1
|
Beaudoin AM, Pelletier J, Cayer C, Sirois MP, Lemieux M, Masson P, Quaegebeur N, Battista MC, Lemaire-Paquette S, Lapointe-Garant MP, Moreau F. Continuous transcranial ultrasound in large vessel stroke: Image guidance for high-intensity focused sonothrombolysis. J Neuroimaging 2024. [PMID: 39462840 DOI: 10.1111/jon.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Sonothrombolysis is a potential adjunctive therapy for large vessel occlusion (LVO) stroke. Bedside ultrasound image-guided high-intensity focused ultrasound (HIFU) therapy could deliver higher energy therapeutic ultrasound to the thrombus with higher precision than what was previously accomplished in human trials. The aim is to test the feasibility of diagnostic transcranial contrast-enhanced ultrasound (CEUS) to image the occlusion site and continuously maintain the guidance image on-target for a sufficient exposure time for HIFU to be effective during LVO stroke evaluation and treatment. METHODS This prospective, single center, observational cohort study included adult patients, presenting within 6 hours of stroke symptom onset, with LVO identified on computed tomography angiography (CTA). A hand-held CEUS imaging study was initiated following CTA and lasted up to 30 minutes. The primary outcome is the proportion of patients where a guidance CEUS image of the occlusion was achieved. RESULTS A CEUS image of the occluded artery was obtained in 32/35 of the included patients. The median total imaging time was 23 minutes (interquartile range 15-30). Patients undergoing thrombectomy had a lower total imaging time (17 vs. 29.5 minutes, p = .002). When imaging was successful, on-target image was maintained for only 58% (standard deviation 23.8%) of total imaging time. No complications related to CEUS were observed. CONCLUSIONS This feasibility study explored the use of diagnostic transcranial CEUS for continuous imaging of occlusion sites in LVO strokes. Challenges in maintaining target image during HIFU were identified, highlighting the need for technical advances for clinical application.
Collapse
Affiliation(s)
- Ann-Marie Beaudoin
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Judith Pelletier
- Centre Intégré Universitaire de Santé et des Services Sociaux (CIUSSS) de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Caroline Cayer
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre Intégré Universitaire de Santé et des Services Sociaux (CIUSSS) de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Marie-Pierre Sirois
- Centre Intégré Universitaire de Santé et des Services Sociaux (CIUSSS) de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Mélanie Lemieux
- Centre Intégré Universitaire de Santé et des Services Sociaux (CIUSSS) de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Patrice Masson
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nicolas Quaegebeur
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-Claude Battista
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Samuel Lemaire-Paquette
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-Pierre Lapointe-Garant
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Moreau
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Bouakaz A, Michel Escoffre J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv Drug Deliv Rev 2024; 206:115199. [PMID: 38325561 DOI: 10.1016/j.addr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Ultrasound mediated drug delivery, a promising therapeutic modality, has evolved remarkably over the past three decades. Initially designed to enhance contrast in ultrasound imaging, microbubbles have emerged as a main vector for drug delivery, offering targeted therapy with minimized side effects. This review addresses the historical progression of this technology, emphasizing the pivotal role microbubbles play in augmenting drug extravasation and targeted delivery. We explore the complex mechanisms behind this technology, from stable and inertial cavitation to diverse acoustic phenomena, and their applications in medical fields. While the potential of ultrasound mediated drug delivery is undeniable, there are still challenges to overcome. Balancing therapeutic efficacy and safety and establishing standardized procedures are essential areas requiring attention. A multidisciplinary approach, gathering collaborations between researchers, engineers, and clinicians, is important for exploiting the full potential of this technology. In summary, this review highlights the potential of using ultrasound mediated drug delivery in improving patient care across various medical conditions.
Collapse
Affiliation(s)
- Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | | |
Collapse
|
3
|
Ward RE, Martinez-Correa S, Tierradentro-García LO, Hwang M, Sehgal CM. Sonothrombolysis: State-of-the-Art and Potential Applications in Children. CHILDREN (BASEL, SWITZERLAND) 2023; 11:57. [PMID: 38255371 PMCID: PMC10814591 DOI: 10.3390/children11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
In recent years, advances in ultrasound therapeutics have been implemented into treatment algorithms for the adult population; however, the use of therapeutic ultrasound in the pediatric population still needs to be further elucidated. In order to better characterize the utilization and practicality of sonothrombolysis in the juvenile population, the authors conducted a literature review of current pediatric research in therapeutic ultrasound. The PubMed database was used to search for all clinical and preclinical studies detailing the use and applications of sonothrombolysis, with a focus on the pediatric population. As illustrated by various review articles, case studies, and original research, sonothrombolysis demonstrates efficacy and safety in clot dissolution in vitro and in animal studies, particularly when combined with microbubbles, with potential applications in conditions such as deep venous thrombosis, peripheral vascular disease, ischemic stroke, myocardial infarction, and pulmonary embolism. Although there is limited literature on the use of therapeutic ultrasound in children, mainly due to the lower prevalence of thrombotic events, sonothrombolysis shows potential as a noninvasive thrombolytic treatment. However, more pediatric sonothrombolysis research needs to be conducted to quantify the safety and ethical considerations specific to this vulnerable population.
Collapse
Affiliation(s)
- Rebecca E. Ward
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Santiago Martinez-Correa
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
| | - Luis Octavio Tierradentro-García
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chandra M. Sehgal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Davis CM, Ammi AY, Zhu W, Methner C, Cao Z, Giraud D, Alkayed NJ, Woltjer RL, Kaul S. Low-Intensity Ultrasound Reduces Brain Infarct Size by Upregulating Phosphorylated Endothelial Nitric Oxide in Mouse Model of Middle Cerebral Artery Occlusion. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1091-1101. [PMID: 36739244 PMCID: PMC10050145 DOI: 10.1016/j.ultrasmedbio.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 05/11/2023]
Abstract
OBJECTIVE There have been attempts to use therapeutic ultrasound (US) for the treatment of both experimental and clinical stroke. We hypothesized that low-intensity US has direct beneficial effects on the brain independent of cerebral blood flow (CBF) during middle cerebral artery occlusion (MCAO). METHODS Three groups of mice were studied. Group I included 84 mice with MCAO undergoing US treatment/no treatment at two US frequencies (0.25 and 1.05 MHz) with three different acoustic pressures at each frequency in which infarct size (IS) was measured 24 h later. Group II included 11 mice undergoing treatment based on best US results from group I animals in which the IS/risk area (RA) ratio was measured 24 h later. Group III included 38 normal mice undergoing US treatment/no treatment for assessment of CBF, tissue metabolite and protein expression and histopathology. DISCUSSION Ultrasound at both frequencies and most acoustic pressures resulted in reduction in IS in group I animals, with the best results obtained with 0.25 MHz at 2.0 MPa: IS was reduced 4-fold in the cerebral cortex, 1.5-fold in the caudate putamen and 3.5-fold in the cerebral hemisphere compared with control. US application in group III animals elicited only a marginal increase in CBF despite a 2.6-fold increase in phosphorylated endothelial nitric oxide synthase (p-eNOS)-S1177 and a corresponding decrease in p-eNOS-T494. Histopathology revealed no evidence of hemorrhage, inflammation or necrosis. CONCLUSION Low-intensity US at specific frequencies and acoustic pressures results in marked neuroprotection in a mouse model of stroke by modulation of p-eNOS independent of its effect on CBF.
Collapse
Affiliation(s)
- Catherine M Davis
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Azzdine Y Ammi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Wenbin Zhu
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Carmen Methner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Zhiping Cao
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - David Giraud
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Nabil J Alkayed
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Randy L Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Thrombolysis for acute ischaemic stroke: current status and future perspectives. Lancet Neurol 2023; 22:418-429. [PMID: 36907201 DOI: 10.1016/s1474-4422(22)00519-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 03/14/2023]
Abstract
Alteplase is currently the only approved thrombolytic agent for treatment of acute ischaemic stroke, but interest is burgeoning in the development of new thrombolytic agents for systemic reperfusion with an improved safety profile, increased efficacy, and convenient delivery. Tenecteplase has emerged as a potential alternative thrombolytic agent that might be preferred over alteplase because of its ease of administration and reported efficacy in patients with large vessel occlusion. Ongoing research efforts are also looking at potential improvements in recanalisation with the use of adjunct therapies to intravenous thrombolysis. New treatment strategies are also emerging that aim to reduce the risk of vessel reocclusion after intravenous thrombolysis administration. Other research endeavors are looking at the use of intra-arterial thrombolysis after mechanical thrombectomy to induce tissue reperfusion. The growing implementation of mobile stroke units and advanced neuroimaging could boost the number of patients who can receive intravenous thrombolysis by shortening onset-to-treatment times and identifying patients with salvageable penumbra. Continued improvements in this area will be essential to facilitate the ongoing research endeavors and to improve delivery of new interventions.
Collapse
|
6
|
Contrast Ultrasound, Sonothrombolysis and Sonoperfusion in Cardiovascular Disease: Shifting to Theragnostic Clinical Trials. JACC Cardiovasc Imaging 2022; 15:345-360. [PMID: 34656483 PMCID: PMC8837667 DOI: 10.1016/j.jcmg.2021.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 02/03/2023]
Abstract
Contrast ultrasound has a variety of applications in cardiovascular medicine, both in diagnosing cardiovascular disease as well as providing prognostic information. Visualization of intravascular contrast microbubbles is based on acoustic cavitation, the characteristic oscillation that results in changes in the reflected ultrasound waves. At high power, this acoustic response generates sufficient shear that is capable of enhancing endothelium-dependent perfusion in atherothrombotic cardiovascular disease (sonoperfusion). The oscillation and collapse of microbubbles in response to ultrasound also induces microstreaming and jetting that can fragment thrombus (sonothrombolysis). Several preclinical studies have focused on identifying optimal diagnostic ultrasound settings and treatment regimens. Clinical trials have been performed in acute myocardial infarction, stroke, and peripheral arterial disease often with improved outcome. In the coming years, results of ongoing clinical trials along with innovation and improvements in sonothrombolysis and sonoperfusion will determine whether this theragnostic technique will become a valuable addition to reperfusion therapy.
Collapse
|
7
|
Tsivgoulis G, Safouris A, Alexandrov AV. Ultrasonography. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Mei L, Zhang Z. Advances in Biological Application of and Research on Low-Frequency Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2839-2852. [PMID: 34304908 DOI: 10.1016/j.ultrasmedbio.2021.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
In recent years, the in-depth study of low-frequency sonophoresis (LFS) has greatly elucidated its biological effects in various therapeutic applications, including drug delivery, enhanced healing, thrombolytic technology, anti-inflammatory effects and tumor treatment. Specifically, numerous studies have reported its use in drug delivery and synergistic antitumor activity, indicating a new treatment direction for cancer. However, there are significant gaps in the understanding of LFS in terms of frequency and sound intensity safety; these issues are becoming increasingly important in understanding the biological effects of LFS ultrasound. This article reviews the treatment mechanism and current applications of LFS technology and discusses and summarizes its safety and application prospects.
Collapse
Affiliation(s)
- Lixia Mei
- Department of Ultrasound, Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China.
| | - Zhen Zhang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, China.
| |
Collapse
|
9
|
Tsivgoulis G, Katsanos AH, Eggers J, Larrue V, Thomassen L, Grotta JC, Seitidis G, Schellinger PD, Mavridis D, Demchuk A, Novotny V, Molina CA, Veroniki AA, Köhrmann M, Soinne L, Khanevski AN, Barreto AD, Saqqur M, Psaltopoulou T, Muir KW, Fiebach JB, Rothlisberger T, Kent TA, Mandava P, Alexandrov AW, Alexandrov AV. Sonothrombolysis in Patients With Acute Ischemic Stroke With Large Vessel Occlusion: An Individual Patient Data Meta-Analysis. Stroke 2021; 52:3786-3795. [PMID: 34428930 DOI: 10.1161/strokeaha.120.030960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Evidence about the utility of ultrasound-enhanced thrombolysis (sonothrombolysis) in patients with acute ischemic stroke (AIS) is conflicting. We aimed to evaluate the safety and efficacy of sonothrombolysis in patients with AIS with large vessel occlusion, by analyzing individual patient data of available randomized-controlled clinical trials. METHODS We included all available randomized-controlled clinical trials comparing sonothrombolysis with or without addition of microspheres (treatment group) to intravenous thrombolysis alone (control group) in patients with AIS with large vessel occlusion. The primary outcome measure was the rate of complete recanalization at 1 to 36 hours following intravenous thrombolysis initiation. We present crude odds ratios (ORs) and ORs adjusted for the predefined variables of age, sex, baseline stroke severity, systolic blood pressure, and onset-to-treatment time. RESULTS We included 7 randomized controlled clinical trials that enrolled 1102 patients with AIS. A total of 138 and 134 confirmed large vessel occlusion patients were randomized to treatment and control groups respectively. Patients randomized to sonothrombolysis had increased odds of complete recanalization compared with patients receiving intravenous thrombolysis alone (40.3% versus 22.4%; OR, 2.17 [95% CI, 1.03-4.54]; adjusted OR, 2.33 [95% CI, 1.02-5.34]). The likelihood of symptomatic intracranial hemorrhage was not significantly different between the 2 groups (7.3% versus 3.7%; OR, 2.03 [95% CI, 0.68-6.11]; adjusted OR, 2.55 [95% CI, 0.76-8.52]). No differences in the likelihood of asymptomatic intracranial hemorrhage, 3-month favorable functional and 3-month functional independence were documented. CONCLUSIONS Sonothrombolysis was associated with a nearly 2-fold increase in the odds of complete recanalization compared with intravenous thrombolysis alone in patients with AIS with large vessel occlusions. Further study of the safety and efficacy of sonothrombolysis is warranted.
Collapse
Affiliation(s)
- Georgios Tsivgoulis
- Department of Neurology, University of Tennessee Health Sciences Center, Memphis (G.T., A.W.A., A.V.A.).,Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece (G.T.)
| | - Aristeidis H Katsanos
- Division of Neurology, McMaster University/Population Health Research Institute, Hamilton, Canada (A.H.K.)
| | - Jürgen Eggers
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany (J.E.).,Department of Neurology, Sana Hospital Lübeck, Germany (J.E.)
| | - Vincent Larrue
- Department of Neurology, University of Toulouse, Hospital Pierre Paul Riquet, France (V.L.)
| | - Lars Thomassen
- Department of Neurology, Haukeland University Hospital, Bergen, Norway (L.T.).,Institute of Clinical Medicine, University of Bergen, Norway (L.T., V.N., A.N.K.)
| | - James C Grotta
- Clinical Innovation and Research Institute, Memorial Hermann Hospital-Texas Medical Center, Houston (J.C.G.)
| | - Georgios Seitidis
- Department of Primary Education, School of Education, University of Ioannina, Greece (G.S., D.M.)
| | - Peter D Schellinger
- Departments of Neurology and Neurogeriatry, John Wesling Medical Center Minden, Ruhr University Bochum, Germany (P.D.S.)
| | - Dimitris Mavridis
- Department of Primary Education, School of Education, University of Ioannina, Greece (G.S., D.M.).,Faculté de Médecine, Université Paris Descartes, France (D.M.)
| | - Andrew Demchuk
- Cumming School of Medicine, University of Calgary, AB, Canada (A.D.).,Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, AB, Canada (A.D.)
| | - Vojtech Novotny
- Institute of Clinical Medicine, University of Bergen, Norway (L.T., V.N., A.N.K.)
| | - Carlos A Molina
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain (C.A.M)
| | - Areti Angeliki Veroniki
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada (A.A.V.).,Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, United Kingdom (A.A.V.)
| | - Martin Köhrmann
- Department of Neurology, University Duisburg-Essen, Germany (M.K.)
| | - Lauri Soinne
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki Finland (L.S.)
| | | | - Andrew D Barreto
- Department of Neurology, University of Texas Health Science Center at Houston (A.D.B.)
| | - Maher Saqqur
- Department of Medicine (Neurology), University of Alberta, Edmonton, Canada (M.S.).,Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar (M.S.)
| | - Theodora Psaltopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Greece (T.P.)
| | - Keith W Muir
- Institute of Neuroscience and Psychology, University of Glasgow, Queen Elizabeth University Hospital, United Kingdom (K.W.M.)
| | - Jochen B Fiebach
- Center for Stroke Research Berlin, Charité-University Medicine Berlin, Germany (J.B.F.)
| | | | - Thomas A Kent
- Texas A&M Health Science Center-Houston campus, University of Texas (T.A.K.).,Department of Neurology, Houston Methodist Hospital, TX (T.A.K.)
| | - Pitchaiah Mandava
- Michael E. DeBakey VA Medical Center, Houston, TX (P.M.).,Department of Neurology, Baylor College of Medicine, Houston, TX (P.M.)
| | - Anne W Alexandrov
- Department of Neurology, University of Tennessee Health Sciences Center, Memphis (G.T., A.W.A., A.V.A.)
| | - Andrei V Alexandrov
- Department of Neurology, University of Tennessee Health Sciences Center, Memphis (G.T., A.W.A., A.V.A.)
| |
Collapse
|
10
|
Braun T, Sünner L, Hachenberger M, Müller C, Wietelmann A, Juenemann M, Pons-Kühnemann J, Kaps M, Gerriets T, Tschernatsch M, Roth J, Yenigün M. Microbubble-mediated sonothrombolysis with BR38 of a venous full blood thrombus in a rat embolic stroke model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1061. [PMID: 34422973 PMCID: PMC8339866 DOI: 10.21037/atm-21-75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022]
Abstract
Background Early recanalization of an occluded vessel is associated with a better clinical outcome in acute ischemic stroke. Intravenous thrombolysis using recombinant tissue plasminogen activator (rt-PA) is only available in a minority of patients and often fails to reopen the occluded vessel. Mechanical recanalization is more effective in this matter but only available for selected patients when a thrombectomy centre can be reached. Therefore, sonothrombolysis might represent an alternative or complementary approach. Here, we tested microbubble-mediated sonothrombolysis (mmSTL) in a thromboembolic stroke model for middle cerebral artery occlusion (MCAO) in rats. Methods Sixty-seven male Wistar rats underwent MCAO using an autologous full blood thrombus and were randomly assigned to four groups receiving rt-PA, mmSTL, a combination of both, or a placebo. Diagnostic workup included neurological examination, assessment of infarct size, and presence of intracerebral haemorrhage by magnetic resonance imaging (MRI) and presence of microbleedings in histological staining. Results Neurological examination revealed no differences between the treatment groups. In all treatment groups, there was a reduction in infarct size 24 hours after MCAO as compared to the placebo (P≤0.05), but there were no differences between the active treatment groups (P>0.05) (placebo 0.75±0.10 cm3; mmSTL 0.43±0.07 cm3; rt-PA 0.4±0.07 cm3; mmSTL + rt-PA 0.27±0.08 cm3). Histological staining displayed intracerebral microbleedings in all animals. The frequency of gross bleeding detected by MRI did not differ between the groups (placebo 3; mmSTL 4; rt-PA 2; mmSTL + rt-PA 2; P>0.05) and was not associated with worse performance in clinical testing (P>0.05). There were no statistical differences in the mortality between the groups (P>0.05). Conclusions Our study showed the efficacy and safety of mmSTL with or without rt-PA in an embolic rat stroke model using a continuous full blood thrombus. Sonothrombolysis might be useful for patients who need to be transported to a thrombectomy centre or for those with distal vessel occlusion.
Collapse
Affiliation(s)
- Tobias Braun
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany
| | - Laura Sünner
- Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany
| | - Maaike Hachenberger
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany
| | - Clemens Müller
- Department of Radiology, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Astrid Wietelmann
- Scientific Service Group Magnetic Resonance Imaging, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Martin Juenemann
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany
| | - Jörn Pons-Kühnemann
- Institute of Medical Informatics, Department of Medical Statistics, Justus-Liebig-University, Giessen, Germany
| | - Manfred Kaps
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Tibo Gerriets
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany.,Department of Neurology, Gesundheitszentrum Wetterau, Bad Nauheim, Germany
| | - Marlene Tschernatsch
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany.,Department of Neurology, Gesundheitszentrum Wetterau, Bad Nauheim, Germany
| | - Joachim Roth
- Department of Veterinarian Physiology and Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Mesut Yenigün
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany
| |
Collapse
|
11
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
12
|
Strong B, Pudar J, Thrift AG, Howard VJ, Hussain M, Carcel C, de Los Campos G, Reeves MJ. Sex Disparities in Enrollment in Recent Randomized Clinical Trials of Acute Stroke: A Meta-analysis. JAMA Neurol 2021; 78:666-677. [PMID: 33900363 DOI: 10.1001/jamaneurol.2021.0873] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Importance The underenrollment of women in randomized clinical trials represents a threat to the validity of the evidence supporting clinical guidelines and potential disparities in access to novel treatments. Objective To determine whether women were underenrolled in contemporary randomized clinical trials of acute stroke therapies published in 9 major journals after accounting for their representation in underlying stroke populations. Data Sources MEDLINE was searched for acute stroke therapeutic trials published between January 1, 2010, and June 11, 2020. Study Selection Eligible articles reported the results of a phase 2 or 3 randomized clinical trial that enrolled patients with stroke and/or transient ischemic attack and examined a therapeutic intervention initiated within 1 month of onset. Data Extraction Data extraction was performed by 2 independent authors in duplicate. Individual trials were matched to estimates of the proportion of women in underlying stroke populations using the Global Burden of Disease database. Main Outcomes and Measures The primary outcome was the enrollment disparity difference (EDD), the absolute difference between the proportion of trial participants who were women and the proportion of strokes in the underlying disease populations that occurred in women. Random-effects meta-analyses of the EDD were performed, and multivariable metaregression was used to explore the associations of trial eligibility criteria with disparity estimates. Results The search returned 1529 results, and 115 trials (7.5%) met inclusion criteria. Of 121 105 randomized patients for whom sex was reported, 52 522 (43.4%) were women. The random-effects summary EDD was -0.053 (95% CI, -0.065 to -0.040), indicating that women were underenrolled by 5.3 percentage points. This disparity persisted across virtually all geographic regions, intervention types, and stroke types, apart from subarachnoid hemorrhage (0.117 [95% CI, 0.084 to 0.150]). When subarachnoid hemorrhage trials were excluded, the summary EDD was -0.067 (95% CI, -0.078 to -0.057). In the multivariable metaregression analysis, an upper age limit of 80 years as an eligibility criterion was associated with a 6-percentage point decrease in the enrollment of women. Conclusions and Relevance Further research is needed to understand the causes of the underenrollment of women in acute stroke trials. However, to maximize representation, investigators should avoid imposing age limits on enrollment.
Collapse
Affiliation(s)
- Brent Strong
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing
| | - Julia Pudar
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing
| | - Amanda G Thrift
- Stroke and Ageing Research, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Virginia J Howard
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham
| | - Murtaza Hussain
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing
| | - Cheryl Carcel
- George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Gustavo de Los Campos
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing
| | - Mathew J Reeves
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing
| |
Collapse
|
13
|
Berge E, Whiteley W, Audebert H, De Marchis GM, Fonseca AC, Padiglioni C, de la Ossa NP, Strbian D, Tsivgoulis G, Turc G. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur Stroke J 2021; 6:I-LXII. [PMID: 33817340 DOI: 10.1177/2396987321989865] [Citation(s) in RCA: 539] [Impact Index Per Article: 179.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Intravenous thrombolysis is the only approved systemic reperfusion treatment for patients with acute ischaemic stroke. These European Stroke Organisation (ESO) guidelines provide evidence-based recommendations to assist physicians in their clinical decisions with regard to intravenous thrombolysis for acute ischaemic stroke. These guidelines were developed based on the ESO standard operating procedure and followed the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology. The working group identified relevant clinical questions, performed systematic reviews and meta-analyses of the literature, assessed the quality of the available evidence, and wrote recommendations. Expert consensus statements were provided if not enough evidence was available to provide recommendations based on the GRADE approach. We found high quality evidence to recommend intravenous thrombolysis with alteplase to improve functional outcome in patients with acute ischemic stroke within 4.5 h after symptom onset. We also found high quality evidence to recommend intravenous thrombolysis with alteplase in patients with acute ischaemic stroke on awakening from sleep, who were last seen well more than 4.5 h earlier, who have MRI DWI-FLAIR mismatch, and for whom mechanical thrombectomy is not planned. These guidelines provide further recommendations regarding patient subgroups, late time windows, imaging selection strategies, relative and absolute contraindications to alteplase, and tenecteplase. Intravenous thrombolysis remains a cornerstone of acute stroke management. Appropriate patient selection and timely treatment are crucial. Further randomized controlled clinical trials are needed to inform clinical decision-making with regard to tenecteplase and the use of intravenous thrombolysis before mechanical thrombectomy in patients with large vessel occlusion.
Collapse
Affiliation(s)
- Eivind Berge
- Department of Internal Medicine and Cardiology, Oslo University Hospital, Oslo, Norway
| | - William Whiteley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Heinrich Audebert
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin & Center for Stroke Research Berlin, Berlin, Germany
| | - Gian Marco De Marchis
- University Hospital of Basel & University of Basel, Department for Neurology & Stroke Center, Basel, Switzerland
| | - Ana Catarina Fonseca
- Department of Neurosciences and Mental Health (Neurology), Hospital Santa Maria-CHLN, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Chiara Padiglioni
- Neurology Unit-Stroke Unit, Gubbio/Gualdo Tadino and Città di Castello Hospitals, USL Umbria 1, Perugia, Italy
| | | | - Daniel Strbian
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Guillaume Turc
- Department of Neurology, GHU Paris Psychiatrie et Neurosciences, Hopital Sainte-Anne, Université de Paris, Paris, France.,INSERM U1266.,FHU NeuroVasc
| |
Collapse
|
14
|
Kleven RT, Karani KB, Hilvert N, Ford SM, Mercado-Shekhar KP, Racadio JM, Rao MB, Abruzzo TA, Holland CK. Accelerated sonothrombolysis with Definity in a xenographic porcine cerebral thromboembolism model. Sci Rep 2021; 11:3987. [PMID: 33597659 PMCID: PMC7889614 DOI: 10.1038/s41598-021-83442-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
Adjuvant ultrasound at 2 MHz with or without an ultrasound contrast agent improves the rate of thrombus resolution by recombinant tissue plasminogen activator (rt-PA) in laboratory and clinical studies. A sub-megahertz approach can further expand this therapy to a subset of patients with an insufficient temporal bone window, improving efficacy in unselected patient populations. The aim of this study was to determine if a clinical ultrasound contrast agent (UCA), Definity, and 220 kHz pulsed ultrasound accelerated rt-PA thrombolysis in a preclinical animal model of vascular occlusion. The effect of Definity and ultrasound on thrombus clearance was first investigated in vitro and subsequently tested in a xenographic porcine cerebral thromboembolism model in vivo. Two different microcatheter designs (end-hole, multi-side-hole) were used to infuse rt-PA and Definity at the proximal edge or directly into clots, respectively. Sonothrombolysis with Definity increased clot mass loss relative to saline or rt-PA alone in vitro, only when rt-PA was administered directly into clots via a multi-side-hole microcatheter. Combined treatment with rt-PA, Definity, and ultrasound in vivo increased the rate of reperfusion up to 45 min faster than clots treated with rt-PA or saline. In this porcine cerebral thromboembolism model employing retracted human clots, 220 kHz ultrasound, in conjunction with Definity increased the probability of early successful reperfusion with rt-PA.
Collapse
Affiliation(s)
- Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, CVC 3921, 0586, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA.
| | - Kunal B Karani
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nicole Hilvert
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Samantha M Ford
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - Karla P Mercado-Shekhar
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - John M Racadio
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marepalli B Rao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, CVC 3921, 0586, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA
| | - Todd A Abruzzo
- Division of Radiology, Phoenix Children's Hospital, Phoenix, AZ, USA
- Department of Radiology, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Christy K Holland
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, CVC 3921, 0586, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
15
|
Ma H, Jiang Z, Xu J, Liu J, Guo ZN. Targeted nano-delivery strategies for facilitating thrombolysis treatment in ischemic stroke. Drug Deliv 2021; 28:357-371. [PMID: 33517820 PMCID: PMC8725844 DOI: 10.1080/10717544.2021.1879315] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ischemic stroke is one of the major causes of severe disability and death worldwide. It is mainly caused by a sudden reduction in cerebral blood flow due to obstruction of the supplying vessel by thrombi and subsequent initiation of a complex cascade of pathophysiological changes, which ultimately lead to brain ischemia and even irreversible infarction. Thus, timely and effective thrombolysis therapy remains a mainstay for acute ischemic stroke treatment. Tissue plasminogen activator (tPA), the only thrombolytic agent approved globally, provides substantial benefits by exerting a fibrinolysis effect, recovering the blood supply in occluded vessels and, thereby, salvaging the ischemic tissue. However, the clinical application of tPA was limited because of a few unsolved issues, such as a narrow therapeutic window, hemorrhagic complications, and limited thrombolytic efficacy, especially, for large thrombi. With the prosperous development of nanotechnology, a series of targeted delivery strategies and nanocomposites have been extensively investigated for delivering thrombolytic agents to facilitate thrombolysis treatment. Excitingly, numerous novel attempts have been reported to be effective in extending the half-life, targeting the thrombus site, and improving the thrombolytic efficacy in preclinical models. This article begins with a brief introduction to ischemic stroke, then describes the current state of thrombolysis treatment and, finally, introduces the application of various nanotechnology-based strategies for targeted delivery of thrombolytic agents. Representative studies are reviewed according to diverse strategies and nano-formulations, with the aim of providing integrated and up-to-date information and to improve the development of thrombolysis treatment for stroke patients.
Collapse
Affiliation(s)
- Hongyin Ma
- Department of Neurology, The First Hospital of Jilin University, ChangChun, China
| | - Zhenmin Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, ChangChun, China
| | - Jiayun Xu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Junqiu Liu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Zhen-Ni Guo
- Department of Neurology, The First Hospital of Jilin University, ChangChun, China
| |
Collapse
|
16
|
Wang S, Guo X, Ren L, Wang B, Hou L, Zhou H, Gao Q, Gao Y, Wang L. Targeting and deep-penetrating delivery strategy for stented coronary artery by magnetic guidance and ultrasound stimulation. ULTRASONICS SONOCHEMISTRY 2020; 67:105188. [PMID: 32473543 DOI: 10.1016/j.ultsonch.2020.105188] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 05/24/2020] [Indexed: 05/13/2023]
Abstract
Stent placement is an effective treatment for atherosclerosis, but is suffered from in-stent restenosis (ISR) caused by stent mechanical damage. Conventional ISR treatment such as drug-eluting stents (DES) is challenged by the low therapeutic efficacy and severe complications, unchangeable drug dosage for individuals, and limited drug penetration in the vascular tissue. We hypothesize that magnetic targeting and deep-penetrating delivery strategy by magnetic guidance and ultrasound stimulation might be an effective approach for ISR treatment. In the present study, antiproliferative drug (paclitaxel, PTX) loaded poly (lactide-co-glycolide) (PLGA) nanoparticles (PLGA-PTX) were embedded within the shells of the magnetic nanoparticle coated microbubbles (MMB-PLGA-PTX). Once being targeted to the stent under a magnetic field, a low intensity focused ultrasound (LIFU) is applied to activate stable microbubble oscillations, thereby triggering the release of PLGA-PTX. The generated mechanical force and microstreaming facilitate the penetration of released PLGA-PTX into the thickened vascular tissue and enhance their internalization by smooth muscle cells (SMCs), thereby reducing the clearance by blood flow. In an ex vivo experiment, magnetic targeting improved the accumulation amount of MMB-PLGA-PTX by 10 folds, while the LIFU facilitated the penetration of released PLGA-PTX into the tunica media region of the porcine coronary artery, resulting in prolonged retention time at the stented vascular tissue. With the combination effects, this strategy holds great promise in the precision delivery of antiproliferative drugs to the stented vascular tissue for ISR treatment.
Collapse
Affiliation(s)
- Siyu Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xixi Guo
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lili Ren
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Bo Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lixin Hou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Hao Zhou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Qinchang Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yu Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| |
Collapse
|
17
|
Wang S, Guo X, Xiu W, Liu Y, Ren L, Xiao H, Yang F, Gao Y, Xu C, Wang L. Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles. SCIENCE ADVANCES 2020; 6:eaaz8204. [PMID: 32832678 PMCID: PMC7439573 DOI: 10.1126/sciadv.aaz8204] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/12/2020] [Indexed: 05/21/2023]
Abstract
Conventional thrombolytic drugs for vascular blockage such as tissue plasminogen activator (tPA) are challenged by the low bioavailability, off-target side effects and limited penetration in thrombi, leading to delayed recanalization. We hypothesize that these challenges can be addressed with the targeted and controlled delivery of thrombolytic drugs or precision drug delivery. A porous and magnetic microbubble platform is developed to formulate tPA. This system can maintain the tPA activity during circulation, be magnetically guided to the thrombi, and then remotely activated for drug release. The ultrasound stimulation also improves the drug penetration into thrombi. In a mouse model of venous thrombosis, the residual thrombus decreased by 67.5% when compared to conventional injection of tPA. The penetration of tPA by ultrasound was up to several hundred micrometers in thrombi. This strategy not only improves the therapeutic efficacy but also accelerates the lytic rate, enabling it to be promising in time-critical thrombolytic therapy.
Collapse
Affiliation(s)
- Siyu Wang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xixi Guo
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Weijun Xiu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yang Liu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lili Ren
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Huaxin Xiao
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Gao
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
18
|
Brambila CJ, Lux J, Mattrey RF, Boyd D, Borden MA, de Gracia Lux C. Bubble Inflation Using Phase-Change Perfluorocarbon Nanodroplets as a Strategy for Enhanced Ultrasound Imaging and Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2954-2965. [PMID: 32090572 DOI: 10.1021/acs.langmuir.9b03647] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Phase-change perfluorocarbon microdroplets were introduced over 2 decades ago to occlude downstream vessels in vivo. Interest in perfluorocarbon nanodroplets has recently increased to enable extravascular targeting, to rescue the weak ultrasound signal of perfluorocarbon droplets by converting them to microbubbles and to improve ultrasound-based therapy. Despite great scientific interest and advances, applications of phase-change perfluorocarbon agents have not reached clinical testing because of efficacy and safety concerns, some of which remain unexplained. Here, we report that the coexistence of perfluorocarbon droplets and microbubbles in blood, which is inevitable when droplets spontaneously or intentionally vaporize to form microbubbles, is a major contributor to the observed side effects. We develop the theory to explain why the coexistence of droplets and microbubbles results in microbubble inflation induced by perfluorocarbon transfer from droplets to adjacent microbubbles. We also present the experimental data showing up to 6 orders of magnitude microbubble volume expansion, which occludes a 200 μm tubing in the presence of perfluorocarbon nanodroplets. More importantly, we demonstrate that the rate of microbubble inflation and ultimate size can be controlled by manipulating formulation parameters to tailor the agent's design for the potential theranostic application while minimizing the risk to benefit ratio.
Collapse
Affiliation(s)
- Carlos J Brambila
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jacques Lux
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Organic Chemistry Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Robert F Mattrey
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Dustin Boyd
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Mark A Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Caroline de Gracia Lux
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
19
|
Mattioni A, Cenciarelli S, Eusebi P, Brazzelli M, Mazzoli T, Del Sette M, Gandolfo C, Marinoni M, Finocchi C, Saia V, Ricci S. Transcranial Doppler sonography for detecting stenosis or occlusion of intracranial arteries in people with acute ischaemic stroke. Cochrane Database Syst Rev 2020; 2:CD010722. [PMID: 32072609 PMCID: PMC7029193 DOI: 10.1002/14651858.cd010722.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND An occlusion or stenosis of intracranial large arteries can be detected in the acute phase of ischaemic stroke in about 42% of patients. The approved therapies for acute ischaemic stroke are thrombolysis with intravenous recombinant tissue plasminogen activator (rt-PA), and mechanical thrombectomy; both aim to recanalise an occluded intracranial artery. The reference standard for the diagnosis of intracranial stenosis and occlusion is intra-arterial angiography (IA) and, recently, computed tomography angiography (CTA) and magnetic resonance angiography (MRA), or contrast-enhanced MRA. Transcranial Doppler (TCD) and transcranial colour Doppler (TCCD) are useful, rapid, noninvasive tools for the assessment of intracranial large arteries pathology. Due to the current lack of consensus regarding the use of TCD and TCCD in clinical practice, we systematically reviewed the literature for studies assessing the diagnostic accuracy of these techniques compared with intra-arterial IA, CTA, and MRA for the detection of intracranial stenosis and occlusion in people presenting with symptoms of ischaemic stroke. OBJECTIVES To assess the diagnostic accuracy of TCD and TCCD for detecting stenosis and occlusion of intracranial large arteries in people with acute ischaemic stroke. SEARCH METHODS We limited our searches from January 1982 onwards as the transcranial Doppler technique was only introduced into clinical practice in the 1980s. We searched MEDLINE (Ovid) (from 1982 to 2018); Embase (Ovid) (from 1982 to 2018); Database of Abstracts of Reviews of Effects (DARE); and Health Technology Assessment Database (HTA) (from 1982 to 2018). Moreover, we perused the reference lists of all retrieved articles and of previously published relevant review articles, handsearched relevant conference proceedings, searched relevant websites, and contacted experts in the field. SELECTION CRITERIA We included all studies comparing TCD or TCCD (index tests) with IA, CTA, MRA, or contrast-enhanced MRA (reference standards) in people with acute ischaemic stroke, where all participants underwent both the index test and the reference standard within 24 hours of symptom onset. We included prospective cohort studies and randomised studies of test comparisons. We also considered retrospective studies eligible for inclusion where the original population sample was recruited prospectively but the results were analysed retrospectively. DATA COLLECTION AND ANALYSIS At least two review authors independently screened the titles and abstracts identified by the search strategies, applied the inclusion criteria, extracted data, assessed methodological quality (using QUADAS-2), and investigated heterogeneity. We contacted study authors for missing data. MAIN RESULTS A comprehensive search of major relevant electronic databases (MEDLINE and Embase) from 1982 to 13 March 2018 yielded 13,534 articles, of which nine were deemed eligible for inclusion. The studies included a total of 493 participants. The mean age of included participants was 64.2 years (range 55.8 to 69.9 years). The proportion of men and women was similar across studies. Six studies recruited participants in Europe, one in south America, one in China, and one in Egypt. Risk of bias was high for participant selection but low for flow, timing, index and reference standard. The summary sensitivity and specificity estimates for TCD and TCCD were 95% (95% CI = 0.83 to 0.99) and 95% (95% CI = 0.90 to 0.98), respectively. Considering a prevalence of stenosis or occlusion of 42% (as reported in the literature), for every 1000 people who receive a TCD or TCCD test, stenosis or occlusion will be missed in 21 people (95% CI = 4 to 71) and 29 (95% CI = 12 to 58) will be wrongly diagnosed as harbouring an intracranial occlusion. However, there was substantial heterogeneity between studies, which was no longer evident when only occlusion of the MCA was considered, or when the analysis was limited to participants investigated within six hours. The performance of either TCD or TCCD in ruling in and ruling out a MCA occlusion was good. Limitations of this review were the small number of identified studies and the lack of data on the use of ultrasound contrast medium. AUTHORS' CONCLUSIONS This review provides evidence that TCD or TCCD, administered by professionals with adequate experience and skills, can provide useful diagnostic information for detecting stenosis or occlusion of intracranial vessels in people with acute ischaemic stroke, or guide the request for more invasive vascular neuroimaging, especially where CT or MR-based vascular imaging are not immediately available. More studies are needed to confirm or refute the results of this review in a larger sample of stroke patients, to verify the role of contrast medium and to evaluate the clinical advantage of the use of ultrasound.
Collapse
Affiliation(s)
- Alessia Mattioni
- USL Umbria 1UO NeurologiaVia Luigi Angelini 10Città di CastelloPerugiaItaly06012
| | - Silvia Cenciarelli
- USL Umbria 1UO NeurologiaVia Luigi Angelini 10Città di CastelloPerugiaItaly06012
| | - Paolo Eusebi
- Regional Health Authority of UmbriaEpidemiology DepartmentVia Mario Angeloni 61PerugiaUmbriaItaly06124
| | - Miriam Brazzelli
- University of AberdeenHealth Services Research UnitHealth Sciences BuildingForesterhillAberdeenUKAB25 2ZD
| | - Tatiana Mazzoli
- USL Umbria 1UO NeurologiaVia Luigi Angelini 10Città di CastelloPerugiaItaly06012
| | | | - Carlo Gandolfo
- Università di Genova e Ospedale Policlinico San MartiniDipartimento di Neuroscienze, Oftalmologia, Genetica e Scienze Materno‐InfantiliGenovaItaly16132
| | | | - Cinzia Finocchi
- Università di Genova e Ospedale Policlinico San MartiniDipartimento di Neuroscienze, Oftalmologia, Genetica e Scienze Materno‐InfantiliGenovaItaly16132
| | - Valentina Saia
- Ospedale di Pietra LigureUO NeurologiaPietra LigureItaly
| | - Stefano Ricci
- USL Umbria 1UO NeurologiaVia Luigi Angelini 10Città di CastelloPerugiaItaly06012
| | | |
Collapse
|
20
|
Aarli SJ, Novotny V, Thomassen L, Kvistad CE, Logallo N, Fromm A. Persistent Microembolic Signals in the Cerebral Circulation on Transcranial Doppler after Intravenous Sulfur Hexafluoride Microbubble Infusion. J Neuroimaging 2019; 30:146-149. [DOI: 10.1111/jon.12680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sander Johan Aarli
- Department of Neurology Haukeland University Hospital Bergen Norway
- Department of Clinical Medicine University of Bergen Bergen Norway
| | - Vojtech Novotny
- Department of Neurology Haukeland University Hospital Bergen Norway
- Department of Clinical Medicine University of Bergen Bergen Norway
| | - Lars Thomassen
- Department of Neurology Haukeland University Hospital Bergen Norway
- Department of Clinical Medicine University of Bergen Bergen Norway
| | - Christopher Elnan Kvistad
- Department of Neurology Haukeland University Hospital Bergen Norway
- Department of Clinical Medicine University of Bergen Bergen Norway
| | - Nicola Logallo
- Department of Neurosurgery Haukeland University Hospital Bergen Norway
| | - Annette Fromm
- Department of Neurology Haukeland University Hospital Bergen Norway
| |
Collapse
|
21
|
Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019; 50:e344-e418. [PMID: 31662037 DOI: 10.1161/str.0000000000000211] [Citation(s) in RCA: 3485] [Impact Index Per Article: 697.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background and Purpose- The purpose of these guidelines is to provide an up-to-date comprehensive set of recommendations in a single document for clinicians caring for adult patients with acute arterial ischemic stroke. The intended audiences are prehospital care providers, physicians, allied health professionals, and hospital administrators. These guidelines supersede the 2013 Acute Ischemic Stroke (AIS) Guidelines and are an update of the 2018 AIS Guidelines. Methods- Members of the writing group were appointed by the American Heart Association (AHA) Stroke Council's Scientific Statements Oversight Committee, representing various areas of medical expertise. Members were not allowed to participate in discussions or to vote on topics relevant to their relations with industry. An update of the 2013 AIS Guidelines was originally published in January 2018. This guideline was approved by the AHA Science Advisory and Coordinating Committee and the AHA Executive Committee. In April 2018, a revision to these guidelines, deleting some recommendations, was published online by the AHA. The writing group was asked review the original document and revise if appropriate. In June 2018, the writing group submitted a document with minor changes and with inclusion of important newly published randomized controlled trials with >100 participants and clinical outcomes at least 90 days after AIS. The document was sent to 14 peer reviewers. The writing group evaluated the peer reviewers' comments and revised when appropriate. The current final document was approved by all members of the writing group except when relationships with industry precluded members from voting and by the governing bodies of the AHA. These guidelines use the American College of Cardiology/AHA 2015 Class of Recommendations and Level of Evidence and the new AHA guidelines format. Results- These guidelines detail prehospital care, urgent and emergency evaluation and treatment with intravenous and intra-arterial therapies, and in-hospital management, including secondary prevention measures that are appropriately instituted within the first 2 weeks. The guidelines support the overarching concept of stroke systems of care in both the prehospital and hospital settings. Conclusions- These guidelines provide general recommendations based on the currently available evidence to guide clinicians caring for adult patients with acute arterial ischemic stroke. In many instances, however, only limited data exist demonstrating the urgent need for continued research on treatment of acute ischemic stroke.
Collapse
|
22
|
Ilyas A, Chen CJ, Ding D, Romeo A, Buell TJ, Wang TR, Kalani MYS, Park MS. Magnetic resonance-guided, high-intensity focused ultrasound sonolysis: potential applications for stroke. Neurosurg Focus 2019; 44:E12. [PMID: 29385918 DOI: 10.3171/2017.11.focus17608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stroke is one of the leading causes of death worldwide and a significant source of long-term morbidity. Unfortunately, a substantial number of stroke patients either are ineligible or do not significantly benefit from contemporary medical and interventional therapies. To address this void, investigators recently made technological advances to render transcranial MR-guided, high-intensity focused ultrasound (MRg-HIFU) sonolysis a potential therapeutic option for both acute ischemic stroke (AIS)-as an alternative for patients with emergent large-vessel occlusion (ELVO) who are ineligible for endovascular mechanical thrombectomy (EMT) or as salvage therapy for patients in whom EMT fails-and intracerebral hemorrhage (ICH)-as a neoadjuvant means of clot lysis prior to surgical evacuation. Herein, the authors review the technological principles behind MRg-HIFU sonolysis, its results in in vitro and in vivo stroke models, and its potential clinical applications. As a noninvasive transcranial technique that affords rapid clot lysis, MRg-HIFU thrombolysis may develop into a therapeutic option for patients with AIS or ICH. However, additional studies of transcranial MRg-HIFU are necessary to ascertain the merit of this treatment approach for thrombolysis in both AIS and ICH, as well as its technical limitations and risks.
Collapse
Affiliation(s)
- Adeel Ilyas
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Ching-Jen Chen
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Dale Ding
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - Andrew Romeo
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Thomas J Buell
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Tony R Wang
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - M Yashar S Kalani
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Min S Park
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| |
Collapse
|
23
|
Acconcia CN, Leung BYC, Winch G, Wang J, Hynynen K, Goertz DE. Acoustic radiation force induced accumulation and dynamics of microbubbles on compliant surfaces. Phys Med Biol 2019; 64:135003. [PMID: 31082815 DOI: 10.1088/1361-6560/ab2163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ultrasound stimulated microbubbles have been shown to be capable of breaking up blood clots through micro-scale interactions occurring near the clot surface. However, only a small fraction of bubbles circulating in the bloodstream will be in close proximity to such boundaries, where they must be to elicit therapeutic effects. Here, the accumulation and subsequent behavior of microbubbles displaced from an overlying flow channel to a boundary under radiation forces were examined. Experimental data were acquired using a novel high speed microscopy configuration and simulations were conducted to provide insight into the accumulation process. There was broad agreement between experiments and simulations, both indicating that the size distribution and number of bubbles arriving at the boundary depended on channel flow rate, applied pressure, and bubble concentration. For example, higher flow rates and lower pressures favored the accumulation of larger bubbles relative to the native agent distribution. Moreover, bubble dynamics were dependent on the surface type, exhibiting rapid translation along agarose gel surfaces whereas on fibrin surfaces, they accumulated in localized regions inducing repetitive strain cycles. The results indicate that the process of bringing bubbles from within a vessel to a boundary is complex and should be an important consideration in the development of therapeutic applications such as sonothrombolysis.
Collapse
Affiliation(s)
- Christopher N Acconcia
- Department of Medical Biophysics, University of Toronto, Toronto, M5S 1A1, Canada. Sunnybrook Research Institute, 2075 Bayview Avenue, M4N 3M5, Toronto, Canada. These authors contributed equally
| | | | | | | | | | | |
Collapse
|
24
|
Das D, Pramanik M. Combined ultrasound and photoacoustic imaging of blood clot during microbubble-assisted sonothrombolysis. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 31342692 PMCID: PMC7005573 DOI: 10.1117/1.jbo.24.12.121902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/12/2019] [Indexed: 05/06/2023]
Abstract
Blockage of healthy blood vessels by blood clots can lead to serious or even life-threatening complications. The use of a combined ultrasound (US) and photoacoustic (PA) imaging was explored for blood clot monitoring during microbubble-assisted sonothrombolysis. PA imaging is an emerging hybrid imaging modality that has garnered the attention of the biomedical imaging community in recent years. It enables the study of the composition of a blood clot due to its sensitivity toward optical absorption. Here, in vitro imaging of the side of a blood clot facing the microbubbles was done over time. The US and PA signal-to-noise (SNR) ratio value changes during microbubble-assisted sonothrombolysis were studied for two different local environments: blood clot in deionized water and blood clot in blood. In the first case, US and PA SNR values increased by 4.6% and reduced by 20.8%, respectively after 30 min of sonothrombolysis treatment. After 10 min of sonothrombolysis treatment of the blood clot in blood, the US and PA SNR values increased by 7.7% and 38.3%, respectively. The US and PA SNR value changes were recorded in response to its local environment. This technique can be used to determine the final composition of the blood clot which may, in turn, help in the administration of clot-dissolving drugs.
Collapse
Affiliation(s)
- Dhiman Das
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
- Address all correspondence to Manojit Pramanik, E-mail:
| |
Collapse
|
25
|
Zafar M, Memon RS, Mussa M, Merchant R, Khurshid A, Khosa F. Does the administration of sonothrombolysis along with tissue plasminogen activator improve outcomes in acute ischemic stroke? A systematic review and meta-analysis. J Thromb Thrombolysis 2019; 48:203-208. [PMID: 31214876 DOI: 10.1007/s11239-019-01899-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This meta-analysis was conducted to assess the safety and efficacy of sonothrombolysis along with intravenous recombinant tissue plasminogen activator, alteplase (IV rtPA), in the management of acute ischemic stroke. Electronic databases were searched under different meSH terms without the restriction of time and language. 1415 studies were analyzed and seven studies that matched the inclusion criteria were selected. Multiple safety and efficacy outcomes were extracted. Our pooled analysis demonstrated that there is no significant difference between sonothrombolysis group and control group in preventing mortality (RR 1.10 [0.81, 1.50]; p = 0.55; I2 = 0%) and intracranial hemorrhage (RR 1.11 [0.76, 1.63]; p = 0.59; i2 = 0%), however, among the efficacy outcomes; complete recanalization after 60-120 min was achieved more effectively in the sonothrombolysis group (RR 2.11 [1.48, 3.03]; p ≤ 0.0001; I2 = 0%). The rest of the efficacy outcomes like neurological improvement at 24 h (RR 1.20 [0.92, 1.57]; p = 0.18; I2 = 40%) and excellent functional outcome after 3 months (RR 1.19 [0.93, 1.52]; p = 0.17; I2 = 35%) showed no significant differences between the two groups. In subgroup analysis, we found that sonothrombolysis led to a better neurological improvement in patients who were less than 65 years of age (RR 1.20 [0.92, 1.57]; p = 0.05; I2 = 40%). Moreover, there were no significant differences in the following of the subgroups assessed: (a) microsphere or microbubble use, (b) Ultrasound frequency (2 MHz or < 2 MHz), (c) transcranial Doppler (TCD) duration (1 h or 2 h), (d) age (≤ 65 or > 65).
Collapse
Affiliation(s)
- Marium Zafar
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan.
| | - Roha Saeed Memon
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Mussa
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | | | | - Faisal Khosa
- Department of Radiology, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
26
|
Tang C, Patel NK, Miller R, Beale T, Hyare H. Spectrum of neurovascular complications from central nervous system infections (viral, bacterial and fungal). BJR Open 2019; 1:20180024. [PMID: 33178918 PMCID: PMC7592441 DOI: 10.1259/bjro.20180024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022] Open
Abstract
In the following pictorial review, common and uncommon neurovascular complications associated with a spectrum of viral, bacterial and fungal infections involving the central nervous system will be illustrated. These complications include cerebral vascular insult, venous thrombosis, vasculitis and aneurysm formation. They can occur as separate entities but are often inter-related. The imaging features of neurovascular complication related to infections can provide clues and aid diagnosis when considering the potential mode of infectious spread and the type of potential infectious organism involved. The radiological appearances vary from common features that are shared by several types of pathogens to typical characteristics of a type of infectious organism.
Collapse
|
27
|
Huang W, Du R. 2016-2017 clinical trials in cerebrovascular neurosurgery. J Clin Neurosci 2019; 60:31-35. [PMID: 30626525 DOI: 10.1016/j.jocn.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/03/2018] [Indexed: 11/25/2022]
Abstract
Several clinical trials in cerebrovascular neurosurgery were published during 2016-2017. The Collaborative Unruptured Endovascular versus Surgery Trial (CURES) found no difference in outcome between clipping versus coiling of unruptured aneurysms after one year. The Flow Diversion in the Treatment of Intracranial Aneurysm Trial (FIAT) was terminated due to safety concerns. Nimodipine Microparticles to Enhance Recovery While Reducing Toxicity after Subarachnoid Hemorrhage Trial (NEWTON) and other trials demonstrated no improvement in outcome for vasospasm. The Duration of Prophylaxis after Subarachnoid Hemorrhage Trial (DOPAST) did not show benefit for extended seizure prophylaxis. Minimally Invasive Surgery plus Alteplase in Intracerebral Hemorrhage Evacuation Trial (MISTIE) reported a new strategy for treating intracerebral hemorrhage. A hemorrage site analysis from the Japan Adult Moyamoya Trial (JAM) was presented. The 10-year results from the Carotid Revascularization Endarterectomy versus Stenting Trial (CREST) and the new Asymptomatic Carotid Trial I (ACT I) were reported. Lastly, findings from six ischemic stroke trials were presented.
Collapse
Affiliation(s)
- Wendy Huang
- Department of Medicine, Olive View-UCLA Medical Center, David Geffen School of Medicine at UCLA, 14445 Olive View Drive, Sylmar, CA, United States
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, United States.
| |
Collapse
|
28
|
Efficacy and safety of sonothombolysis versus non-sonothombolysis in patients with acute ischemic stroke: A meta-analysis of randomized controlled trials. PLoS One 2019; 14:e0210516. [PMID: 30625224 PMCID: PMC6326494 DOI: 10.1371/journal.pone.0210516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022] Open
Abstract
Recent studies have shown that inconsistent results of safety and efficacy between sonothombolysis vs. non-sonothombolysis in acute ischemic stroke (AIS). We implemented a meta-analysis to explore the value of sonothrombolysis in AIS treatment. The MEDLINE, EMBASE, and Cochrane Library databases were searched for randomized controlled trials (RCTs) which had evaluated sonothrombolysis or ultrasound thrombolysis in AIS. One hundred five studies were retrieved and analyzed, among them, 7 RCTs were included in the current meta-analysis. In comparison with the non-sonothombolysis, sonothrombolysis significantly improved complete recanalization (RR 2.16, 95% CI 1.51 to 3.08, P < 0.001), complete or partial recanalization (RR 1.90, 95% CI 1.26 to 2.88, P = 0.002), there is also a tendency to improvement of ≥ 4 points in NIHSS score (RR 1.43, 95% CI 0.99 to 2.07, P = 0.057). However, sonothrombolysis and non-sonothrombolysis had insignificant differences in neurological recovery and adverse events. In subgroup analysis, we found that “With t-PA”, “NIHSS > 15”, “Treatment time ≤ 150min”, and “Age ≤ 65 years” are potential favorable factors for efficacy outcomes of sonothombolysis. Sonothrombolysis can significantly increase the rate of recanalization in patients with AIS compared with non-sonothrombolysis, but there is no significant effect on improving neurological functional recovery and avoiding complications.
Collapse
|
29
|
Kvistad CE, Novotny V, Næss H, Hagberg G, Ihle-Hansen H, Waje-Andreassen U, Thomassen L, Logallo N. Safety and predictors of stroke mimics in The Norwegian Tenecteplase Stroke Trial (NOR-TEST). Int J Stroke 2018; 14:508-516. [DOI: 10.1177/1747493018790015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Stroke mimics are frequently treated with thrombolysis in clinical practice and thrombolytic trials. Although alteplase in stroke mimics has proven to be safe, safety of tenecteplase in stroke mimics has not been assessed in an ischemic stroke study setting. We aimed to assess clinical characteristics and safety of stroke mimics treated with thrombolysis in the Norwegian Tenecteplase Stroke Trial. We also aimed to identify possible predictors of stroke mimics as compared to patients with acute cerebral ischemia. Methods Norwegian Tenecteplase Stroke Trial was a phase-3 trial investigating safety and efficacy of tenecteplase vs. alteplase in patients with suspected acute cerebral ischemia. Two groups were defined based on diagnose at discharge: patients with a different diagnose than ischemic stroke or transient ischemic attack (stroke mimics group) and patients diagnosed with ischemic stroke or transient ischemic attack (acute cerebral ischemia group). Logistic regression analyses were performed with stroke mimics vs. acute cerebral ischemia as dependent variable to identify predictors of stroke mimics. Results Of 1091 randomized patients, 181 (16.6%) were stroke mimics. Migraine (22.2%) and peripheral vertigo (11.4%) were the two most frequent stroke mimic-diagnoses. There was no symptomatic intracerebral hemorrhage in the stroke mimics group. Stroke mimics were independently associated with age ≤60 years (OR 2.75, p < 0.001), female sex (OR 1.48, p = 0.026), no history of myocardial infarction (OR 2.03, p = 0.045), systolic BP ≤ 150 mmHg (OR 2.33, p < 0.001), NIHSS ≤ 6 points (OR 1.83, p = 0.011), sensory loss (OR 1.55, p = 0.015), and no facial paresis (OR 2.41, p < 0.001) on admission. Conclusion Thrombolysis with tenecteplase seems to be as safe as with alteplase in stroke mimics. Predictors were identified for stroke mimics which may contribute to differentiate stroke mimics from acute cerebral ischemia in future stroke trials.
Collapse
Affiliation(s)
- Christopher Elnan Kvistad
- Center for Neurovascular Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Vojtech Novotny
- Center for Neurovascular Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Halvor Næss
- Center for Neurovascular Diseases, Haukeland University Hospital, Bergen, Norway
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Guri Hagberg
- Department of Medicine, Vestre Viken HT, Bærum Hospital, Drammen, Norway
| | - Hege Ihle-Hansen
- Department of Medicine, Vestre Viken HT, Bærum Hospital, Drammen, Norway
| | - Ulrike Waje-Andreassen
- Center for Neurovascular Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars Thomassen
- Center for Neurovascular Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Nicola Logallo
- Center for Neurovascular Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
30
|
Izadifar Z, Babyn P, Chapman D. Ultrasound Cavitation/Microbubble Detection and Medical Applications. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0391-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Auboire L, Sennoga CA, Hyvelin JM, Ossant F, Escoffre JM, Tranquart F, Bouakaz A. Microbubbles combined with ultrasound therapy in ischemic stroke: A systematic review of in-vivo preclinical studies. PLoS One 2018; 13:e0191788. [PMID: 29420546 PMCID: PMC5805249 DOI: 10.1371/journal.pone.0191788] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Microbubbles (MBs) combined with ultrasound sonothrombolysis (STL) appears to be an alternative therapeutic strategy for acute ischemic stroke (IS), but clinical results remain controversial. OBJECTIVE The aim of this systematic review is to identify the parameters tested; to assess evidence on the safety and efficacy on preclinical data on STL; and to assess the validity and publication bias. METHODS Pubmed® and Web of ScienceTM databases were systematically searched from January 1995 to April 2017 in French and English. We included studies evaluating STL on animal stroke model. This systematic review was conducted in accordance with the PRISMA guidelines. Data were extracted following a pre-defined schedule by two of the authors. The CAMARADES criteria were used for quality assessment. A narrative synthesis was conducted. RESULTS Sixteen studies met the inclusion criteria. The result showed that ultrasound parameters and types of MBs were heterogeneous among studies. Numerous positive outcomes on efficacy were found, but only four studies demonstrated superiority of STL versus recombinant tissue-type plasminogen activator on clinical criteria. Data available on safety are limited. LIMITATIONS Quality assessment of the studies reviewed revealed a number of biases. CONCLUSION Further in vivo studies are needed to demonstrate a better efficacy and safety of STL compared to currently approved therapeutic options. SYSTEMATIC REVIEW REGISTRATION http://syrf.org.uk/protocols/.
Collapse
Affiliation(s)
- Laurent Auboire
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
- CHRU de Tours, Service d’échographie-Doppler, Tours, France
| | - Charles A. Sennoga
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
| | | | - Fréderic Ossant
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
- CHRU de Tours, CIC-IT, Tours, France
| | - Jean-Michel Escoffre
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
| | | | - Ayache Bouakaz
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
| |
Collapse
|
32
|
Kvistad CE, Nacu A, Novotny V, Logallo N, Waje‐Andreassen U, Naess H, Thomassen L. Contrast-enhanced sonothrombolysis in acute ischemic stroke patients without intracranial large-vessel occlusion. Acta Neurol Scand 2018; 137:256-261. [PMID: 29068044 DOI: 10.1111/ane.12861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Contrast-enhanced sonothrombolysis (CEST) leads to a more rapid recanalization in acute ischemic stroke caused by intracranial large-vessel occlusion (LVO). Animal studies have shown that CEST also may be safe and efficient in treating the ischemic microcirculation in the absence of LVO. The exact mechanism behind this treatment effect is not known. We aimed to assess safety and efficacy of CEST in acute ischemic stroke patients included in the Norwegian Sonothrombolysis in Acute Stroke Study (NOR-SASS) without LVO on admission CT angiography (CTA). METHODS NOR-SASS was a randomized controlled trial of CEST in ischemic stroke patients treated with intravenous thrombolysis within 4.5 hours after stroke onset. Patients were randomized to either CEST or sham CEST. In this study, patients were excluded if they had partial or total occlusion on admission CTA, ultrasound-resistant bone window, had received CEST with incorrect insonation as compared to stroke location on Magnetic resonance imaging (MRI), or were stroke mimics. RESULTS Of the 183 patients included in NOR-SASS, a total of 83 (45.4%) patients matched the inclusion criteria, of which 40 received CEST and 43 sham CEST. There were no patients with symptomatic intracranial hemorrhage (sICH) in the CEST group. Rates of asymptomatic ICH, microbleeds, and mortality were not increased in the CEST group. Neurological improvement at 24 hours and functional outcome at 90 days were similar in both groups. CONCLUSION CEST is safe in ischemic stroke patients without intracranial LVO. There were no differences in clinical outcomes between the treatment groups.
Collapse
Affiliation(s)
- C. E. Kvistad
- Department of Neurology Haukeland University Hospital Bergen Norway
| | - A. Nacu
- Department of Neurology Haukeland University Hospital Bergen Norway
| | - V. Novotny
- Department of Neurology Haukeland University Hospital Bergen Norway
| | - N. Logallo
- Department of Neurology Haukeland University Hospital Bergen Norway
| | | | - H. Naess
- Department of Neurology Haukeland University Hospital Bergen Norway
| | - L. Thomassen
- Department of Neurology Haukeland University Hospital Bergen Norway
| |
Collapse
|
33
|
Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2018; 49:e46-e110. [PMID: 29367334 DOI: 10.1161/str.0000000000000158] [Citation(s) in RCA: 3538] [Impact Index Per Article: 589.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE The purpose of these guidelines is to provide an up-to-date comprehensive set of recommendations for clinicians caring for adult patients with acute arterial ischemic stroke in a single document. The intended audiences are prehospital care providers, physicians, allied health professionals, and hospital administrators. These guidelines supersede the 2013 guidelines and subsequent updates. METHODS Members of the writing group were appointed by the American Heart Association Stroke Council's Scientific Statements Oversight Committee, representing various areas of medical expertise. Strict adherence to the American Heart Association conflict of interest policy was maintained. Members were not allowed to participate in discussions or to vote on topics relevant to their relations with industry. The members of the writing group unanimously approved all recommendations except when relations with industry precluded members voting. Prerelease review of the draft guideline was performed by 4 expert peer reviewers and by the members of the Stroke Council's Scientific Statements Oversight Committee and Stroke Council Leadership Committee. These guidelines use the American College of Cardiology/American Heart Association 2015 Class of Recommendations and Levels of Evidence and the new American Heart Association guidelines format. RESULTS These guidelines detail prehospital care, urgent and emergency evaluation and treatment with intravenous and intra-arterial therapies, and in-hospital management, including secondary prevention measures that are appropriately instituted within the first 2 weeks. The guidelines support the overarching concept of stroke systems of care in both the prehospital and hospital settings. CONCLUSIONS These guidelines are based on the best evidence currently available. In many instances, however, only limited data exist demonstrating the urgent need for continued research on treatment of acute ischemic stroke.
Collapse
|
34
|
Clinical Importance of Temporal Bone Features for the Efficacy of Contrast-Enhanced Sonothrombolysis: a Retrospective Analysis of the NOR-SASS Trial. Transl Stroke Res 2017; 9:333-339. [PMID: 29119369 DOI: 10.1007/s12975-017-0583-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Contrast-enhanced sonothrombolysis (CEST) seems to be a safe and promising treatment in acute ischemic stroke. It remains unknown if temporal bone features may influence the efficacy of CEST. We investigated the association between different temporal bone features on admission computed tomography (CT) scan and the outcome in acute ischemic stroke patients included in the randomized Norwegian Sonothrombolysis in Acute Stroke Study (NOR-SASS). Patients diagnosed as stroke mimics and those with infratentorial stroke or with incorrect insonation were excluded. We retrospectively assessed temporal bone heterogeneity (presence of diploë), diploë ratio, thickness, and density on admission CT scans. National institute of Health Stroke Scale (NIHSS) at 24 h and modified Rankin Scale (mRS) at 3 months were correlated with CT findings both in CEST and sham CEST patients. A total of 99 patients were included of which 52 were assigned to CEST and 47 to sham CEST. Approximately 20% patients had a heterogeneous temporal bone in both the CEST and sham CEST group. All temporal bone CT features studied were associated with female sex. In the CEST group, temporal bone heterogeneity (p = 0.006) and higher temporal bone diploë ratio (p = 0.002) were associated with higher NIHSS at 24 h. There was no association between temporal bone features and mRS at 3 months. Approximately 20% of acute ischemic stroke patients have heterogeneous temporal bone and may be resistant to standard 2-MHz transcranial Doppler ultrasound treatment. Sonothrombolysis resistance may easily be predicted by admission CT for better selection.
Collapse
|
35
|
Logallo N, Novotny V, Assmus J, Kvistad CE, Alteheld L, Rønning OM, Thommessen B, Amthor KF, Ihle-Hansen H, Kurz M, Tobro H, Kaur K, Stankiewicz M, Carlsson M, Morsund Å, Idicula T, Aamodt AH, Lund C, Næss H, Waje-Andreassen U, Thomassen L. Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): a phase 3, randomised, open-label, blinded endpoint trial. Lancet Neurol 2017; 16:781-788. [DOI: 10.1016/s1474-4422(17)30253-3] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 11/24/2022]
|
36
|
Slikkerveer J, Juffermans LJ, van Royen N, Appelman Y, Porter TR, Kamp O. Therapeutic application of contrast ultrasound in ST elevation myocardial infarction: Role in coronary thrombosis and microvascular obstruction. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2017; 8:45-53. [PMID: 28868906 PMCID: PMC6376593 DOI: 10.1177/2048872617728559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the past few decades, cardiac ultrasound has become a widely available, easy-to-use diagnostic tool in many scenarios in acute cardiac care. The introduction of microbubbles extended its diagnostic value. Not long thereafter, several investigators explored the therapeutic potential of contrast ultrasound on thrombus dissolution. Despite large improvements in therapeutic options, acute ST elevation myocardial infarction remains one of the main causes of mortality and morbidity in the western world. The therapeutic effect of contrast ultrasound on thrombus dissolution might prove to be a new, effective treatment strategy in this group of patients. With the recent publication of human studies scrutinising the therapeutic options of ultrasound and microbubbles in ST elevation myocardial infarction, we have entered a new stage in this area of research. This therapeutic effect is based on biochemical effects both at macrovascular and microvascular levels, of which the exact working mechanisms remain to be elucidated in full. This review will give an up-to-date summary of our current knowledge of the therapeutic effects of contrast ultrasound and its potential application in the field of ST elevation myocardial infarction, along with its future developments.
Collapse
Affiliation(s)
- Jeroen Slikkerveer
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Lynda Jm Juffermans
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.,3 Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Yolande Appelman
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas R Porter
- 4 University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Otto Kamp
- 1 Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.,2 Institute of Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Logallo N, Kvistad CE, Nacu A, Naess H, Waje-Andreassen U, Asmuss J, Aamodt AH, Lund C, Kurz MW, Rønning OM, Salvesen R, Idicula TT, Thomassen L. The Norwegian tenecteplase stroke trial (NOR-TEST): randomised controlled trial of tenecteplase vs. alteplase in acute ischaemic stroke. BMC Neurol 2014; 14:106. [PMID: 24886064 PMCID: PMC4029902 DOI: 10.1186/1471-2377-14-106] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Alteplase is the only approved thrombolytic agent for acute ischaemic stroke. The overall benefit from alteplase is substantial, but some evidence indicates that alteplase also has negative effects on the ischaemic brain. Tenecteplase may be more effective and less harmfull than alteplase, but large randomised controlled phase 3 trials are lacking. The Norwegian Tenecteplase Stroke Trial (NOR-TEST) aims to compare efficacy and safety of tenecteplase vs. alteplase. METHODS/DESIGN NOR-TEST is a multi-centre PROBE (prospective randomised, open-label, blinded endpoint) trial designed to establish superiority of tenecteplase 0.4 mg/kg (single bolus) as compared with alteplase 0.9 mg/kg (10% bolus + 90% infusion/60 minutes) for consecutively admitted patients with acute ischaemic stroke eligible for thrombolytic therapy, i.e. patients a) admitted <4½ hours after symptoms onset; b) admitted <4½ hours after awakening with stroke symptoms c) receiving bridging therapy before embolectomy.Randomisation tenecteplase:alteplase is 1:1. The primary study endpoint is favourable functional outcome defined as modified Rankin Scale 0-1 at 90 days. Secondary study endpoints are: 1) haemorrhagic transformation (haemorrhagic infarct/haematoma); 2) symptomatic cerebral haemorrhage on CT 24-48 hours; 3) major neurological improvement at 24 hours; 4) recanalisation at 24-36 hours; 5) death. DISCUSSION NOR-TEST may establish a novel approach to acute ischaemic stroke treatment. A positive result will lead to a more effective, safer and easier treatment for all acute ischaemic stroke pasients.NOR-TEST is reviewed and approved by the Regional Committee for Medical and Health Research Ethics (2011/2435), and The Norwegian Medicines Agency (12/01402). NOR-TEST is registered with EudraCT No 2011-005793-33 and in ClinicalTrials.gov (NCT01949948).
Collapse
Affiliation(s)
- Nicola Logallo
- Center for Neurovascular Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christopher E Kvistad
- Center for Neurovascular Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Aliona Nacu
- Center for Neurovascular Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Halvor Naess
- Center for Neurovascular Diseases, Haukeland University Hospital, Bergen, Norway
- Centre for Age-related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Ulrike Waje-Andreassen
- Center for Neurovascular Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jörg Asmuss
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - Anne Hege Aamodt
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Norway
| | - Christian Lund
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Norway
| | - Martin W Kurz
- Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Ole Morten Rønning
- Medical Division, Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Rolf Salvesen
- Department of Neurology, Nordland Hospital, Bodo, Norway
- Department of Clinical Medicine, University of Tromso, Norway
| | - Titto T Idicula
- Department of Neurology, St.Olav Hospital, Trondheim, Norway
| | - Lars Thomassen
- Center for Neurovascular Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|