Xu R, Vajkoczy P. Inflammatory Events Following Subarachnoid Hemorrhage (SAH). Curr Neuropharmacol 2018; 16:1385-1395. [PMID: 29651951 PMCID: PMC6251050 DOI: 10.2174/1570159x16666180412110919] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
Acute SAH from a ruptured intracranial aneurysm contributes for 30% of all hemorrhagic strokes. The bleeding itself occurs in the subarachnoid space. Nevertheless, injury to the brain parenchyma occurs as a consequence of the bleeding, directly, via several well-defined mechanisms and pathways, but also indirectly, or secondarily. This secondary brain injury following SAH has a variety of causes and possible mechanisms. Amongst others, inflammatory events have been shown to occur in parallel to, contribute to, or even to initiate programmed cell death (PCD) within the central nervous system (CNS) in human and animal studies alike. Mechanisms of secondary brain injury are of utmost interest not only to scientists, but also to clinicians, as they often provide possibilities for translational approaches as well as distinct time windows for tailored treatment options. In this article, we review secondary brain injury due to inflammatory changes, that occur on cellular, as well as on molecular level in the various different compartments of the CNS: the brain vessels, the subarachnoid space, and the brain parenchyma itself and hypothesize about possible signaling mechanisms between these compartments.
Collapse
Affiliation(s)
- U.C. Schneider
- Dept. Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - R. Xu
- Dept. Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - P. Vajkoczy
- Dept. Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Kosiuk J, Milani R, Ueberham L, Uhe T, Stegmann C, Hindricks G, Bollmann A. Effect of remote ischemic preconditioning on electrophysiological and biomolecular parameters in nonvalvular paroxysmal atrial fibrillation (RIPPAF study): Rationale and study design of a randomized, controlled clinical trial. Clin Cardiol 2016; 39:631-635. [PMID: 27775830 DOI: 10.1002/clc.22584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 11/09/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) has been studied in models of different cardiovascular entities. Recently, a beneficial effect of RIPC on incidence of atrial fibrillation (AF) in postsurgical patients has been suggested. However, the potential impact of RIPC on electrophysiological- and thrombogenesis-related parameters in the setting of paroxysmal nonvalvular AF has not been investigated. The aim of the study is to answer the following questions: (1) Does RIPC have impact on inducibility of AF in patients with known paroxysmal AF? If yes, what are the direct electrophysiological mechanisms of this phenomenon, and could RIPC be implemented to reduce AF burden? (2) Does RIPC have the potential to minimize thrombogenic effects of simulated episodes of AF? If so, what are inhibited components of thrombogenesis and can this be used to reduce thromboembolic risk related to paroxysmal AF? The presented study is a 2-arm, randomized, placebo-controlled, double-blinded, single-center trial in a cohort of 146 patients with paroxysmal AF referred for AF ablation in sinus rhythm. The study will collect electrophysiological data such as variability of P-wave morphology, atrial refractory period, conduction times, and inducibility/sustainability of AF. Furthermore, AF-induced prothrombotic processes will be analyzed by quantification of platelet aggregates, analysis of platelet function, and measurement of thrombogenesis-related plasma markers. Moreover, the study will provide a unique bio-database for further analysis of molecular and genetic mechanisms responsible for observed results.
Collapse
Affiliation(s)
- Jedrzej Kosiuk
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Romina Milani
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Laura Ueberham
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Tobias Uhe
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Clara Stegmann
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| |
Collapse
|
24
|
Abstract
OPINION STATEMENT New neuroprotective treatments aimed at preventing or minimizing "delayed brain injury" are attractive areas of investigation and hold the potential to have substantial beneficial effects on aneurysmal subarachnoid hemorrhage (aSAH) survivors. The underlying mechanisms for this "delayed brain injury" are multi-factorial and not fully understood. The most ideal treatment strategies would have the potential for a pleotropic effect positively modulating multiple implicated pathophysiological mechanisms at once. My personal management (RFJ) of patients with aneurysmal subarachnoid hemorrhage closely follows those treatment recommendations contained in modern published guidelines. However, over the last 5 years, I have also utilized a novel treatment strategy, originally developed at the University of Maryland, which consists of a 14-day continuous low-dose intravenous heparin infusion (LDIVH) beginning 12 h after securing the ruptured aneurysm. In addition to its well-known anti-coagulant properties, unfractionated heparin has potent anti-inflammatory effects and through multiple mechanisms may favorably modulate the neurotoxic and neuroinflammatory processes prominent in aneurysmal subarachnoid hemorrhage. In my personal series of patients treated with LDIVH, I have found significant preservation of neurocognitive function as measured by the Montreal Cognitive Assessment (MoCA) compared to a control cohort of my patients treated without LDIVH (RFJ unpublished data presented at the 2015 AHA/ASA International Stroke Conference symposium on neuroinflammation in aSAH and in abstract format at the 2015 AANS/CNS Joint Cerebrovascular Section Annual Meeting). It is important for academic physicians involved in the management of these complex patients to continue to explore new treatment options that may be protective against the potentially devastating "delayed brain injury" following cerebral aneurysm rupture. Several of the treatment options included in this review show promise and could be carefully adopted as the level of evidence for each improves. Other proposed neuroprotective treatments like statins and magnesium sulfate were previously thought to be very promising and to varying degrees were adopted at numerous institutions based on somewhat limited human evidence. Recent clinical trials and meta-analysis have shown no benefit for these treatments, and I currently no longer utilize either treatment as prophylaxis in my practice.
Collapse
|