1
|
Stoll G, Nieswandt B, Schuhmann MK. Ischemia/reperfusion injury in acute human and experimental stroke: focus on thrombo-inflammatory mechanisms and treatments. Neurol Res Pract 2024; 6:57. [PMID: 39582054 PMCID: PMC11587771 DOI: 10.1186/s42466-024-00355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Despite high recanalization rates of > 90% after endovascular thrombectomy (EVT) clinical outcome in around 50% of treated acute ischemic stroke (AIS) patients is still poor. Novel treatments augmenting the beneficial effects of recanalization are eagerly awaited, but this requires mechanistic insights to explain and overcome futile recanalization. MAIN BODY At least two mechanisms contribute to futile recanalization after cerebral large vessel occlusions (LVO): (i) the no reflow phenomenon as evidenced by randomly distributed areas without return of blood flow despite reperfusion of large cerebral arteries, and (ii) ischemia/reperfusion (I/R) injury, the paradoxically harmful aspect of blood flow return in transiently ischemic organs. There is accumulating evidence from experimental stroke models that platelets and leukocytes interact and partly obstruct the microvasculature under LVO, and that platelet-driven inflammation (designated thrombo-inflammation) extends into the reperfusion phase and causes I/R injury. Blocking of platelet glycoprotein receptors (GP) Ib and GPVI ameliorated inflammation and I/R injury providing novel therapeutic options. Recently, MRI studies confirmed a significant, up to 40% infarct expansion after recanalization in AIS thereby proofing the existance of I/R injury in the human brain. Moreover, analysis of minute samples of ischemic arterial blood aspirated directly from the pial cerebral collateral circulation under LVO during the routine EVT procedure confirmed platelet activation and platelet-driven leukocyte accumulation in AIS and, thus, the principal transferability of pathophysiological stroke mechanisms from rodents to man. Two recently published clinical phase 1b/2a trials targeted (thrombo-) inflammation in AIS: The ACTIMIS trial targeting platelet GPVI by glenzocimab provided encouraging safety signals in AIS similar to the ApTOLL trial targeting toll-like receptor 4, a central receptor guiding stroke-induced innate immunity. However, both studies were not powered to show clinical efficacy. CONCLUSIONS The fact that the significance of I/R injury in AIS has recently been formally established and given the decisive role of platelet-leukocytes interactions herein, new avenues for adjunct stroke treatments emerge. Adjusted study designs to increase the probability of success are of outmost importance and we look forward from what can be learned from the so far unpublished, presumbably negative ACTISAFE and MOST trials.
Collapse
Affiliation(s)
- Guido Stoll
- Institute of Experimental Biomedicine I, University Hospital Wurzburg, Josef-Schneider-Str. 2, 97080, Wurzburg, Germany.
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Wurzburg, Josef-Schneider-Str. 2, 97080, Wurzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Biomaging, University of Wurzburg, Josef-Schneider-Str. 2, 97080, Wurzburg, Germany
| | - Michael K Schuhmann
- Department of Neurology, University Hospital Wurzburg, Josef-Schneider-Str. 11, 97080, Wurzburg, Germany
| |
Collapse
|
2
|
Carfora A, Holthaus B, Yacoub S, Franceschelli D, Joseph M, Milks MW, Mandybur I, Anderson C, Lee C, Huttinger A, Shujaat M, Wheeler DG, Sullenger B, Nimjee SM. Von Willebrand factor targeted thrombolysis in canine basilar artery occlusion. Front Neurol 2024; 15:1436291. [PMID: 39445200 PMCID: PMC11496268 DOI: 10.3389/fneur.2024.1436291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background and purpose Posterior circulation strokes, accounting for 20% of acute ischemic strokes, significantly contribute to morbidity and mortality. Fibrinolysis by rtPA improves outcomes in stroke but the risk of intracranial hemorrhage limits benefit. Arterial recanalization of basilar artery occlusion by thrombolysis or endovascular thrombectomy improves outcomes in posterior circulation strokes. This study investigates a VWF-targeting RNA aptamer as a safer and more effective alternative to rtPA in a canine model. Materials and methods Autologous clots were placed into the basilar artery to induce stroke in 24 beagles. To compare reperfusion, 0.9 mg/kg rtPA, 0.5 mg/kg BB-031, or vehicle were administered 60 min after the initiation of occlusion. Digital subtraction angiography, laser speckle imaging and magnetic resonance imaging were used to assess recanalization, reperfusion and infarct volume, respectively. Results Treatment with BB-031 resulted in recanalization of the posterior circulation on digital subtraction angiography with no evidence of microembolism assessed at sacrifice. 66.5% of animals treated with BB-031 resulted in reperfusion with a TICI score of ≥1 whereas vehicle remained at TICI score 0 as did all but one rtPA animal at sacrifice. Improved perfusion was seen in the basilar artery and surrounding blood vessels visualized through the cranial window with laser speckle imaging to ~47% of its original baseline in BB-031 group compared to rtPA at 37% and vehicle at 22%. Finally, BB-031-treatment resulted in an approximate 32% mean infarct volume, significantly smaller on magnetic resonance imaging compared to 56% in vehicle treated and 48% with rtPA treatment. Conclusion Targeted inhibition of VWF by BB-031 increased recanalization and reperfusion, and reduced infarct volume in a canine model of BAO stroke. It represents a promising target based on preliminary results for treating acute ischemic stroke.
Collapse
Affiliation(s)
- Arianna Carfora
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Blake Holthaus
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Simon Yacoub
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Dominic Franceschelli
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Matthew Joseph
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Michael W. Milks
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ian Mandybur
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Cole Anderson
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Catherine Lee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Allyson Huttinger
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mohammad Shujaat
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Debra G. Wheeler
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Bruce Sullenger
- Duke Translational Research Institute, Duke University, Raleigh Durham, NC, United States
| | - Shahid M. Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
3
|
Janus-Bell E, Receveur N, Mercier L, Mouriaux C, Magnenat S, Reiser J, Lanza F, Hechler B, Ho-Tin-Noé B, Mangin PH. Cooperation Between Platelet β1 and β3 Integrins in the Arrest of Bleeding Under Inflammatory Conditions in Mice-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:2213-2222. [PMID: 39145395 DOI: 10.1161/atvbaha.124.321104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Platelets prevent bleeding in a variety of inflammatory settings, the adhesion receptors and activation pathways involved being highly context-dependent and functionally redundant. In some situations, platelets recruited to inflammatory sites act independently of aggregation. The mechanisms underlying stable platelet adhesion in inflamed microvessels remain incompletely understood, in particular, whether and if so, how β1 and β3 integrins are involved. METHODS The impact of isolated or combined platelet deficiency in β1 and β3 integrins on inflammation-associated hemostasis was investigated in 3 models of acute inflammation: immune complex-based cutaneous reverse passive Arthus reaction, intranasal lipopolysaccharide-induced lung inflammation, and cerebral ischemia-reperfusion following transient (2-hour) occlusion of the middle cerebral artery. RESULTS Mice with platelet-directed inactivation of Itgb1 (PF4Cre-β1-/-) displayed no bleeding in any of the inflammation models, while mice defective in platelet Itgb3 (PF4Cre-β3-/-) exhibited bleeding in all 3 models. Remarkably, the bleeding phenotype of PF4Cre-β3-/- mice was exacerbated in the reverse passive Arthus model by the concomitant deletion of β1 integrins, PF4Cre-β1-/-/β3-/- animals presenting increased bleeding. Intravital microscopy in reverse passive Arthus experiments highlighted a major defect in the adhesion of PF4Cre-β1-/-/β3-/- platelets to inflamed microvessels. Unlike PF4Cre-β1-/- and PF4Cre-β3-/- mice, PF4Cre-β1-/-/β3-/- animals developed early hemorrhagic transformation 6 hours after transient middle cerebral artery occlusion. PF4Cre-β1-/-/β3-/- mice displayed no more bleeding in lipopolysaccharide-induced lung inflammation than PF4Cre-β3-/- animals. CONCLUSIONS Altogether, these results show that the requirement for and degree of functional redundancy between platelet β1 and β3 integrins in inflammation-associated hemostasis vary with the inflammatory situation.
Collapse
Affiliation(s)
- Emily Janus-Bell
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| | - Nicolas Receveur
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| | - Luc Mercier
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| | - Clarisse Mouriaux
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| | - Stéphanie Magnenat
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL (J.R.)
| | - François Lanza
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| | - Béatrice Hechler
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| | - Benoit Ho-Tin-Noé
- Université de Paris Descartes, INSERM, Hôpital Bichat, UMR-S1148, France (B.H.-T.-N.)
| | - Pierre H Mangin
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| |
Collapse
|
4
|
Stanton K, Philippou H, Ariëns RA. Ischaemic Stroke, Thromboembolism and Clot Structure. Neuroscience 2024; 550:3-10. [PMID: 38453129 DOI: 10.1016/j.neuroscience.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Ischaemic stroke is a major cause of morbidity and mortality worldwide. Blood clotting and thromboembolism play a central role in the pathogenesis of ischaemic stroke. An increasing number of recent studies indicate changes in blood clot structure and composition in patients with ischaemic stroke. In this review, we aim to summarise and discuss clot structure, function and composition in ischaemic stroke, including its relationships with clinical diagnosis and treatment options such as thrombolysis and thrombectomy. Studies are summarised in which clot structure and composition is analysed both in vitro from patients' plasma samples and ex vivo in thrombi obtained through interventional catheter-mediated thrombectomy. Mechanisms that drive clot composition and architecture such as neutrophil extracellular traps and clot contraction are also discussed. We find that, while in vitro clot structure in plasma samples from ischaemic stroke patients are consistently altered, showing denser clots that are more resistant to fibrinolysis, current data on the composition and architecture of ex vivo clots obtained by thrombectomy are more variable. With the potential of advances in technologies underpinning both the imaging and retrieving of clots, we expect that future studies in this area will generate new data that is of interest for the diagnosis, optimal treatment strategies and clinical management of patients with ischaemic stroke.
Collapse
Affiliation(s)
- Katherine Stanton
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Helen Philippou
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Robert As Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
| |
Collapse
|
5
|
Nicolai L, Pekayvaz K, Massberg S. Platelets: Orchestrators of immunity in host defense and beyond. Immunity 2024; 57:957-972. [PMID: 38749398 DOI: 10.1016/j.immuni.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024]
Abstract
Platelets prevent blood loss during vascular injury and contribute to thrombus formation in cardiovascular disease. Beyond these classical roles, platelets are critical for the host immune response. They guard the vasculature against pathogens via specialized receptors, intracellular signaling cascades, and effector functions. Platelets also skew inflammatory responses by instructing innate immune cells, support adaptive immunosurveillance, and influence antibody production and T cell polarization. Concomitantly, platelets contribute to tissue reconstitution and maintain vascular function after inflammatory challenges. However, dysregulated activation of these multitalented cells exacerbates immunopathology with ensuing microvascular clotting, excessive inflammation, and elevated risk of macrovascular thrombosis. This dichotomy underscores the critical importance of precisely defining and potentially modulating platelet function in immunity.
Collapse
Affiliation(s)
- Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
6
|
Ceulemans A, Spronk HMH, Ten Cate H, van Zwam WH, van Oostenbrugge RJ, Nagy M. Current and potentially novel antithrombotic treatment in acute ischemic stroke. Thromb Res 2024; 236:74-84. [PMID: 38402645 DOI: 10.1016/j.thromres.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Acute ischemic stroke (AIS) is the most common type of stroke and requires immediate reperfusion. Current acute reperfusion therapies comprise the administration of intravenous thrombolysis and/or endovascular thrombectomy. Although these acute reperfusion therapies are increasingly successful, optimized secondary antithrombotic treatment remains warranted, specifically to reduce the risk of major bleeding complications. In the development of AIS, coagulation and platelet activation play crucial roles by driving occlusive clot formation. Recent studies implicated that the intrinsic route of coagulation plays a more prominent role in this development, however, this is not fully understood yet. Next to the acute treatments, antithrombotic therapy, consisting of anticoagulants and/or antiplatelet therapy, is successfully used for primary and secondary prevention of AIS but at the cost of increased bleeding complications. Therefore, better understanding the interplay between the different pathways involved in the pathophysiology of AIS might provide new insights that could lead to novel treatment strategies. This narrative review focuses on the processes of platelet activation and coagulation in AIS, and the most common antithrombotic agents in primary and secondary prevention of AIS. Furthermore, we provide an overview of promising novel antithrombotic agents that could be used to improve in both acute treatment and stroke prevention.
Collapse
Affiliation(s)
- Angelique Ceulemans
- Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Henri M H Spronk
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Biochemistry, Maastricht University Medical Center+, Maastricht, the Netherlands; Thrombosis Expertise Center, Heart & Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Hugo Ten Cate
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands; Department of internal medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Thrombosis Expertise Center, Heart & Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Wim H van Zwam
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Magdolna Nagy
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Biochemistry, Maastricht University Medical Center+, Maastricht, the Netherlands; Thrombosis Expertise Center, Heart & Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
7
|
Mazighi M, Köhrmann M, Lemmens R, Lyrer PA, Molina CA, Richard S, Toni D, Plétan Y, Sari A, Meilhoc A, Jandrot-Perrus M, Binay S, Avenard G, Comenducci A, Grouin JM, Grotta JC. Safety and efficacy of platelet glycoprotein VI inhibition in acute ischaemic stroke (ACTIMIS): a randomised, double-blind, placebo-controlled, phase 1b/2a trial. Lancet Neurol 2024; 23:157-167. [PMID: 38267188 DOI: 10.1016/s1474-4422(23)00427-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Antagonists of glycoprotein VI-triggered platelet activation used in combination with recanalisation therapies are a promising therapeutic approach in acute ischaemic stroke. Glenzocimab is an antibody fragment that inhibits the action of platelet glycoprotein VI. We aimed to determine and assess the safety and efficacy of the optimal dose of glenzocimab in patients with acute ischaemic stroke eligible to receive alteplase with or without mechanical thrombectomy. METHODS This randomised, double-blind, placebo-controlled study with dose-escalation (1b) and dose-confirmation (2a) phases (ACTIMIS) was done in 26 stroke centres in six European countries. Participants were adults (≥18 years) with disabling acute ischaemic stroke with a National Institutes of Health Stroke Scale score of 6 or higher before alteplase administration. Patients were randomly assigned treatment using a central electronic procedure. Total administered dose at the end of the intravenous administration was 125 mg, 250 mg, 500 mg, and 1000 mg of glenzocimab or placebo in phase 1b and 1000 mg of glenzocimab or placebo in phase 2a. Treatment was initiated 4·5 h or earlier from stroke symptom onset in patients treated with alteplase with or without mechanical thrombectomy. The sponsor, study investigator and study staff, patients, and central laboratories were all masked to study treatment until database lock. Primary endpoints across both phases were safety, mortality, and intracranial haemorrhage (symptomatic, total, and fatal), assessed in all patients who received at least a partial dose of study medication (safety set). The trial is registered on ClinicalTrials.gov, NCT03803007, and is complete. FINDINGS Between March 6, 2019, and June 27, 2021, 60 recruited patients were randomly assigned to 125 mg, 250 mg, 500 mg, or 1000 mg glenzocimab, or to placebo in phase 1b (n=12 per group) and were included in the safety analysis. Glenzocimab 1000 mg was well tolerated and selected as the phase 2a recommended dose; from Oct 2, 2020, to June 27, 2021, 106 patients were randomly assigned to glenzocimab 1000 mg (n=53) or placebo (n=53). One patient in the placebo group received glenzocimab in error and therefore 54 and 52, respectively, were included in the safety set. In phase 2a, the most frequent treatment-emergent adverse event was non-symptomatic haemorrhagic transformation, which occurred in 17 (31%) of 54 patients treated with glenzocimab and 26 (50%) of 52 patients treated with placebo. Symptomatic intracranial haemorrhage occurred in no patients treated with glenzocimab compared with five (10%) patients in the placebo group. All-cause deaths were lower with glenzocimab 1000 mg (four [7%] patients) than with placebo (11 [21%] patients). INTERPRETATION Glenzocimab 1000 mg in addition to alteplase, with or without mechanical thrombectomy, was well tolerated, and might reduce serious adverse events, intracranial haemorrhage, and mortality. These findings support the need for future research into the potential therapeutic inhibition of glycoprotein VI with glenzocimab plus alteplase in patients with acute ischaemic stroke. FUNDING Acticor Biotech.
Collapse
Affiliation(s)
- Mikaël Mazighi
- Department of Neurology, Hôpital Lariboisière, APHP Nord, Paris, France; Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France; University of Paris City, FHU Neurovasc, INSERM 1144, Paris, France.
| | - Martin Köhrmann
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Robin Lemmens
- Experimental Neurology Research Group, Department of Neurosciences, KU Leuven, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Philippe A Lyrer
- Stroke Center and Department of Neurology, University Hospital Basel, Basel, Switzerland
| | | | - Sébastien Richard
- Neurology Stroke Unit, University Hospital Centre Nancy, Nancy, France
| | - Danilo Toni
- Neurovascular Unit, Policlinico Umberto I, Department of Human Neurosciences, University of Rome, 'La Sapienza', Rome, Italy
| | | | | | | | - Martine Jandrot-Perrus
- Innovation diagnostique et thérapeutique en pathologies cérébrovasculaires et thrombotiques, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | | | | | | | | | - James C Grotta
- Memorial Hermann Hospital-Texas Medical Center, Clinical Innovation and Research Institute, Houston, TX, USA
| |
Collapse
|
8
|
Saigal K, Patel AB, Lucke-Wold B. Artificial Intelligence and Neurosurgery: Tracking Antiplatelet Response Patterns for Endovascular Intervention. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1714. [PMID: 37893432 PMCID: PMC10608122 DOI: 10.3390/medicina59101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023]
Abstract
Platelets play a critical role in blood clotting and the development of arterial blockages. Antiplatelet therapy is vital for preventing recurring events in conditions like coronary artery disease and strokes. However, there is a lack of comprehensive guidelines for using antiplatelet agents in elective neurosurgery. Continuing therapy during surgery poses a bleeding risk, while discontinuing it before surgery increases the risk of thrombosis. Discontinuation is recommended in neurosurgical settings but carries an elevated risk of ischemic events. Conversely, maintaining antithrombotic therapy may increase bleeding and the need for transfusions, leading to a poor prognosis. Artificial intelligence (AI) holds promise in making difficult decisions regarding antiplatelet therapy. This paper discusses current clinical guidelines and supported regimens for antiplatelet therapy in neurosurgery. It also explores methodologies like P2Y12 reaction units (PRU) monitoring and thromboelastography (TEG) mapping for monitoring the use of antiplatelet regimens as well as their limitations. The paper explores the potential of AI to overcome such limitations associated with PRU monitoring and TEG mapping. It highlights various studies in the field of cardiovascular and neuroendovascular surgery which use AI prediction models to forecast adverse outcomes such as ischemia and bleeding, offering assistance in decision-making for antiplatelet therapy. In addition, the use of AI to improve patient adherence to antiplatelet regimens is also considered. Overall, this research aims to provide insights into the use of antiplatelet therapy and the role of AI in optimizing treatment plans in neurosurgical settings.
Collapse
Affiliation(s)
- Khushi Saigal
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Anmol Bharat Patel
- College of Medicine, University of Miami—Miller School of Medicine, Miami, FL 33136, USA;
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
9
|
Szepanowski RD, Haupeltshofer S, Vonhof SE, Frank B, Kleinschnitz C, Casas AI. Thromboinflammatory challenges in stroke pathophysiology. Semin Immunopathol 2023:10.1007/s00281-023-00994-4. [PMID: 37273022 DOI: 10.1007/s00281-023-00994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Despite years of encouraging translational research, ischemic stroke still remains as one of the highest unmet medical needs nowadays, causing a tremendous burden to health care systems worldwide. Following an ischemic insult, a complex signaling pathway emerges leading to highly interconnected thrombotic as well as neuroinflammatory signatures, the so-called thromboinflammatory cascade. Here, we thoroughly review the cell-specific and time-dependent role of different immune cell types, i.e., neutrophils, macrophages, T and B cells, as key thromboinflammatory mediators modulating the neuroinflammatory response upon stroke. Similarly, the relevance of platelets and their tight crosstalk with a variety of immune cells highlights the relevance of this cell-cell interaction during microvascular dysfunction, neovascularization, and cellular adhesion. Ultimately, we provide an up-to-date overview of therapeutic approaches mechanistically targeting thromboinflammation currently under clinical translation, especially focusing on phase I to III clinical trials.
Collapse
Affiliation(s)
- R D Szepanowski
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S Haupeltshofer
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S E Vonhof
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - B Frank
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - C Kleinschnitz
- Department of Neurology, University Hospital Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany.
| | - A I Casas
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Steubing RD, Szepanowski F, David C, Mohamud Yusuf A, Mencl S, Mausberg AK, Langer HF, Sauter M, Deuschl C, Forsting M, Fender AC, Hermann DM, Casas AI, Langhauser F, Kleinschnitz C. Platelet depletion does not alter long-term functional outcome after cerebral ischaemia in mice. Brain Behav Immun Health 2022; 24:100493. [PMID: 35928516 PMCID: PMC9343933 DOI: 10.1016/j.bbih.2022.100493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/12/2022] Open
Abstract
Platelets are key mediators of thrombus formation and inflammation during the acute phase of ischaemic stroke. Particularly, the platelet glycoprotein (GP) receptors GPIbα and GPVI have been shown to mediate platelet adhesion and activation in the ischaemic brain. GPIbα and GPVI blockade could reduce infarct volumes and improve functional outcome in mouse models of acute ischaemic stroke, without concomitantly increasing intracerebral haemorrhage. However, the functional role of platelets during long-term stroke recovery has not been elucidated so far. Thus, we here examined the impact of platelet depletion on post-stroke recovery after transient middle cerebral artery occlusion (tMCAO) in adult male mice. Platelet depleting antibodies or isotype control were applied from day 3–28 after tMCAO in mice matched for infarct size. Long-term functional recovery was assessed over the course of 28 days by behavioural testing encompassing motor and sensorimotorical functions, as well as anxiety-like or spontaneous behaviour. Whole brain flow cytometry and light sheet fluorescent microscopy were used to identify resident and infiltrated immune cell types, and to determine the effects of platelet depletion on the cerebral vascular architecture, respectively. We found that delayed platelet depletion does not improve long-term functional outcome in the tMCAO stroke model. Immune cell abundance, the extent of thrombosis and the organisation of the cerebral vasculature were also comparable between platelet-depleted and control mice. Our study demonstrates that, despite their critical role in the acute stroke setting, platelets appear to contribute only marginally to tissue reorganisation and functional recovery at later stroke stages. Stable and safe global platelet depletion can be achieved for a prolonged period. Platelets only play a minor role in neurological recovery during the chronic phase. Platelet depletion after infarct maturation does not alter inflammatory response. Cerebral architecture after stroke is not influenced by delayed platelet depletion.
Collapse
|
11
|
Endothelial caveolin-1 regulates cerebral thrombo-inflammation in acute ischemia/reperfusion injury. EBioMedicine 2022; 84:104275. [PMID: 36152520 PMCID: PMC9508414 DOI: 10.1016/j.ebiom.2022.104275] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Thrombo-inflammation is an important checkpoint that orchestrates infarct development in ischemic stroke. However, the underlying mechanism remains largely unknown. Here, we explored the role of endothelial Caveolin-1 (Cav-1) in cerebral thrombo-inflammation. METHODS The correlation between serum Cav-1 level and clinical outcome was analyzed in acute ischemic stroke patients with successful recanalization. Genetic manipulations by endothelial-specific adeno-associated virus (AAV) and siRNA were applied to investigate the effects of Cav-1 in thrombo-inflammation in a transient middle cerebral artery occlusion (tMCAO) model. Thrombo-inflammation was analyzed by microthrombosis formation, myeloid cell infiltration, and endothelial expression of adhesion molecules as well as inflammatory factors. FINDINGS Reduced circulating Cav-1, with the potential to predict microembolic signals, was more frequently detected in recanalized stroke patients without early neurological improvement. At 24 h after tMCAO, serum Cav-1 was consistently reduced in mice. Endothelial Cav-1 was decreased in the peri-infarct region. Cav-1-/- endothelium, with prominent barrier disruption, displayed extensive microthrombosis, accompanied by increased myeloid cell inflammatory infiltration after tMCAO. Specific enhanced expression of endothelial Cav-1 by AAV-Tie1-Cav-1 remarkably reduced infarct volume, attenuated vascular hyper-permeability and alleviated thrombo-inflammation in both wild-type and Cav-1-/- tMCAO mice. Transcriptome analysis after tMCAO further designated Rxrg as the most significantly changed molecule resulting from the knockdown of Cav-1. Supplementation of RXR-γ siRNA reversed AAV-Tie1-Cav-1-induced amelioration of thrombo-inflammation without affecting endothelial tight junction. INTERPRETATION Endothelial Cav-1/RXR-γ may regulate infarct volume and neurological impairment, possibly through selectively controlling thrombo-inflammation coupling, in cerebral ischemia/reperfusion. FUNDING This work was supported by National Natural Science Foundation of China.
Collapse
|
12
|
Yu Y, Zheng Y, Dong X, Qiao X, Tao Y. Efficacy and safety of tirofiban in patients with acute ischemic stroke without large-vessel occlusion and not receiving intravenous thrombolysis: A randomized controlled open-label trial. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
13
|
Cui J, Li H, Chen Z, Dong T, He X, Wei Y, Li Z, Duan J, Cao T, Chen Q, Ma D, Zhou Y, Wang B, Shi M, Zhang Q, Xiong L, Qin D. Thrombo-Inflammation and Immunological Response in Ischemic Stroke: Focusing on Platelet-Tregs Interaction. Front Cell Neurosci 2022; 16:955385. [PMID: 35846566 PMCID: PMC9278516 DOI: 10.3389/fncel.2022.955385] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Strokes are mainly caused by thromboembolic obstruction of a major cerebral artery. Major clinical manifestations include paralysis hemiplegia, aphasia, memory, and learning disorders. In the case of ischemic stroke (IS), hyperactive platelets contribute to advancing an acute thrombotic event progression. Therefore, the principal goal of treatment is to recanalize the occluded vessel and restore cerebral blood flow by thrombolysis or mechanical thrombectomy. However, antiplatelets or thrombolytic therapy may increase the risk of bleeding. Beyond the involvement in thrombosis, platelets also contribute to the inflammatory process induced by cerebral ischemia. Platelet-mediated thrombosis and inflammation in IS lie primarily in the interaction of platelet receptors with endothelial cells and immune cells, including T-cells, monocytes/macrophages, and neutrophils. Following revascularization, intervention with conventional antiplatelet medicines such as aspirin or clopidogrel does not substantially diminish infarct development, most likely due to the limited effects on the thrombo-inflammation process. Emerging evidence has shown that T cells, especially regulatory T cells (Tregs), maintain immune homeostasis and suppress immune responses, playing a critical immunomodulatory role in ischemia-reperfusion injury. Hence, considering the deleterious effects of inflammatory and immune responses, there is an urgent need for more targeted agents to limit the thrombotic-inflammatory activity of platelets and minimize the risk of a cerebral hemorrhage. This review highlights the involvement of platelets in neuroinflammation and the evolving role of Tregs and platelets in IS. In response to all issues, preclinical and clinical strategies should generate more viable therapeutics for preventing and managing IS with immunotherapy targeting platelets and Tregs.
Collapse
Affiliation(s)
- Jieqiong Cui
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huayan Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zongning Chen
- Department of General Medicine, Lijiang People’s Hospital, Lijiang, China
| | - Ting Dong
- Department of Laboratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiying He
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhengkun Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinfeng Duan
- School of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Ting Cao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Chen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongmei Ma
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Bo Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Qin Zhang
- Department of Laboratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- *Correspondence: Qin Zhang,
| | - Lei Xiong
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- Lei Xiong,
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- Dongdong Qin,
| |
Collapse
|
14
|
Gelhard S, Kestner RI, Armbrust M, Steinmetz H, Foerch C, Bohmann FO. Exploring Contraindications for Thrombolysis: Risk of Hemorrhagic Transformation and Neurological Deterioration after Thrombolysis in Mice with Recent Ischemic Stroke and Hyperglycemia. J Clin Med 2022; 11:jcm11123343. [PMID: 35743425 PMCID: PMC9225099 DOI: 10.3390/jcm11123343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Intravenous thrombolysis with recombinant tissue plasminogen activator (rt-PA) in patients with acute ischemic stroke is limited because of several contraindications. In routine clinical practice, patients with a recent stroke are typically not treated with rt-PA in case of a recurrent ischemic event. The same applies to its use in the context of pulmonary artery embolism and myocardial infarction with a recent stroke. In this translational study, we evaluated whether rt-PA treatment after experimental ischemic stroke with or without additional hyperglycemia increases the risk for hemorrhagic transformation (HT) and worsens functional outcome regarding the old infarct area. (2) In total, 72 male C57BL/6N mice were used. Ischemic stroke (index stroke) was induced by transient middle cerebral artery occlusion (tMCAO). Mice received either rt-PA or saline 24 h or 14 days after index stroke to determine whether a recent ischemic stroke predisposes to HT. In addition to otherwise healthy mice, hyperglycemic mice were analyzed to evaluate diabetes as a second risk factor for HT. Mice designated to develop hyperglycemia were pre-treated with streptozotocin. (3) The neurological outcome in rt-PA and saline-treated normoglycemic mice did not differ significantly, either at 24 h or at 14 days. In contrast, hyperglycemic mice treated with rt-PA had a significantly worse neurological outcome (at 24 h, p = 0.02; at 14 days, p = 0.03). At 24 h after rt-PA or saline treatment, HT scores differed significantly (p = 0.02) with the highest scores within hyperglycemic mice treated with rt-PA, where notably only small petechial hemorrhages could be detected. (4) Thrombolysis after recent ischemic stroke does not increase the risk for HT or worsen the functional outcome in otherwise healthy mice. However, hyperglycemia as a second risk factor leads to neurological deterioration after rt-PA treatment, which cannot be explained by an increase of HT alone. Direct neurotoxic effects of rt-PA may play a role.
Collapse
Affiliation(s)
- Sarah Gelhard
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany; (R.-I.K.); (H.S.); (C.F.); (F.O.B.)
- Correspondence: ; Tel.: +49-69-6301-4406
| | - Roxane-Isabelle Kestner
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany; (R.-I.K.); (H.S.); (C.F.); (F.O.B.)
| | - Moritz Armbrust
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt am Main, Germany;
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany; (R.-I.K.); (H.S.); (C.F.); (F.O.B.)
| | - Christian Foerch
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany; (R.-I.K.); (H.S.); (C.F.); (F.O.B.)
| | - Ferdinand O. Bohmann
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany; (R.-I.K.); (H.S.); (C.F.); (F.O.B.)
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt am Main, Germany;
| |
Collapse
|
15
|
De Meyer SF, Langhauser F, Haupeltshofer S, Kleinschnitz C, Casas AI. Thromboinflammation in Brain Ischemia: Recent Updates and Future Perspectives. Stroke 2022; 53:1487-1499. [PMID: 35360931 DOI: 10.1161/strokeaha.122.038733] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite decades of promising preclinical validation and clinical translation, ischemic stroke still remains as one of the leading causes of death and disability worldwide. Within its complex pathophysiological signatures, thrombosis and inflammation, that is, thromboinflammation, are highly interconnected processes leading to cerebral vessel occlusion, inflammatory responses, and severe neuronal damage following the ischemic event. Hence, we here review the most recent updates on thromboinflammatory-dependent mediators relevant after stroke focusing on recent discoveries on platelet modulation, a potential regulation of the innate and adaptive immune system in thromboinflammation, utterly providing a thorough up-to-date overview of all therapeutic approaches currently undergoing clinical trial.
Collapse
Affiliation(s)
- Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Belgium (S.F.D.M.)
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Steffen Haupeltshofer
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Ana I Casas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.).,Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, the Netherlands (A.I.C.)
| |
Collapse
|
16
|
Schanbacher C, Bieber M, Reinders Y, Cherpokova D, Teichert C, Nieswandt B, Sickmann A, Kleinschnitz C, Langhauser F, Lorenz K. ERK1/2 Activity Is Critical for the Outcome of Ischemic Stroke. Int J Mol Sci 2022; 23:ijms23020706. [PMID: 35054890 PMCID: PMC8776221 DOI: 10.3390/ijms23020706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/02/2022] Open
Abstract
Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2wt) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood–brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIPwt) and its phosphorylation-deficient mutant RKIPS153A, known inhibitors of the ERK1/2 signaling cascade. RKIPwt and RKIPS153A attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.
Collapse
Affiliation(s)
- Constanze Schanbacher
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany;
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (Y.R.); (C.T.); (A.S.)
| | - Michael Bieber
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (Y.R.); (C.T.); (A.S.)
| | - Deya Cherpokova
- Institute of Experimental Biomedicine I, University Hospital Würzburg, 97080 Würzburg, Germany; (D.C.); (B.N.)
- Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Christina Teichert
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (Y.R.); (C.T.); (A.S.)
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg, 97080 Würzburg, Germany; (D.C.); (B.N.)
- Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (Y.R.); (C.T.); (A.S.)
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany;
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany;
- Correspondence: (F.L.); (K.L.)
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany;
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (Y.R.); (C.T.); (A.S.)
- Correspondence: (F.L.); (K.L.)
| |
Collapse
|
17
|
Jadoui S, Le Chapelain O, Ollivier V, Mostefa-Kara A, Di Meglio L, Dupont S, Gros A, Nomenjanahary MS, Desilles JP, Mazighi M, Nieswandt B, Loyau S, Jandrot-Perrus M, Mangin PH, Ho-Tin-Noé B. Glenzocimab does not impact glycoprotein VI-dependent inflammatory haemostasis. Haematologica 2021; 106:2000-2003. [PMID: 33375772 PMCID: PMC8252939 DOI: 10.3324/haematol.2020.270439] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Angèle Gros
- Université de Paris, LVTS, Inserm U1148, F-75018 Paris
| | | | - Jean-Philippe Desilles
- Université de Paris, LVTS, Inserm U1148, F-75018 Paris, France; Rothschild Foundation Hospital, Paris, France. Department of Interventional Neuroradiology
| | - Mikaël Mazighi
- Université de Paris, LVTS, Inserm U1148, F-75018 Paris, France; Rothschild Foundation Hospital, Paris, France. Department of Interventional Neuroradiology
| | - Bernhard Nieswandt
- University Hospital Würzburg, Rudolf Virchow Center for Experimental Biomedicine, Würzburg
| | | | | | - Pierre H Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France
| | | |
Collapse
|
18
|
Chu W, Sun X, Zhu X, Zhao YC, Zhang J, Kong Q, Zhou L. Blockade of platelet glycoprotein receptor Ib ameliorates blood-brain barrier disruption following ischemic stroke via Epac pathway. Biomed Pharmacother 2021; 140:111698. [PMID: 34029954 DOI: 10.1016/j.biopha.2021.111698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022] Open
Abstract
Glycoprotein (GP) Ib is a platelet membrane receptor complex exposed to vascular injury, proposed as an effective target for stroke therapy. Previously, we have observed that the GPIb antagonist anfibatide (ANF) could mitigate blood-brain barrier (BBB) disruption following cerebral ischemia/reperfusion (CI/R) injury. The current study was designed to investigate whether the amelioration of the BBB by ANF is mediated via the Epac signaling pathway. A murine model of CI/R injury was induced following 90 min of transient middle cerebral artery occlusion (MCAO). ANF (4 μg/kg) was intravenously injected 1 h after reperfusion. Herein, ANF ameliorated BBB disruption, increased the expression of tight junction proteins, suppressed F-actin cytoskeleton rearrangement, decreased the permeability of the ischemic brain tissue, and relieved brain edema. ANF-treated mice had smaller infarct volumes and less severe neurological deficits than the MCAO mice. Moreover, the effects of ANF and Epac1 agonists were very similar in the MCAO mice. Epac activation with a cAMP analog, 8-CPT-2'-O-Me-cAMP, mitigated the breakdown of BBB function and CI/R injury. The Epac specific antagonist, ESI-09, worsened barrier damage and cerebral impairment, antagonizing the protective effects afforded by ANF. In addition, ANF upregulated the expression of Epac1 protein in the ischemic cerebral cortex. Collectively, our results indicate that the protective effect of ANF on the BBB after CI/R could be attributed to the activation of the Epac pathway.
Collapse
Affiliation(s)
- Wei Chu
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China; Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Xuemei Sun
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China; Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Xiaoxiao Zhu
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China; Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Yu Chen Zhao
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | - Jingcheng Zhang
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Qin Kong
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Lanlan Zhou
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China; Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, PR China.
| |
Collapse
|
19
|
Weiland J, Beez A, Westermaier T, Kunze E, Sirén AL, Lilla N. Neuroprotective Strategies in Aneurysmal Subarachnoid Hemorrhage (aSAH). Int J Mol Sci 2021; 22:5442. [PMID: 34064048 PMCID: PMC8196706 DOI: 10.3390/ijms22115442] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation, thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation, thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example, in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review addresses current neuroprotective strategies in aSAH, hopefully leading to future translational therapy options to prevent secondary brain injury.
Collapse
Affiliation(s)
- Judith Weiland
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Alexandra Beez
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Thomas Westermaier
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, Helios-Amper Klinikum Dachau, Krankenhausstr. 15, 85221 Dachau, Germany
| | - Ekkehard Kunze
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Nadine Lilla
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, University Hospital Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
20
|
Denorme F, Martinod K, Vandenbulcke A, Denis CV, Lenting PJ, Deckmyn H, Vanhoorelbeke K, Meyer SFD. The von Willebrand Factor A1 domain mediates thromboinflammation, aggravating ischemic stroke outcome in mice. Haematologica 2021; 106:819-828. [PMID: 32107335 PMCID: PMC7927893 DOI: 10.3324/haematol.2019.241042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/25/2020] [Indexed: 01/30/2023] Open
Abstract
von Willebrand factor (VWF) plays an important role in ischemic stroke. However, the exact mechanism by which VWF mediates progression of ischemic stroke brain damage is not completely understood. Using flow cytometric analysis of single cell suspensions prepared from brain tissue and immunohistochemistry, we investigated the potential inflammatory mechanisms by which VWF contributes to ischemic stroke brain damage in a mouse model of cerebral ischemia/reperfusion injury. Twenty-four hours after stroke, flow cytometric analysis of brain tissue revealed that overall white blood cell recruitment in the ipsilesional brain hemisphere of VWF KO mice was 2 times lower than WT mice. More detailed analysis showed a specific reduction of proinflammatory monocytes, neutrophils and T-cells in the ischemic brain of VWF KO mice compared to WT mice. Interestingly, histological analysis revealed a substantial number of neutrophils and T-cells still within the microcirculation of the stroke brain, potentially contributing to the no-reflow phenomenon. Specific therapeutic targeting of the VWF A1 domain in WT mice resulted in reduced immune cell numbers in the affected brain and protected mice from ischemic stroke brain damage. More specifically, recruitment of proinflammatory monocytes was reduced two-fold, neutrophil recruitment was reduced five-fold and T-cell recruitment was reduced two-fold in mice treated with a VWF A1-targeting nanobody compared to mice receiving a control nanobody. In conclusion, our data identify a potential role for VWF in the recruitment of proinflammatory monocytes, neutrophils and T-cells to the ischemic brain via a mechanism that is mediated by its A1 domain.
Collapse
Affiliation(s)
- Frederik Denorme
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Kimberly Martinod
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Aline Vandenbulcke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Cécile V. Denis
- Institut National de la Sante et de la Recherche Medicale, UMR_S 1176, Univ. Paris-Sud, Universite Paris-Saclay, Le Kremlin-Bicetre, France
| | - Peter J. Lenting
- Institut National de la Sante et de la Recherche Medicale, UMR_S 1176, Univ. Paris-Sud, Universite Paris-Saclay, Le Kremlin-Bicetre, France
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Simon F. De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
21
|
Platelets and lymphocytes drive progressive penumbral tissue loss during middle cerebral artery occlusion in mice. J Neuroinflammation 2021; 18:46. [PMID: 33602266 PMCID: PMC7890632 DOI: 10.1186/s12974-021-02095-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/02/2021] [Indexed: 11/24/2022] Open
Abstract
Background In acute ischemic stroke, cessation of blood flow causes immediate tissue necrosis within the center of the ischemic brain region accompanied by functional failure in the surrounding brain tissue designated the penumbra. The penumbra can be salvaged by timely thrombolysis/thrombectomy, the only available acute stroke treatment to date, but is progressively destroyed by the expansion of infarction. The underlying mechanisms of progressive infarction are not fully understood. Methods To address mechanisms, mice underwent filament occlusion of the middle cerebral artery (MCAO) for up to 4 h. Infarct development was compared between mice treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab) or rat immunoglobulin G (IgG) Fab as control treatment. Moreover, Rag1−/− mice lacking T-cells underwent the same procedures. Infarct volumes as well as the local inflammatory response were determined during vessel occlusion. Results We show that blocking of the platelet adhesion receptor, glycoprotein (GP) Ibα in mice, delays cerebral infarct progression already during occlusion and thus before recanalization/reperfusion. This therapeutic effect was accompanied by decreased T-cell infiltration, particularly at the infarct border zone, which during occlusion is supplied by collateral blood flow. Accordingly, mice lacking T-cells were likewise protected from infarct progression under occlusion. Conclusions Progressive brain infarction can be delayed by blocking detrimental lymphocyte/platelet responses already during occlusion paving the way for ultra-early treatment strategies in hyper-acute stroke before recanalization. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02095-1.
Collapse
|
22
|
Denorme F, Portier I, Kosaka Y, Campbell RA. Hyperglycemia exacerbates ischemic stroke outcome independent of platelet glucose uptake. J Thromb Haemost 2021; 19:536-546. [PMID: 33118271 PMCID: PMC7902465 DOI: 10.1111/jth.15154] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Hyperglycemia is a common comorbidity for ischemic stroke and is associated with worsened neurological outcomes. Platelets are central mediators of ischemic stroke and hyperglycemia mediates platelet hyperactivity. In this study, we investigated the contribution of platelet glucose metabolism to ischemic stroke. METHODS Mice lacking both Glut1 and Glut3 specifically in platelets (DKO) and their littermate controls (WT) were subjected to 1-hour transient middle cerebral artery occlusion under normoglycemic and streptozotocin-induced hyperglycemic conditions after which stroke outcomes, platelet activation, and platelet-neutrophil aggregate (PNA) formation were examined. RESULTS Under normoglycemic conditions, DKO mice were protected from ischemic stroke with smaller brain infarct volumes and improved cerebral blood flow. In addition, DKO mice had reduced platelet activation, PNA, and cerebral neutrophil recruitment after stroke. Hyperglycemia significantly increased infarct size and cerebral Evans blue extravasation and worsened neurological outcomes and cerebral blood flow in both WT and DKO mice, abolishing the protective effect witnessed under normoglycemic conditions. Flow cytometric analysis after stroke demonstrated increased platelet activation and neutrophil trafficking to the brain, independent of platelet glucose metabolism. Finally, platelets from healthy DKO mice were unable to become procoagulant upon dual agonist stimulation. Conversely, hyperglycemia increased platelet mitochondrial reactive oxygen species production which potentiated procoagulant platelet formation in WT mice and restored procoagulant platelet formation in DKO mice. CONCLUSION Hyperglycemia aggravates ischemic stroke outcome independent of platelet glucose uptake. Furthermore, we demonstrated that hyperglycemia primes procoagulant platelet formation. This underlines the therapeutic potential for strategies targeting procoagulant platelet formation for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, Utah
| | - Irina Portier
- University of Utah Molecular Medicine Program, Salt Lake City, Utah
| | - Yasuhiro Kosaka
- University of Utah Molecular Medicine Program, Salt Lake City, Utah
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
23
|
Matei N, Camara J, Zhang JH. The Next Step in the Treatment of Stroke. Front Neurol 2021; 11:582605. [PMID: 33551950 PMCID: PMC7862333 DOI: 10.3389/fneur.2020.582605] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Although many patients do not receive reperfusion therapy because of delayed presentation and/or severity and location of infarct, new reperfusion approaches are expanding the window of intervention. Novel application of neuroprotective agents in combination with the latest methods of reperfusion provide a path to improved stroke intervention outcomes. We examine why neuroprotective agents have failed to translate to the clinic and provide suggestions for new approaches. New developments in recanalization therapy in combination with therapeutics evaluated in parallel animal models of disease will allow for novel, intra-arterial deployment of therapeutic agents over a vastly expanded therapeutic time window and with greater likelihood success. Although the field of neuronal, endothelial, and glial protective therapies has seen numerous large trials, the application of therapies in the context of newly developed reperfusion strategies is still in its infancy. Given modern imaging developments, evaluation of the penumbra will likely play a larger role in the evolving management of stroke. Increasingly more patients will be screened with neuroimaging to identify patients with adequate collateral blood supply allowing for delayed rescue of the penumbra. These patients will be ideal candidates for therapies such as reperfusion dependent therapeutic agents that pair optimally with cutting-edge reperfusion techniques.
Collapse
Affiliation(s)
- Nathanael Matei
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, United States
| | - Justin Camara
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States.,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, United States.,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
24
|
Rawish E, Nording H, Münte T, Langer HF. Platelets as Mediators of Neuroinflammation and Thrombosis. Front Immunol 2020; 11:548631. [PMID: 33123127 PMCID: PMC7572851 DOI: 10.3389/fimmu.2020.548631] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Beyond platelets function in hemostasis, there is emerging evidence to suggest that platelets contribute crucially to inflammation and immune responses. Therefore, considering the detrimental role of inflammatory conditions in severe neurological disorders such as multiple sclerosis or stroke, this review outlines platelets involvement in neuroinflammation. For this, distinct mechanisms of platelet-mediated thrombosis and inflammation are portrayed, focusing on the interaction of platelet receptors with other immune cells as well as brain endothelial cells. Furthermore, we draw attention to the intimate interplay between platelets and the complement system as well as between platelets and plasmatic coagulation factors in the course of neuroinflammation. Following the thorough exposition of preclinical approaches which aim at ameliorating disease severity after inducing experimental autoimmune encephalomyelitis (a counterpart of multiple sclerosis in mice) or brain ischemia-reperfusion injury, the clinical relevance of platelet-mediated neuroinflammation is addressed. Thus, current as well as future propitious translational and clinical strategies for the treatment of neuro-inflammatory diseases by affecting platelet function are illustrated, emphasizing that targeting platelet-mediated neuroinflammation could become an efficient adjunct therapy to mitigate disease severity of multiple sclerosis or stroke associated brain injury.
Collapse
Affiliation(s)
- Elias Rawish
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Henry Nording
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Thomas Münte
- University Hospital Schleswig-Holstein, Clinic for Neurology, Lübeck, Germany
| | - Harald F. Langer
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| |
Collapse
|
25
|
Denorme F, Manne BK, Portier I, Eustes AS, Kosaka Y, Kile BT, Rondina MT, Campbell RA. Platelet necrosis mediates ischemic stroke outcome in mice. Blood 2020; 135:429-440. [PMID: 31800959 PMCID: PMC7005363 DOI: 10.1182/blood.2019002124] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
Dysregulated platelet functions contribute to the development and progression of ischemic stroke. Utilizing mice with a platelet-specific deletion of cyclophilin D (CypD), a mediator of necrosis, we found that platelet necrosis regulates tissue damage and outcomes during ischemic stroke in vivo. Mice with loss of CypD in platelets (CypDplt-/-mice) exhibited significantly enhanced cerebral blood flow, improved neurological and motor functions, and reduced ischemic stroke infarct volume after cerebral ischemia-reperfusion injury. These effects were attributable, at least in part, to platelet-neutrophil interactions. Twenty-four hours after stroke, significantly more circulating platelet-neutrophil aggregates (PNAs) were found in CypDplt+/+ mice. Underscoring the role of platelet necrosis in PNA formation, we observed a significant number of phosphatidylserine (PS)+ platelets in PNAs in CypDplt+/+ mice. In contrast, significantly fewer platelets in PNAs were PS+ in CypDplt-/- counterparts. Accordingly, mice with CypD-deficient platelets had fewer neutrophils and PNAs recruited to their brain following stroke relative to wild-type counterparts. Neutrophil depletion in wild-type mice conferred protection from ischemic stroke to a similar degree as observed in mice with CypD-deficient platelets. Neutrophil depletion in CypDplt-/- mice did not further reduce infarct size. Transmission electron microscopy of ex vivo-formed PNAs revealed a propensity of necrotic platelets to interact with neutrophils. These results suggest that necrotic platelets interact with neutrophils to exacerbate brain injury during ischemic stroke. Because inhibiting platelet necrosis does not compromise hemostasis, targeting platelet CypD may be a potential therapeutic strategy to limit brain damage following ischemic stroke.
Collapse
Affiliation(s)
- Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Laboratory for Thrombosis Research, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Belgium
| | | | - Irina Portier
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Alicia S Eustes
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Yasuhiro Kosaka
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Matthew T Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
- George E. Wahlen Veterans Affairs Medical Centers Department of Internal Medicine and Geriatric Research Education and Clinical Center, Salt Lake City, UT; and
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Robert A Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
26
|
Denorme F, Rondina MT. Targeting Glycoprotein VI for Thromboembolic Disorders. Arterioscler Thromb Vasc Biol 2020; 39:839-840. [PMID: 31017825 DOI: 10.1161/atvbaha.119.312621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Frederik Denorme
- From the Molecular Medicine Program, University of Utah, Salt Lake City (F.D., M.T.R.).,Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Belgium (F.D.)
| | - Matthew T Rondina
- From the Molecular Medicine Program, University of Utah, Salt Lake City (F.D., M.T.R.).,Department of Internal Medicine, University of Utah, Salt Lake City (M.T.R.).,George E. Wahlen VAMC Department of Internal Medicine and GRECC, Salt Lake City, Utah (M.T.R.)
| |
Collapse
|
27
|
Horman S, Dechamps M, Octave M, Lepropre S, Bertrand L, Beauloye C. Platelet Function and Coronary Microvascular Dysfunction. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Denorme F, Vanhoorelbeke K, De Meyer SF. von Willebrand Factor and Platelet Glycoprotein Ib: A Thromboinflammatory Axis in Stroke. Front Immunol 2019; 10:2884. [PMID: 31921147 PMCID: PMC6928043 DOI: 10.3389/fimmu.2019.02884] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/25/2019] [Indexed: 01/23/2023] Open
Abstract
von Willebrand factor (VWF) and platelets are key mediators of normal hemostasis. At sites of vascular injury, VWF recruits platelets via binding to the platelet receptor glycoprotein Ibα (GPIbα). Over the past decades, it has become clear that many hemostatic factors, including VWF and platelets, are also involved in inflammatory processes, forming intriguing links between hemostasis, thrombosis, and inflammation. The so-called “thrombo-inflammatory” nature of the VWF-platelet axis becomes increasingly recognized in different cardiovascular pathologies, making it a potential therapeutic target to interfere with both thrombosis and inflammation. In this review, we discuss the current evidence for the thrombo-inflammatory activity of VWF with a focus on the VWF-GPIbα axis and discuss its implications in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Frederik Denorme
- Laboratory for Thrombosis Research, KU Leuven, Kortrijk, Belgium
| | | | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven, Kortrijk, Belgium
| |
Collapse
|
29
|
Opportunities and Limitations of Vascular Risk Factor Models in Studying Plasticity-Promoting and Restorative Ischemic Stroke Therapies. Neural Plast 2019; 2019:9785476. [PMID: 31827502 PMCID: PMC6885287 DOI: 10.1155/2019/9785476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
Major efforts are currently made promoting neuronal plasticity and brain remodeling in the postacute stroke phase. Experimental studies evaluating new stroke therapies are mostly performed in rodents, which compared to humans exhibit a short lifespan. These studies widely employ young, otherwise healthy, rodents that lack the vascular risk factors and comorbidities of stroke patients. These risk factors compromise postischemic neurological recovery and brain plasticity and in several contexts reduce the brain responsiveness to recovery-inducing plasticity-promoting treatments. By examining risk factor models, which have hitherto been used for studying experimentally induced ischemic stroke, this review outlines the possibilities and limitations of risk factor models in the evaluation of plasticity-promoting and restorative stroke treatments.
Collapse
|
30
|
Stegner D, Klaus V, Nieswandt B. Platelets as Modulators of Cerebral Ischemia/Reperfusion Injury. Front Immunol 2019; 10:2505. [PMID: 31736950 PMCID: PMC6838001 DOI: 10.3389/fimmu.2019.02505] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is among the leading causes of disability and death worldwide. In acute ischemic stroke, the rapid recanalization of occluded cranial vessels is the primary therapeutic aim. However, experimental data (obtained using mostly the transient middle cerebral artery occlusion model) indicates that progressive stroke can still develop despite successful recanalization, a process termed "reperfusion injury." Mounting experimental evidence suggests that platelets and T cells contribute to cerebral ischemia/reperfusion injury, and ischemic stroke is increasingly considered a thrombo-inflammatory disease. The interaction of von Willebrand factor and its receptor on the platelet surface, glycoprotein Ib, as well as many activatory platelet receptors and platelet degranulation contribute to secondary infarct growth in this setting. In contrast, interference with GPIIb/IIIa-dependent platelet aggregation and thrombus formation does not improve the outcome of acute brain ischemia but dramatically increases the susceptibility to intracranial hemorrhage. Here, we summarize the current understanding of the mechanisms and the potential translational impact of platelet contributions to cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- David Stegner
- Institute of Experimental Biomedicine–Department I, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Vanessa Klaus
- Institute of Experimental Biomedicine–Department I, University Hospital Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine–Department I, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
31
|
Cheng Z, Geng X, Gao J, Hussain M, Moon SJ, Du H, Ding Y. Intravenous Administration of Standard Dose Tirofiban after Mechanical Arterial Recanalization is Safe and Relatively Effective in Acute Ischemic Stroke. Aging Dis 2019; 10:1049-1057. [PMID: 31595202 PMCID: PMC6764734 DOI: 10.14336/ad.2018.0922] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/22/2018] [Indexed: 12/25/2022] Open
Abstract
To investigate the safety and efficacy of intravenous administration of a standard dose of glycoprotein-IIb/IIIa inhibitor tirofiban after vessel recanalization by mechanical thrombectomy in acute ischemic stroke. A consecutive series of patients (n=112) undergoing endovascular ischemic stroke intervention therapy were enrolled. 81 patients were eligible for intravenous (IV) tirofiban treatment for 24 hours after mechanical thrombectomy. The incidence of symptomatic intracranial hemorrhage (sICH), death, National Institutes of Health Stroke Scale (NIHSS) and modified Rankin scale (mRS) were assessed. In the 81 patients receiving tirofiban, 52 patients (64.2%) were treated with IV rt-PA before mechanical thrombectomy. sICH was found in 2 (2.5%) patients with no fatal ICH. Four patients died during 3 months after stroke onset. Successful recanalization with thrombolysis in cerebral infarction (TICI) score ≥2b was achieved in 75 of 81 patients (92.6%) after mechanical thrombectomy. The average number of passes with Solitaire stent retriever was 1.3. At 3 months, 55 of 81 patients (67.9%) had favorable outcomes (mRS<=2). The intravenous application of a standard dose of tirofiban post-Solitaire stent retriever thrombectomy and intravenous thrombolysis appears to be safe and relatively effective in acute ischemic stroke.
Collapse
Affiliation(s)
- Zhe Cheng
- 1Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- 1Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China.,2China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jie Gao
- 1Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Mohammed Hussain
- 4Department of Neurointerventional Surgery, Hartford Hospital, CT 06106, USA
| | - Seong-Jin Moon
- 3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Huishan Du
- 1Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Yuchuan Ding
- 3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
32
|
Lebas H, Yahiaoui K, Martos R, Boulaftali Y. Platelets Are at the Nexus of Vascular Diseases. Front Cardiovasc Med 2019; 6:132. [PMID: 31572732 PMCID: PMC6749018 DOI: 10.3389/fcvm.2019.00132] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Platelets are important actors of cardiovascular diseases (CVD). Current antiplatelet drugs that inhibit platelet aggregation have been shown to be effective in CVD treatment. However, the management of bleeding complications is still an issue in vascular diseases. While platelets can act individually, they interact with vascular cells and leukocytes at sites of vascular injury and inflammation. The main goal remains to better understand platelet mechanisms in thrombo-inflammatory diseases and provide new lines of safe treatments. Beyond their role in hemostasis and thrombosis, recent studies have reported the role of several aspects of platelet functions in CVD progression. In this review, we will provide a comprehensive overview of platelet mechanisms involved in several vascular diseases.
Collapse
Affiliation(s)
- Héloïse Lebas
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| | - Katia Yahiaoui
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| | - Raphaël Martos
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| | - Yacine Boulaftali
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| |
Collapse
|
33
|
Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke — implications for treatment. Nat Rev Neurol 2019; 15:473-481. [DOI: 10.1038/s41582-019-0221-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 01/17/2023]
|
34
|
Hermann DM, Kleinschnitz C. Modeling Vascular Risk Factors for the Development of Ischemic Stroke Therapies. Stroke 2019; 50:1310-1317. [DOI: 10.1161/strokeaha.118.024673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dirk M. Hermann
- From the Department of Neurology, University Hospital Essen, Germany
| | | |
Collapse
|
35
|
Targeting Platelet GPVI Plus rt-PA Administration but Not α2β1-Mediated Collagen Binding Protects against Ischemic Brain Damage in Mice. Int J Mol Sci 2019; 20:ijms20082019. [PMID: 31022936 PMCID: PMC6515069 DOI: 10.3390/ijms20082019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022] Open
Abstract
Platelet collagen interactions at sites of vascular injuries predominantly involve glycoprotein VI (GPVI) and the integrin α2β1. Both proteins are primarily expressed on platelets and megakaryocytes whereas GPVI expression is also shown on endothelial and integrin α2β1 expression on epithelial cells. We recently showed that depletion of GPVI improves stroke outcome without increasing the risk of cerebral hemorrhage. Genetic variants associated with higher platelet surface integrin α2 (ITGA2) receptor levels have frequently been found to correlate with an increased risk of ischemic stroke in patients. However until now, no preclinical stroke study has addressed whether platelet integrin α2β1 contributes to the pathophysiology of ischemia/reperfusion (I/R) injury. Focal cerebral ischemia was induced in C57BL/6 and Itga2-/- mice by a 60 min transient middle cerebral artery occlusion (tMCAO). Additionally, wild-type animals were pretreated with anti-GPVI antibody (JAQ1) or Fab fragments of a function blocking antibody against integrin α2β1 (LEN/B). In anti-GPVI treated animals, intravenous (IV) recombinant tissue plasminogen activator (rt-PA) treatment was applied immediately prior to reperfusion. Stroke outcome, including infarct size and neurological scoring was determined on day 1 after tMCAO. We demonstrate that targeting the integrin α2β1 (pharmacologic; genetic) did neither reduce stroke size nor improve functional outcome on day 1 after tMCAO. In contrast, depletion of platelet GPVI prior to stroke was safe and effective, even when combined with rt-PA treatment. Our results underscore that GPVI, but not ITGA2, is a promising and safe target in the setting of ischemic stroke.
Collapse
|
36
|
Hermann DM, Popa-Wagner A, Kleinschnitz C, Doeppner TR. Animal models of ischemic stroke and their impact on drug discovery. Expert Opin Drug Discov 2019; 14:315-326. [DOI: 10.1080/17460441.2019.1573984] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
37
|
Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019; 133:906-918. [PMID: 30642917 DOI: 10.1182/blood-2018-11-882993] [Citation(s) in RCA: 425] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Thrombosis with associated inflammation (thromboinflammation) occurs commonly in a broad range of human disorders. It is well recognized clinically in the context of superficial thrombophlebitis (thrombosis and inflammation of superficial veins); however, it is more dangerous when it develops in the microvasculature of injured tissues and organs. Microvascular thrombosis with associated inflammation is well recognized in the context of sepsis and ischemia-reperfusion injury; however, it also occurs in organ transplant rejection, major trauma, severe burns, the antiphospholipid syndrome, preeclampsia, sickle cell disease, and biomaterial-induced thromboinflammation. Central to thromboinflammation is the loss of the normal antithrombotic and anti-inflammatory functions of endothelial cells, leading to dysregulation of coagulation, complement, platelet activation, and leukocyte recruitment in the microvasculature. α-Thrombin plays a critical role in coordinating thrombotic and inflammatory responses and has long been considered an attractive therapeutic target to reduce thromboinflammatory complications. This review focuses on the role of basic aspects of coagulation and α-thrombin in promoting thromboinflammatory responses and discusses insights gained from clinical trials on the effects of various inhibitors of coagulation on thromboinflammatory disorders. Studies in sepsis patients have been particularly informative because, despite using anticoagulant approaches with different pharmacological profiles, which act at distinct points in the coagulation cascade, bleeding complications continue to undermine clinical benefit. Future advances may require the development of therapeutics with primary anti-inflammatory and cytoprotective properties, which have less impact on hemostasis. This may be possible with the growing recognition that components of blood coagulation and platelets have prothrombotic and proinflammatory functions independent of their hemostatic effects.
Collapse
|
38
|
Rayes J, Watson SP, Nieswandt B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J Clin Invest 2019; 129:12-23. [PMID: 30601137 DOI: 10.1172/jci122955] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although platelets are best known for their role in hemostasis, they are also crucial in development, host defense, inflammation, and tissue repair. Many of these roles are regulated by the immune-like receptors glycoprotein VI (GPVI) and C-type lectin receptor 2 (CLEC-2), which signal through an immunoreceptor tyrosine-based activation motif (ITAM). GPVI is activated by collagen in the subendothelial matrix, by fibrin and fibrinogen in the thrombus, and by a remarkable number of other ligands. CLEC-2 is activated by the transmembrane protein podoplanin, which is found outside of the vasculature and is upregulated in development, inflammation, and cancer, but there is also evidence for additional ligands. In this Review, we discuss the physiological and pathological roles of CLEC-2 and GPVI and their potential as targets in thrombosis and thrombo-inflammatory disorders (i.e., disorders in which inflammation plays a critical role in the ensuing thrombosis) relative to current antiplatelet drugs.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, United Kingdom
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
39
|
Zhang X, Zhang W, Wu X, Li H, Zhang C, Huang Z, Shi R, You T, Shi J, Cao Y. Prognostic Significance of Plasma CLEC-2 (C-Type Lectin-Like Receptor 2) in Patients With Acute Ischemic Stroke. Stroke 2019; 50:45-52. [PMID: 30580704 DOI: 10.1161/strokeaha.118.022563] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- CLEC-2 (C-type lectin-like receptor 2) is a C-type lectin receptor highly expressed on platelets with the prominent involvement in platelet activation, which was increased in coronary heart disease. Given the role of platelet activation in ischemic stroke and the connections between coronary heart disease and ischemic stroke, CLEC-2 might be a candidate marker of ischemic stroke. Here, we aimed to examine the prognostic significance of CLEC-2 in patients with acute ischemic stroke (AIS). Methods- Three hundred fifty-two patients with AIS within 7 days and 112 healthy controls were prospectively studied. Plasma CLEC-2 (pCLEC-2) and some conventional risk factors of stroke were examined. Stroke progression was defined as any new neurological symptoms/signs or any neurological worsening within 7 days after stroke onset, and poor prognosis was defined as modified Rankin Scale scores >2 at 90 days. The association between pCLEC-2 and stroke progression/prognosis was evaluated using regression models. Results- Patients with AIS had a significantly higher level of pCLEC-2 than that of healthy controls (P<0.05). Patients with AIS with progressive stroke or poor prognosis had a much higher level of pCLEC-2 compared with those with stable stroke or good prognosis (all P<0.05). Increasing pCLEC-2 was significantly associated with an increased risk of stroke progression (odds ratio, 1.97; 95% CI, 1.11-3.50; P=0.021) and poor prognosis (odds ratio, 1.70; 95% CI, 1.17-2.48; P=0.006). Patients with the highest pCLEC-2 level were 7- to 8-fold more likely to have stroke progression compared with the lowest quartile (odds ratio, 7.69; 95% CI, 1.43-41.41). Patients with the highest pCLEC-2 level were also more likely to have poor prognosis at 90 days (odds ratio, 5.58; 95% CI, 1.76-17.68). The optimal cutoff points of pCLEC-2 for predicting stroke progression and poor prognosis were 235.48 and 207.08 pg/mL, respectively. Conclusions- Increased pCLEC-2 was associated with stroke progression and poor prognosis at 90 days significantly, which indicates the prognostic role of pCLEC-2 in AIS. However, it needs to be confirmed in large-scale studies.
Collapse
Affiliation(s)
- Xia Zhang
- From the Department of Neurology (X.Z., W.Z., X.W., C.Z., Z.H., R.S., J.S., Y.C.), Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Zhang
- From the Department of Neurology (X.Z., W.Z., X.W., C.Z., Z.H., R.S., J.S., Y.C.), Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuechun Wu
- From the Department of Neurology (X.Z., W.Z., X.W., C.Z., Z.H., R.S., J.S., Y.C.), Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Li
- Department of Cardiology (H.L., T.Y.), Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunyuan Zhang
- From the Department of Neurology (X.Z., W.Z., X.W., C.Z., Z.H., R.S., J.S., Y.C.), Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhichao Huang
- From the Department of Neurology (X.Z., W.Z., X.W., C.Z., Z.H., R.S., J.S., Y.C.), Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rongfang Shi
- From the Department of Neurology (X.Z., W.Z., X.W., C.Z., Z.H., R.S., J.S., Y.C.), Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao You
- Department of Cardiology (H.L., T.Y.), Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jijun Shi
- From the Department of Neurology (X.Z., W.Z., X.W., C.Z., Z.H., R.S., J.S., Y.C.), Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongjun Cao
- From the Department of Neurology (X.Z., W.Z., X.W., C.Z., Z.H., R.S., J.S., Y.C.), Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
40
|
Albert-Weissenberger C, Hopp S, Nieswandt B, Sirén AL, Kleinschnitz C, Stetter C. How is the formation of microthrombi after traumatic brain injury linked to inflammation? J Neuroimmunol 2018; 326:9-13. [PMID: 30445364 DOI: 10.1016/j.jneuroim.2018.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 09/20/2018] [Accepted: 10/24/2018] [Indexed: 02/01/2023]
Abstract
Traumatic brain injury (TBI) is characterized by mechanical disruption of brain tissue due to an external force and by subsequent secondary injury. Secondary brain injury events include inflammatory responses and the activation of coagulation resulting in microthrombi formation in the brain vasculature. Recent research suggests that these mechanisms do not work independently. There is strong evidence that FXII and platelet activation connects both, inflammation and the formation of microthrombi. This review summarizes the current knowledge on posttraumatic microthrombus formation and its link to inflammation.
Collapse
Affiliation(s)
- Christiane Albert-Weissenberger
- Institute of Physiology, Department of Neurophysiology, Julius Maximilian University, Würzburg, Germany; Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| | - Sarah Hopp
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany; Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.
| | - Bernhard Nieswandt
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Julius Maximilian University, Würzburg, Germany.
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany; Department of Neurology, University Duisburg-Essen, Essen, Germany.
| | - Christian Stetter
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
41
|
Boulaftali Y, Mawhin M, Jandrot‐Perrus M, Ho‐Tin‐Noé B. Glycoprotein VI in securing vascular integrity in inflamed vessels. Res Pract Thromb Haemost 2018; 2:228-239. [PMID: 30046725 PMCID: PMC5974920 DOI: 10.1002/rth2.12092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Glycoprotein VI (GPVI), the main platelet receptor for collagen, has been shown to play a central role in various models of thrombosis, and to be a minor actor of hemostasis at sites of trauma. These observations have made of GPVI a novel target for antithrombotic therapy, as its inhibition would ideally combine efficacy with safety. Nevertheless, recent studies have indicated that GPVI could play an important role in preventing bleeding caused by neutrophils in the inflamed skin and lungs. Remarkably, there is evidence that the GPVI-dependent hemostatic function of platelets at the acute phase of inflammation in these organs does not involve aggregation. From a therapeutic perspective, the vasculoprotective action of GPVI in inflammation suggests that blocking of GPVI might bear some risks of bleeding at sites of neutrophil infiltration. In this review, we summarize recent findings on GPVI functions in inflammation and discuss their possible clinical implications and applications.
Collapse
Affiliation(s)
- Yacine Boulaftali
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| | - Marie‐Anne Mawhin
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| | - Martine Jandrot‐Perrus
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| | - Benoît Ho‐Tin‐Noé
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| |
Collapse
|
42
|
Influence of Thrombolysis on the Safety and Efficacy of Blocking Platelet Adhesion or Secretory Activity in Acute Ischemic Stroke in Mice. Transl Stroke Res 2018; 9:493-498. [PMID: 29322481 DOI: 10.1007/s12975-017-0606-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 01/05/2023]
Abstract
In acute ischemic stroke (AIS), there is an alarming discrepancy between recanalization rates of up to 70% by combined recombinant tissue-type plasminogen activator (rt-PA) therapy and mechanical thrombectomy, and no clinical benefit in at least every second stroke patient. This is partly due to ischemia/reperfusion (I/R) injury. In a translational approach, we used mice lacking dense- (Unc13d-/-) or α-granules (Nbeal2-/-) and mice after blocking of platelet glycoprotein receptor (GP) Ib conferring protection from I/R injury. These mice underwent transient middle cerebral artery occlusion (tMCAO) and, as in the clinic, were treated with rt-PA. Our data show that rt-PA treatment is still safe in conjunction with selected anti-platelet therapies and pave the way for eagerly awaited additive treatment options in acute human stroke.
Collapse
|
43
|
Lee JI, Gliem M, Gerdes G, Turowski B, Kaschner M, Kraus B, Hartung HP, Jander S. Safety of bridging antiplatelet therapy with the gpIIb-IIIa inhibitor tirofiban after emergency stenting in stroke. PLoS One 2017; 12:e0190218. [PMID: 29281734 PMCID: PMC5745002 DOI: 10.1371/journal.pone.0190218] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/11/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In a proportion of stroke patients with acute large vessel occlusion permanent stent implantation is mandatory to achieve successful recanalization. The optimum platelet inhibition strategy after such emergency stenting is unknown. We therefore analyzed the outcome of early glycoprotein (gp) IIb/IIIa inhibitor treatment after emergency stenting in acute stroke. METHODS Sixty patients with emergency stenting were identified in our stroke unit registry from 12/2010-06/2014 and analyzed retrospectively. All patients were bridged intravenously with the gpIIb/IIIa antagonist tirofiban immediately after the acute procedure until switching to oral aspirin and clopidogrel was performed. For comparison we studied 135 patients with M1 occlusion undergoing thrombectomy without stent implantation or tirofiban treatment in a propensity score-adjusted analysis. RESULTS In the acute stenting group receiving tirofiban complications with 6 deaths during the hospital stay (10%), 2 reinfarctions (3%), 12 intracerebral hemorrhages (ICH; 20%) and 5 symptomatic ICH (8%) occurred. Thirty-seven patients (62%) reached a moderate outcome of mRS 0-3 after 90 days. In the thrombectomy group without tirofiban administration the rate of deaths within hospital stay, the rate of ICH and outcome at day 90 were not different. CONCLUSION In our retrospective study acute stenting with subsequent gpIIb/IIIa inhibition was not associated with an increased risk of ICH or in-hospital death.
Collapse
Affiliation(s)
- John-Ih Lee
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Duesseldorf, Germany
| | - Michael Gliem
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Duesseldorf, Germany
- * E-mail:
| | - Gebke Gerdes
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Duesseldorf, Germany
| | - Bernd Turowski
- Department of Diagnostic and Interventional Radiology, Heinrich-Heine-University, Medical Faculty, Duesseldorf, Germany
| | - Marius Kaschner
- Department of Diagnostic and Interventional Radiology, Heinrich-Heine-University, Medical Faculty, Duesseldorf, Germany
| | - Bastian Kraus
- Department of Diagnostic and Interventional Radiology, Heinrich-Heine-University, Medical Faculty, Duesseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Duesseldorf, Germany
| | - Sebastian Jander
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Duesseldorf, Germany
| |
Collapse
|
44
|
Conway R, Murphy CL, Madigan A, Kavanagh P, Geraghty L, Redmond N, Helbert L, Carey JJ, Dunne E, Kenny D, McCarthy GM. Increased platelet reactivity as measured by plasma glycoprotein VI in gout. Platelets 2017; 29:821-826. [PMID: 29090618 DOI: 10.1080/09537104.2017.1366974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Patients with gout have an increased risk of cardiovascular events. The glycoprotein VI (GPVI) receptor is found exclusively on platelets and megakaryocytes, is proteolytically cleaved upon platelet activation, and detectable in plasma as soluble GPVI (sGPVI). Therefore, elevated sGPVI is a marker of platelet activation and a risk marker for cardiovascular events. The aim of this study was to assess platelet activation, as measured by plasma sGPVI level in gout. Blood samples were taken from patients with gout or osteoarthritis, and from healthy volunteers. Demographic and clinical data were collected for all participants. Blood samples were processed as double-spun platelet-poor plasma. Plasma sGPVI levels were measured using enzyme-linked immunosorbent assay. Mann-Whitney U test was used to compare groups. In total, 91 patients were included, 27 during gout flare, 41 with intercritical gout, 23 with osteoarthritis, and 53 healthy controls. Median (interquartile range) sGPVI levels were 6.51 ng/mL (4.52, 8.41) in gout flare, 3.58 ng/mL (2.11, 5.55) in intercritical gout, 2.73 ng/mL (2.17, 3.72) in osteoarthritis, and 2.19 ng/mL (1.72, 3.31) in healthy controls. Plasma sGPVI levels in both gout groups were significantly increased compared to healthy controls (p < 0.005 for each), in gout flare compared to osteoarthritis (p < 0.005), and in gout flare compared to intercritical gout (p = 0.001). There was no significant difference in sGPVI levels in gout patients with and without tophi or in those prescribed colchicine. We conclude that patients with gout exhibit platelet hyperactivity as demonstrated by elevated sGPVI levels. Platelet activation is exacerbated in gout, especially during gout flares.
Collapse
Affiliation(s)
- Richard Conway
- a Department of Rheumatology , Mater Misericordiae University Hospital, Dublin Academic Medical Centre , Dublin , Ireland.,b CARD Newman Research Fellow, University College Dublin , Dublin , Ireland
| | - Claire-Louise Murphy
- c Centre for Rheumatology Research , University College London Division of Medicine , London , United Kingdom
| | - Anne Madigan
- a Department of Rheumatology , Mater Misericordiae University Hospital, Dublin Academic Medical Centre , Dublin , Ireland
| | - Patricia Kavanagh
- a Department of Rheumatology , Mater Misericordiae University Hospital, Dublin Academic Medical Centre , Dublin , Ireland
| | - Liz Geraghty
- a Department of Rheumatology , Mater Misericordiae University Hospital, Dublin Academic Medical Centre , Dublin , Ireland
| | - Niamh Redmond
- d Clinical Research Centre, Mater Misericordiae University Hospital, Dublin Academic Medical Centre , Dublin , Ireland
| | - Laura Helbert
- a Department of Rheumatology , Mater Misericordiae University Hospital, Dublin Academic Medical Centre , Dublin , Ireland
| | - John J Carey
- e Department of Rheumatology , Galway University Hospitals , Galway , Ireland
| | - Eimear Dunne
- f Cardiovascular Biology and Clinical Research Centre, Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Dermot Kenny
- f Cardiovascular Biology and Clinical Research Centre, Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Geraldine M McCarthy
- a Department of Rheumatology , Mater Misericordiae University Hospital, Dublin Academic Medical Centre , Dublin , Ireland
| |
Collapse
|
45
|
Hypercholesterolemia induced cerebral small vessel disease. PLoS One 2017; 12:e0182822. [PMID: 28796818 PMCID: PMC5552130 DOI: 10.1371/journal.pone.0182822] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
Background While hypercholesterolemia plays a causative role for the development of ischemic stroke in large vessels, its significance for cerebral small vessel disease (CSVD) remains unclear. We thus aimed to understand the detailed relationship between hypercholesterolemia and CSVD using the well described Ldlr-/- mouse model. Methods We used Ldlr-/- mice (n = 16) and wild-type (WT) mice (n = 15) at the age of 6 and 12 months. Ldlr-/- mice develop high plasma cholesterol levels following a high fat diet. We analyzed cerebral capillaries and arterioles for intravascular erythrocyte accumulations, thrombotic vessel occlusions, blood-brain barrier (BBB) dysfunction and microbleeds. Results We found a significant increase in the number of erythrocyte stases in 6 months old Ldlr-/- mice compared to all other groups (P < 0.05). Ldlr-/- animals aged 12 months showed the highest number of thrombotic occlusions while in WT animals hardly any occlusions could be observed (P < 0.001). Compared to WT mice, Ldlr-/- mice did not display significant gray matter BBB breakdown. Microhemorrhages were observed in one Ldlr-/- mouse that was 6 months old. Results did not differ when considering subcortical and cortical regions. Conclusions In Ldlr-/- mice, hypercholesterolemia is related to a thrombotic CSVD phenotype, which is different from hypertension-related CSVD that associates with a hemorrhagic CSVD phenotype. Our data demonstrate a relationship between hypercholesterolemia and the development of CSVD. Ldlr-/- mice appear to be an adequate animal model for research into CSVD.
Collapse
|
46
|
Schuhmann MK, Guthmann J, Stoll G, Nieswandt B, Kraft P, Kleinschnitz C. Blocking of platelet glycoprotein receptor Ib reduces "thrombo-inflammation" in mice with acute ischemic stroke. J Neuroinflammation 2017; 14:18. [PMID: 28109273 PMCID: PMC5251224 DOI: 10.1186/s12974-017-0792-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023] Open
Abstract
Background Ischemic stroke causes a strong inflammatory response that includes T cells, monocytes/macrophages, and neutrophils. Interaction of these immune cells with platelets and endothelial cells facilitates microvascular dysfunction and leads to secondary infarct growth. We recently showed that blocking of platelet glycoprotein (GP) receptor Ib improves stroke outcome without increasing the risk of intracerebral hemorrhage. Until now, it has been unclear whether GPIb only mediates thrombus formation or also contributes to the pathophysiology of local inflammation. Methods Focal cerebral ischemia was induced in C57BL/6 mice by a 60-min transient middle cerebral artery occlusion (tMCAO). Animals were treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab). Rat immunoglobulin G (IgG) Fab was used as control treatment. Stroke outcome, including infarct size and functional deficits as well as the local inflammatory response, was assessed on day 1 after tMCAO. Results Blocking of GPIb reduced stroke size and improved functional outcome on day 1 after tMCAO without increasing the risk of intracerebral hemorrhage. As expected, disruption of GPIb-mediated pathways in platelets significantly reduced thrombus burden in the cerebral microvasculature. In addition, inhibition of GPIb limited the local inflammatory response in the ischemic brain as indicated by lower numbers of infiltrating T cells and macrophages and lower expression levels of inflammatory cytokines compared with rat IgG Fab-treated controls. Conclusion In acute ischemic stroke, thrombus formation and inflammation are closely intertwined (“thrombo-inflammation”). Blocking of platelet GPIb can ameliorate thrombo-inflammation.
Collapse
Affiliation(s)
- Michael K Schuhmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Josua Guthmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Guido Stoll
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Bernhard Nieswandt
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Peter Kraft
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany.
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany. .,Department of Neurology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
47
|
Twarock S, Bagheri S, Bagheri S, Hohlfeld T. Platelet-vessel wall interactions and drug effects. Pharmacol Ther 2016; 167:74-84. [PMID: 27492900 DOI: 10.1016/j.pharmthera.2016.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/16/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Sören Twarock
- Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Saghar Bagheri
- Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Sayeh Bagheri
- Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Thomas Hohlfeld
- Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
48
|
Induruwa I, Jung SM, Warburton EA. Beyond antiplatelets: The role of glycoprotein VI in ischemic stroke. Int J Stroke 2016; 11:618-25. [PMID: 27312676 PMCID: PMC5390959 DOI: 10.1177/1747493016654532] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/03/2016] [Indexed: 11/17/2022]
Abstract
Background Platelets are essential to physiological hemostasis or pathological thrombus formation. Current antiplatelet agents inhibit platelet aggregation but leave patients at risk of systemic side-effects such as hemorrhage. Newer therapeutic strategies could involve targeting this cascade earlier during platelet adhesion or activation via inhibitory effects on specific glycoproteins, the thrombogenic collagen receptors found on the platelet surface. Aims Glycoprotein VI (GPVI) is increasingly being recognized as the main platelet-collagen receptor involved in arterial thrombosis. This review summarizes the crucial role GPVI plays in ischemic stroke as well as the current strategies used to attempt to inhibit its activity. Summary of review In this review, we discuss the normal hemostatic process, and the role GPVI plays at sites of atherosclerotic plaque rupture. We discuss how the unique structure of GPVI allows for its interaction with collagen and creates downstream signaling that leads to thrombus formation. We summarize the current strategies used to inhibit GPVI activity and how this could translate to a clinically viable entity that may compete with current antiplatelet therapy. Conclusion From animal models, it is clear that GPVI inhibition leads to an abolished platelet response to collagen and reduced platelet aggregation, culminating in smaller arterial thrombi. There is now an increasing body of evidence that these findings can be translated into the development of a bleeding free pharmacological entity specific to sites of plaque rupture in humans.
Collapse
Affiliation(s)
- Isuru Induruwa
- Department of Clinical Neurosciences, Box 83, Cambridge University Biomedical Campus, Cambridge, UK
| | - Stephanie M Jung
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Elizabeth A Warburton
- Department of Clinical Neurosciences, Box 83, Cambridge University Biomedical Campus, Cambridge, UK
| |
Collapse
|
49
|
Denorme F, De Meyer SF. The VWF-GPIb axis in ischaemic stroke: lessons from animal models. Thromb Haemost 2016; 116:597-604. [PMID: 27029413 DOI: 10.1160/th16-01-0036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/18/2016] [Indexed: 11/05/2022]
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Ischaemic stroke is caused by a blood clot that obstructs cerebral blood flow. Current treatment mainly consists of achieving fast reperfusion, either via pharmacological thrombolysis using tissue plasminogen activator or via endovascular thrombectomy. Unfortunately, reperfusion therapy is only available to a limited group of patients and reperfusion injury can further aggravate brain damage. Hence, there is an urgent need for better understanding of ischaemic stroke pathophysiology in order to develop novel therapeutic strategies. In recent years, the pathophysiological importance of von Willebrand factor (VWF) in ischaemic stroke has become clear from both clinical and experimental studies. In particular, binding of VWF to platelet glycoprotein Ib (GPIb) has become an interesting target for ischaemic stroke therapy. Recent insights show that inhibting the VWF-GPIb interaction could result in a pro-thrombolytic activity improving cerebral reperfusion rates and concurrently reducing cerebral ischaemia/reperfusion damage. This review gives an overview of the experimental evidence that illustrates the crucial role of the VWF-GPIb axis in ischaemic stroke.
Collapse
Affiliation(s)
| | - Simon F De Meyer
- Simon De Meyer, Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, E. Sabbelaan 53, 8500 Kortrijk, Belgium, Tel.: +32 56 246232, Fax: +32 56 246997, E-mail:
| |
Collapse
|