1
|
Chen Y, Jiang Y, Jiang X, Zhai C, Wang Y, Xu C. Identification and experimental validation of hub genes underlying depressive-like behaviors induced by chronic social defeat stress. Front Pharmacol 2024; 15:1472468. [PMID: 39469623 PMCID: PMC11513628 DOI: 10.3389/fphar.2024.1472468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction: Major depressive disorder (MDD), characterized by severe neuropsychiatric symptoms and significant cognitive deficits, continues to present both etiological and therapeutic challenges. However, the specific underlying mechanisms and therapeutic targets remain unclear. Methods: We analyzed human postmortem dorsolateral prefrontal cortex (dlPFC) samples from MDD patients using datasets GSE53987 and GSE54568, identifying three key genes: AGA, FBXO38, and RGS5. To model depressive-like behavior, we employed chronic social defeat stress (CSDS) and subsequently measured the expression of AGA, FBXO38, and RGS5 in the dlPFC using qPCR and Western blot analysis following CSDS exposure. Results: CSDS significantly induced depressive-like behavior, and both the protein and transcriptional expression levels of AGA, FBXO38, and RGS5 in the dlPFC of mice were markedly reduced after stress, consistent with findings from datasets GSE53987 and GSE54568. Conclusion: Our research suggests that AGA, FBXO38, and RGS5 are potential biomarkers for MDD and could serve as valuable targets for MDD risk prediction.
Collapse
Affiliation(s)
- Yexiang Chen
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunhao Jiang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingcong Jiang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Caiyu Zhai
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifei Wang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Chi Xu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Rust R, Nih LR, Liberale L, Yin H, El Amki M, Ong LK, Zlokovic BV. Brain repair mechanisms after cell therapy for stroke. Brain 2024; 147:3286-3305. [PMID: 38916992 PMCID: PMC11449145 DOI: 10.1093/brain/awae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Cell-based therapies hold great promise for brain repair after stroke. While accumulating evidence confirms the preclinical and clinical benefits of cell therapies, the underlying mechanisms by which they promote brain repair remain unclear. Here, we briefly review endogenous mechanisms of brain repair after ischaemic stroke and then focus on how different stem and progenitor cell sources can promote brain repair. Specifically, we examine how transplanted cell grafts contribute to improved functional recovery either through direct cell replacement or by stimulating endogenous repair pathways. Additionally, we discuss recently implemented preclinical refinement methods, such as preconditioning, microcarriers, genetic safety switches and universal (immune evasive) cell transplants, as well as the therapeutic potential of these pharmacologic and genetic manipulations to further enhance the efficacy and safety of cell therapies. By gaining a deeper understanding of post-ischaemic repair mechanisms, prospective clinical trials may be further refined to advance post-stroke cell therapy to the clinic.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
| | - Lina R Nih
- Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Lin Kooi Ong
- School of Health and Medical Sciences & Centre for Health Research, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
3
|
Buizza C, Enström A, Carlsson R, Paul G. The Transcriptional Landscape of Pericytes in Acute Ischemic Stroke. Transl Stroke Res 2024; 15:714-728. [PMID: 37378751 PMCID: PMC11226519 DOI: 10.1007/s12975-023-01169-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
The current treatment options for ischemic stroke aim to achieve reperfusion but are time critical. Novel therapeutic approaches that can be given beyond the limited time window of 3-4.5 h are still an unmet need to be addressed to improve stroke outcomes. The lack of oxygen and glucose in the area of ischemic injury initiates a pathological cascade leading to blood-brain barrier (BBB) breakdown, inflammation, and neuronal cell death, a process that may be intercepted to limit stroke progression. Pericytes located at the blood/brain interface are one of the first responders to hypoxia in stroke and therefore a potential target cell for early stroke interventions. Using single-cell RNA sequencing in a mouse model of permanent middle cerebral artery occlusion, we investigated the temporal differences in transcriptomic signatures in pericytes at 1, 12, and 24 h after stroke. Our results reveal a stroke-specific subcluster of pericytes that is present at 12 and 24 h and characterized by the upregulation of genes mainly related to cytokine signaling and immune response. This study identifies temporal transcriptional changes in the acute phase of ischemic stroke that reflect the early response of pericytes to the ischemic insult and its secondary consequences and may constitute potential future therapeutic targets.
Collapse
Affiliation(s)
- Carolina Buizza
- Translational Neurology Group, Department of Clinical Science, Lund University, 22184, Lund, Sweden
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Lund University, 22184, Lund, Sweden
| | - Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Lund University, 22184, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Lund University, 22184, Lund, Sweden.
- Department of Neurology, Scania University Hospital, 22185, Lund, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, 22184, Lund, Sweden.
| |
Collapse
|
4
|
Roth M, Carlsson R, Buizza C, Enström A, Paul G. Pericyte response to ischemic stroke precedes endothelial cell death and blood-brain barrier breakdown. J Cereb Blood Flow Metab 2024:271678X241261946. [PMID: 39053491 PMCID: PMC11571979 DOI: 10.1177/0271678x241261946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 07/27/2024]
Abstract
Stroke is one of the leading causes of death and disability, yet the cellular response to the ischemic insult is poorly understood limiting therapeutic options. Brain pericytes are crucial for maintaining blood-brain barrier (BBB) integrity and are known to be one of the first responders to ischemic stroke. The exact timeline of cellular events after stroke, however, remains elusive. Using the permanent middle cerebral artery occlusion stroke model, we established a detailed timeline of microvascular events after experimental stroke. Our results show that pericytes respond already within 1 hour after the ischemic insult. We find that approximately 30% of the pericyte population dies as early as 1 hour after stroke, while ca 50% express markers that indicate activation. A decrease of endothelial tight junctions, signs of endothelial cell death and reduction in blood vessel length are only detected at time points after the initial pericyte response. Consistently, markers of BBB leakage are observed several hours after pericyte cell death and/or vascular detachment. Our results suggest that the pericyte response to stroke occurs early and precedes both the endothelial response and the BBB breakdown. This highlights pericytes as an important target cell type to develop new diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Michaela Roth
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Carolina Buizza
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden
| |
Collapse
|
5
|
Seyedaghamiri F, Geranmayeh MH, Ghadiri T, Ebrahimi-Kalan A, Hosseini L. A new insight into the role of pericytes in ischemic stroke. Acta Neurol Belg 2024; 124:767-774. [PMID: 37805645 DOI: 10.1007/s13760-023-02391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
The functional structure of the blood-brain barrier (BBB) deteriorates after stroke by developing diffuse microvascular and neurovascular dysfunction and loss of white matter integrity. This causes nervous tissue injury and causes sensory and motor disabilities in stroke patients. Improving the integrity of the BBB and neurovascular remodeling after stroke can promote post-stroke injury conditions. Pericytes are contractile cells abundant in the BBB and sandwiched between astrocytes and endothelial cells of the microvessels. Stroke could lead to the degeneration of pericytes in the BBB. However, recent evidence shows that promoting pericytes enhances BBB integrity and neurovascular remodeling. Furthermore, pericytes achieve multipotent properties under hypoxic conditions, allowing them to transdifferentiate into the brain resident cells such as microglia. Microglia regulate immunity and inflammatory response after stroke. The current review studies recent findings in the intervening mechanisms underlying the regulatory effect of pericytes in BBB recovery after stroke.
Collapse
Affiliation(s)
- Fatemehsadat Seyedaghamiri
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tahereh Ghadiri
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Özen I, Clausen F, Flygt J, Marklund N, Paul G. Neutralization of Interleukin 1-beta is associated with preservation of thalamic capillaries after experimental traumatic brain injury. Front Neurol 2024; 15:1378203. [PMID: 38765267 PMCID: PMC11100426 DOI: 10.3389/fneur.2024.1378203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction Traumatic brain injury to thalamo-cortical pathways is associated with posttraumatic morbidity. Diffuse mechanical forces to white matter tracts and deep grey matter regions induce an inflammatory response and vascular damage resulting in progressive neurodegeneration. Pro-inflammatory cytokines, including interleukin-1β (IL-1β), may contribute to the link between inflammation and the injured capillary network after TBI. This study investigates whether IL-1β is a key contributor to capillary alterations and changes in pericyte coverage in the thalamus and cortex after TBI. Methods Animals were subjected to central fluid percussion injury (cFPI), a model of TBI causing widespread axonal and vascular pathology, or sham injury and randomized to receive a neutralizing anti-IL-1β or a control, anti-cyclosporin A antibody, at 30 min post-injury. Capillary length and pericyte coverage of cortex and thalamus were analyzed by immunohistochemistry at 2- and 7-days post-injury. Results and Conclusion Our results show that early post-injury attenuation of IL-1β dependent inflammatory signaling prevents capillary damage by increasing pericyte coverage in the thalamus.
Collapse
Affiliation(s)
- Ilknur Özen
- Lund Brain Injury Laboratory for Neurosurgical Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Fredrik Clausen
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital, Lund, Sweden
| | - Johanna Flygt
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital, Lund, Sweden
| | - Niklas Marklund
- Lund Brain Injury Laboratory for Neurosurgical Research, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden
| |
Collapse
|
7
|
Zhang W, Chen S, Ma B, Ding Y, Liu X, He C, Wang B, Yuan M. Trifluoperazine regulates blood-brain barrier permeability via the MLCK/p-MLC pathway to promote ischemic stroke recovery. iScience 2024; 27:109156. [PMID: 38439960 PMCID: PMC10910233 DOI: 10.1016/j.isci.2024.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Blood-brain barrier (BBB) disruption following ischemic stroke (IS) can induce significant aftereffects. Elevated calmodulin (CaM) expression following stroke causes calcium overload-a key contributor to BBB collapse. Trifluoperazine (TFP), a CaM inhibitor, reduces CaM overexpression following IS. However, it remains unclear whether TFP participates in BBB repair after IS. We administered TFP to mice subjected to middle cerebral artery occlusion (MCAO) and bEnd.3 cells subjected to oxygen-glucose deprivation (OGD). TFP treatment in MCAO mice reduced cerebral CaM expression and infarct size and decreased BBB permeability. OGD-treated bEnd.3 cells showed significantly increased CaM protein levels and reduced tight junction (TJ) protein levels; these changes were reversed by TFP treatment. Our results found that TFP administration in mice inhibited actin contraction following cerebral ischemia-reperfusion by suppressing the MLCK/p-MLC pathway, thereby attenuating cell retraction, improving TJ protein integrity, and reducing BBB permeability. Consequently, this treatment may promote neurological function recovery after IS.
Collapse
Affiliation(s)
- Wentao Zhang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sisi Chen
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bin Ma
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yingmei Ding
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofen Liu
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Caijun He
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Biao Wang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
8
|
Hu S, Yang B, Shu S, He X, Sang H, Fan X, Zhang H. Targeting Pericytes for Functional Recovery in Ischemic Stroke. Neuromolecular Med 2023; 25:457-470. [PMID: 37166748 DOI: 10.1007/s12017-023-08748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Pericytes surrounding endothelial cells in the capillaries are emerging as an attractive cell resource, which can show a large variety of functions in ischemic stroke, including preservation of the blood-brain barrier, regulation of immune function, and support for cerebral vasculature. These functions have been fully elucidated in previous studies. However, in recent years, increasing evidence has shown that pericytes play an important role in neurological recovery after ischemic stroke due to their regenerative function which can be summarized in two aspects according to current discoveries, one is that pericytes are thought to be multipotential themselves, and the other is that pericytes can promote the differentiation of oligodendrocyte progenitor cells (OPCs). Considering the neuroprotective treatment for stroke has not been much progressed in recent years, new therapies targeting pericytes may be a future direction. Here, we will review the beneficial effects of pericytes in ischemic stroke from two directions: the barrier and vascular functions and the regenerative functions of pericytes.
Collapse
Affiliation(s)
- Shuqi Hu
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Bingjie Yang
- Department of Neurology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Song Shu
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xudong He
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Hongfei Sang
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xuemei Fan
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Hao Zhang
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Department of Neurology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
9
|
Lu G, Du R, Liu Y, Zhang S, Li J, Pei J. RGS5 as a Biomarker of Pericytes, Involvement in Vascular Remodeling and Pulmonary Arterial Hypertension. Vasc Health Risk Manag 2023; 19:673-688. [PMID: 37881333 PMCID: PMC10596204 DOI: 10.2147/vhrm.s429535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by a sustained rise in mean pulmonary artery pressure. Pulmonary vascular remodeling serves an important role in PAH. Identifying a key driver gene to regulate vascular remodeling of the pulmonary microvasculature is critical for PAH management. Methods Differentially expressed genes were identified using the Gene Expression Omnibus (GEO) GSE117261, GSE48149, GSE113439, GSE53408 and GSE16947 datasets. A co-expression network was constructed using weighted gene co-expression network analysis. Novel and key signatures of PAH were screened using four algorithms, including weighted gene co-expression network analysis, GEO2R analysis, support vector machines recursive feature elimination and robust rank aggregation rank analysis. Regulator of G-protein signaling 5 (RGS5), a pro-apoptotic/anti-proliferative protein, which regulate arterial tone and blood pressure in vascular smooth muscle cells. The expression of RGS5 was determined using reverse transcription-quantitative PCR (RT-qPCR) in PAH and normal mice. The location of RGS5 and pericytes was detected using immunofluorescence. Results Compared with that in the normal group, RGS5 expression was upregulated in the PAH group based on GEO and RT-qPCR analyses. RGS5 expression in single cells was enriched in pericytes in single-cell RNA sequencing analysis. RGS5 co-localization with pericytes was detected in the pulmonary microvasculature of PAH. Conclusion RGS5 regulates vascular remodeling of the pulmonary microvasculature and the occurrence of PAH through pericytes, which has provided novel ideas and strategies regarding the occurrence and innovative treatment of PAH.
Collapse
Affiliation(s)
- Guofang Lu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710038, People’s Republic of China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| |
Collapse
|
10
|
Cui N, Zhu X, Zhao C, Meng C, Sha J, Zhu D. Pericyte loss leads to microvessel remodeling and nasal polyp formation. Acta Otolaryngol 2023; 143:876-886. [PMID: 38148737 DOI: 10.1080/00016489.2023.2276345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/17/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) may be caused by increased vascular permeability and inflammatory cell leakage in the subepithelial tissue. AIMS/OBJECTIVES The aim of this study is to clarify the role of pericytes in tissue edema, microvessel dysfunction and vascular remodeling mechanisms in patients of CRS with nasal polyps (CRSwNP). MATERIAL AND METHODS A total of 63 tissue samples were collected, including 42 CRSwNP samples (22 eosinophilic CRSwNP (eCRSwNP) and 20 non-eosinophilic CRSwNP (non-eCRSwNP) samples) and 21 samples of CRS without nasal polyps (CRSsNP). The samples were stained by immunofluorescence to measure microvessel density (MVD) and microvessel pericyte coverage index (MPI). RESULTS We found that the albumin expression in the eCRSwNP group was significantly increased (p < .05). The MPI was significantly decreased (p <.05). There was a significant negative correlation between the MPI and the plasma albumin level (r=-0.82, p < .05). The MPI was negatively correlated with eosinophilic count (r=-0.77, p < .05). In the eCRSwNP group, the expressions of IL-4, Ang-1 and Ang-2 were increased compared with those in the control group. CONCLUSIONS AND SIGNIFICANCE Pericyte loss may induce microvessel dysfunction, affect the development of interstitial edema and eosinophilic exosmosis in eCRSwNP, and contribute to the formation and maintenance of nasal polyps.
Collapse
Affiliation(s)
- Na Cui
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuewei Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chen Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Cuida Meng
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jichao Sha
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Abstract
Pericytes are specialized cells located in close proximity to endothelial cells within the microvasculature. They play a crucial role in regulating blood flow, stabilizing vessel walls, and maintaining the integrity of the blood-brain barrier. The loss of pericytes has been associated with the development and progression of various diseases, such as diabetes, Alzheimer's disease, sepsis, stroke, and traumatic brain injury. This review examines the detection of pericyte loss in different diseases, explores the methods employed to assess pericyte coverage, and elucidates the potential mechanisms contributing to pericyte loss in these pathological conditions. Additionally, current therapeutic strategies targeting pericytes are discussed, along with potential future interventions aimed at preserving pericyte function and promoting disease mitigation.
Collapse
Affiliation(s)
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
12
|
Carlsson R, Enström A, Paul G. Molecular Regulation of the Response of Brain Pericytes to Hypoxia. Int J Mol Sci 2023; 24:5671. [PMID: 36982744 PMCID: PMC10053233 DOI: 10.3390/ijms24065671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
The brain needs sufficient oxygen in order to function normally. This is achieved by a large vascular capillary network ensuring that oxygen supply meets the changing demand of the brain tissue, especially in situations of hypoxia. Brain capillaries are formed by endothelial cells and perivascular pericytes, whereby pericytes in the brain have a particularly high 1:1 ratio to endothelial cells. Pericytes not only have a key location at the blood/brain interface, they also have multiple functions, for example, they maintain blood-brain barrier integrity, play an important role in angiogenesis and have large secretory abilities. This review is specifically focused on both the cellular and the molecular responses of brain pericytes to hypoxia. We discuss the immediate early molecular responses in pericytes, highlighting four transcription factors involved in regulating the majority of transcripts that change between hypoxic and normoxic pericytes and their potential functions. Whilst many hypoxic responses are controlled by hypoxia-inducible factors (HIF), we specifically focus on the role and functional implications of the regulator of G-protein signaling 5 (RGS5) in pericytes, a hypoxia-sensing protein that is regulated independently of HIF. Finally, we describe potential molecular targets of RGS5 in pericytes. These molecular events together contribute to the pericyte response to hypoxia, regulating survival, metabolism, inflammation and induction of angiogenesis.
Collapse
Affiliation(s)
- Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Centre and Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Centre and Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Centre and Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Department of Neurology, Scania University Hospital, 22185 Lund, Sweden
| |
Collapse
|
13
|
Tang H, Zhang X, Hao X, Dou H, Zou C, Zhou Y, Li B, Yue H, Wang D, Wang Y, Yang C, Fu J. Hepatocyte growth factor-modified hair follicle stem cells ameliorate cerebral ischemia/reperfusion injury in rats. Stem Cell Res Ther 2023; 14:25. [PMID: 36782269 PMCID: PMC9926795 DOI: 10.1186/s13287-023-03251-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/22/2022] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Hair follicle stem cells (HFSCs) are considered as a promising cell type in the stem cell transplantation treatment of neurological diseases because of their rich sources, easy access, and the same ectoderm source as the nervous system. Hepatocyte growth factor (HGF) is a pleiotropic cytokine that shows neuroprotective function in ischemic stroke. Here we assessed the therapeutic effects of HFSCs on ischemic stroke injury and the synthetic effect of HGF along with HFSCs. METHODS Rat HFSCs were intravenously transplanted into a middle cerebral artery ischemia/reperfusion (I/R) rat model. Neurological scoring and TTC staining were performed to assess the benefits of HFSC transplantation. Inflammatory cytokines, blood-brain barrier integrity and angiogenesis within penumbra were estimated by Western blot and immunohistochemistry. The differentiation of HFSCs was detected by immunofluorescence method 2 weeks after transplantation. RESULTS HFSC transplantation could significantly inhibit the activation of microglia, improve the integrity of blood-brain barrier and reduce brain edema. Moreover, the number of surviving neurons and microvessels density in the penumbra were upregulated by HFSC transplantation, leading to better neurological score. The combination of HFSCs and HGF could significantly improve the therapeutic benefit. CONCLUSION Our results indicate for the first time that HGF modified HFSCs can reduce I/R injury and promote the neurological recovery by inhibiting inflammatory response, protecting blood-brain barrier and promoting angiogenesis.
Collapse
Affiliation(s)
- Hao Tang
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Xuemei Zhang
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Xiaojun Hao
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Haitong Dou
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Chendan Zou
- grid.410736.70000 0001 2204 9268Department of Biochemistry and Molecular Biology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Yinglian Zhou
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Bing Li
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Hui Yue
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Duo Wang
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Yifei Wang
- grid.412463.60000 0004 1762 6325Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Chunxiao Yang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, China.
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
14
|
Alvino VV, Mohammed KAK, Gu Y, Madeddu P. Approaches for the isolation and long-term expansion of pericytes from human and animal tissues. Front Cardiovasc Med 2023; 9:1095141. [PMID: 36704463 PMCID: PMC9873410 DOI: 10.3389/fcvm.2022.1095141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Pericytes surround capillaries in every organ of the human body. They are also present around the vasa vasorum, the small blood vessels that supply the walls of larger arteries and veins. The clinical interest in pericytes is rapidly growing, with the recognition of their crucial roles in controlling vascular function and possible therapeutic applications in regenerative medicine. Nonetheless, discrepancies in methods used to define, isolate, and expand pericytes are common and may affect reproducibility. Separating pure pericyte preparations from the continuum of perivascular mesenchymal cells is challenging. Moreover, variations in functional behavior and antigenic phenotype in response to environmental stimuli make it difficult to formulate an unequivocal definition of bona fide pericytes. Very few attempts were made to develop pericytes as a clinical-grade product. Therefore, this review is devoted to appraising current methodologies' pros and cons and proposing standardization and harmonization improvements. We highlight the importance of developing upgraded protocols to create therapeutic pericyte products according to the regulatory guidelines for clinical manufacturing. Finally, we describe how integrating RNA-seq techniques with single-cell spatial analysis, and functional assays may help realize the full potential of pericytes in health, disease, and tissue repair.
Collapse
Affiliation(s)
| | - Khaled Abdelsattar Kassem Mohammed
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Yue Gu
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
15
|
Xie L, Zhang S, Huang L, Peng Z, Lu H, He Q, Chen R, Hu L, Wang B, Sun B, Yang Q, Xie Q. Single-cell RNA sequencing of peripheral blood reveals that monocytes with high cathepsin S expression aggravate cerebral ischemia-reperfusion injury. Brain Behav Immun 2023; 107:330-344. [PMID: 36371010 DOI: 10.1016/j.bbi.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Stroke is a major cause of morbidity and mortality worldwide. After cerebral ischemia, peripheral immune cells infiltrate the brain and elicit an inflammatory response. However, it is not clear when and how these peripheral immune cells affect the central inflammatory response, and whether interventions that target these processes can alleviate ischemia-reperfusion (I/R) injury. METHODS Single-cell transcriptomic sequencing and bioinformatics analysis were performed on peripheral blood of mice at different times after I/R to analyze the key molecule of cell subsets. Then, the expression pattern of this molecule was determined through various biological experiments, including quantitative RT-PCR, western blot, ELISA, and in situ hybridization. Next, the function of this molecule was assessed using knockout mice and the corresponding inhibitor. RESULTS Single-cell transcriptomic sequencing revealed that peripheral monocyte subpopulations increased significantly after I/R. Cathepsin S (Ctss)was identified as a key molecule regulating monocyte activation by pseudotime trajectory analysis and gene function analysis. Next, Cathepsin S was confirmed to be expressed in monocytes with the highest expression level 3 days after I/R. Infarct size (p < 0.05), neurological function scores (p < 0.05), and apoptosis and vascular leakage rates were significantly reduced after Ctss knockout. In addition, CTSS destroyed the blood-brain barrier (BBB) by binding to junctional adhesion molecule (JAM) family proteins to cause their degradation. CONCLUSIONS Cathepsin S inhibition attenuated cerebral I/R injury; therefore, cathepsin S can be used as a novel target for drug intervention after stroke.
Collapse
Affiliation(s)
- Lexing Xie
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Shuang Zhang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Li Huang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Zhouzhou Peng
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Hui Lu
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, CIBI, China
| | - Qian He
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, CIBI, China
| | - Ru Chen
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, CIBI, China
| | - Linlin Hu
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, CIBI, China
| | - Bingqiao Wang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, CIBI, China
| | - Baoliang Sun
- Department of Neurology, The Second Affiliated Hospital, Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Qingwu Yang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China.
| | - Qi Xie
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China.
| |
Collapse
|
16
|
Nirwane A, Yao Y. SMA low/undetectable pericytes differentiate into microglia- and macrophage-like cells in ischemic brain. Cell Mol Life Sci 2022; 79:264. [PMID: 35482211 PMCID: PMC11073453 DOI: 10.1007/s00018-022-04322-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/23/2022]
Abstract
Pericytes are multipotent perivascular cells that play important roles in CNS injury. However, controversial findings exist on how pericytes change and whether they differentiated into microglia-like cells after ischemic stroke. This discrepancy is mainly due to the lack of pericyte-specific markers: the "pericyte" population identified in previous studies contained vascular smooth muscle cells (vSMCs) and/or fibroblasts. Therefore, it remains unclear which cell type differentiates into microglia-like cells after stroke. In this study, lineage-tracing technique was used to mark α-smooth muscle actin (SMA)low/undetectable pericytes, vSMCs, and fibroblasts, and their fates were analyzed after ischemic stroke. We found that SMAlow/undetectable pericytes and fibroblasts but not vSMCs substantially proliferated at the subacute phase after injury, and that SMAlow/undetectable pericyte but not vSMCs or fibroblasts differentiated into Iba1+ cells after ischemic stroke. Further imaging flow cytometry analysis revealed that SMAlow/undetectable pericytes differentiated into both microglia and macrophages at day 7 after stroke. These results demonstrate that SMAlow/undetectable pericytes rather than vSMCs or fibroblasts differentiate into both microglia-like and macrophage-like cells after stroke, suggesting that these pericytes may be targeted in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC8, Tampa, FL, 33612, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC8, Tampa, FL, 33612, USA.
| |
Collapse
|
17
|
Zhou SY, Guo ZN, Zhang DH, Qu Y, Jin H. The Role of Pericytes in Ischemic Stroke: Fom Cellular Functions to Therapeutic Targets. Front Mol Neurosci 2022; 15:866700. [PMID: 35493333 PMCID: PMC9043812 DOI: 10.3389/fnmol.2022.866700] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke (IS) is a cerebrovascular disease causing high rates of disability and fatality. In recent years, the concept of the neurovascular unit (NVU) has been accepted by an increasing number of researchers and is expected to become a new paradigm for exploring the pathogenesis and treatment of IS. NVUs are composed of neurons, endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix. As an important part of the NVU, pericytes provide support for other cellular components and perform a variety of functions, including participating in the maintenance of the normal physiological function of the blood–brain barrier, regulating blood flow, and playing a role in inflammation, angiogenesis, and neurogenesis. Therefore, treatment strategies targeting pericyte functions, regulating pericyte epigenetics, and transplanting pericytes warrant exploration. In this review, we describe the reactions of pericytes after IS, summarize the potential therapeutic targets and strategies targeting pericytes for IS, and provide new treatment ideas for ischemic stroke.
Collapse
Affiliation(s)
- Sheng-Yu Zhou
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Dian-Hui Zhang
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Hang Jin,
| |
Collapse
|
18
|
Wang Y, Kisler K, Nikolakopoulou AM, Fernandez JA, Griffin JH, Zlokovic BV. 3K3A-Activated Protein C Protects the Blood-Brain Barrier and Neurons From Accelerated Ischemic Injury Caused by Pericyte Deficiency in Mice. Front Neurosci 2022; 16:841916. [PMID: 35431776 PMCID: PMC9005806 DOI: 10.3389/fnins.2022.841916] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pericytes, mural cells of brain capillaries, maintain the blood-brain barrier (BBB), regulate cerebral blood flow (CBF), and protect neurons against ischemic damage. To further investigate the role of pericytes in ischemia, we induced stroke by 45-min transient middle cerebral artery occlusion (tMCAo) in 6-month-old pericyte-deficient Pdgfrb + /- mice and control Pdgfrb+/+ littermates. Compared to controls, Pdgfrb + /- mice showed a 26% greater loss of CBF during early reperfusion, and 40-50% increase in the infarct and edema volumes and motor neurological score 24 h after tMCAo. These changes were accompanied by 50% increase in both immunoglobulin G and fibrinogen pericapillary deposits in the ischemic cortex 8 h after tMCAo indicating an accelerated BBB breakdown, and 35 and 55% greater losses of pericyte coverage and number of degenerating neurons 24 h after tMCAo, respectively. Treatment of Pdgfrb + /- mice with 3K3A-activated protein C (APC), a cell-signaling analog of plasma protease APC, administered intravenously 10 min and 4 h after tMCAo normalized CBF during the early reperfusion phase and reduced infarct and edema volume and motor neurological score by 55-60%, with similar reductions in BBB breakdown and number of degenerating neurons. Our data suggest that pericyte deficiency results in greater brain injury, BBB breakdown, and neuronal degeneration in stroked mice and that 3K3A-APC protects the brain from accelerated injury caused by pericyte deficiency. These findings may have implications for treatment of ischemic brain injury in neurological conditions associated with pericyte loss such as those seen during normal aging and in neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Yaoming Wang
- Department of Physiology and Neuroscience, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Angeliki Maria Nikolakopoulou
- Department of Physiology and Neuroscience, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Jose A. Fernandez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
- Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
19
|
Hou W, Hao Y, Sun L, Zhao Y, Zheng X, Song L. The dual roles of autophagy and the GPCRs-mediating autophagy signaling pathway after cerebral ischemic stroke. Mol Brain 2022; 15:14. [PMID: 35109896 PMCID: PMC8812204 DOI: 10.1186/s13041-022-00899-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke, caused by a lack of blood supply in brain tissues, is the third leading cause of human death and disability worldwide, and usually results in sensory and motor dysfunction, cognitive impairment, and in severe cases, even death. Autophagy is a highly conserved lysosome-dependent process in which eukaryotic cells removal misfolded proteins and damaged organelles in cytoplasm, which is critical for energy metabolism, organelle renewal, and maintenance of intracellular homeostasis. Increasing evidence suggests that autophagy plays important roles in pathophysiological mechanisms under ischemic conditions. However, there are still controversies about whether autophagy plays a neuroprotective or damaging role after ischemia. G-protein-coupled receptors (GPCRs), one of the largest protein receptor superfamilies in mammals, play crucial roles in various physiological and pathological processes. Statistics show that GPCRs are the targets of about one-fifth of drugs known in the world, predicting potential values as targets for drug research. Studies have demonstrated that nutritional deprivation can directly or indirectly activate GPCRs, mediating a series of downstream biological processes, including autophagy. It can be concluded that there are interactions between autophagy and GPCRs signaling pathway, which provides research evidence for regulating GPCRs-mediated autophagy. This review aims to systematically discuss the underlying mechanism and dual roles of autophagy in cerebral ischemia, and describe the GPCRs-mediated autophagy, hoping to probe promising therapeutic targets for ischemic stroke through in-depth exploration of the GPCRs-mediated autophagy signaling pathway.
Collapse
Affiliation(s)
- Weichen Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Yang Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Xiangyu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
20
|
Baumann J, Tsao CC, Patkar S, Huang SF, Francia S, Magnussen SN, Gassmann M, Vogel J, Köster-Hegmann C, Ogunshola OO. Pericyte, but not astrocyte, hypoxia inducible factor-1 (HIF-1) drives hypoxia-induced vascular permeability in vivo. Fluids Barriers CNS 2022; 19:6. [PMID: 35033138 PMCID: PMC8760662 DOI: 10.1186/s12987-021-00302-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ways to prevent disease-induced vascular modifications that accelerate brain damage remain largely elusive. Improved understanding of perivascular cell signalling could provide unparalleled insight as these cells impact vascular stability and functionality of the neurovascular unit as a whole. Identifying key drivers of astrocyte and pericyte responses that modify cell-cell interactions and crosstalk during injury is key. At the cellular level, injury-induced outcomes are closely entwined with activation of the hypoxia-inducible factor-1 (HIF-1) pathway. Studies clearly suggest that endothelial HIF-1 signalling increases blood-brain barrier permeability but the influence of perivascular HIF-1 induction on outcome is unknown. Using novel mouse lines with astrocyte and pericyte targeted HIF-1 loss of function, we herein show that vascular stability in vivo is differentially impacted by perivascular hypoxia-induced HIF-1 stabilization. METHODS To facilitate HIF-1 deletion in adult mice without developmental complications, novel Cre-inducible astrocyte-targeted (GFAP-CreERT2; HIF-1αfl/fl and GLAST-CreERT2; HIF-1αfl/fl) and pericyte-targeted (SMMHC-CreERT2; HIF-1αfl/fl) transgenic animals were generated. Mice in their home cages were exposed to either normoxia (21% O2) or hypoxia (8% O2) for 96 h in an oxygen-controlled humidified glove box. All lines were similarly responsive to hypoxic challenge and post-Cre activation showed significantly reduced HIF-1 target gene levels in the individual cells as predicted. RESULTS Unexpectedly, hypoxia-induced vascular remodelling was unaffected by HIF-1 loss of function in the two astrocyte lines but effectively blocked in the pericyte line. In correlation, hypoxia-induced barrier permeability and water accumulation were abrogated only in pericyte targeted HIF-1 loss of function mice. In contrast to expectation, brain and serum levels of hypoxia-induced VEGF, TGF-β and MMPs (genes known to mediate vascular remodelling) were unaffected by HIF-1 deletion in all lines. However, in agreement with the permeability data, immunofluorescence and electron microscopy showed clear prevention of hypoxia-induced tight junction disruption in the pericyte loss of function line. CONCLUSION This study shows that pericyte but not astrocyte HIF-1 stabilization modulates endothelial tight junction functionality and thereby plays a pivotal role in hypoxia-induced vascular dysfunction. Whether the cells respond similarly or differentially to other injury stimuli will be of significant relevance.
Collapse
Affiliation(s)
- Julia Baumann
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Chih-Chieh Tsao
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Shalmali Patkar
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Sheng-Fu Huang
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Simona Francia
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Synnøve Norvoll Magnussen
- Institute of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Max Gassmann
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Johannes Vogel
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Christina Köster-Hegmann
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Omolara O Ogunshola
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| |
Collapse
|
21
|
Gong S, Ma H, Zheng F, Huang J, Zhang Y, Yu B, Li F, Kou J. Inhibiting YAP in Endothelial Cells From Entering the Nucleus Attenuates Blood-Brain Barrier Damage During Ischemia-Reperfusion Injury. Front Pharmacol 2021; 12:777680. [PMID: 34899341 PMCID: PMC8662521 DOI: 10.3389/fphar.2021.777680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Blood-brain barrier (BBB) damage is a critical event in ischemic stroke, contributing to aggravated brain damage. Endothelial cell form a major component of the BBB, but its regulation in stroke has yet to be clarified. We investigated the function of Yes-associated protein 1 (YAP) in the endothelium on BBB breakdown during cerebral ischemia/reperfusion (I/R) injury. The effects of YAP on BBB dysfunction were explored in middle cerebral artery occlusion/reperfusion (MCAO/R)-injury model mice and using brain microvascular endothelial cells (BMEC) exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) injury. The degree of brain injury was estimated using staining (2,3,5-Triphenyltetrazolium chloride, hematoxylin and eosin) and the detection of cerebral blood flow. BBB breakdown was investigated by examining the leakage of Evans Blue dye and evaluating the expression of tight junction (TJ)-associated proteins and matrix metallopeptidase (MMP) 2 and 9. YAP expression was up-regulated in the nucleus of BMEC after cerebral I/R injury. Verteporfin (YAP inhibitor) down-regulated YAP expression in the nucleus and improved BBB hyperpermeability and TJ integrity disruption stimulated by cerebral I/R. YAP-targeted small interfering RNA (siRNA) exerted the same effects in BMEC cells exposed to OGD/R injury. Our findings provide new insights into the contributions made by YAP to the maintenance of BBB integrity and highlight the potential for YAP to serve as a therapeutic target to modulate BBB integrity following ischemic stroke and related cerebrovascular diseases.
Collapse
Affiliation(s)
- Shuaishuai Gong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Huifen Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fan Zheng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Juan Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
Shan R, Zhou H, Liu X, Su G, Liu G, Zhang X, Sun C, Yu Z, Zhan L, Huang Z. Neuroprotective effects of four different fluids on cerebral ischaemia/reperfusion injury in rats through stabilization of the blood-brain barrier. Eur J Neurosci 2021; 54:5586-5600. [PMID: 34258805 PMCID: PMC9292910 DOI: 10.1111/ejn.15385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022]
Abstract
Protecting the blood–brain barrier (BBB) is a potential strategy to treat cerebral ischaemic injury. We previously reported that hypertonic sodium chloride hydroxyethyl starch 40 (HSH) treatment alleviates brain injury induced by transient middle cerebral artery occlusion (tMCAO). However, other fluids, including 20% mannitol (MN), 3% hypertonic sodium chloride (HTS) and hydroxyethyl starch 130/0.4 solution (HES), have the same effect as HSH in cerebral ischaemia/reperfusion injury (CI/RI) remains unclear. The present study evaluated the protective effects of these four fluids on the BBB in tMCAO rats. Sprague–Dawley (SD) rats were randomly assigned to six groups. A CI/RI rat model was established by tMCAO for 120 min followed by 24 h of reperfusion. The sham and tMCAO groups were treated with normal saline (NS), whereas the other four groups were treated with the four fluids. After 24 h of reperfusion, neurological function, brain oedema, brain infarction volume, permeability of the BBB, cortical neuron loss and protein and mRNA expression were assessed. The four fluids (especially HSH) alleviated neurological deficits and decreased the infarction volume, brain oedema, BBB permeability and cortical neuron loss induced by tMCAO. The expression levels of GFAP, IL‐1β, TNF‐α, MMP‐9, MMP‐3, AQP4, MMP‐9, PDGFR‐β and RGS5 were decreased, whereas the expression levels of laminin and claudin‐5 were increased. These data suggested that small‐volume reperfusion using HSH, HES, MN and HTS ameliorated CI/RI, probably by attenuating BBB disruption and postischaemic inflammation, with HSH exerting the strongest neuroprotective effect.
Collapse
Affiliation(s)
- Reai Shan
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Institute of Pain Medicine, Gannan Medical University, Ganzhou, China
| | - Hongyan Zhou
- Department of Anesthesiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xinfang Liu
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Guangjun Su
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Guangsen Liu
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Xiaoli Zhang
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Cong Sun
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Zining Yu
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Lifang Zhan
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zhihua Huang
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Institute of Pain Medicine, Gannan Medical University, Ganzhou, China.,Department of Physiology, Gannan Medical University, Ganzhou, China
| |
Collapse
|
23
|
Lv T, Zhao B, Hu Q, Zhang X. The Glymphatic System: A Novel Therapeutic Target for Stroke Treatment. Front Aging Neurosci 2021; 13:689098. [PMID: 34305569 PMCID: PMC8297504 DOI: 10.3389/fnagi.2021.689098] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
The glymphatic system (GS) is a novel defined brain-wide perivascular transit network between cerebrospinal fluid (CSF) and interstitial solutes that facilitates the clearance of brain metabolic wastes. The complicated network of the GS consists of the periarterial CSF influx pathway, astrocytes-mediated convective transport of fluid and solutes supported by AQP4 water channels, and perivenous efflux pathway. Recent researches indicate that the GS dysfunction is associated with various neurological disorders, including traumatic brain injury, hydrocephalus, epilepsy, migraine, and Alzheimer’s disease (AD). Meanwhile, the GS also plays a pivotal role in the pathophysiological process of stroke, including brain edema, blood–brain barrier (BBB) disruption, immune cell infiltration, neuroinflammation, and neuronal apoptosis. In this review, we illustrated the key anatomical structures of the GS, the relationship between the GS and the meningeal lymphatic system, the interaction between the GS and the BBB, and the crosstalk between astrocytes and other GS cellular components. In addition, we contributed to the current knowledge about the role of the GS in the pathology of stroke and the role of AQP4 in stroke. We further discussed the potential use of the GS in early risk assessment, diagnostics, prognostics, and therapeutics of stroke.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Cao L, Zhou Y, Chen M, Li L, Zhang W. Pericytes for Therapeutic Approaches to Ischemic Stroke. Front Neurosci 2021; 15:629297. [PMID: 34239409 PMCID: PMC8259582 DOI: 10.3389/fnins.2021.629297] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Pericytes are perivascular multipotent cells located on capillaries. Although pericytes are discovered in the nineteenth century, recent studies have found that pericytes play an important role in maintaining the blood—brain barrier (BBB) and regulating the neurovascular system. In the neurovascular unit, pericytes perform their functions by coordinating the crosstalk between endothelial, glial, and neuronal cells. Dysfunction of pericytes can lead to a variety of diseases, including stroke and other neurological disorders. Recent studies have suggested that pericytes can serve as a therapeutic target in ischemic stroke. In this review, we first summarize the biology and functions of pericytes in the central nervous system. Then, we focus on the role of dysfunctional pericytes in the pathogenesis of ischemic stroke. Finally, we discuss new therapies for ischemic stroke based on targeting pericytes.
Collapse
Affiliation(s)
- Lu Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanbo Zhou
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengguang Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Girolamo F, de Trizio I, Errede M, Longo G, d'Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021; 18:14. [PMID: 33743764 PMCID: PMC7980348 DOI: 10.1186/s12987-021-00242-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Central nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvasculopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches. ![]()
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.
| | - Ignazio de Trizio
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Intensive Care Unit, Department of Intensive Care, Regional Hospital of Lugano, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Molecular Biology Unit, University of Bari School of Medicine, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Department of Emergency and Organ Transplantation, Pathology Section, University of Bari School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| |
Collapse
|
26
|
Girolamo F, de Trizio I, Errede M, Longo G, d’Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021. [DOI: 10.1186/s12987-021-00242-7 union select null--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCentral nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvasculopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches.
Collapse
|
27
|
Gong S, Cao G, Li F, Chen Z, Pan X, Ma H, Zhang Y, Yu B, Kou J. Endothelial Conditional Knockdown of NMMHC IIA (Nonmuscle Myosin Heavy Chain IIA) Attenuates Blood-Brain Barrier Damage During Ischemia-Reperfusion Injury. Stroke 2021; 52:1053-1064. [PMID: 33588591 DOI: 10.1161/strokeaha.120.031410] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE In ischemic stroke, breakdown of the blood-brain barrier (BBB) aggravates brain damage. Endothelial detachment contributes to BBB disruption and neurovascular dysfunction, but its regulation in stroke has yet to be clarified. We investigated the function of NMMHC IIA (nonmuscle myosin heavy chain IIA) in the endothelium on BBB breakdown and its potential mechanisms. METHODS Endothelial conditional knockdown NMMHC IIA (Myh9ECKD) was constructed in vivo and in vitro, and its role was explored in middle cerebral artery occlusion/reperfusion-injured mice and oxygen-glucose deprivation/reoxygenation-injured brain microvascular endothelial cells. The degree of brain injury was analyzed using staining (2,3,5-triphenyltetrazolium chloride, hematoxylin, and eosin) and electron microscopy. BBB breakdown was investigated with leakage of Evans Blue dye and expression of TJs (tight junctions) and MMP (matrix metallopeptidase)-2/9. Transcriptomics for enrichment analysis was adopted to explore the potential downstream signaling pathways of NMMHC IIA involved in middle cerebral artery occlusion/reperfusion-induced BBB dysfunction. RESULTS NMMHC IIA expression was upregulated in endothelial cells after cerebral ischemia/reperfusion injury. Myh9ECKD mice exhibited improvement in endothelial barrier hyperpermeability and TJs integrity stimulated by cerebral ischemia/reperfusion. Blebbistatin (NMMHC II inhibitor) treatment exerted the same effect. Transcriptomics showed that NMMHC IIA was involved in regulating various BBB-related genomic changes in the middle cerebral artery occlusion/reperfusion model, and NMMHC IIA was confirmed to significantly modulate Hippo and peroxisome proliferator-activated receptor gamma/nuclear factor-kappa B signaling pathways, which are closely related to BBB damage. CONCLUSIONS Our findings provide some new insights into how NMMHC IIA contributes to maintaining the integrity of the cerebral endothelial barrier. NMMHC IIA could be a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Shuaishuai Gong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, PR China (S.G., G.C., F.L., Z.C., X.P., H.M., Y.Z., B.Y., J.K.)
| | - Guosheng Cao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, PR China (S.G., G.C., F.L., Z.C., X.P., H.M., Y.Z., B.Y., J.K.).,College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, PR China (G.C.)
| | - Fang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, PR China (S.G., G.C., F.L., Z.C., X.P., H.M., Y.Z., B.Y., J.K.)
| | - Zhuo Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, PR China (S.G., G.C., F.L., Z.C., X.P., H.M., Y.Z., B.Y., J.K.)
| | - Xuewei Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, PR China (S.G., G.C., F.L., Z.C., X.P., H.M., Y.Z., B.Y., J.K.)
| | - Huifen Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, PR China (S.G., G.C., F.L., Z.C., X.P., H.M., Y.Z., B.Y., J.K.)
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, PR China (S.G., G.C., F.L., Z.C., X.P., H.M., Y.Z., B.Y., J.K.)
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, PR China (S.G., G.C., F.L., Z.C., X.P., H.M., Y.Z., B.Y., J.K.)
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, PR China (S.G., G.C., F.L., Z.C., X.P., H.M., Y.Z., B.Y., J.K.)
| |
Collapse
|
28
|
Wang J, Ma J, Nie H, Zhang XJ, Zhang P, She ZG, Li H, Ji YX, Cai J. Hepatic Regulator of G Protein Signaling 5 Ameliorates Nonalcoholic Fatty Liver Disease by Suppressing Transforming Growth Factor Beta-Activated Kinase 1-c-Jun-N-Terminal Kinase/p38 Signaling. Hepatology 2021; 73:104-125. [PMID: 32191345 DOI: 10.1002/hep.31242] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, which has no specific pharmacological treatments partially because of the unclear pathophysiological mechanisms. Regulator of G protein signaling (RGSs) proteins are proteins that negatively regulate G protein-coupled receptor (GPCR) signaling. The members of the R4/B subfamily are the smallest RGS proteins in size, and RGS5 belongs to this family, which mediates pluripotent biological functions through canonical G protein-mediated pathways and non-GPCR pathways. This study combined a genetically engineered rodent model and a transcriptomics-sequencing approach to investigate the role and regulatory mechanism of RGS5 in the development of NAFLD. APPROACH AND RESULTS This study found that RGS5 protects against NAFLD and nonalcoholic steatohepatitis. Using RNA sequencing and an unbiased systematic investigative approach, this study found that the activation of mitogen-activated protein kinase signaling cascades in response to metabolic challenge is negatively associated with hepatic RGS5 expression. Mechanistically, we found that the 64-181 amino-acid-sequence (aa) fragment of RGS5 directly interacts with transforming growth factor beta-activated kinase 1 (TAK1) through the 1-300aa fragment and inhibits TAK1 phosphorylation and the subsequent c-Jun-N-terminal kinase (JNK)/p38 pathway activation. CONCLUSIONS In hepatocytes, RGS5 is an essential molecule that protects against the progression of NAFLD. RGS5 directly binds to TAK1, preventing its hyperphosphorylation and the activation of the downstream JNK/p38 signaling cascade. RGS5 is a promising target molecule for fine-tuning the activity of TAK1 and for the treatment of NAFLD.
Collapse
Affiliation(s)
- Junyong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China
| | - Junpeng Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| | - Hongyu Nie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| | - Peng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China.,Department of Cardiology, Central South University, The Third Xiangya Hospital, Changsha, China
| |
Collapse
|
29
|
Quelhas P, Baltazar G, Cairrao E. The Neurovascular Unit: Focus on the Regulation of Arterial Smooth Muscle Cells. Curr Neurovasc Res 2020; 16:502-515. [PMID: 31738142 DOI: 10.2174/1567202616666191026122642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/01/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023]
Abstract
The neurovascular unit is a physiological unit present in the brain, which is constituted by elements of the nervous system (neurons and astrocytes) and the vascular system (endothelial and mural cells). This unit is responsible for the homeostasis and regulation of cerebral blood flow. There are two major types of mural cells in the brain, pericytes and smooth muscle cells. At the arterial level, smooth muscle cells are the main components that wrap around the outside of cerebral blood vessels and the major contributors to basal tone maintenance, blood pressure and blood flow distribution. They present several mechanisms by which they regulate both vasodilation and vasoconstriction of cerebral blood vessels and their regulation becomes even more important in situations of injury or pathology. In this review, we discuss the main regulatory mechanisms of brain smooth muscle cells and their contributions to the correct brain homeostasis.
Collapse
Affiliation(s)
- Patrícia Quelhas
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Graça Baltazar
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Elisa Cairrao
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| |
Collapse
|
30
|
Sladojevic N, Yu B, Liao JK. Regulator of G-Protein Signaling 5 Maintains Brain Endothelial Cell Function in Focal Cerebral Ischemia. J Am Heart Assoc 2020; 9:e017533. [PMID: 32875943 PMCID: PMC7726987 DOI: 10.1161/jaha.120.017533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Regulator of G‐protein signaling 5 (RGS5) is a negative modulator of G‐protein–coupled receptors. The role of RGS5 in brain endothelial cells is not known. We hypothesized that RGS5 in brain microvascular endothelial cells may be an important mediator of blood‐brain barrier function and stroke severity after focal cerebral ischemia. Methods and Results Using a transient middle cerebral artery occlusion model, we found that mice with global and endothelial‐specific deletion of Rgs5 exhibited larger cerebral infarct size, greater neurological motor deficits, and increased brain edema. In our in vitro models, we observed increased Gq activity and elevated intracellular Ca2+ levels in brain endothelial cells. Furthermore, the loss of endothelial RGS5 leads to decreased endothelial NO synthase expression and phosphorylation, relocalization of endothelial tight junction proteins, and increased cell permeability. Indeed, RGS5 deficiency leads to increased Rho‐associated kinase and myosin light chain kinase activity, which were partially reversed in our in vitro model by pharmacological inhibition of Gq, metabotropic glutamate receptor 1, and ligand‐gated ionotropic glutamate receptor. Conclusions Our findings indicate that endothelial RGS5 plays a novel neuroprotective role in focal cerebral ischemia. Loss of endothelial RGS5 leads to hyperresponsiveness to glutamate signaling pathways, enhanced Rho‐associated kinase– and myosin light chain kinase–mediated actin‐cytoskeleton reorganization, endothelial dysfunction, tight junction protein relocalization, increased blood‐brain barrier permeability, and greater stroke severity. These findings suggest that preservation of endothelial RGS5 may be an important therapeutic strategy for maintaining blood‐brain barrier integrity and limiting the severity of ischemic stroke.
Collapse
Affiliation(s)
- Nikola Sladojevic
- Section of Cardiology Department of Medicine University of Chicago Chicago IL
| | - Brian Yu
- Section of Cardiology Department of Medicine University of Chicago Chicago IL
| | - James K Liao
- Section of Cardiology Department of Medicine University of Chicago Chicago IL
| |
Collapse
|
31
|
Defective Function of the Blood-Brain Barrier in a Stroke-Prone Spontaneously Hypertensive Rat: Evaluation in an In Vitro Cell Culture Model. Cell Mol Neurobiol 2020; 42:243-253. [PMID: 32648236 DOI: 10.1007/s10571-020-00917-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/05/2020] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) comprises three cell types: brain capillary endothelial cells (BECs), astrocytes, and pericytes. Abnormal interaction among these cells may induce BBB dysfunction and lead to cerebrovascular diseases. The stroke-prone spontaneously hypertensive rat (SHRSP) harbors a defective BBB, so we designed the present study to examine the role of these three cell types in a functional disorder of the BBB in SHRSP in order to elucidate the role of these cells in the BBB more generally. To this end, we employed a unique in vitro model of BBB, in which various combinations of the cells could be tested. The three types of cells were prepared from both SHRSPs and Wistar Kyoto rats (WKYs). They were then co-cultured in various combinations to construct in vitro BBB models. The barrier function of the models was estimated by measuring transendothelial electrical resistance and the permeability of the endothelial monolayer to sodium fluorescein. The in vitro models revealed that (1) BECs from SHRSPs had an inherent lower barrier function, (2) astrocytes of SHRSPs had an impaired ability to induce barrier function in BECs, although (3) both pericytes and astrocytes of SHRSPs and WKYs could potentiate the barrier function of BECs under co-culture conditions. Furthermore, we found that claudin-5 expression was consistently lower in models that used BECs and/or SHRSP astrocytes. These results suggested that defective interaction among BBB cells-especially BECs and astrocytes-was responsible for a functional disorder of the BBB in SHRSPs.
Collapse
|
32
|
Zhang L, Xu S, Wu X, Chen J, Guo X, Cao Y, Zhang Z, Yan J, Cheng J, Han Z. Combined Treatment With 2-(2-Benzofu-Ranyl)-2-Imidazoline and Recombinant Tissue Plasminogen Activator Protects Blood-Brain Barrier Integrity in a Rat Model of Embolic Middle Cerebral Artery Occlusion. Front Pharmacol 2020; 11:801. [PMID: 32595494 PMCID: PMC7303334 DOI: 10.3389/fphar.2020.00801] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Recombinant tissue plasminogen activator (rt-PA) is used to treat acute ischemic stroke but is only effective if administered within 4.5 h after stroke onset. Delayed rt-PA treatment causes blood-brain barrier (BBB) disruption and hemorrhagic transformation. The compound 2-(-2-benzofuranyl)-2-imidazoline (2-BFI), a newly discovered antagonist of high-affinity postsynaptic N-methyl-D-aspartate (NMDA) receptors, has been shown to have neuroprotective effects in ischemia. Here, we investigated whether combining 2-BFI and rt-PA can ameliorate BBB disruption and prolong the therapeutic window in a rat model of embolic middle cerebral artery occlusion (eMCAO). Ischemia was induced in male Sprague Dawley rats by eMCAO, after which they were treated with 2-BFI (3 mg/kg) at 0.5 h in combination with rt-PA (10 mg/kg) at 6 or 8 h. Control rats were treated with saline or 2-BFI or rt-PA. Combined therapy with 2-BFI and rt-PA (6 h) reduced the infarct volume, denatured cell index, BBB permeability, and brain edema. This was associated with increased expression of aquaporin 4 (AQP4) and tight junction proteins (occludin and ZO-1) and downregulation of intercellular adhesion molecule 1 (ICAM-1) and matrix metalloproteinases 2 and 9 (MMP2 and MMP9). We conclude that 2-BFI protects the BBB from damage caused by delayed rt-PA treatment in ischemia. 2-BFI may therefore extend the therapeutic window up to 6 h after stroke onset in rats and may be a promising therapeutic strategy for humans. However, mechanisms to explain the effects oberved in the present study are not yet elucidated.
Collapse
Affiliation(s)
- Linlei Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of General Intensive Care Unit, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shasha Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiao Wu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaou Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoling Guo
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yungang Cao
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheng Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jueyue Yan
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianhua Cheng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhao Han
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Zhang Y, Zhang X, Wei Q, Leng S, Li C, Han B, Bai Y, Zhang H, Yao H. Activation of Sigma-1 Receptor Enhanced Pericyte Survival via the Interplay Between Apoptosis and Autophagy: Implications for Blood-Brain Barrier Integrity in Stroke. Transl Stroke Res 2020; 11:267-287. [PMID: 31290080 DOI: 10.1007/s12975-019-00711-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Stroke is a cerebrovascular disorder that affects many people worldwide. Pericytes play an important role in stroke progression and recovery. The sigma-1 receptor (σ-1R) signaling pathway has been suggested as having promising neuroprotective potential in treating stroke; however, whether σ-1R activation regulates pericyte function remains unknown. The aim of this study was to elucidate the role of σ-1R and a novel σ-1R agonist in pericytes following ischemic stroke. An ischemic stroke animal model was induced by photothrombotic middle cerebral artery occlusion (pMCAO) in σ-1R knockout (KO) and wild-type (WT) mice. After pMCAO, there was significant pericyte loss and coverage in σ-1R KO mice compared with WT mice as determined using transmission electron microscopy, immunofluorescence staining, and western blot. Interestingly, a novel σ-1R agonist decreased infarct volume and blood-brain barrier damage with a concomitant amelioration of pericyte loss, as determined by western blot. Further studies indicated that cell apoptosis and autophagy were induced in an in vivo pMCAO ischemic stroke animal model and an in vitro oxygen glucose deprivation-treatment group. Inhibition of autophagy using a pharmacological approach significantly mitigated pericyte apoptosis, suggesting that autophagy was upstream of apoptosis in pericytes. Both in vivo and in vitro studies indicated that the σ-1R agonist significantly decreased cell apoptosis via inhibition of autophagy with a subsequent enhancement of pericyte survival. This study identified the unique roles for σ-1R in mediating pericyte survival via the regulation of the interplay between apoptosis and autophagy, suggesting that a novel σ-1R agonist may be a promising therapeutic agent for the treatment of stroke patients.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | | | - Qiangqiang Wei
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Cai Li
- Department of Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, 276800, Shandong, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
34
|
Hsu LC, Hsu LS, Lee TH. RGS5 rs4657251 polymorphism is associated with small vessel occlusion stroke in Taiwan Han Chinese. J Chin Med Assoc 2020; 83:251-254. [PMID: 32080025 DOI: 10.1097/jcma.0000000000000250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The regulator of G-protein signaling protein 5 (RGS5) has been demonstrated to play a role in regulating blood pressure and cardiovascular function. Studies have shown that RGS5 polymorphisms exhibit susceptibility to hypertension. However, no study has yet been performed among stroke patients. METHODS To evaluate whether RGS5 rs4657251 is a susceptibility gene for stroke, we performed a case-control association study involving 714 large-artery atherosclerosis (LAA) patients, 383 small vessel occlusion (SVO) patients, 401 hypertensive intracranial hemorrhages (HICH), and 626 controls. The RGS5 rs4657251 polymorphism was analyzed through polymerase chain reaction. RESULTS The TC genotype was significantly higher in the SVO group compared with that in the control group (odds ratio [OR] = 1.34, 95% confidence interval [CI] = 1.02-1.76, p = 0.035). In addition, the dominant phenotype (TC + CC vs TT) was also significantly different between the SVO and the control groups (OR = 1.31, 95% CI = 1.01-1.70, p = 0.046). However, no association was found between RGS5 rs4657251 and LAA an HICH. After adjustment with gender, diabetes, smoking, cholesterol and low-density lipoprotein levels, RGS5 rs4657251 polymorphism remained an independent risk factor for SVO (OR = 1.49; 95% CI = 1.12-1.98) but not for LAA or HICH. CONCLUSION Our findings, obtained among Taiwan Han Chinese subjects, provide the first evidence that RGS5 rs4657251 polymorphism is an independent risk factor for SVO.
Collapse
Affiliation(s)
- Li-Chi Hsu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang-Ming University school of Medicine, Taipei, Taiwan, ROC
| | - Li-Sung Hsu
- Institutes of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Tsong-Hai Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Neurology and Stroke Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| |
Collapse
|
35
|
Lu Z, Zhang D, Cui K, Fu X, Man J, Lu H, Yu L, Gao Y, Liu X, Liao L, Li X, Liu C, Zhang Y, Zhang Z, Wang J. Neuroprotective Action of Teriflunomide in a Mouse Model of Transient Middle Cerebral Artery Occlusion. Neuroscience 2019; 428:228-241. [PMID: 31887363 DOI: 10.1016/j.neuroscience.2019.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 12/11/2022]
Abstract
Teriflunomide has been reported to inhibit microglial activation in experimental models of traumatic brain injury. However, its roles in ischemic stroke and underlying mechanisms of action are still undiscovered. In this study, we investigated the effects of teriflunomide on brain edema, neurologic deficits, infarct volume, neuroinflammation, blood-brain barrier (BBB) permeability, and neurogenesis in a mouse model of transient middle cerebral artery occlusion (tMCAO). tMCAO mice treated with teriflunomide showed lower brain water content on day 3, milder neurologic deficits and smaller infarct volume on day 7 than those treated with vehicle. Additionally, mice received teriflunomide had fewer activated Iba-1-positive microglia and lower protein levels of interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), and 3-Nitrotyrosine (3-NT) compared with those received vehicle on day 3. Further, teriflunomide alleviated Evans blue dye leakage, increased pericyte coverage and protein levels of platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor β (PDGFRβ) and Bcl2, and decreased the number of PDGFRβ/matrix metalloproteinase 9 (MMP9)-positive cells. Moreover, teriflunomide reduced the loss of zonula occludens-1 (ZO-1) and occludin. Finally, teriflunomide significantly upregulated the number of 5-bromo-20-deoxyuridine (BrdU)/doublecortin (DCX)-positive cells and expression of mammalian achaete-scute homolog 1 (Mash1), DCX and Pbx1 in subventricular zone (SVZ) on day 7 after stroke. Our results indicate that teriflunomide exhibits protective roles in ischemic stroke by inhibiting neuroinflammation, alleviating BBB disruption and enhancing neurogenesis.
Collapse
Affiliation(s)
- Zhengfang Lu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Di Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Kefei Cui
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Xiaojie Fu
- Department of Neurointervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Jiang Man
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Lie Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Yufeng Gao
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Xianliang Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Linghui Liao
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Xiang Li
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Chang Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Yongxin Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Zhen Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Jianping Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China.
| |
Collapse
|
36
|
Mathiesen Janiurek M, Soylu-Kucharz R, Christoffersen C, Kucharz K, Lauritzen M. Apolipoprotein M-bound sphingosine-1-phosphate regulates blood-brain barrier paracellular permeability and transcytosis. eLife 2019; 8:e49405. [PMID: 31763978 PMCID: PMC6877292 DOI: 10.7554/elife.49405] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
The blood-brain barrier (BBB) is formed by the endothelial cells lining cerebral microvessels, but how blood-borne signaling molecules influence permeability is incompletely understood. We here examined how the apolipoprotein M (apoM)-bound sphingosine 1-phosphate (S1P) signaling pathway affects the BBB in different categories of cerebral microvessels using ApoM deficient mice (Apom-/-). We used two-photon microscopy to monitor BBB permeability of sodium fluorescein (376 Da), Alexa Fluor (643 Da), and fluorescent albumin (45 kDA). We show that BBB permeability to small molecules increases in Apom-/- mice. Vesicle-mediated transfer of albumin in arterioles increased 3 to 10-fold in Apom-/- mice, whereas transcytosis in capillaries and venules remained unchanged. The S1P receptor 1 agonist SEW2871 rapidly normalized paracellular BBB permeability in Apom-/- mice, and inhibited transcytosis in penetrating arterioles, but not in pial arterioles. Thus, apoM-bound S1P maintains low paracellular BBB permeability in all cerebral microvessels and low levels of vesicle-mediated transport in penetrating arterioles.
Collapse
Affiliation(s)
| | | | - Christina Christoffersen
- Department of Clinical BiochemistryRigshospitaletCopenhagenDenmark
- Department of Biomedical SciencesCopenhagen UniversityCopenhagenDenmark
| | | | - Martin Lauritzen
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical NeurophysiologyRigshospitalet-GlostrupCopenhagenDenmark
| |
Collapse
|
37
|
Roth M, Enström A, Aghabeick C, Carlsson R, Genové G, Paul G. Parenchymal pericytes are not the major contributor of extracellular matrix in the fibrotic scar after stroke in male mice. J Neurosci Res 2019; 98:826-842. [PMID: 31758600 PMCID: PMC7154736 DOI: 10.1002/jnr.24557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
Abstract
Scar formation after injury of the brain or spinal cord is a common event. While glial scar formation by astrocytes has been extensively studied, much less is known about the fibrotic scar, in particular after stroke. Platelet‐derived growth factor receptor ß‐expressing (PDGFRß+) pericytes have been suggested as a source of the fibrotic scar depositing fibrous extracellular matrix (ECM) proteins after detaching from the vessel wall. However, to what extent these parenchymal PDGFRß+ cells contribute to the fibrotic scar and whether targeting these cells affects fibrotic scar formation in stroke is still unclear. Here, we utilize male transgenic mice that after a permanent middle cerebral artery occlusion stroke model have a shift from a parenchymal to a perivascular location of PDGFRß+ cells due to the loss of regulator of G‐protein signaling 5 in pericytes. We find that only a small fraction of parenchymal PDGFRß+ cells co‐label with type I collagen and fibronectin. Consequently, a reduction in parenchymal PDGFRß+ cells by ca. 50% did not affect the overall type I collagen or fibronectin deposition after stroke. The redistribution of PDGFRß+ cells to a perivascular location, however, resulted in a reduced thickening of the vascular basement membrane and changed the temporal dynamics of glial scar maturation after stroke. We demonstrate that parenchymal PDGFRß+ cells are not the main contributor to the fibrotic ECM, and therefore targeting these cells might not impact on fibrotic scar formation after stroke.
Collapse
Affiliation(s)
- Michaela Roth
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Candice Aghabeick
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Guillem Genové
- Integrated Cardio Metabolic Center, Department of Medicine, Karolinska Institute, Huddinge, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.,Department of Neurology, Scania University Hospital, Lund, Sweden.,Wallenberg Centrum for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
38
|
Su X, Huang L, Qu Y, Xiao D, Mu D. Pericytes in Cerebrovascular Diseases: An Emerging Therapeutic Target. Front Cell Neurosci 2019; 13:519. [PMID: 31824267 PMCID: PMC6882740 DOI: 10.3389/fncel.2019.00519] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Pericytes are functional components of the neurovascular unit (NVU) that are located around the blood vessels, and their roles in the regulation of cerebral health and diseases has been reported. Currently, the potential properties of pericytes as emerging therapeutic targets for cerebrovascular diseases have attracted considerable attention. Nonetheless, few reviews have comprehensively discussed pericytes and their roles in cerebrovascular diseases. Therefore, in this review, we not only summarized and described the basic characteristics of pericytes but also focused on clarifying the new understanding about the roles of pericytes in the pathogenesis of cerebrovascular diseases, including white matter injury (WMI), hypoxic-ischemic brain damage, depression, neovascular insufficiency disease, and Alzheimer's disease (AD). Furthermore, we summarized the current therapeutic strategies targeting pericytes for cerebrovascular diseases. Collectively, this review is aimed at providing a comprehensive understanding of pericytes and new insights about the use of pericytes as novel therapeutic targets for cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Lingyi Huang
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dongqiong Xiao
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
39
|
Xu H, Liu Y, Wang D, Zhang Z. Shenmai injection maintains blood-brain barrier integrity following focal cerebral ischemia via modulating the expression and trafficking of occludin in lipid rafts. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:55-63. [PMID: 30902744 DOI: 10.1016/j.jep.2019.03.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/20/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenmai injection (SMI), a traditional Chinese herbal medicine is widely used for the clinical treatment of cerebral infarction in China. AIM OF THE STUDY Tight junctions (TJs) are major components of the blood-brain barrier (BBB) that physically restrict the paracellular diffusion of blood-borne substances between endothelial cells into the CNS. TJ proteins are associated with cholesterol-enriched regions of plasma membrane known as lipid rafts, which are critical for the trafficking, positioning and function of TJ proteins. In this study, we investigated the effect of SMI on the expression and trafficking of the key TJ-associated protein, occludin, in lipid rafts. MATERIALS AND METHODS Using a neutral pH, rat cerebral microvessels were subjected to detergent-free density-gradient fractionation to isolate lipid rafts containing occludin. Transmission electron microscopy (TEM) was performed to study the effects of drug administration on ultrastructural changes to TJs. Western blotting (WB), immunofluorescence (IF), and co-immunoprecipitation (COIP) were used to observe the localization and function of TJ-associated proteins. RESULTS We successfully isolated cerebral microvessels and separated lipid rafts from plasma membranes. With SMI treatment, extravasation of FITC-albumin decreased around the cerebral vessels by IF, the tight junctions were found to still be intact and the basement membrane appeared to be of uniform thickness in TEM. Compared with the untreated group, the co-expression of flotillin-1 and occludin in microvascular endothelial cells was increased and distributed continuously in SMI treatment as shown in double label IF. SMI significantly increased the translocation of occludin to lipid raft fractions by WB and COIP. CONCLUSIONS SMI helps maintain the proper assembly of the TJ multiprotein complex in lipid rafts, thereby helping to preserve BBB functional integrity during focal cerebral ischemic insult. Our findings enhance our understanding of the mechanisms underlying the neuroprotective effect of SMI in cerebral ischemia.
Collapse
Affiliation(s)
- Huaming Xu
- Department of Integrated Traditional and Western Medicine, Xiangya Hospital of Central South University, No.87 Xiangya Road, Changsha, Hunan Province, 410008, China; Henan University of Chinese Medicine, No.156 Jinshui East Road, Zhengzhou, Henan Province, 450046, China.
| | - Yuan Liu
- Beijing Hongci Healthcare Investment Management Co., Ltd., 89 Jinbao Street, Dongcheng District, Beijing, 100005, China.
| | - Dongsheng Wang
- Department of Integrated Traditional and Western Medicine, Xiangya Hospital of Central South University, No.87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| | - Zhenqiang Zhang
- Henan University of Chinese Medicine, No.156 Jinshui East Road, Zhengzhou, Henan Province, 450046, China.
| |
Collapse
|
40
|
Roth M, Gaceb A, Enström A, Padel T, Genové G, Özen I, Paul G. Regulator of G-protein signaling 5 regulates the shift from perivascular to parenchymal pericytes in the chronic phase after stroke. FASEB J 2019; 33:8990-8998. [PMID: 31039042 PMCID: PMC6662981 DOI: 10.1096/fj.201900153r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poststroke recovery requires multiple repair mechanisms, including vascular remodeling and blood-brain barrier (BBB) restoration. Brain pericytes are essential for BBB repair and angiogenesis after stroke, but they also give rise to scar-forming platelet-derived growth factor receptor β (PDGFR-β)–expressing cells. However, many of the molecular mechanisms underlying this pericyte response after stroke still remain unknown. Regulator of G-protein signaling 5 (RGS5) has been associated with pericyte detachment from the vascular wall, but whether it regulates pericyte function and vascular stabilization in the chronic phase of stroke is not known. Using RGS5–knockout (KO) mice, we study how loss of RGS5 affects the pericyte response and vascular remodeling in a stroke model at 7 d after ischemia. Loss of RGS5 leads to a shift toward an increase in the number of perivascular pericytes and reduction in the density of parenchymal PDGFR-β–expressing cells associated with normalized PDGFR-β activation after stroke. The redistribution of pericytes resulted in higher pericyte coverage, increased vascular density, preservation of vessel lengths, and a significant reduction in vascular leakage in RGS5-KO mice compared with controls. Our study demonstrates RGS5 in pericytes as an important target to enhance vascular remodeling.—Roth, M., Gaceb, A., Enström, A., Padel, T., Genové, G., Özen, I., Paul, G. Regulator of G-protein signaling 5 regulates the shift from perivascular to parenchymal pericytes in the chronic phase after stroke.
Collapse
Affiliation(s)
- Michaela Roth
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Abderahim Gaceb
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Thomas Padel
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Guillem Genové
- Department of Medicine, Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Ilknur Özen
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden.,Department of Neurology, Scania University Hospital, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|