1
|
Miao ZW, Wang Z, Zheng SL, Wang SN, Miao CY. Anti-stroke biologics: from recombinant proteins to stem cells and organoids. Stroke Vasc Neurol 2024; 9:467-480. [PMID: 38286483 DOI: 10.1136/svn-2023-002883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
The use of biologics in various diseases has dramatically increased in recent years. Stroke, a cerebrovascular disease, is the second most common cause of death, and the leading cause of disability with high morbidity worldwide. For biologics applied in the treatment of acute ischaemic stroke, alteplase is the only thrombolytic agent. Meanwhile, current clinical trials show that two recombinant proteins, tenecteplase and non-immunogenic staphylokinase, are most promising as new thrombolytic agents for acute ischaemic stroke therapy. In addition, stem cell-based therapy, which uses stem cells or organoids for stroke treatment, has shown promising results in preclinical and early clinical studies. These strategies for acute ischaemic stroke mainly rely on the unique properties of undifferentiated cells to facilitate tissue repair and regeneration. However, there is a still considerable journey ahead before these approaches become routine clinical use. This includes optimising cell delivery methods, determining the ideal cell type and dosage, and addressing long-term safety concerns. This review introduces the current or promising recombinant proteins for thrombolysis therapy in ischaemic stroke and highlights the promise and challenges of stem cells and cerebral organoids in stroke therapy.
Collapse
Affiliation(s)
- Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Si-Li Zheng
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Kurniawan M, Ramli Y, Putri ND, Harris S, Rasyid A, Mesiano T, Hidayat R. Mesenchymal stem cells therapy for chronic ischemic stroke-a systematic review. ASIAN BIOMED 2024; 18:194-203. [PMID: 39483715 PMCID: PMC11524678 DOI: 10.2478/abm-2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Stroke represents a significant global health issue, primarily in the form of ischemic stroke. Despite the availability of therapeutic interventions, the recovery from chronic stroke, occurring 3 months post-initial stroke, poses substantial challenges. A promising avenue for post-acute stroke patients is mesenchymal stem cells (MSCs) therapy, which is derived from various sources and is globally recognized as the most utilized and extensively studied stem cell therapy. This systematic review, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, aims to synthesize evidence regarding the impact of MSCs therapy on patients with chronic ischemic stroke. Employing an advanced search strategy across databases such as PubMed, PubMed Central, Google Scholar, the Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalTrial.gov, a total of 70 studies were identified, with 4studies meeting the inclusion criteria. Although positive outcomes were observed in terms of efficacy and safety, certain limitations, such as small sample sizes, study heterogeneity, and the absence of placebo groups, undermine the overall strength of the evidence. It is crucial to address these limitations in future research, highlighting the importance of larger sample sizes, standardized methodologies, and comparative trials to improve the assessment of MSCs' efficacy and safety. Moving forward, key priorities include exploring underlying mechanisms, determining optimal administration modes and dosages, and conducting comparative trials. By addressing these aspects, we can propel MSCs therapies toward greater efficacy, safety, and applicability across diverse patient populations.
Collapse
Affiliation(s)
- Mohammad Kurniawan
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Yetty Ramli
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Nadira Deanda Putri
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Salim Harris
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Al Rasyid
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Taufik Mesiano
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Rakhmad Hidayat
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| |
Collapse
|
3
|
Tang Y, Wang Z, Teng H, Ni H, Chen H, Lu J, Chen Z, Wang Z. Safety and efficacy of bone marrow mononuclear cell therapy for ischemic stroke recovery: a systematic review and meta-analysis of randomized controlled trials. Neurol Sci 2024; 45:1885-1896. [PMID: 38172413 PMCID: PMC11021295 DOI: 10.1007/s10072-023-07274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Cell-based therapy represents a potential treatment for ischemic stroke (IS). Here, we performed a systematic review and meta-analysis to summarize the evidence provided by randomized controlled trials (RCTs) for the transplantation of bone marrow mononuclear cells (BMMNCs) in patients with IS in any phase after stroke. METHODS We searched several databases for relevant articles up to the 10th of March 2023, including MEDLINE, EMBASE, the Cochrane Library, and ClinicalTrials.gov. Subgroup analyses were implemented to evaluate the dose and route of BMMNC administration. Statistical data were analyzed by Review Manager version 5.3 software. RESULTS Six RCTs were included in this article, including 177 patients who were treated by the transplantation of BMMNCs and 166 patients who received medical treatment. The three-month National Institutes of Health Stroke Scale (NIHSS) score indicated a favorable outcome for the BMMNC transplantation group (standardized mean difference (SMD), - 0.34; 95% confidence interval (CI), - 0.57 to - 0.11; P = 0.004). There were no significant differences between the two groups at six months post-transplantation with regards to NIHSS score (SMD 0.00; 95% CI - 0.26 to 0.27; P = 0.97), modified Rankin Scale (risk ratio (RR) 1.10; 95% CI 0.75 to 1.63; P = 0.62), Barthel Index change (SMD 0.68; 95% CI - 0.59 to 1.95; P = 0.29), and infarct volume change (SMD - 0.08; 95% CI - 0.42 to 0.26; P = 0.64). In addition, there was no significant difference between the two groups in terms of safety outcome (RR 1.24; 95% CI 0.80 to 1.91; P = 0.33). CONCLUSION Our meta-analysis demonstrated that the transplantation of BMMNCs was safe; however, the efficacy of this procedure requires further validation in larger RTCs.
Collapse
Affiliation(s)
- Yanbing Tang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, 215002, Jiangsu Province, China
| | - Zilan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Teng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Hanyu Ni
- Suzhou Medical College of Soochow University, Suzhou, 215002, Jiangsu Province, China
| | - Huiru Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Jiaye Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
4
|
Zhang F, Wang Y. Safety and Efficacy of Bone Marrow Mesenchymal Stem Cells in the Treatment of Ischemic Stroke: A Meta-Analysis. Ann Indian Acad Neurol 2024; 27:131-139. [PMID: 38751928 PMCID: PMC11093161 DOI: 10.4103/aian.aian_736_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 05/18/2024] Open
Abstract
Objective We aimed to systematically evaluate the efficacy and safety of bone marrow mesenchymal stem cells (BMMSCs) in the treatment of ischemic stroke. Methods Six Chinese and English databases were searched for related randomized controlled trials from the establishment of the databases to 28 February 2023. Two investigators performed screening and a comprehensive analysis and evaluated the quality of the studies. They extracted information from the included studies, and managed and analzsed the data using RevMan 5.4.1 software (The First College of Clinical Medical Science, China Three Gorges University). Finally, they performed meta and heterogeneity analyses and created a risk-of-bias map. Results A total of 13 high-quality articles were included. The National Institute of Health Stroke Scale (NIHSS) scores of the experimental group differed significantly from those of the control group at 3 months (I2 <50%, mean difference [MD] = -2.88, P < 0.001) after treatment. The Fugl-Meyer assessment (FMA) scores of the experimental group varied significantly from that of the control group at 1 month (I2 >50%, MD = 15.94, P < 0.001), 3 months (I2 >50%, MD = 12.71, P < 0.001), and 6 months (I2 >50%, MD = 13.76, P < 0.001) after treatment, and the overall difference (I2 >50%, MD = 14.38, P ≤ 0.001) was significant. The functional independence measure (FIM) scores were significantly different from that of the control group at 1 month (I2 >50%, MD = 20.04, P = 0.02), 3 months (I2 >50%, MD = 15.51, P < 0.001), and 6 months (I2 >50%, MD = 13.46, P = 0.03). There was no significant increase in adverse events compared with the traditional treatment regimen. Conclusion To some extent, BMMSC transplantation can improve the neurological deficit, motor function, and daily living ability of patients with ischemic stroke.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Medicament, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Yanyan Wang
- Department of Medicament, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
5
|
Houkin K, Osanai T, Uchiyama S, Minematsu K, Taguchi A, Maruichi K, Niiya Y, Asaoka K, Kuga Y, Takizawa K, Haraguchi K, Yoshimura S, Kimura K, Tokunaga K, Aoyama A, Ikawa F, Inenaga C, Abe T, Tominaga A, Takahashi S, Kudo K, Fujimura M, Sugiyama T, Ito M, Kawabori M, Hess DC, Savitz SI, Hirano T. Allogeneic Stem Cell Therapy for Acute Ischemic Stroke: The Phase 2/3 TREASURE Randomized Clinical Trial. JAMA Neurol 2024; 81:154-162. [PMID: 38227308 PMCID: PMC10792497 DOI: 10.1001/jamaneurol.2023.5200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/15/2023] [Indexed: 01/17/2024]
Abstract
Importance Cell therapy is a promising treatment approach for stroke and other diseases. However, it is unknown whether MultiStem (HLCM051), a bone marrow-derived, allogeneic, multipotent adult progenitor cell product, has the potential to treat ischemic stroke. Objective To assess the efficacy and safety of MultiStem when administered within 18 to 36 hours of ischemic stroke onset. Design, Setting, and Participants The Treatment Evaluation of Acute Stroke Using Regenerative Cells (TREASURE) multicenter, double-blind, parallel-group, placebo-controlled phase 2/3 randomized clinical trial was conducted at 44 academic and clinical centers in Japan between November 15, 2017, and March 29, 2022. Inclusion criteria were age 20 years or older, presence of acute ischemic stroke (National Institutes of Health Stroke Scale [NIHSS] score of 8-20 at baseline), confirmed acute infarction involving the cerebral cortex and measuring more than 2 cm on the major axis (determined with diffusion-weighted magnetic resonance imaging), and a modified Rankin Scale (mRS) score of 0 or 1 before stroke onset. Data analysis was performed between May 9 and August 15, 2022. Exposure Patients were randomly assigned to either intravenous MultiStem in 1 single unit of 1.2 billion cells or intravenous placebo within 18 to 36 hours of ischemic stroke onset. Main Outcomes and Measures The primary end points were safety and excellent outcome at day 90, measured as a composite of a modified Rankin Scale (mRS) score of 1 or less, a NIHSS score of 1 or less, and a Barthel index score of 95 or greater. The secondary end points were excellent outcome at day 365, mRS score distribution at days 90 and 365, and mRS score of 0 to 1 and 0 to 2 at day 90. Statistical analysis of efficacy was performed using the Cochran-Mantel-Haenszel test. Results This study included 206 patients (104 received MultiStem and 102 received placebo). Their mean age was 76.5 (range, 35-95) years, and more than half of patients were men (112 [54.4%]). There were no between-group differences in primary and secondary end points. The proportion of excellent outcomes at day 90 did not differ significantly between the MultiStem and placebo groups (12 [11.5%] vs 10 [9.8%], P = .90; adjusted risk difference, 0.5% [95% CI, -7.3% to 8.3%]). The frequency of adverse events was similar between treatment groups. Conclusions and Relevance In this randomized clinical trial, intravenous administration of allogeneic cell therapy within 18 to 36 hours of ischemic stroke onset was safe but did not improve short-term outcomes. Further research is needed to determine whether MultiStem therapy for ischemic stroke has a beneficial effect in patients who meet specific criteria, as indicated by the exploratory analyses in this study. Trial Registration ClinicalTrials.gov Identifier: NCT02961504.
Collapse
Affiliation(s)
| | - Toshiya Osanai
- Department of Neurosurgery, Hokkaido University, Sapporo, Japan
| | - Shinichiro Uchiyama
- Clinical Research Center for Medicine, International University of Health and Welfare, Tokyo, Japan
- Center for Brain and Cerebral Vessels, Sanno Medical Center, Tokyo, Japan
| | | | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Katsuhiko Maruichi
- Department of Neurosurgery, Kashiwaba Neurosurgical Hospital, Sapporo, Japan
| | - Yoshimasa Niiya
- Department of Neurosurgery, Otaru General Hospital, Otaru, Japan
| | - Katsuyuki Asaoka
- Department of Neurosurgery, Teine Keijinkai Medical Center, Sapporo, Japan
| | - Yoshihiro Kuga
- Department of Neurosurgery, Ohnishi Neurological Center, Akashi, Japan
| | - Katsumi Takizawa
- Department of Neurosurgery, Japanese Red Cross Asahikawa Hospital, Asahikawa, Japan
| | - Koichi Haraguchi
- Department of Neurosurgery, Hakodate Shintoshi Hospital, Hakodate, Japan
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo Medical University, Nishinomiya, Japan
| | - Kazumi Kimura
- Department of Neurology, Nippon Medical School Hospital, Tokyo, Japan
| | - Koji Tokunaga
- Department of Neurosurgery, Okayama City Hospital, Okayama City, Japan
| | - Atsuo Aoyama
- Department of Neurology, Shimane Prefectural Central Hospital, Izumo, Japan
| | - Fusao Ikawa
- Department of Neurosurgery, Shimane Prefectural Central Hospital, Izumo, Japan
| | - Chikanori Inenaga
- Department of Neurosurgery, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Tatsuya Abe
- Department of Neurosurgery, Saga University, Nabeshima, Japan
| | - Atsushi Tominaga
- Department of Neurosurgery and Neuroendovascular Therapy, Hiroshima Prefectural Hospital, Hiroshima City, Japan
| | - Shinichi Takahashi
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Hokkaido University, Sapporo, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University, Sapporo, Japan
| | - Taku Sugiyama
- Department of Neurosurgery, Hokkaido University, Sapporo, Japan
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University, Sapporo, Japan
| | | | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta
| | - Sean I. Savitz
- Department of Neurology Institute for Stroke and Cerebrovascular Disease, UTHealth, Houston, Texas
| | - Teruyuki Hirano
- Department of Stroke and Cerebrovascular Medicine, Kyorin University, Mitaka, Japan
| |
Collapse
|
6
|
Wechsler LR, Adeoye O, Alemseged F, Bahr-Hosseini M, Deljkich E, Favilla C, Fisher M, Grotta J, Hill MD, Kamel H, Khatri P, Lyden P, Mirza M, Nguyen TN, Samaniego E, Schwamm L, Selim M, Silva G, Yavagal DR, Yenari MA, Zachrison KS, Boltze J, Yaghi S. Most Promising Approaches to Improve Stroke Outcomes: The Stroke Treatment Academic Industry Roundtable XII Workshop. Stroke 2023; 54:3202-3213. [PMID: 37886850 DOI: 10.1161/strokeaha.123.044279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
The Stroke Treatment Academic Industry Roundtable XII included a workshop to discuss the most promising approaches to improve outcome from acute stroke. The workshop brought together representatives from academia, industry, and government representatives. The discussion examined approaches in 4 epochs: pre-reperfusion, reperfusion, post-reperfusion, and access to acute stroke interventions. The participants identified areas of priority for developing new and existing treatments and approaches to improve stroke outcomes. Although many advances in acute stroke therapy have been achieved, more work is necessary for reperfusion therapies to benefit the most possible patients. Prioritization of promising approaches should help guide the use of resources and investigator efforts.
Collapse
Affiliation(s)
- Lawrence R Wechsler
- University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (L.R.W.)
| | - Opeolu Adeoye
- Washington University School of Medicine, St. Louis, MO (O.A.)
| | | | | | | | | | - Marc Fisher
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (M.F.)
| | | | | | - Hooman Kamel
- Weill Cornel School of Medicine, New York, NY (H.K.)
| | - Pooja Khatri
- University of Cincinnati Medical Center, OH (P.K.)
| | - Patrick Lyden
- University of Southern California, Los Angeles, CA (P.L.)
| | | | | | | | - Lee Schwamm
- Massachusetts General Hospital, Boston (L.S.)
| | - Magdy Selim
- Beth Israel Deaconess Medical Center, Boston, MA (M.S.)
| | | | | | | | | | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom (J.B.)
| | | |
Collapse
|
7
|
Kitamura T, Terashima T, Katagi M, Ohashi N, Nozaki K, Tsuji A. Bone marrow-derived mononuclear cells ameliorate neurological function in chronic cerebral infarction model mice via improvement of cerebral blood flow. Cytotherapy 2023; 25:1186-1199. [PMID: 37552144 DOI: 10.1016/j.jcyt.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND AIMS Stroke is a frequently observed neurological disorder that might lead to permanent and severe disability. Recently, various regenerative therapies have been developed, some of which have already been applied clinically. However, their outcomes have not been fully satisfactory. In particular, the development of regenerative therapies for chronic ischemic stroke is greatly needed. Herein intracerebral administration of bone marrow-derived mononuclear cells (BM-MNCs) was assessed as a potential treatment for chronic ischemic stroke using a severe combined immunodeficiency mouse model characterized by minimal vascular variation unrelated to immunodeficiency. METHODS A reproducible model of permanent middle cerebral artery occlusion was prepared, and intracerebral BM-MNC transplantation was performed 14 days after stroke induction in the infarcted brain. RESULTS Sensorimotor behavioral function and cerebral blood flow were significantly improved upon treatment with BM-MNCs compared to control medium injection. The transplanted cells exhibited characteristics of the vascular endothelium and microglia/macrophages. Significant angiogenesis and suppression of astrogliosis and microgliosis were observed in the affected brain. Messenger RNA expression analysis showed significant increases in anti-inflammatory cytokines, A2 astrocyte/anti-inflammatory microglia markers and vascular endothelial markers such as vascular endothelial growth factor and significant decreases in pro-inflammatory cytokines and A1 astrocyte/pro-inflammatory microglia markers following BM-MNC transplantation. CONCLUSIONS These results suggest that intracerebral administration of BM-MNCs should be considered an effective cell therapy for chronic stroke.
Collapse
Affiliation(s)
- Tomoaki Kitamura
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan; Department of Neurosurgery, Shiga University of Medical Science, Otsu, Japan
| | - Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan.
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Natsuko Ohashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Japan
| | - Atsushi Tsuji
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
8
|
Nguyen QT, Thanh LN, Hoang VT, Phan TTK, Heke M, Hoang DM. Bone Marrow-Derived Mononuclear Cells in the Treatment of Neurological Diseases: Knowns and Unknowns. Cell Mol Neurobiol 2023; 43:3211-3250. [PMID: 37356043 DOI: 10.1007/s10571-023-01377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Bone marrow-derived mononuclear cells (BMMNCs) have been used for decades in preclinical and clinical studies to treat various neurological diseases. However, there is still a knowledge gap in the understanding of the underlying mechanisms of BMMNCs in the treatment of neurological diseases. In addition, prerequisite factors for the efficacy of BMMNC administration, such as the optimal route, dose, and number of administrations, remain unclear. In this review, we discuss known and unknown aspects of BMMNCs, including the cell harvesting, administration route and dose; mechanisms of action; and their applications in neurological diseases, including stroke, cerebral palsy, spinal cord injury, traumatic brain injury, amyotrophic lateral sclerosis, autism spectrum disorder, and epilepsy. Furthermore, recommendations on indications for BMMNC administration and the advantages and limitations of BMMNC applications for neurological diseases are discussed. BMMNCs in the treatment of neurological diseases. BMMNCs have been applied in several neurological diseases. Proposed mechanisms for the action of BMMNCs include homing, differentiation and paracrine effects (angiogenesis, neuroprotection, and anti-inflammation). Further studies should be performed to determine the optimal cell dose and administration route, the roles of BMMNC subtypes, and the indications for the use of BMMNCs in neurological conditions with and without genetic abnormalities.
Collapse
Affiliation(s)
- Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam.
- College of Health Science, Vin University, Vinhomes Ocean Park, Gia Lam District, Hanoi, 12400, Vietnam.
- Vinmec International Hospital-Times City, Vinmec Healthcare System, 458 Minh Khai, Hanoi, 11622, Vietnam.
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Trang T K Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| |
Collapse
|
9
|
Thapa K, Shivam K, Khan H, Kaur A, Dua K, Singh S, Singh TG. Emerging Targets for Modulation of Immune Response and Inflammation in Stroke. Neurochem Res 2023; 48:1663-1690. [PMID: 36763312 DOI: 10.1007/s11064-023-03875-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
The inflammatory and immunological responses play a significant role after stroke. The innate immune activation stimulated by microglia during stroke results in the migration of macrophages and lymphocytes into the brain and are responsible for tissue damage. The immune response and inflammation following stroke have no defined targets, and the intricacies of the immunological and inflammatory processes are only partially understood. Innate immune cells enter the brain and meninges during the acute phase, which can cause ischemia damage. Activation of systemic immunity is caused by danger signals sent into the bloodstream by injured brain cells, which is followed by a significant immunodepression that encourages life-threatening infections. Neuropsychiatric sequelae, a major source of post-stroke morbidity, may be induced by an adaptive immune response that is initiated by antigen presentation during the chronic period and is directed against the brain. Thus, the current review discusses the role of immune response and inflammation in stroke pathogenesis, their role in the progression of injury during the stroke, and the emerging targets for the modulation of the mechanism of immune response and inflammation that may have possible therapeutic benefits against stroke.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.,School of Pharmacy, Chitkara University, Rajpura, Himachal Pradesh, 174103, India
| | - Kumar Shivam
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
10
|
Moniche F, Cabezas-Rodriguez JA, Valverde R, Escudero-Martinez I, Lebrato-Hernandez L, Pardo-Galiana B, Ainz L, Medina-Rodriguez M, de la Torre J, Escamilla-Gomez V, Ortega-Quintanilla J, Zapata-Arriaza E, de Albóniga-Chindurza A, Mancha F, Gamero MA, Perez S, Espinosa-Rosso R, Forero-Diaz L, Moya M, Piñero P, Calderón-Cabrera C, Nogueras S, Jimenez R, Martin V, Delgado F, Ochoa-Sepúlveda JJ, Quijano B, Mata R, Santos-González M, Carmona-Sanchez G, Herrera C, Gonzalez A, Montaner J. Safety and efficacy of intra-arterial bone marrow mononuclear cell transplantation in patients with acute ischaemic stroke in Spain (IBIS trial): a phase 2, randomised, open-label, standard-of-care controlled, multicentre trial. Lancet Neurol 2023; 22:137-146. [PMID: 36681446 DOI: 10.1016/s1474-4422(22)00526-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Pilot clinical trials have shown the safety of intra-arterial bone marrow mononuclear cells (BMMNCs) in stroke. However, the efficacy of different doses of intra-arterial BMMNCs in patients with acute stroke has not been tested in a randomised clinical trial. We aimed to show safety and efficacy of two different doses of autologous intra-arterial BMMNC transplantation in patients with acute stroke. METHODS The IBIS trial was a multicentre phase 2, randomised, controlled, investigator-initiated, assessor-blinded, clinical trial, in four stroke centres in Spain. We included patients (aged 18-80 years) with a non-lacunar, middle cerebral artery ischaemic stroke within 1-7 days from stroke onset and with a National Institutes of Health Stroke Scale score of 6-20. We randomly assigned patients (2:1:1) with a computer-generated randomisation sequence to standard of care (control group) or intra-arterial injection of autologous BMMNCs at one of two different doses (2 × 106 BMMNCs/kg or 5 × 106 BMMNCs/kg). The primary efficacy outcome was the proportion of patients with modified Rankin Scale scores of 0-2 at 180 days in the intention-to-treat population, comparing each BMMNC dose group and the pooled BMMNC group versus the control group. The primary safety endpoint was the proportion of serious adverse events. This trial was registered at ClinicalTrials.gov, NCT02178657 and is completed. FINDINGS Between April 1, 2015, and May 20, 2021, we assessed 114 patients for eligibility. We randomly assigned 77 (68%) patients: 38 (49%) to the control group, 20 (26%) to the low-dose BMMNC group, and 19 (25%) the high-dose BMMNC group. The mean age of participants was 62·4 years (SD 12·7), 46 (60%) were men, 31 (40%) were women, all were White, and 63 (82%) received thrombectomy. The median NIHSS score before randomisation was 12 (IQR 9-15), with intra-arterial BMMNC injection done a median of 6 days (4-7) after stroke onset. The primary efficacy outcome occurred in 14 (39%) patients in the control group versus ten (50%) in the low-dose group (adjusted odds ratio 2·08 [95% CI 0·55-7·85]; p=0·28), eight (44%) in the high-dose group (1·89 [0·52-6·96]; p=0·33), and 18 (47%) in the pooled BMMNC group (2·22 [0·72-6·85]; p=0·16). We found no differences in the proportion of patients who had adverse events or dose-related events, but two patients had a groin haematoma after cell injection in the low-dose BMMNC group. INTERPRETATION Intra-arterial BMMNCs were safe in patients with acute ischaemic stroke, but we found no significant improvement at 180 days on the mRS. Further clinical trials are warranted to investigate whether improvements might be possible at different timepoints. FUNDING Instituto de Salud Carlos III co-funded by the European Regional Development Fund/European Social Fund, Mutua Madrileña, and the Regional Ministry of Health of Andalusia.
Collapse
Affiliation(s)
- Francisco Moniche
- Department of Neurology, Virgen del Rocío University Hospital, Seville, Spain; Neurovascular Lab, Instituto de Biomedicina de Sevilla-IBiS, Seville, Spain.
| | | | - Roberto Valverde
- Department of Neurology, Department of Radiology, Reina Sofía University Hospital, Cordoba, Spain
| | - Irene Escudero-Martinez
- Department of Neurology, Virgen del Rocío University Hospital, Seville, Spain; Neurovascular Lab, Instituto de Biomedicina de Sevilla-IBiS, Seville, Spain
| | | | | | - Leire Ainz
- Department of Neurology, Virgen del Rocío University Hospital, Seville, Spain
| | - Manuel Medina-Rodriguez
- Department of Neurology, Virgen del Rocío University Hospital, Seville, Spain; Neurovascular Lab, Instituto de Biomedicina de Sevilla-IBiS, Seville, Spain
| | - Javier de la Torre
- Department of Neurology, Virgen del Rocío University Hospital, Seville, Spain
| | | | | | - Elena Zapata-Arriaza
- Interventional Neuroradiology, Virgen del Rocío University Hospital, Seville, Spain
| | | | - Fernando Mancha
- Neurovascular Lab, Instituto de Biomedicina de Sevilla-IBiS, Seville, Spain
| | - Miguel-Angel Gamero
- Department of Neurology, Virgen Macarena University Hospital, Seville, Spain
| | - Soledad Perez
- Department of Neurology, Virgen Macarena University Hospital, Seville, Spain
| | | | - Lucia Forero-Diaz
- Department of Neurology, Puerta del Mar University Hospital, Cadiz, Spain
| | - Miguel Moya
- Department of Neurology, Puerta del Mar University Hospital, Cadiz, Spain
| | - Pilar Piñero
- Department of Radiology, Virgen del Rocío University Hospital, Seville, Spain
| | | | - Sonia Nogueras
- Cell Therapy Unit, Reina Sofía University Hospital, IMIBIC, University of Córdoba, Córdoba, Spain
| | - Rosario Jimenez
- Cell Therapy Unit, Reina Sofía University Hospital, IMIBIC, University of Córdoba, Córdoba, Spain
| | - Vanesa Martin
- Department of Hematology, Reina Sofía University Hospital, IMIBIC, University of Córdoba, Córdoba, Spain; Cell Therapy Unit, Reina Sofía University Hospital, IMIBIC, University of Córdoba, Córdoba, Spain
| | - Fernando Delgado
- Interventional Neuroradiology, Department of Radiology, Reina Sofía University Hospital, Cordoba, Spain
| | | | - Blanca Quijano
- Coordination Unit of the Andalusian Network for the design and translation of Advanced Therapies, Seville, Spain
| | - Rosario Mata
- Coordination Unit of the Andalusian Network for the design and translation of Advanced Therapies, Seville, Spain
| | - Monica Santos-González
- Production and Reprogramming Cell Unit of Seville, Andalusian Network for the Design and Translation of Advanced Therapies, Seville, Spain; Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| | - Gloria Carmona-Sanchez
- Coordination Unit of the Andalusian Network for the design and translation of Advanced Therapies, Seville, Spain; Production and Reprogramming Cell Unit of Seville, Andalusian Network for the Design and Translation of Advanced Therapies, Seville, Spain
| | - Concha Herrera
- Department of Hematology, Reina Sofía University Hospital, IMIBIC, University of Córdoba, Córdoba, Spain; Cell Therapy Unit, Reina Sofía University Hospital, IMIBIC, University of Córdoba, Córdoba, Spain
| | - Alejandro Gonzalez
- Interventional Neuroradiology, Virgen del Rocío University Hospital, Seville, Spain
| | - Joan Montaner
- Neurovascular Lab, Instituto de Biomedicina de Sevilla-IBiS, Seville, Spain; Department of Neurology, Virgen Macarena University Hospital, Seville, Spain
| |
Collapse
|
11
|
Savitz SI. Intra-arterial bone marrow mononuclear cells for stroke. Lancet Neurol 2023; 22:105-106. [PMID: 36681437 DOI: 10.1016/s1474-4422(23)00005-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Affiliation(s)
- Sean I Savitz
- Department of Neurology, Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center, Houston 77042, TX, USA.
| |
Collapse
|
12
|
Camesi A, Wettstein R, Valido E, Nyfeler N, Stojic S, Glisic M, Stoyanov J, Bertolo A. Advancements in cell-based therapies for the treatment of pressure injuries: A systematic review of interventional studies. J Tissue Eng 2023; 14:20417314231201071. [PMID: 38029017 PMCID: PMC10658773 DOI: 10.1177/20417314231201071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/29/2023] [Indexed: 12/01/2023] Open
Abstract
The high recurrence and complications associated with severe pressure injuries (PI) necessitate the exploration of advanced treatments, such as cell-based therapies, to facilitate wound healing. Such techniques harness the ability of different cell types to promote angiogenesis, re-epithelialization of the skin, and tissue regeneration. This systematic review explores the efficacy of cell-based therapies and tissue engineering in treating deep PI. We searched for interventional studies using cells in the treatment of PI in adults in four online libraries (PubMed, Embase, Ovid Medline, and Cochrane; latest search 10th June 2023). We found one randomized clinical trial (RCT), two non-RCT, and three pre-post studies, comprising 481 study participants with PI (253 intervention/228 controls). The risk of bias was categorized as moderate due to minimal bias in outcome measurements, or high owing to unclear patient randomization methods, as assessed by the ROBINS-I, NIH, and RoB-2 tools. Four cell types were identified in the context of cell-based therapies of PI: bone marrow mononuclear stem cells (BM-MNCs, n = 2); hematopoietic derived stem cells (HSC, n = 1); macrophages and activated macrophage suspensions (AMS, n = 2); and cryopreserved placental membrane containing viable cells (vCPM, n = 1). Wound healing outcomes were observed in patients undergoing cell-based therapies, including complete wound closure (AMS, vCPM; n = 142), faster healing rate (BM-MNCs, AMS; n = 146), improved granulation tissue formation (HSC, n = 3) and shorter hospitalization time (BM-MNCs; n = 108) compared to standard of care, with no adverse reactions. PI healing rate decreased only in one study with BM-MNC therapy, compared to control (n = 86). Based on the available data, though with limited evidence, it seems that macrophage deployment showed the most favorable outcomes. The results indicate that cell-based therapies offer a potential avenue for enhancing wound healing and tissue repair in PI; however, more extensive research is needed in this domain.
Collapse
Affiliation(s)
- Alianda Camesi
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland
| | - Reto Wettstein
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital of Basel, Basel, Switzerland
| | - Ezra Valido
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland
- Department of Health Sciences, University of Lucerne, Lucerne, Switzerland
| | - Nicole Nyfeler
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland
| | - Stevan Stojic
- Cardiometabolic and Respiratory Research, Swiss Paraplegic Research, Nottwil, Switzerland
| | - Marija Glisic
- Cardiometabolic and Respiratory Research, Swiss Paraplegic Research, Nottwil, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Jivko Stoyanov
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Alessandro Bertolo
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland
- Department of Orthopaedic Surgery, University of Bern, Bern Inselspital, Bern, Switzerland
| |
Collapse
|
13
|
Mining the Mesenchymal Stromal Cell Secretome in Patients with Chronic Left Ventricular Dysfunction. Cells 2022; 11:cells11132092. [PMID: 35805175 PMCID: PMC9266164 DOI: 10.3390/cells11132092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Close examination of the initial results of cardiovascular cell therapy clinical trials indicates the importance of patient-specific differences on outcomes and the need to optimize or customize cell therapies. The fields of regenerative medicine and cell therapy have transitioned from using heterogeneous bone marrow mononuclear cells (BMMNCs) to mesenchymal stromal cells (MSCs), which are believed to elicit benefits through paracrine activity. Here, we examined MSCs from the BMMNCs of heart failure patients enrolled in the FOCUS-CCTRN trial. We sought to identify differences in MSCs between patients who improved and those who declined in heart function, regardless of treatment received. Although we did not observe differences in the cell profile of MSCs between groups, we did find significant differences in the MSC secretome profile between patients who improved or declined. We conclude that “mining” the MSC secretome may provide clues to better understand the impact of patient characteristics on outcomes after cell therapy and this knowledge can inform future cell therapy trials.
Collapse
|
14
|
Hacene S, Le Friec A, Desmoulin F, Robert L, Colitti N, Fitremann J, Loubinoux I, Cirillo C. Present and future avenues of cell-based therapy for brain injury: The enteric nervous system as a potential cell source. Brain Pathol 2022; 32:e13105. [PMID: 35773942 PMCID: PMC9425017 DOI: 10.1111/bpa.13105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Cell therapy is a promising strategy in the field of regenerative medicine; however, several concerns limit the effective clinical use, namely a valid cell source. The gastrointestinal tract, which contains a highly organized network of nerves called the enteric nervous system (ENS), is a valuable reservoir of nerve cells. Together with neurons and neuronal precursor cells, it contains glial cells with a well described neurotrophic potential and a newly identified neurogenic one. Recently, enteric glia is looked at as a candidate for cell therapy in intestinal neuropathies. Here, we present the therapeutic potential of the ENS as cell source for brain repair, too. The example of stroke is introduced as a brain injury where cell therapy appears promising. This disease is the first cause of handicap in adults. The therapies developed in recent years allow a partial response to the consequences of the disease. The only prospect of recovery in the chronic phase is currently based on rehabilitation. The urgency to offer other treatments is therefore tangible. In the first part of the review, some elements of stroke pathophysiology are presented. An update on the available therapeutic strategies is provided, focusing on cell‐ and biomaterial‐based approaches. Following, the ENS is presented with its anatomical and functional characteristics, focusing on glial cells. The properties of these cells are depicted, with particular attention to their neurotrophic and, recently identified, neurogenic properties. Finally, preliminary data on a possible therapeutic approach combining ENS‐derived cells and a biomaterial are presented.
Collapse
Affiliation(s)
- Sirine Hacene
- National Veterinary School of Toulouse, University of Toulouse, Toulouse, France.,Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France.,Department of Biological and Chemical Engineering-Medical Biotechnology, Aarhus University, Aarhus, Denmark
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Juliette Fitremann
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
15
|
Kim JT, Youn DH, Kim BJ, Rhim JK, Jeon JP. Recent Stem Cell Research on Hemorrhagic Stroke : An Update. J Korean Neurosurg Soc 2022; 65:161-172. [PMID: 35193326 PMCID: PMC8918254 DOI: 10.3340/jkns.2021.0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/25/2021] [Indexed: 11/27/2022] Open
Abstract
Although technological advances and clinical studies on stem cells have been increasingly reported in stroke, research targeting hemorrhagic stroke is still lacking compared to that targeting ischemic stroke. Studies on hemorrhagic stroke are also being conducted, mainly in the USA and China. However, little research has been conducted in Korea. In reality, stem cell research or treatment is unfamiliar to many domestic neurosurgeons. Nevertheless, given the increased interest in regenerative medicine and the increase of life expectancy, attention should be paid to this topic. In this paper, we summarized pre-clinical rodent studies and clinical trials using stem cells for hemorrhagic stroke. In addition, we discussed results of domestic investigations and future perspectives on stem cell research for a better understanding.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, Korea
| | - Jin Pyeong Jeon
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea.,Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
16
|
Salehi MS, Jurek B, Karimi-Haghighi S, Nezhad NJ, Mousavi SM, Hooshmandi E, Safari A, Dianatpour M, Haerteis S, Miyan JA, Pandamooz S, Borhani-Haghighi A. Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review. Rev Neurosci 2022; 33:583-606. [DOI: 10.1515/revneuro-2021-0163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
Abstract
Abstract
Intranasal delivery of stem cells and conditioned medium to target the brain has attracted major interest in the field of regenerative medicine. In pre-clinical investigations during the last ten years, several research groups focused on this strategy to treat cerebral hypoxia/ischemia in neonates as well as adults. In this review, we discuss the curative potential of stem cells, stem cell derivatives, and their delivery route via intranasal application to the hypoxic/ischemic brain. After intranasal application, stem cells migrate from the nasal cavity to the injured area and exert therapeutic effects by reducing brain tissue loss, enhancing endogenous neurogenesis, and modulating cerebral inflammation that leads to functional improvements. However, application of this administration route for delivering stem cells and/or therapeutic substances to the damaged sites requires further optimization to translate the findings of animal experiments to clinical trials.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Benjamin Jurek
- Institute of Molecular and Cellular Anatomy , University of Regensburg , Regensburg 93053 , Germany
| | - Saeideh Karimi-Haghighi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Nahid Jashire Nezhad
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Seyedeh Maryam Mousavi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Anahid Safari
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Silke Haerteis
- Institute of Molecular and Cellular Anatomy , University of Regensburg , Regensburg 93053 , Germany
| | - Jaleel A. Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology , The University of Manchester , Manchester M13 9PL , UK
| | - Sareh Pandamooz
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Afshin Borhani-Haghighi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| |
Collapse
|
17
|
Salehi MS, Safari A, Pandamooz S, Jurek B, Hooshmandi E, Owjfard M, Bayat M, Zafarmand SS, Miyan JA, Borhani-Haghighi A. The Beneficial Potential of Genetically Modified Stem Cells in the Treatment of Stroke: a Review. Stem Cell Rev Rep 2022; 18:412-440. [PMID: 34033001 PMCID: PMC8144279 DOI: 10.1007/s12015-021-10175-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
The last two decades have witnessed a surge in investigations proposing stem cells as a promising strategy to treat stroke. Since growth factor release is considered as one of the most important aspects of cell-based therapy, stem cells over-expressing growth factors are hypothesized to yield higher levels of therapeutic efficiency. In pre-clinical studies of the last 15 years that were investigating the efficiency of stem cell therapy for stroke, a variety of stem cell types were genetically modified to over-express various factors. In this review we summarize the current knowledge on the therapeutic efficiency of stem cell-derived growth factors, encompassing techniques employed and time points to evaluate. In addition, we discuss several types of stem cells, including the recently developed model of epidermal neural crest stem cells, and genetically modified stem cells over-expressing specific factors, which could elevate the restorative potential of naive stem cells. The restorative potential is based on enhanced survival/differentiation potential of transplanted cells, apoptosis inhibition, infarct volume reduction, neovascularization or functional improvement. Since the majority of studies have focused on the short-term curative effects of genetically engineered stem cells, we emphasize the need to address their long-term impact.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Jaleel A Miyan
- Faculty of Biology, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | | |
Collapse
|
18
|
Liu J, He J, Huang Y, Hu Z. Resveratrol has an Overall Neuroprotective Role in Ischemic Stroke: A Meta-Analysis in Rodents. Front Pharmacol 2022; 12:795409. [PMID: 34987407 PMCID: PMC8721173 DOI: 10.3389/fphar.2021.795409] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Resveratrol, a natural polyphenolic phytoalexin, is broadly presented in dietary sources. Previous research has suggested its potential neuroprotective effects on ischemic stroke animal models. However, these results have been disputable. Here, we conducted a meta-analysis to comprehensively evaluate the effect of resveratrol treatment in ischemic stroke rodent models. Objective: To comprehensively evaluate the effect of resveratrol treatment in ischemic stroke rodent models. Methods: A literature search of the databases Pubmed, Embase, and Web of science identified 564 studies that were subjected to pre-defined inclusion criteria. 54 studies were included and analyzed using a random-effects model to calculate the standardized mean difference (SMD) with corresponding confidence interval (CI). Results: As compared with controls, resveratrol significantly decreased infarct volume (SMD −4.34; 95% CI −4.98 to −3.69; p < 0.001) and the neurobehavioral score (SMD −2.26; 95% CI −2.86 to −1.67; p < 0.001) in rodents with ischemic stroke. Quality assessment was performed using a 10-item checklist. Studies quality scores ranged from 3 to 8, with a mean value of 5.94. In the stratified analysis, a significant decrease of infarct volume and the neurobehavioral score was achieved in resveratrol sub-groups with a dosage of 20–50 mg/kg. In the meta-regression analysis, the impact of the delivery route on an outcome is the possible source of high heterogeneity. Conclusion: Generally, resveratrol treatment presented neuroprotective effects in ischemic stroke models. Furthermore, this study can direct future preclinical and clinical trials, with important implications for human health.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Garcia-Bonilla L, Iadecola C, Anrather J. Inflammation and Immune Response. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Satani N, Parsha K, Savitz SI. Enhancing Stroke Recovery With Cellular Therapies. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Spiess DA, Campos RMP, Conde L, Didwischus N, Boltze J, Mendez-Otero R, Pimentel-Coelho PM. Subacute AMD3100 Treatment Is Not Efficient in Neonatal Hypoxic-Ischemic Rats. Stroke 2021; 53:586-594. [PMID: 34794335 DOI: 10.1161/strokeaha.120.033768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Despite the advances in treating neonatal hypoxic-ischemic encephalopathy (HIE) with induced hypothermia, the rates of severe disability are still high among survivors. Preclinical studies have indicated that cell therapies with hematopoietic stem/progenitor cells could improve neurological outcomes in HIE. In this study, we investigated whether the administration of AMD3100, a CXCR4 antagonist that mobilizes hematopoietic stem/progenitor cells into the circulation, has therapeutic effects in HIE. METHODS P10 Wistar rats of both sexes were subjected to right common carotid artery occlusion or sham procedure, and then were exposed to hypoxia for 120 minutes. Two subcutaneous injections of AMD3100 or vehicle were given on the third and fourth day after HIE. We first assessed the interindividual variability in brain atrophy after experimental HIE and vehicle treatment in a small cohort of rats. Based on this exploratory analysis, we designed and conducted an experiment to test the efficacy of AMD3100. Brain atrophy on day 21 after HIE was defined as the primary end point. Secondary efficacy end points were cognitive (T-water maze) and motor function (rotarod) on days 17 and 18 after HIE, respectively. RESULTS AMD3100 did not decrease the brain atrophy in animals of either sex. Cognitive impairments were not observed in the T-water maze, but male hypoxic-ischemic animals exhibited motor coordination deficits on the rotarod, which were not improved by AMD3100. A separate analysis combining data from animals of both sexes also revealed no evidence of the effectiveness of AMD3100 treatment. CONCLUSIONS These results indicate that the subacute treatment with AMD3100 does not improve structural and functional outcomes in a rat HIE model.
Collapse
Affiliation(s)
- Daiane Aparecida Spiess
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.)
| | - Raquel Maria Pereira Campos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.).,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil (R.M.-O., P.M.P.-C.)
| | - Luciana Conde
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.)
| | - Nadine Didwischus
- School of Life Sciences, University of Warwick, United Kingdom (N.D., J.B.)
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, United Kingdom (N.D., J.B.)
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.).,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil (R.M.-O., P.M.P.-C.)
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (D.A.S., R.M.P.C., L.C., R.M.-O., P.M.P.-C.)
| |
Collapse
|
22
|
Samal J, Segura T. Injectable biomaterial shuttles for cell therapy in stroke. Brain Res Bull 2021; 176:25-42. [PMID: 34391821 PMCID: PMC8524625 DOI: 10.1016/j.brainresbull.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023]
Abstract
Ischemic stroke (IS) is the leading cause of disability and contributes to a significant socio-economic cost in the western world. Brain repair strategies investigated in the pre-clinical models include the delivery of drug or cell-based therapeutics; which is hindered by the complex anatomy and functional organization of the brain. Biomaterials can be instrumental in alleviating some of these challenges by providing a structural support, localization, immunomodulation and/or modulating cellular cross-talk in the brain. This review addresses the significance of and challenges associated with cell therapy in an ischemic brain. This is followed by a detailed insight into the biomaterial-based delivery systems which have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. A biomaterial intervention uses a multifaceted approach in enhancing the survival and engraftment of cells during transplantation and this has driven them as potential candidates for the treatment of IS. The biological processes that are activated as a response to the biomaterials and how to modulate them is one of the key factors contributing to the success of the biomaterial-based therapeutic approach. Future perspectives highlight the need of a combinative approach of merging the material design with disease biology to fabricate effective biomaterial-based intervention of stroke.
Collapse
Affiliation(s)
- Juhi Samal
- Department of Biomedical Engineering, 534 Research Drive, Durham, NC 27708, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, 534 Research Drive, Durham, NC 27708, United States.
| |
Collapse
|
23
|
Chiu TL, Baskaran R, Tsai ST, Huang CY, Chuang MH, Syu WS, Harn HJ, Lin YC, Chen CH, Huang PC, Wang YF, Chuang CH, Lin PC, Lin SZ. Intracerebral transplantation of autologous adipose-derived stem cells for chronic ischemic stroke: A phase I study. J Tissue Eng Regen Med 2021; 16:3-13. [PMID: 34644444 DOI: 10.1002/term.3256] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/14/2021] [Accepted: 10/09/2021] [Indexed: 11/08/2022]
Abstract
Current therapy does not provide significant benefits for patients with chronic stroke. Pre-clinical studies suggested that autologous adipose-derived stem cells have benefits for the treatment of chronic stroke. This Phase I open-label study was conducted to demonstrate the safety and efficacy of autologous adipose-derived stem cells (GXNPC1) in chronic stroke. Three patients with chronic stroke were treated with stereotactic implantation of autologous adipose-derived stem cells (1 × 108 cells). The primary endpoints of safety evaluation included adverse events, over a 6 months post-implantation period. The secondary endpoints included improvements in neurological functions. Evolutional change of brain parenchyma was also followed with magnetic resonance imaging (MRI). All three participants improved significantly at 6 months follow-up. The extent of improvement from pre-treatment was: National Institutes of Health Stroke Scale improved 5-15 points, Barthel Index: 25-50 points, Berg balance scale 0-21 points and Fugl-Meyer modified sensation 3-28 points. All three patients had signal change along the implantation tract on MRI one month after surgery. There is no related safety issue through 6 months observation. Clinical measures of neurological symptoms of these patients with chronic stroke improved at 6 months without adverse effects after implantation of autologous adipose-derived stem cells (GXNPC1), which might be correlated with post-implantation changes on brain MRI. Clinical Trial Registration-URL: https://clinicaltrials.gov/ct2/show/NCT02813512?term=ADSC&cond=Stroke&cntry=TW&draw=2&rank=1 Unique identifier: NCT02813512.
Collapse
Affiliation(s)
- Tsung-Lang Chiu
- Department of Neurosurgery, Bioinnovation Center, Tzu Chi Foundation, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan, ROC
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, ROC
| | - Sheng-Tzung Tsai
- Department of Neurosurgery, Bioinnovation Center, Tzu Chi Foundation, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC.,Department of Biological Science and Technology, Asia University, Taichung, Taiwan, ROC.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
| | - Ming-Hsi Chuang
- Department of Technology Management, Chung Hwa University, Hsinchu, Taiwan, ROC
| | - Wan-Sin Syu
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan, ROC
| | - Horng-Jyh Harn
- Bioinnovation Center, Tzu Chi foundation; Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan, ROC
| | - Yi-Chun Lin
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan, ROC
| | - Chun-Hung Chen
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan, ROC
| | - Pi-Chun Huang
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan, ROC
| | - Yi-Fen Wang
- Department of Neurosurgery, Bioinnovation Center, Tzu Chi Foundation, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan, ROC
| | | | - Po-Cheng Lin
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan, ROC
| | - Shinn-Zong Lin
- Department of Neurosurgery, Bioinnovation Center, Tzu Chi Foundation, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
24
|
Wei R, Zhang L, Hu W, Shang X, He Y, Zhang W. Zeb2/Axin2-Enriched BMSC-Derived Exosomes Promote Post-Stroke Functional Recovery by Enhancing Neurogenesis and Neural Plasticity. J Mol Neurosci 2021; 72:69-81. [PMID: 34401997 DOI: 10.1007/s12031-021-01887-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/04/2023]
Abstract
Exosomes harvested from bone marrow-derived mesenchymal stromal cells (BMSCs) have shown treatment potential in many diseases. In vitro, Zeb2/Axin2 stimulated endogenous neurogenesis, which induced functional recovery after stroke. Here, we investigated whether the Zeb2/Axin2-enriched exosomes harvested from BMSCs transfected with a Zeb2/Axin2 overexpression plasmid would enhance neurological recovery. Compared with the control, both exosome treatments significantly improved functional recovery, and Zeb2/Axin2-enriched exosomes had significantly more improved effects on neurological function, neurogenesis, and neurite remodeling/neuronal dendrite plasticity than the control BMSC exosome treatment in a middle cerebral artery occlusion MCAO rat model. After stimulation with Zeb2/Axin2-enriched BMSC exosomes, the spatial memory and nerve function of MCAO rats showed marked recovery. The number of neurons was increased in the subventricular zone (SVZ), hippocampus, and cortex area, while the expression of nerve growth factors (NGF, BDNF, etc.) was upregulated. In the ischemic boundary zone, Zeb2/Axin2-enriched exosomes promoted synaptic remodeling by increasing the number of synapses and reversed the axonal loss of phosphorylated neurofilament (SMI-31) and synaptophysin (SYN) caused by ischemic injury, thus alleviating axonal demise and promoting synaptic proliferation. In vitro, Zeb2/Axin2-enriched exosomes significantly increased neurite branching and elongation of cultured cortical embryonic rat neurons under oxygen- and glucose-deprived (OGD) conditions. Moreover, Ex-Zeb2/Axin2-enriched exosomes downregulated the protein level of SOX10, endothelin-3/EDNRB, and Wnt/β-catenin expression. In conclusion, exosomes harvested from Ex-Zeb2/Axin2 BMSC could improve post-stroke neuroplasticity and functional recovery in MCAO rats by promoting proliferation and differentiation of neural stem cells. The mechanism may be related to the SOX10, Wnt/β-catenin, and endothelin-3/EDNRB pathways.
Collapse
Affiliation(s)
- Rui Wei
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Lin Zhang
- Department of Rehabilitation, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Wei Hu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Xinying Shang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Yuyan He
- Kunming Medical University, No. 1168 West Chunrong Road, Kunming, 650504, Yunnan, China
| | - Wei Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China.
| |
Collapse
|
25
|
Xu H, Wang C, Liu C, Peng Z, Li J, Jin Y, Wang Y, Guo J, Zhu L. Cotransplantation of mesenchymal stem cells and endothelial progenitor cells for treating steroid-induced osteonecrosis of the femoral head. Stem Cells Transl Med 2021; 10:781-796. [PMID: 33438370 PMCID: PMC8046137 DOI: 10.1002/sctm.20-0346] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/14/2020] [Accepted: 12/06/2020] [Indexed: 11/20/2022] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (ONFH) is characterized by decreased osteogenesis, angiogenesis, and increased adipogenesis. While bone tissue engineering has been widely investigated to treat ONFH, its therapeutic effects remain unsatisfactory. Therefore, further studies are required to determine optimal osteogenesis, angiogenesis and adipogenesis in the necrotic area of the femoral head. In our study, we developed a carboxymethyl chitosan/alginate/bone marrow mesenchymal stem cell/endothelial progenitor cell (CMC/ALG/BMSC/EPC) composite implant, and evaluated its ability to repair steroid-induced ONFH. Our in vitro studies showed that BMSC and EPC coculture displayed enhanced osteogenic and angiogenic differentiation. When compared with single BMSC cultures, adipogenic differentiation in coculture systems was reduced. We also fabricated a three-dimensional (3D) CMC/ALG scaffold for loading cells, using a lyophilization approach, and confirmed its good cell compatibility characteristics, that is, high porosity, low cytotoxicity and favorable cell adhesion. 3D coculture of BMSCs and EPCs also promoted secretion of osteogenic and angiogenic factors. Then, we established an rabbit model of steroid-induced ONFH. The CMC/ALG/BMSC/EPC composite implant was transplanted into the bone tunnel of the rabbit femoral head after core decompression (CD) surgery. Twelve weeks later, radiographical and histological analyses revealed CMC/ALG/BMSC/EPC composite implants had facilitated the repair of steroid-induced ONFH, by promoting osteogenesis and angiogenesis, and reducing adipogenesis when compared with CD, CMC/ALG, CMC/ALG/BMSC and CMC/ALG/EPC groups. Thus, our data show that cotransplantation of BMSCs and EPCs in 3D scaffolds is beneficial in treating steroid-induced ONFH.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Chengqiang Wang
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Ziyue Peng
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Jianjun Li
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Yanglei Jin
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Jiasong Guo
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
- Department of Histology and EmbryologySouthern Medical UniversityGuangzhouPeople's Republic of China
- Key Laboratory of Tissue Construction and Detection of Guangdong ProvinceGuangzhouPeople's Republic of China
- Institute of Bone BiologyAcademy of Orthopaedics, Guangdong ProvinceGuangzhouPeople's Republic of China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
26
|
Chavda V, Madhwani K, Chaurasia B. Stroke and immunotherapy: Potential mechanisms and its implications as immune-therapeutics. Eur J Neurosci 2021; 54:4338-4357. [PMID: 33829590 DOI: 10.1111/ejn.15224] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
Ischemia or brain injuries are mostly associated with emergency admissions and huge mortality rates. Stroke is a fatal cerebrovascular malady and second top root of disability and death in both developing and developed countries with a projected rise of 24.9% (from 2010) by 2030. It's the most frequent cause of morbidities and systemic permanent morbidities due to its multi-organ systemic pathology. Brain edema or active immune response cause disturbed or abnormal systemic affects causing inflammatory damage leading to secondary infection and secondary immune response which leads to activation like pneumonia or urine tract infections. There are a variety of post stroke treatments available which claims their usefulness in reducing or inhibiting post stroke and recurrent stroke damage followed by heavy inflammatory actions. Stroke does change the quality of life and also ensures daily chronic rapid neurodegeneration and cognitive decline. The only approved therapies for stroke are alteplase and thrombectomy which is associated with adverse outcomes and are not a total cure for ischemic stroke. Stroke and immune response are reciprocal to the pathology and time of event and it progresses till untreated. The immune reaction during ischemia opens new doors for advanced targeted therapeutics. Nowadays stem cell therapy has shown better results in stroke-prone individuals. Few monoclonal antibodies like natalizumab have shown great impact on pre-clinical and clinical stroke trial studies. In this current review, we have explored an immunology of stroke, current therapeutic scenario and future potential targets as immunotherapeutic agents in stroke therapeutics.
Collapse
Affiliation(s)
- Vishal Chavda
- Division of Anesthesia, Sardar Women's Hospital, Ahmadabad, Gujarat, India
| | - Kajal Madhwani
- Department of Microbiology, Nirma University, Ahmadabad, Gujarat, India
| | | |
Collapse
|
27
|
Brain morphological and connectivity changes on MRI after stem cell therapy in a rat stroke model. PLoS One 2021; 16:e0246817. [PMID: 33592008 PMCID: PMC7886198 DOI: 10.1371/journal.pone.0246817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
In animal models of stroke, behavioral assessments could be complemented by a variety of neuroimaging studies to correlate them with recovery and better understand mechanisms of improvement after stem cell therapy. We evaluated morphological and connectivity changes after treatment with human mesenchymal stem cells (hMSCs) in a rat stroke model, through quantitative measurement of T2-weighted images and diffusion tensor imaging (DTI). Transient middle cerebral artery occlusion rats randomly received PBS (PBS-only), FBS cultured hMSCs (FBS-hMSCs), or stroke patients’ serum cultured hMSCs (SS-hMSCs). Functional improvement was assessed using a modified neurological severity score (mNSS). Quantitative analyses of T2-weighted ischemic lesion and ventricular volume changes were performed. Brain microstructure/connectivity changes were evaluated in the ischemic recovery area by DTI-derived microstructural indices such as relative fractional anisotropy (rFA), relative axial diffusivity (rAD), and relative radial diffusivity (rRD), and relative fiber density (rFD) analyses. According to mNSS results, the SS-hMSCs group showed the most prominent functional improvement. Infarct lesion volume of the SS-hMSCs group was significantly decreased at 2 weeks when compared to the PBS-only groups, but there were no differences between the FBS-hMSCs and SS-hMSCs groups. Brain atrophy was significantly decreased in the SS-hMSCs group compared to the other groups. In DTI, rFA and rFD values were significantly higher and rRD value was significant lower in the SS-hMSCs group and these microstructure/connectivity changes were correlated with T2-weighted morphological changes. T2-weighted volume alterations (ischemic lesion and brain atrophy), and DTI microstructural indices and rFD changes, were well matched with the results of behavioral assessment. These quantitative MRI measurements could be potential outcome predictors of functional recovery after treatment with stem cells for stroke.
Collapse
|
28
|
de Fátima Dos Santos Sampaio M, Santana Bastos Boechat M, Augusto Gusman Cunha I, Gonzaga Pereira M, Coimbra NC, Giraldi-Guimarães A. Neurotrophin-3 upregulation associated with intravenous transplantation of bone marrow mononuclear cells induces axonal sprouting and motor functional recovery in the long term after neocortical ischaemia. Brain Res 2021; 1758:147292. [PMID: 33516814 DOI: 10.1016/j.brainres.2021.147292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Bone marrow mononuclear cells (BMMCs) have been identified as a relevant therapeutic strategy for the treatment of several chronic diseases of the central nervous system. The aim of this work was to evaluate whether intravenous treatment with BMMCs facilitates the reconnection of lesioned cortico-cortical and cortico-striatal pathways, together with motor recovery, in injured adult Wistar rats using an experimental model of unilateral focal neocortical ischaemia. Animals with cerebral cortex ischaemia underwent neural tract tracing for axonal fibre analysis, differential expression analysis of genes involved in apoptosis and neuroplasticity by RT-qPCR, and motor performance assessment by the cylinder test. Quantitative and qualitative analyses of axonal fibres labelled by an anterograde neural tract tracer were performed. Ischaemic animals treated with BMMCs showed a significant increase in axonal sprouting in the ipsilateral neocortex and in the striatum contralateral to the injured cortical areas compared to untreated rodents. In BMMC-treated animals, there was a trend towards upregulation of the Neurotrophin-3 gene compared to the other genes, as well as modulation of apoptosis by BMMCs. On the 56th day after ischaemia, BMMC-treated animals showed significant improvement in motor performance compared to untreated rats. These results suggest that in the acute phase of ischaemia, Neurotrophin-3 is upregulated in response to the lesion itself. In the long run, therapy with BMMCs causes axonal sprouting, reconnection of damaged neuronal circuitry and a significant increase in motor performance.
Collapse
Affiliation(s)
- Maria de Fátima Dos Santos Sampaio
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| | - Marcela Santana Bastos Boechat
- Laboratory of Plant Breeding of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Igor Augusto Gusman Cunha
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Messias Gonzaga Pereira
- Laboratory of Plant Breeding of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| | - Arthur Giraldi-Guimarães
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Ye Y, Zhu YT, Tong HX, Han JY. The Protective Role of Immunomodulators on Tissue-Type Plasminogen Activator-Induced Hemorrhagic Transformation in Experimental Stroke: A Systematic Review and Meta-Analysis. Front Pharmacol 2020; 11:615166. [PMID: 33424615 PMCID: PMC7793743 DOI: 10.3389/fphar.2020.615166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Recanalization with tissue plasminogen activator (tPA) is the only approved agent available for acute ischemic stroke. But delayed treatment of tPA may lead to lethal intracerebral hemorrhagic transformation (HT). Numerous studies have reported that immunomodulators have good efficacy on tPA-induced HT in ischemic stroke models. The benefits of immunomodulators on tPA-associated HT are not clearly defined. Here, we sought to conduct a systematic review and meta-analysis of preclinical studies to further evaluate the efficacy of immunomodulators. Methods: The PubMed, Web of Science, and Scopus electronic databases were searched for studies. Studies that reported the efficacy of immunomodulators on tPA-induced HT in animal models of stroke were included. Animals were divided into two groups: immunomodulators plus tPA (intervention group) or tPA alone (control group). The primary outcome was intracerebral hemorrhage, and the secondary outcomes included infarct volume and neurobehavioral score. Study quality was assessed by the checklist of CAMARADES. We used standardized mean difference (SMD) to assess the impact of interventions. Regression analysis and subgroup analysis were performed to identify potential sources of heterogeneity and evaluate the impact of the study characteristics. The evidence of publication bias was evaluated using trim and fill method and Egger’s test. Results: We identified 22 studies that met our inclusion criteria involving 516 animals and 42 different comparisons. The median quality checklist score was seven of a possible 10 (interquartile range, 6–8). Immunomodulators improved cerebral hemorrhage (1.31 SMD, 1.09–1.52); infarct volume (1.35 SMD, 0.95–1.76), and neurobehavioral outcome (0.9 SMD, 0.67–1.13) in experimental stroke. Regression analysis and subgroup analysis indicated that control of temperature and time of assessment were important factors that influencing the efficacy of immunomodulators. Conclusion: Our findings suggested that immunomodulators had a favorable effect on tPA-associated intracerebral hemorrhage, cerebral infarction, and neurobehavioral impairments in animal models of ischemic stroke.
Collapse
Affiliation(s)
- Yang Ye
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Yu-Tian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.,Department of Urology, Peking University Third Hospital, Beijing, China
| | - Hong-Xuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| |
Collapse
|
30
|
Ye Y, Zhang FT, Wang XY, Tong HX, Zhu YT. Antithrombotic Agents for tPA-Induced Cerebral Hemorrhage: A Systematic Review and Meta-Analysis of Preclinical Studies. J Am Heart Assoc 2020; 9:e017876. [PMID: 33283576 PMCID: PMC7955384 DOI: 10.1161/jaha.120.017876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background tPA (tissue‐type plasminogen activator) remains the only approved drug for acute ischemic stroke, with a potentially serious adverse effect: hemorrhagic transformation. The effects of antithrombotic agents on tPA‐induced hemorrhagic transformation after ischemic stroke are not clearly defined. We performed a systematic review and meta‐analysis in preclinical studies aiming to evaluate the efficacy of antithrombotic agents on tPA‐induced hemorrhagic transformation after ischemic stroke. Methods and Results We conducted a systematic review and meta‐analysis of studies testing antithrombotic agents in animal models of tPA‐induced hemorrhagic transformation. The pooled effects were calculated using random‐effects models, and heterogeneity was explored through meta‐regression and subgroup analyses. Publication bias was assessed using trim and fill method and the Egger test. The efficacy of 18 distinct interventions was described in 22 publications. The pooled data showed a significant improvement in cerebral hemorrhage, infarct size, and neurobehavioral outcome in treated compared with control animals (standardized mean difference, 0.45 [95% CI, 0.11–0.78]; standardized mean difference, 1.18 [95% CI, 0.73–1.64]; and standardized mean difference, 0.91 [95% CI, 0.49–1.32], respectively). Subgroup analysis indicated that quality score, random allocation, control of temperature, anesthetic used, stroke model used, route of drug delivery, time of drug administration, and time of assessment were significant factors that influenced the effects of interventions. Conclusions Administration with antiplatelet agents revealed statistically significant improvement in all the outcomes. Anticoagulant agents showed significant effects in infarct size and neurobehavioral score, but fibrinolytic agents did not show any significant improvement in all the outcomes. The conclusions should be interpreted cautiously given the heterogeneity and publication bias identified in this analysis.
Collapse
Affiliation(s)
- Yang Ye
- Department of Integration of Chinese and Western Medicine School of Basic Medical Sciences Peking University Beijing China.,Tasly Microcirculation Research Center Peking University Health Science Center Beijing China
| | - Fu-Tao Zhang
- University of Chinese Academy of Sciences Beijing China.,Northeast Institute of Geography and Agroecology Chinese Academy of Sciences Harbin China.,National Engineering Laboratory for Improving Quality of Arable Land Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine School of Basic Medical Sciences Peking University Beijing China.,Tasly Microcirculation Research Center Peking University Health Science Center Beijing China
| | - Hong-Xuan Tong
- Institute of Basic Theory for Chinese Medicine China Academy of Chinese Medical Sciences Beijing China
| | - Yu-Tian Zhu
- Department of Urology Peking University Third Hospital Beijing China
| |
Collapse
|
31
|
Costa-Ferro ZSM, de Oliveira GN, da Silva DV, Marinowic DR, Machado DC, Longo BM, da Costa JC. Intravenous infusion of bone marrow mononuclear cells promotes functional recovery and improves impaired cognitive function via inhibition of Rho guanine nucleotide triphosphatases and inflammatory signals in a model of chronic epilepsy. Brain Struct Funct 2020; 225:2799-2813. [PMID: 33128125 DOI: 10.1007/s00429-020-02159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/15/2020] [Indexed: 11/24/2022]
Abstract
Temporal lobe epilepsy is the most common form of intractable epilepsy in adults. More than 30% of individuals with epilepsy have persistent seizures and have drug-resistant epilepsy. Based on our previous findings, treatment with bone marrow mononuclear cells (BMMC) could interfere with early and chronic phase epilepsy in rats and in clinical settings. In this pilocarpine-induced epilepsy model, animals were randomly assigned to two groups: control (Con) and epileptic pre-treatment (Ep-pre-t). The latter had status epilepticus (SE) induced through pilocarpine intraperitoneal injection. Later, seizure frequency was assessed using a video-monitoring system. Ep-pre-t was further divided into epileptic treated with saline (Ep-Veh) and epileptic treated with BMMC (Ep-BMMC) after an intravenous treatment with BMMC was done on day 22 after SE. Analysis of neurobehavioral parameters revealed that Ep-BMMC had significantly lower frequency of spontaneous recurrent seizures (SRS) in comparison to Ep-pre-t and Ep-Veh groups. Hippocampus-dependent spatial and non-spatial learning and memory were markedly impaired in epileptic rats, a deficit that was robustly recovered by treatment with BMMC. Moreover, long-term potentiation-induced synaptic remodeling present in epileptic rats was restored by BMMC. In addition, BMMC was able to reduce abnormal mossy fiber sprouting in the dentate gyrus. Molecular analysis in hippocampal tissue revealed that BMMC treatment down-regulates the release of inflammatory cytokine tumor necrosis factor-α (TNF-α) and Allograft inflammatory factor-1 (AIF-1) as well as the Rho subfamily of small GTPases [Ras homolog gene family member A (RhoA) and Ras-related C3 botulinum toxin substrate 1 (Rac)]. Collectively, delayed BMMC treatment showed positive effects when intravenously infused into chronic epileptic rats.
Collapse
Affiliation(s)
- Zaquer Suzana Munhoz Costa-Ferro
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Gutierre Neves de Oliveira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Daniele Vieira da Silva
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Denise Cantarelli Machado
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Beatriz Monteiro Longo
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
Raghuram AC, Yu RP, Lo AY, Sung CJ, Bircan M, Thompson HJ, Wong AK. Role of stem cell therapies in treating chronic wounds: A systematic review. World J Stem Cells 2020; 12:659-675. [PMID: 32843920 PMCID: PMC7415243 DOI: 10.4252/wjsc.v12.i7.659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/03/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The impairment of cutaneous wound healing results in chronic, non-healing wounds that are caused by altered wound environment oxygenation, tissue injury, and permissive microbial growth. Current modalities for the treatment of these wounds inadequately address the complex changes involved in chronic wound pathogenesis. Consequently, stem cell therapies have emerged as a potential therapeutic modality to promote cutaneous regeneration through trophic and paracrine activity.
AIM To investigate current literature regarding use of stem cell therapies for the clinical treatment of chronic, non-healing wounds.
METHODS PubMed, EMBASE, Cochrane Library, Web of Science, and Scopus were queried with combinations of the search terms “mesenchymal stem cells,” “adult stem cells,” “embryonic stem cells,” “erythroid precursor cells,” “stem cell therapies,” and “chronic wounds” in order to find relevant articles published between the years of 2000 and 2019 to review a 20-year experience. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (reviews, case reports/series, retrospective/prospective studies, and clinical trials) were evaluated by the authors for their depiction of clinical stem cell therapy use. Data were extracted from the articles using a standardized collection tool.
RESULTS A total of 43 articles describing the use of stem cell therapies for the treatment of chronic wounds were included in this review. While stem cell therapies have been explored in in vitro and in vivo applications in the past, recent efforts are geared towards assessing their clinical role. A review of the literature revealed that adipose-derived stem cells, bone marrow-derived stem cells, bone marrow-derived mononuclear cells, epidermally-derived mesenchymal stem cells, fibroblast stem cells, keratinocyte stem cells, placental mesenchymal stem cells, and umbilical cord mesenchymal stem cells have all been employed in the treatment of chronic wounds of various etiologies. Most recently, embryonic stem cells have emerged as a novel stem cell therapy with the capacity for multifaceted germ cell layer differentiation. With the capacity for self-renewal and differentiation, stem cells can enrich existing cell populations in chronic wounds in order to overcome barriers impeding the progression of wound healing. Further, stem cell therapies can be utilized to augment cell engraftment, signaling and activity, and resultant patient outcomes.
CONCLUSION Assessing observed clinical outcomes, potential for stem cell use, and relevant therapeutic challenges allows wound care stakeholders to make informed decisions regarding optimal treatment approaches for their patients’ chronic wounds.
Collapse
Affiliation(s)
- Anjali C Raghuram
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Roy P Yu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Andrea Y Lo
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Cynthia J Sung
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Melissa Bircan
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Holly J Thompson
- Wilson Dental Library, Herman Ostrow School of Dentistry of USC, Los Angeles, CA 90089, United States
| | - Alex K Wong
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| |
Collapse
|
33
|
Dos Santos Sampaio MDF, Giraldi-Guimarães A, da Silva Lourenço C, Pereira MG, Coimbra NC. Effects of bone marrow mononuclear cells on induction of axonal sprouting in cortico-cortical and cortico-striatal pathways in an animal model of cortical ablation. BMC Res Notes 2020; 13:272. [PMID: 32493509 PMCID: PMC7271522 DOI: 10.1186/s13104-020-05116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/26/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Many therapies have been proposed in order to investigate the mechanisms of neural repair associated with neurological diseases, including bone marrow mononuclear cells (BMMC) transplantation. However, there is evidence that some encephalic injuries are less responsive to neural repair, such as, for example, cortical ablation. On the other hand, some models of cortical ablation have shown functional recovery after BMMC transplantation. Thus, it is relevant to expand the knowledge of BMMC transplantation-induced neuroplasticity in animal models, considering a promising approach for the rehabilitation of patients with neurological diseases. Using an experimental model of cerebral cortex ablation in adult male Wistar rats, which is known to be poorly responsive to neuroplasticity, the aim of this study was to investigate the effects of BMMC on axonal sprouting in cortico-cortical and cortico-striatal pathways synaptic fields. An anterograde neurotracer was used to evaluate the distribution of axonal fibres. RESULTS The results showed that BMMC were not able to significantly induce axonal sprouting in the evaluated synaptic fields. Our results reinforced the idea that cortical ablation may be less responsive to neuroplasticity and the beneficial effects of BMMC therapy depend on the particularities of a neural microenvironment intrinsic to a given cortical lesion.
Collapse
Affiliation(s)
- Maria de Fátima Dos Santos Sampaio
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern, Fluminense State University, (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil.
| | - Arthur Giraldi-Guimarães
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern, Fluminense State University, (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Camila da Silva Lourenço
- Laboratory of Clinical and Surgery of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Messias Gonzaga Pereira
- Laboratory of Plant Breeding of Darcy Ribeiro Northern Fluminense State University, (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| |
Collapse
|
34
|
Cirillo C, Brihmat N, Castel-Lacanal E, Le Friec A, Barbieux-Guillot M, Raposo N, Pariente J, Viguier A, Simonetta-Moreau M, Albucher JF, Olivot JM, Desmoulin F, Marque P, Chollet F, Loubinoux I. Post-stroke remodeling processes in animal models and humans. J Cereb Blood Flow Metab 2020; 40:3-22. [PMID: 31645178 PMCID: PMC6928555 DOI: 10.1177/0271678x19882788] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023]
Abstract
After cerebral ischemia, events like neural plasticity and tissue reorganization intervene in lesioned and non-lesioned areas of the brain. These processes are tightly related to functional improvement and successful rehabilitation in patients. Plastic remodeling in the brain is associated with limited spontaneous functional recovery in patients. Improvement depends on the initial deficit, size, nature and localization of the infarction, together with the sex and age of the patient, all of them affecting the favorable outcome of reorganization and repair of damaged areas. A better understanding of cerebral plasticity is pivotal to design effective therapeutic strategies. Experimental models and clinical studies have fueled the current understanding of the cellular and molecular processes responsible for plastic remodeling. In this review, we describe the known mechanisms, in patients and animal models, underlying cerebral reorganization and contributing to functional recovery after ischemic stroke. We also discuss the manipulations and therapies that can stimulate neural plasticity. We finally explore a new topic in the field of ischemic stroke pathophysiology, namely the brain-gut axis.
Collapse
Affiliation(s)
- Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Nabila Brihmat
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Evelyne Castel-Lacanal
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | | | - Nicolas Raposo
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Jérémie Pariente
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Alain Viguier
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Marion Simonetta-Moreau
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Jean-François Albucher
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Jean-Marc Olivot
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Philippe Marque
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - François Chollet
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| |
Collapse
|
35
|
Circulating microRNA after autologous bone marrow mononuclear cell (BM-MNC) injection in patients with ischemic stroke. J Investig Med 2019; 68:807-810. [DOI: 10.1136/jim-2019-001161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
Previous studies have shown the potential of microRNAs (miRNA) in the pathological process of stroke and functional recovery. Bone marrow mononuclear cell (BM-MNC) transplantation improves recovery in experimental models of ischemic stroke that might be related with miRNA modifications. However, its effect on circulating miRNA has not been described in patients with stroke. We aimed to evaluate the circulating levels of miRNAs after autologous BM-MNC transplantation in patients with stroke. We investigate the pattern of miRNA-133b and miRNA-34a expression in patients with ischemic stroke included in a multicenter randomized controlled phase IIb trial (http://www.clinicaltrials.gov; unique identifier: NCT02178657). Patients were randomized to 2 different doses of autologous intra-arterial BM-MNC injection (2×106/kg or 5×106/kg) or control group within the first 7 days after stroke onset. We evaluate plasma concentration of miRNA-113b and miRNA-34a at inclusion and 4, 7, and 90 days after treatment. Thirteen cases (8 with 2×106/kg BM-MNC dose and 5 with 5×106/kg dose) and 11 controls (BM-MNC non-treated) were consecutively included. Mean age was 64.1±12.3 with a mean National Institutes of Health Stroke Scale score at inclusion of 14.5. Basal levels of miRNA were similar in both groups. miR-34a-5p and miR-133b showed different expression patterns. There was a significant dose-dependent increase of miRNA-34a levels 4 days after BM-MNC injection (fold change 3.7, p<0.001), whereas miRNA-133b showed a significant increase in the low-dose BM-MNC group at 90 days. Intra-arterial BM-MNC transplantation in patients with ischemic stroke seems to modulate early circulating miRNA-34a levels, which have been related to precursor cell migration in stroke and smaller infarct volumes.
Collapse
|
36
|
Ghosh MK, Chakraborty D, Sarkar S, Bhowmik A, Basu M. The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Signal Transduct Target Ther 2019; 4:42. [PMID: 31637020 PMCID: PMC6799849 DOI: 10.1038/s41392-019-0075-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Glioma and cerebral ischemic stroke are two major events that lead to patient death worldwide. Although these conditions have different physiological incidences, ~10% of ischemic stroke patients develop cerebral cancer, especially glioma, in the postischemic stages. Additionally, the high proliferation, venous thrombosis and hypercoagulability of the glioma mass increase the significant risk of thromboembolism, including ischemic stroke. Surprisingly, these events share several common pathways, viz. hypoxia, cerebral inflammation, angiogenesis, etc., but the proper mechanism behind this co-occurrence has yet to be discovered. The hypercoagulability and presence of the D-dimer level in stroke are different in cancer patients than in the noncancerous population. Other factors such as atherosclerosis and coagulopathy involved in the pathogenesis of stroke are partially responsible for cancer, and the reverse is also partially true. Based on clinical and neurosurgical experience, the neuronal structures and functions in the brain and spine are observed to change after a progressive attack of ischemia that leads to hypoxia and atrophy. The major population of cancer cells cannot survive in an adverse ischemic environment that excludes cancer stem cells (CSCs). Cancer cells in stroke patients have already metastasized, but early-stage cancer patients also suffer stroke for multiple reasons. Therefore, stroke is an early manifestation of cancer. Stroke and cancer share many factors that result in an increased risk of stroke in cancer patients, and vice-versa. The intricate mechanisms for stroke with and without cancer are different. This review summarizes the current clinical reports, pathophysiology, probable causes of co-occurrence, prognoses, and treatment possibilities.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Dipankar Chakraborty
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Sibani Sarkar
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata, 700 026 India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas, 743372 India
| |
Collapse
|
37
|
Affiliation(s)
- Anna M Planas
- From the Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Spain; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
38
|
Okinaka Y, Kikuchi-Taura A, Takeuchi Y, Ogawa Y, Boltze J, Gul S, Claussen C, Taguchi A. Clot-Derived Contaminants in Transplanted Bone Marrow Mononuclear Cells Impair the Therapeutic Effect in Stroke. Stroke 2019; 50:2883-2891. [DOI: 10.1161/strokeaha.119.026669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background and Purpose—
The beneficial effects of bone marrow mononuclear cell (BM-MNC) transplantation in preclinical experimental stroke have been reliably demonstrated. However, only overall modest effects in clinical trials were observed. We have investigated and reported a cause of the discrepancy between the preclinical and clinical studies.
Methods—
To investigate the possible cause of low efficacy of BM-MNC transplantation in experimental stroke, we have focused on blood clot formation, which is not uncommon in human bone marrow aspirates. To evaluate the effects of clot-derived contaminants in transplanted BM-MNC on stroke outcome, a murine stroke model was used.
Results—
We show that BM-MNC separated by an automatic cell isolator (Sepax2), which does not have the ability to remove clots, did not attenuate brain atrophy after stroke. In contrast, manually isolated, clot-free BM-MNC exerted therapeutic effects. Clot-derived contaminants were also transplanted intravenously to poststroke mice. We found that the transplanted contaminants were trapped at the peristroke area, which were associated with microglial/macrophage activation.
Conclusions—
Clot-derived contaminants in transplanted BM-MNC nullify therapeutic effects in experimental stroke. This may explain neutral results in clinical trials, especially in those using automated stem cell separators that lack the ability to remove clot-derived contaminants.
Visual Overview—
An online
visual overview
is available for this article.
Collapse
Affiliation(s)
- Yuka Okinaka
- From the Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan (Y.O., A.K.-T., Y.T., Y.O., J.B., A.T.)
| | - Akie Kikuchi-Taura
- From the Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan (Y.O., A.K.-T., Y.T., Y.O., J.B., A.T.)
| | - Yukiko Takeuchi
- From the Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan (Y.O., A.K.-T., Y.T., Y.O., J.B., A.T.)
| | - Yuko Ogawa
- From the Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan (Y.O., A.K.-T., Y.T., Y.O., J.B., A.T.)
| | - Johannes Boltze
- From the Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan (Y.O., A.K.-T., Y.T., Y.O., J.B., A.T.)
- School of Life Sciences, University of Warwick, United Kingdom (J.B.)
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME – ScreeningPort, Hamburg, Germany (S.G., C.C.)
| | - Carsten Claussen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME – ScreeningPort, Hamburg, Germany (S.G., C.C.)
| | - Akihiko Taguchi
- From the Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan (Y.O., A.K.-T., Y.T., Y.O., J.B., A.T.)
| |
Collapse
|
39
|
Vahidy FS, Haque ME, Rahbar MH, Zhu H, Rowan P, Aisiku IP, Lee DA, Juneja HS, Alderman S, Barreto AD, Suarez JI, Bambhroliya A, Hasan KM, Kassam MR, Aronowski J, Gee A, Cox CS, Grotta JC, Savitz SI. Intravenous Bone Marrow Mononuclear Cells for Acute Ischemic Stroke: Safety, Feasibility, and Effect Size from a Phase I Clinical Trial. Stem Cells 2019; 37:1481-1491. [PMID: 31529663 DOI: 10.1002/stem.3080] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022]
Abstract
Cellular therapy is a promising investigational modality to enhance poststroke recovery. We conducted a single-arm, phase I clinical trial to determine the safety and feasibility of intravenous (IV) administration of autologous bone marrow mononuclear cells (MNCs) after acute ischemic stroke (AIS). Patients with moderate severity of AIS underwent bone marrow harvest followed by IV reinfusion of MNCs within 24-72 hours of onset. A target dose of 10 million cells per kilogram was chosen based on preclinical data. Patients were followed up daily during hospitalization and at 1, 3, 6, 12, and 24 months for incidence of adverse events using laboratory, clinical (12 months), and radiological (24 months) parameters. The trial was powered to detect severe adverse events (SAEs) with incidences of at least 10% and planned to enroll 30 patients. Primary outcomes were study-related SAEs and the proportion of patients successfully completing study intervention. A propensity score-based matched control group was used for the estimation of effect size (ES) for day-90 modified Rankin score (mRS). There were no study-related SAEs and, based on a futility analysis, enrolment was stopped after 25 patients. All patients successfully completed study intervention and most received the target dose. Secondary analysis estimated the ES to be a reduction of 1 point (95% confidence interval: 0.33-1.67) in median day-90 mRS for treated patients as compared with the matched control group. Bone marrow harvest and infusion of MNCs is safe and feasible in patients with AIS. The estimated ES is helpful in designing future randomized controlled trials. Stem Cells 2019;37:1481-1491.
Collapse
Affiliation(s)
- Farhaan S Vahidy
- Institute for Stroke and Cerebrovascular Disease and Department of Neurology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Muhammad E Haque
- Institute for Stroke and Cerebrovascular Disease and Department of Neurology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Mohammad H Rahbar
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), UTHealth, Houston, Texas, USA
| | - Hongjian Zhu
- Department of Biostatistics and Data Science, School of Public Health, UTHealth, Houston, Texas, USA
| | - Paul Rowan
- Department of Health Policy and Management, School of Public Health, UTHealth, Houston, Texas, USA
| | - Imoigele P Aisiku
- Division of Emergency Critical Care, Department of Emergency Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Dean A Lee
- Division of Pediatrics, Cell Therapy Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Harinder S Juneja
- Hematology Division, Department of Medicine, UTHealth, Houston, Texas, USA
| | - Susan Alderman
- Institute for Stroke and Cerebrovascular Disease and Department of Neurology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Andrew D Barreto
- Institute for Stroke and Cerebrovascular Disease and Department of Neurology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Jose I Suarez
- Division of Neurosciences Critical Care, Department of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arvind Bambhroliya
- Institute for Stroke and Cerebrovascular Disease and Department of Neurology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Imaging, McGovern Medical School at UTHealth, Houston, Texas, USA
| | | | - Jaroslaw Aronowski
- Institute for Stroke and Cerebrovascular Disease and Department of Neurology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Adrian Gee
- Department of Medicine and Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Charles S Cox
- Department of Pediatric Surgery, McGovern Medical School at UTHealth, Houston, Texas, USA
| | | | - Sean I Savitz
- Institute for Stroke and Cerebrovascular Disease and Department of Neurology, McGovern Medical School at UTHealth, Houston, Texas, USA
| |
Collapse
|
40
|
Neal EG, Acosta SA, Kaneko Y, Ji X, Borlongan CV. Regulatory T-cells within bone marrow-derived stem cells actively confer immunomodulatory and neuroprotective effects against stroke. J Cereb Blood Flow Metab 2019; 39:1750-1758. [PMID: 29569981 PMCID: PMC6727132 DOI: 10.1177/0271678x18766172] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/15/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022]
Abstract
Regulatory T-cells (Tregs) may exert a neuroprotective effect on ischemic stroke by inhibiting both inflammation and effector T-cell activation. Transplantation of human bone marrow-derived stem cells (BMSCs) in ischemic stroke affords neuroprotection that results in part from the cells' anti-inflammatory property. However, the relationship between Tregs and BMSCs in treatment of ischemic stroke has not been fully elucidated. Here, we tested the hypothesis that Tregs within the BMSCs represent active mediators of immunomodulation and neuroprotection in experimental stroke. Primary rat neuronal cells were subjected to an oxygen-glucose deprivation and reperfusion (OGD/R) condition. The cells were re-perfused and co-cultured with Tregs and/or BMSCs. We detected a minority population of Tregs within BMSCs with both immunocytochemistry (ICC) and flow cytometry identifying cells expressing phenotypic markers of CD4, CD25, and FoxP3 protein. BMSCs with the native population of Tregs conferred maximal neuroprotection compared to the treatment conditions containing 0%, 10%, and 100% relative ratio Tregs. Increasing the Treg population resulted in increased IL6 secretion and decreased FGF-β secretion by BMSCs. This study shows that a minority population of Tregs exists within the therapeutic BMSC population, which serves as robust mediators of the immunomodulatory and neuroprotective effect provided by BMSC transplantation.
Collapse
Affiliation(s)
- Elliot G Neal
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, USF Morsani College of Medicine, Tampa, FL, USA
| | - Sandra A Acosta
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, USF Morsani College of Medicine, Tampa, FL, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, USF Morsani College of Medicine, Tampa, FL, USA
| | - Xunming Ji
- Cerebrovascular Research Center, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, USF Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
41
|
Zhu Z, Zheng L, Li Y, Huang T, Chao YC, Pan L, Zhu H, Zhao Y, Yu W, Li P. Potential Immunotherapeutic Targets on Myeloid Cells for Neurovascular Repair After Ischemic Stroke. Front Neurosci 2019; 13:758. [PMID: 31447626 PMCID: PMC6696904 DOI: 10.3389/fnins.2019.00758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
Neurological deficits and cognitive dysfunctions caused by acute ischemic stroke pose enormous burden to the stroke families and the communities. Restoration of the normal function of the neurovascular unit following ischemic stroke is critical for improving neurological recovery and cognitive functions after stroke. Recent evidence suggests that the myeloid cells including both the resident microglia and infiltrating monocytes/macrophages and neutrophils are highly plastic in response to the environmental cues. They intimately interact with multiple components of the neurovascular unit in response to the alarmins, danger associated pattern molecules (DAMPs) and other signals released from the ischemic brain. The aim of this review is to discuss the reciprocal interactions between the myeloid cells and the ischemic neurovascular unit during the late repair phase of cerebral ischemic stroke. We also summarize potential immunotherapeutic targets on myeloid cells and new therapeutic approaches targeting myeloid cells, such as cell transplantation, mitochondrial dynamic and extracellular vesicles-based therapy et al to enhance neurovascular repair for better stroke recovery.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tingting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu-Chieh Chao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lijun Pan
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hui Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanhua Zhao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
42
|
Cui LL, Golubczyk D, Tolppanen AM, Boltze J, Jolkkonen J. Cell therapy for ischemic stroke: Are differences in preclinical and clinical study design responsible for the translational loss of efficacy? Ann Neurol 2019; 86:5-16. [PMID: 31020699 DOI: 10.1002/ana.25493] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/01/2019] [Accepted: 04/21/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Li-Li Cui
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
| | - Dominika Golubczyk
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | | | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jukka Jolkkonen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
43
|
Wang Z, He D, Zeng YY, Zhu L, Yang C, Lu YJ, Huang JQ, Cheng XY, Huang XH, Tan XJ. The spleen may be an important target of stem cell therapy for stroke. J Neuroinflammation 2019; 16:20. [PMID: 30700305 PMCID: PMC6352449 DOI: 10.1186/s12974-019-1400-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Stroke is the most common cerebrovascular disease, the second leading cause of death behind heart disease and is a major cause of long-term disability worldwide. Currently, systemic immunomodulatory therapy based on intravenous cells is attracting attention. The immune response to acute stroke is a major factor in cerebral ischaemia (CI) pathobiology and outcomes. Over the past decade, the significant contribution of the spleen to ischaemic stroke has gained considerable attention in stroke research. The changes in the spleen after stroke are mainly reflected in morphology, immune cells and cytokines, and these changes are closely related to the stroke outcomes. Autonomic nervous system (ANS) activation, release of central nervous system (CNS) antigens and chemokine/chemokine receptor interactions have been documented to be essential for efficient brain-spleen cross-talk after stroke. In various experimental models, human umbilical cord blood cells (hUCBs), haematopoietic stem cells (HSCs), bone marrow stem cells (BMSCs), human amnion epithelial cells (hAECs), neural stem cells (NSCs) and multipotent adult progenitor cells (MAPCs) have been shown to reduce the neurological damage caused by stroke. The different effects of these cell types on the interleukin (IL)-10, interferon (IFN), and cholinergic anti-inflammatory pathways in the spleen after stroke may promote the development of new cell therapy targets and strategies. The spleen will become a potential target of various stem cell therapies for stroke represented by MAPC treatment.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China.,Institute of Reproductive and Stem Cell Research, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Da He
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Ya-Yue Zeng
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Li Zhu
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Chao Yang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Yong-Juan Lu
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Jie-Qiong Huang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiao-Yan Cheng
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiang-Hong Huang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiao-Jun Tan
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China.
| |
Collapse
|
44
|
Cui L, Moisan A, Jolkkonen J. Intravascular cell therapy in stroke: predicting the future trends. Regen Med 2018; 14:63-68. [PMID: 30561248 DOI: 10.2217/rme-2018-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This short review examines the trends that have taken place during the last two decades in selecting delivery route and cell product in confirmatory preclinical stroke research. If there had been a major change, this might indicate a strategy with a high potential to enter early-phase clinical studies. The retrospective data show that intravenous cell delivery of mesenchymal stem cells remains the most popular approach in experimental research, clearly dominating early phase clinical studies. The advantages and risks of current practices are discussed in the hope that these will improve translational success and accelerate clinical development of safe and efficient cell products.
Collapse
Affiliation(s)
- Lili Cui
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anaïck Moisan
- Inserm U1216, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Cell Therapy and Engineering Unit, French Blood Company, Etablissement Français du Sang, Saint-Ismier, France
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
45
|
Zheng H, Zhang B, Chhatbar PY, Dong Y, Alawieh A, Lowe F, Hu X, Feng W. Mesenchymal Stem Cell Therapy in Stroke: A Systematic Review of Literature in Pre-Clinical and Clinical Research. Cell Transplant 2018; 27:1723-1730. [PMID: 30343609 PMCID: PMC6300779 DOI: 10.1177/0963689718806846] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022] Open
Abstract
Exogenous stem cell therapy (SCT) has been recognized recently as a promising neuroregenerative strategy to augment recovery in stroke survivors. Mesenchymal stem cells (MSCs) are the primary source of stem cells used in the majority of both pre-clinical and clinical studies in stroke. In the absence of evidence-based guidelines on the use of SCT in stroke patients, understanding the progress of MSC research across published studies will assist researchers and clinicians in better achieving success in translating research. We conducted a systematic review on published literature using MSCs in both pre-clinical studies and clinical trials between 2008 and 2017 using the public databases PubMed and Ovid Medline, and the clinical trial registry ( www.clinicaltrials.gov ). A total of 78 pre-clinical studies and eight clinical studies were identified. While majority of the pre-clinical and clinical studies demonstrated statistically significant effects, the clinical significance of these findings was still unclear. Effect sizes could not be measured mainly due to reporting issues in pre-clinical studies, thus limiting our ability to compare results across studies quantitatively. The overall quality of both pre-clinical and clinical studies was sub-optimal. By conducting a systematic review of both pre-clinical and clinical studies on MSCs therapy in stroke, we assessed the quality of current evidence and identified several issues and gaps in translating animal studies to human trials. Addressing these issues and incorporating changes into future animal studies and human trials may lead to better success of stem cells-based therapeutics in the near future.
Collapse
Affiliation(s)
- Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Bin Zhang
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
- Department of Neurology, Shanghai Jiaotong University Affiliated the Sixth People’s Hospital, Shanghai, China
| | - Pratik Y. Chhatbar
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Yi Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ali Alawieh
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Forrest Lowe
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
46
|
Sato Y, Ueda K, Kondo T, Hattori T, Mikrogeorgiou A, Sugiyama Y, Suzuki T, Yamamoto M, Hirata H, Hirakawa A, Nakanishi K, Tsuji M, Hayakawa M. Administration of Bone Marrow-Derived Mononuclear Cells Contributed to the Reduction of Hypoxic-Ischemic Brain Injury in Neonatal Rats. Front Neurol 2018; 9:987. [PMID: 30559704 PMCID: PMC6284369 DOI: 10.3389/fneur.2018.00987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 11/02/2018] [Indexed: 11/13/2022] Open
Abstract
Background/Objective: Perinatal hypoxic-ischemia (HI) causes neonatal death and permanent neurological deficits. Cell therapy using various cell sources has been recently identified as a novel therapy for perinatal HI. Among the available types of cell sources, bone marrow-derived mononuclear cells (BMMNCs) have unique features for clinical application. For example, stem cells can be collected after admission, thus enabling us to perform autologous transplantation. This study aimed to investigate whether the administration of BMMNCs ameliorated HI brain injury in a neonatal rat model. Methods: Seven-day-old rats underwent left carotid artery ligation and were exposed to 8% oxygen for 60 min. BMMNCs were collected from the femurs and tibias of juvenile rats using the Ficoll-Hypaque technique and injected intravenously 24 h after the insult (1 × 105 cells). Active caspase-3, as an apoptosis marker, and ED1, as an activated microglia/macrophage marker, were evaluated immunohistochemically 48 h after the insult (vehicle, n = 9; BMMNC, n = 10). Behavioral assessments using the rotarod treadmill, gait analysis, and active avoidance tests were initiated 3 weeks after the insult (sham, n = 9, vehicle, n = 8; BMMNC, n = 8). After these behavioral tests (6 weeks after the insult), we evaluated the volumes of their hippocampi, cortices, thalami, striata, and globus pallidus. Results: The mean cell densities of the sum of four parts that were positive for active caspase-3 significantly decreased in the BMMNC group (p < 0.05), whereas in the hippocampi, cortices, thalami, and striata cell densities decreased by 42, 60, 56, and 47%, respectively, although statistical significance was not attained. The number of ED1 positive cells for the sum of the four parts also significantly decreased in the BMMNC group compared to the vehicle group (p < 0.05), whereas in each of the four parts the decrease was 35, 39, 47, and 36%, respectively, although statistical significance was not attained. In gait analysis, the BMMNC normalized the contact area of the affected hind paw widened by HI. The volumes of the affected striata and globus pallidus were significantly larger in the BMMNC group than in the control group. Conclusion: These results indicated that the injection of BMMNCs ameliorated HI brain injury in a neonatal rat model.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Kazuto Ueda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Taiki Kondo
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Tetsuo Hattori
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Alkisti Mikrogeorgiou
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yuichiro Sugiyama
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Toshihiko Suzuki
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Michiro Yamamoto
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Hirakawa
- Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiko Nakanishi
- Department of Perinatology, Aichi Human Service Center, Institute for Developmental Research, Aichi, Japan
| | - Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
47
|
NK cells in cerebral ischemia. Biomed Pharmacother 2018; 109:547-554. [PMID: 30399590 DOI: 10.1016/j.biopha.2018.10.103] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 01/03/2023] Open
Abstract
As a vital cell type in immune system and infiltrating cells in ischemic brain, NK cells can bridge the crosstalk between immune system and nervous system in stroke setting. The mechanism of action of NK cells is complicated, involving direct and indirect actions. NK cells are closely associated with poststroke inflammation, immunodepression and infections. The excessive inflammatory response in ischemic brain is one of the important causes for aggravating cerebral ischemic injury. Besides the inflammation induced by ischemia itself, thrombolytic drug tissue plasminogen activator (tPA) administration could also induce deteriorative inflammation, which is unfavorable for stroke control and recovery. Regulating NK cells may has the potential to modulate the immune response, limiting the development of ischemic damage and getting better outcome. In addition, post-stroke immunosuppression may lead to infections which contribute to higher severity and mortality of ischemic stroke (IS). Targeting NK cells may help to find novel pathways for IS therapy, which can both ameliorate the infarction itself, but also reduce the infectious complications. NK cells may also link IS and related diseases, suggesting NK cells can be used as a diagnostic or prognostic biomarker for IS prevention and treatment.
Collapse
|
48
|
Baumgartner LS, Moore E, Shook D, Messina S, Day MC, Green J, Nandy R, Seidman M, Baumgartner JE. Safety of Autologous Umbilical Cord Blood Therapy for Acquired Sensorineural Hearing Loss in Children. J Audiol Otol 2018; 22:209-222. [PMID: 30126263 PMCID: PMC6233943 DOI: 10.7874/jao.2018.00115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Sensorineural hearing loss (SNHL) in children is associated with neurocognitive morbidity. The cause of SNHL is a loss of hair cells in the organ of Corti. There are currently no reparative treatments for SNHL. Numerous studies suggest that cord blood mononuclear cells (human umbilical cord blood, hUCB) allow at least partial restoration of SNHL by enabling repair of a damaged organ of Corti. Our objective is to determine if hUCB is a safe treatment for moderate to severe acquired SNHL in children. Subjects and. METHODS Eleven children aged 6 months to 6 years with moderate to severe acquired SNHL were treated with intravenous autologous hUCB. The cell dose ranged from 8 to 30 million cells/kg body weight. Safety was assessed by measuring systemic hemodynamics during hUCB infusion. Infusion-related toxicity was evaluated by measuring neurologic, hepatic, renal and pulmonary function before and after infusion. Auditory function, auditory verbal language assessments and MRI with diffusion tensor imaging (DTI) were obtained before and after treatment. RESULTS All patients survived, and there were no adverse events. No infusionrelated changes in hemodynamics occurred. No infusion-related toxicity was recorded. Five subjects experienced a reduction in auditory brainstem response (ABR) thresholds. Four of those 5 subjects also experienced an improvement in cochlear nerve latencies. Comparison of MRI with DTI sequences obtained before and after treatment revealed increased fractional anisotropy in the primary auditory cortex in three of five subjects with reduced ABR thresholds. Statistically significant (p<0.05) reductions in ABR thresholds were identified. CONCLUSIONS TIntravenous hUCB is feasible and safe in children with SNHL.
Collapse
Affiliation(s)
| | - Ernest Moore
- Department of Audiology and Speech-Language Pathology, University of North Texas, Denton, TA, USA
| | - David Shook
- Florida Hospital for Children, Orlando, FL, USA
| | | | | | | | - Rajesh Nandy
- Department of Biostatistics, School of Public Health, University of North Texas, Fort Worth, TA, USA
| | | | - James E Baumgartner
- Florida Hospital for Children, Orlando, FL, USA.,Shriner's Hospital for Children, Houston, TA, USA.,Department of Neurosurgery, University of Central Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|
49
|
Yamazato M, Ishida A, Yamazato Y, Nakamura T, Ohya Y. Intracerebroventricular administration of bone marrow-derived cells attenuates angiotensin II-initiated neurogenic hypertension in rats. Hypertens Res 2018; 41:828-838. [DOI: 10.1038/s41440-018-0088-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 11/09/2022]
|
50
|
Nagahama H, Nakazaki M, Sasaki M, Kataoka-Sasaki Y, Namioka T, Namioka A, Oka S, Onodera R, Suzuki J, Sasaki Y, Kocsis JD, Honmou O. Preservation of interhemispheric cortical connections through corpus callosum following intravenous infusion of mesenchymal stem cells in a rat model of cerebral infarction. Brain Res 2018; 1695:37-44. [PMID: 29802840 DOI: 10.1016/j.brainres.2018.05.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 01/01/2023]
Abstract
Systemic administration of mesenchymal stem cells (MSCs) following cerebral infarction exerts functional improvements. Previous research has suggested potential therapeutic mechanisms that promote neuroprotection and synaptogenesis. These include secretion of neurotrophic factors, remodeling of neural circuits, restoration of the blood brain barrier, reduction of inflammatory infiltration and demyelination, and elevation of trophic factors. In addition to these mechanisms, we hypothesized that restored interhemispheric bilateral motor cortex connectivity might be an additional mechanism of functional recovery. In the present study, we have shown, with both MRI diffusion tensor imaging (DTI) and neuroanatomical tracing techniques using an adeno-associated virus (AAV) expressing GFP, that there was anatomical restoration of cortical interhemispheric connections through the corpus callosum after intravenous infusion of MSCs in a rat middle cerebral artery occlusion (MCAO) stroke model. Moreover, the degree of connectivity was greater in the MSC-treated group than in the vehicle-infused group. In accordance, both the thickness of corpus callosum and synaptic puncta in the contralateral (non-infarcted) motor cortex connected to the corpus callosum were greater in the MSC-treated group than in the vehicle group. Together, these results suggest that distinct preservation of interhemispheric cortical connections through corpus callosum was promoted by intravenous infusion of MSCs. This anatomical preservation of the motor cortex in the contralateral hemisphere may contribute to functional improvements following MSC therapy for cerebral stroke.
Collapse
Affiliation(s)
- Hiroshi Nagahama
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masahito Nakazaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takahiro Namioka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ai Namioka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Rie Onodera
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Junpei Suzuki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yuichi Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|