1
|
Straeten FA, Strecker JK, Börsch AL, Maus B, Hoppen M, Schmeddes B, Härtel L, Fleck AK, van Zyl S, Straeten T, Beuker C, Koecke M, Mueller-Miny L, Faber C, Meyer zu Hörste G, Klotz L, Minnerup J, Schmidt-Pogoda A. A dietary intervention with conjugated linoleic acid enhances microstructural white matter reorganization in experimental stroke. Front Neurol 2024; 15:1341958. [PMID: 39372701 PMCID: PMC11449868 DOI: 10.3389/fneur.2024.1341958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
Background A dietary supplementation with conjugated linoleic acid (CLA) was shown to attenuate inflammation and increase the proportions of circulating regulatory T cells (Tregs) and M2-type macrophages in disease models such as autoimmune encephalitis and arteriosclerosis. Since Tregs and anti-inflammatory (M2-type) macrophages were found to enhance stroke recovery, we hypothesized that CLA-supplementation might improve stroke recovery via immune modulatory effects. Methods Functional assessment was performed over 90 days after induction of experimental photothrombotic stroke in wild type mice (n = 37, sham n = 10). Subsequently, immunological characterization of different immunological compartments (n = 16), ex vivo magnetic resonance (MR, n = 12) imaging and immunohistochemical staining (n = 8) was performed. Additionally, we tested the effect of CLA in vitro on peripheral blood mononuclear cells from human stroke patients and healthy controls (n = 12). Results MR diffusion tensor imaging (DTI) demonstrated enhanced microstructural reorganization of interhemispheric white matter tracts, dependent on lesion size. Functional recovery over 90 days remained unaffected. Detailed immunological analyses across various compartments revealed no significant long-term immunological alterations due to CLA. However, analyses of human blood samples post-stroke showed reduced levels of pro-inflammatory interferon-γ (IFN-γ) and tumor necrosis factor alpha (TNF-α) release by T-lymphocytes following in vitro treatment with CLA. Conclusion We aimed to explore the efficacy of a dietary intervention with minimal known side effects that could be accessible to human stroke patients, regardless of the degree of disability, and without the risks associated with aggressive immunomodulatory therapies. Our main findings include improved microstructural reorganization in small infarcts and a reduced inflammatory response of human T cells in vitro.
Collapse
Affiliation(s)
- Frederike A. Straeten
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Jan-Kolja Strecker
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Anna-Lena Börsch
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Bastian Maus
- Translational Research Imaging Center, University of Münster, Münster, Germany
- Clinic of Radiology, University Hospital Münster, University of Münster, Münster, Germany
| | - Maike Hoppen
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Birgit Schmeddes
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Lucia Härtel
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Ann-Katrin Fleck
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Stephanie van Zyl
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Tabea Straeten
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Carolin Beuker
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Mailin Koecke
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Louisa Mueller-Miny
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, University of Münster, Münster, Germany
- Clinic of Radiology, University Hospital Münster, University of Münster, Münster, Germany
| | - Gerd Meyer zu Hörste
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Luisa Klotz
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Jens Minnerup
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Antje Schmidt-Pogoda
- Department of Neurology, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Volloch V, Rits-Volloch S. Quintessential Synergy: Concurrent Transient Administration of Integrated Stress Response Inhibitors and BACE1 and/or BACE2 Activators as the Optimal Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2024; 25:9913. [PMID: 39337400 PMCID: PMC11432332 DOI: 10.3390/ijms25189913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The present study analyzes two potential therapeutic approaches for Alzheimer's disease (AD). One is the suppression of the neuronal integrated stress response (ISR). Another is the targeted degradation of intraneuronal amyloid-beta (iAβ) via the activation of BACE1 (Beta-site Aβ-protein-precursor Cleaving Enzyme) and/or BACE2. Both approaches are rational. Both are promising. Both have substantial intrinsic limitations. However, when combined in a carefully orchestrated manner into a composite therapy they display a prototypical synergy and constitute the apparently optimal, potentially most effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Iqbal M, Zaman M, Ojha N, Gau YTA, Young EI. The known and unknown of post-pump chorea: a case report on robust steroid responsiveness implicating occult neuroinflammation. Front Immunol 2024; 15:1458022. [PMID: 39318628 PMCID: PMC11419990 DOI: 10.3389/fimmu.2024.1458022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Post-pump chorea (PPC) is characterized by the development of choreiform movements following cardiopulmonary bypass (CPB) surgery. PPC occurs almost exclusively in children, and its pathophysiology remains unclear. Here we present an adult case of PPC after bovine aortic valve replacement (AVR) which exhibited dramatic and reproducible response to steroid, suggesting the presence of occult neuroinflammation. This observation suggests a novel underlying mechanism in certain subgroups of PPC, which is likely a heterogeneous condition to start with. Further research into the pathomechanisms of PPC could offer insights into managing this otherwise symptomatic control-only condition.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Muizz Zaman
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Niranjan Ojha
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Yung-Tian A Gau
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eufrosina I Young
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
4
|
Ma Y, Zheng K, Zhao C, Chen J, Chen L, Zhang Y, Chen T, Yao X, Cai Y, Wu J. Microglia LILRB4 upregulation reduces brain damage after acute ischemic stroke by limiting CD8 + T cell recruitment. J Neuroinflammation 2024; 21:214. [PMID: 39217343 PMCID: PMC11366150 DOI: 10.1186/s12974-024-03206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Leukocyte immunoglobulin-like receptor B4 (LILRB4) plays a significant role in regulating immune responses. LILRB4 in microglia might influence the infiltration of peripheral T cells. However, whether and how LILRB4 expression aggravates brain damage after acute ischemic stroke remains unclear. This study investigates the role of LILRB4 in modulating the immune response and its potential protective effects against ischemic brain injury in mice. METHODS AND RESULTS Microglia-specific LILRB4 conditional knockout (LILRB4-KO) and overexpression transgenic (LILRB4-TG) mice were constructed by a Cre-loxP system. Then, they were used to investigate the role of LILRB4 after ischemic stroke using a transient middle cerebral artery occlusion (tMCAO) mouse model. Spatial transcriptomics analysis revealed increased LILRB4 expression in the ischemic hemisphere. Single-cell RNA sequencing (scRNA-seq) identified microglia-cluster3, an ischemia-associated microglia subcluster with elevated LILRB4 expression in the ischemic brain. Flow cytometry and immunofluorescence staining showed increased CD8+ T cell infiltration into the brain in LILRB4-KO-tMCAO mice. Behavioral tests, cortical perfusion maps, and infarct size measurements indicated that LILRB4-KO-tMCAO mice had more severe functional deficits and larger infarct sizes compared to Control-tMCAO and LILRB4-TG-tMCAO mice. T cell migration assays demonstrated that LILRB4-KD microglia promoted CD8+ T cell recruitment and activation in vitro, which was mitigated by CCL2 inhibition and recombinant arginase-1 addition. The scRNA-seq and spatial transcriptomics identified CCL2 was predominantly secreted from activated microglia/macrophage and increased CCL2 expression in LILRB4-KD microglia, suggesting a chemokine-mediated mechanism of LILRB4. CONCLUSION LILRB4 in microglia plays a crucial role in modulating the post-stroke immune response by regulating CD8+ T cell infiltration and activation. Knockout of LILRB4 exacerbates ischemic brain injury by promoting CD8+ T cell recruitment. Overexpression of LILRB4, conversely, offers neuroprotection. These findings highlight the therapeutic potential of targeting LILRB4 and its downstream pathways to mitigate immune-mediated damage in ischemic stroke.
Collapse
Affiliation(s)
- Yilin Ma
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Kai Zheng
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Chengcheng Zhao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jieli Chen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Lin Chen
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Yue Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Tao Chen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Xiuhua Yao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Ying Cai
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.
| | - Jialing Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.
| |
Collapse
|
5
|
Safarbalou A, Abbasi A. Oral administration of liposome-encapsulated thymol could alleviate the inflammatory parameters in serum and hippocampus in a rat model of Alzheimer's disease. Exp Gerontol 2024; 193:112473. [PMID: 38801839 DOI: 10.1016/j.exger.2024.112473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Neuroinflammation is closely related to Alzheimer's Disease (AD) pathology, hence supplements with anti-inflammatory property could help attenuate the progression of AD. This study was conducted to evaluate the potential anti-inflammatory effects of liposome encapsulated thymol (LET), administered orally, in prevention of Alzheimer in a rat model by anti-inflammatory mechanisms. METHODS The rats were grouped into six groups (n = 10 animals per group), including Control healthy (Con), Alzheimer's disease (AD) model, AD model treated with free thymol in 40 and 80 mg/kg body weight (TH40 and TH80), AD model treated with LET in 40 and 80 mg/kg of body weight (LET40 and LET80). The behavioral response of step through latency (Passive Avoidance Test), concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) and brain-derived neurotrophic factor (BDNF) were assessed in serum and hippocampus. RESULTS The results showed that significant increase in concentrations of IL-1β (P = 0.001), IL-6 (P = 0.001), TNF-α (P = 0.001) and COX-2 (P = 0.001) in AD group compared with healthy control rats. AD induction significantly reduced step through latency and revealed deficits in passive avoidance performance. The results also showed the treatment with free thymol especially in higher concentrations and also LTE could decrease serum concentrations of IL-1β (P < 0.05), IL-6 (P < 0.05), TNF-α (P < 0.05), and COX-2 (P < 0.05) and increase BDNF (P < 0.05) compared with control Alzheimer rats in hippocampus and serum. There were also significant correlations between serum and hippocampus concentrations of IL-1β (r2 = 0.369, P = 0.001), IL-6 (r2 = 0.386, P = 0.001), TNF-α (r2 = 0.412, P = 0.001), and COX-2 (r2 = 0.357, P = 0.001). It means a closed and positive relation between serum and hippocampus concentrations of IL-1β, IL-6, TNF-α, and COX-2. CONCLUSIONS LET demonstrates its ability to attenuate neuroinflammatory reaction in AD model through suppression of IL-1β, IL-6, and TNF-α and COX-2 indicators. Hence, it can ameliorate AD pathogenesis by declining inflammatory reaction.
Collapse
Affiliation(s)
- Asal Safarbalou
- Department of Biomedical Research, Institute for Intelligent Research, Tbilisi, Georgia
| | - Adeel Abbasi
- Department of Biomedical Research, Institute for Intelligent Research, Tbilisi, Georgia.
| |
Collapse
|
6
|
Volloch V, Rits-Volloch S. ACH2.0/E, the Consolidated Theory of Conventional and Unconventional Alzheimer's Disease: Origins, Progression, and Therapeutic Strategies. Int J Mol Sci 2024; 25:6036. [PMID: 38892224 PMCID: PMC11172602 DOI: 10.3390/ijms25116036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The centrality of amyloid-beta (Aβ) is an indisputable tenet of Alzheimer's disease (AD). It was initially indicated by the detection (1991) of a mutation within Aβ protein precursor (AβPP) segregating with the disease, which served as a basis for the long-standing Amyloid Cascade Hypothesis (ACH) theory of AD. In the intervening three decades, this notion was affirmed and substantiated by the discovery of numerous AD-causing and AD-protective mutations with all, without an exception, affecting the structure, production, and intraneuronal degradation of Aβ. The ACH postulated that the disease is caused and driven by extracellular Aβ. When it became clear that this is not the case, and the ACH was largely discredited, a new theory of AD, dubbed ACH2.0 to re-emphasize the centrality of Aβ, was formulated. In the ACH2.0, AD is caused by physiologically accumulated intraneuronal Aβ (iAβ) derived from AβPP. Upon reaching the critical threshold, it triggers activation of the autonomous AβPP-independent iAβ generation pathway; its output is retained intraneuronally and drives the AD pathology. The bridge between iAβ derived from AβPP and that generated independently of AβPP is the neuronal integrated stress response (ISR) elicited by the former. The ISR severely suppresses cellular protein synthesis; concurrently, it activates the production of a small subset of proteins, which apparently includes components necessary for operation of the AβPP-independent iAβ generation pathway that are absent under regular circumstances. The above sequence of events defines "conventional" AD, which is both caused and driven by differentially derived iAβ. Since the ISR can be elicited by a multitude of stressors, the logic of the ACH2.0 mandates that another class of AD, referred to as "unconventional", has to occur. Unconventional AD is defined as a disease where a stressor distinct from AβPP-derived iAβ elicits the neuronal ISR. Thus, the essence of both, conventional and unconventional, forms of AD is one and the same, namely autonomous, self-sustainable, AβPP-independent production of iAβ. What distinguishes them is the manner of activation of this pathway, i.e., the mode of causation of the disease. In unconventional AD, processes occurring at locations as distant from and seemingly as unrelated to the brain as, say, the knee can potentially trigger the disease. The present study asserts that these processes include traumatic brain injury (TBI), chronic traumatic encephalopathy, viral and bacterial infections, and a wide array of inflammatory conditions. It considers the pathways which are common to all these occurrences and culminate in the elicitation of the neuronal ISR, analyzes the dynamics of conventional versus unconventional AD, shows how the former can morph into the latter, explains how a single TBI can hasten the occurrence of AD and why it takes multiple TBIs to trigger the disease, and proposes the appropriate therapeutic strategies. It posits that yet another class of unconventional AD may occur where the autonomous AβPP-independent iAβ production pathway is initiated by an ISR-unrelated activator, and consolidates the above notions in a theory of AD, designated ACH2.0/E (for expanded ACH2.0), which incorporates the ACH2.0 as its special case and retains the centrality of iAβ produced independently of AβPP as the driving agent of the disease.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Sandvig HV, Aam S, Alme KN, Lydersen S, Magne Ueland P, Ulvik A, Wethal T, Saltvedt I, Knapskog AB. Neopterin, kynurenine metabolites, and indexes related to vitamin B6 are associated with post-stroke cognitive impairment: The Nor-COAST study. Brain Behav Immun 2024; 118:167-177. [PMID: 38428649 DOI: 10.1016/j.bbi.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND AND AIMS We have previously shown that systemic inflammation was associated with post-stroke cognitive impairment (PSCI). Because neopterin, kynurenine pathway (KP) metabolites, and B6 vitamers are linked to inflammation, in our study we investigated whether those biomarkers were associated with PSCI. MATERIAL AND METHODS The Norwegian Cognitive Impairment After Stroke study is a prospective multicenter cohort study of patients with acute stroke recruited from May 2015 through March 2017. Plasma samples of 422 participants (59 % male) with ischemic stroke from the index hospital stay and 3 months post-stroke were available for analyses of neopterin, KP metabolites, and B6 vitamers using liquid chromatography-tandem mass spectrometry. Mixed linear regression analyses adjusted for age, sex, and creatinine, were used to assess whether there were associations between those biomarkers and cognitive outcomes, measured by the Montreal Cognitive Assessment scale (MoCA) at 3-, 18-, and 36-month follow-up. RESULTS Participants had a mean (SD) age of 72 (12) years, with a mean (SD) National Institutes of HealthStroke Scale score of 2.7 (3.6) at Day 1. Higher baseline values of quinolinic acid, PAr (i.e., an inflammatory marker based on vitamin B6 metabolites), and HKr (i.e., a marker of functional vitamin B6 status based on selected KP metabolites) were associated with lower MoCA score at 3, 18, and 36 months post-stroke (p < 0.01). Higher baseline concentrations of neopterin and 3-hydroxykynurenine were associated with lower MoCA scores at 18 and 36 months, and higher concentrations of xanthurenic acid were associated with higher MoCA score at 36 months (p < 0.01). At 3 months post-stroke, higher concentrations of neopterin and lower values of pyridoxal 5́-phosphate were associated with lower MoCA scores at 18- and 36-month follow-up, while lower concentrations of picolinic acid were associated with a lower MoCA score at 36 months (p < 0.01). CONCLUSION Biomarkers and metabolites of systemic inflammation, including biomarkers of cellular immune activation, indexes of vitamin B6 homeostasis, and several neuroactive metabolites of the KP pathway, were associated with PSCI. TRIAL REGISTRATION ClinicalTrials.gov: NCT02650531.
Collapse
Affiliation(s)
- Heidi Vihovde Sandvig
- Department of Medicine, Kristiansund Hospital, Møre og Romsdal Hospital Trust, Kristiansund, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Stina Aam
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Katinka N Alme
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Stian Lydersen
- Department of Mental Health, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5021 Bergen, Norway
| | - Torgeir Wethal
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Stroke, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, Oslo University Hospital, Ullevaal, Oslo, Norway
| |
Collapse
|
8
|
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is an all-encompassing term that describes cognitive impairment due to cerebrovascular origins. With the advancement of imaging and pathological studies, we now understand that VCID is often comorbid with Alzheimer disease. While researchers in the Alzheimer disease field have been working for years to establish and test blood-based biomarkers for Alzheimer disease diagnosis, prognosis, clinical therapy discovery, and early detection, blood-based biomarkers for VCID are in their infancy and also face challenges. VCID is heterogeneous, comprising many different pathological entities (ischemic, or hemorrhagic), and spatial and temporal differences (acute or chronic). This review highlights pathways that are aiding the search for sensitive and specific blood-based cerebrovascular dysfunction markers, describes promising candidates, and explains ongoing initiatives to discover blood-based VCID biomarkers.
Collapse
Affiliation(s)
- Kate E. Foley
- Stark Neurosciences Research Institute, Indiana University, Indianapolis IN, USA
- Department of Neurology, School of Medicine, Indiana University, Indianapolis IN, USA
| | - Donna M. Wilcock
- Stark Neurosciences Research Institute, Indiana University, Indianapolis IN, USA
- Department of Neurology, School of Medicine, Indiana University, Indianapolis IN, USA
| |
Collapse
|
9
|
Gaceb A, Roupé L, Enström A, Almasoudi W, Carlsson R, Lindgren AG, Paul G. Pericyte Microvesicles as Plasma Biomarkers Reflecting Brain Microvascular Signaling in Patients With Acute Ischemic Stroke. Stroke 2024; 55:558-568. [PMID: 38323422 PMCID: PMC10896197 DOI: 10.1161/strokeaha.123.045720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/07/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Blood-based biomarkers have the potential to reflect cerebrovascular signaling after microvascular injury; yet, the detection of cell-specific signaling has proven challenging. Microvesicles retain parental cell surface antigens allowing detection of cell-specific signaling encoded in their cargo. In ischemic stroke, the progression of pathology involves changes in microvascular signaling whereby brain pericytes, perivascular cells wrapping the microcapillaries, are one of the early responders to the ischemic insult. Intercepting the pericyte signaling response peripherally by isolating pericyte-derived microvesicles may provide not only diagnostic information on microvascular injury but also enable monitoring of important pathophysiological mechanisms. METHODS Plasma samples were collected from patients with acute ischemic stroke (n=39) at 3 time points after stroke onset: 0 to 6 hours, 12 to 24 hours, and 2 to 6 days, and compared with controls (n=39). Pericyte-derived microvesicles were isolated based on cluster of differentiation 140b expression and quantified by flow cytometry. The protein content was evaluated using a proximity extension assay, and vascular signaling pathways were examined using molecular signature hallmarks and gene ontology. RESULTS In this case-control study, patients with acute ischemic stroke showed significantly increased numbers of pericyte-derived microvesicles (median, stroke versus controls) at 12 to 24 hours (1554 versus 660 microvesicles/μL; P=0.0041) and 2 to 6 days after stroke (1346 versus 660 microvesicles/μL; P=0.0237). Their proteome revealed anti-inflammatory properties mediated via downregulation of Kirsten rat sarcoma virus and IL (interleukin)-6/JAK/STAT3 signaling at 0 to 6 hours, but proangiogenic as well as proinflammatory signals at 12 to 24 hours. Between 2 and 6 days, proteins were mainly associated with vascular remodeling as indicated by activation of Hedgehog signaling in addition to proangiogenic signals. CONCLUSIONS We demonstrate that the plasma of patients with acute ischemic stroke reflects (1) an early and time-dependent increase of pericyte-derived microvesicles and (2) changes in the protein cargo of microvesicles over time indicating cell signaling specifically related to inflammation and vascular remodeling.
Collapse
Affiliation(s)
- Abderahim Gaceb
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center (A.G., A.E., R.C., G.P.), Lund University, Sweden
| | - Linnea Roupé
- Department of Neurology, Scania University Hospital, Lund, Sweden (L.R., W.A., A.G.L., G.P.)
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center (A.G., A.E., R.C., G.P.), Lund University, Sweden
| | - Wejdan Almasoudi
- Department of Neurology, Scania University Hospital, Lund, Sweden (L.R., W.A., A.G.L., G.P.)
| | - Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center (A.G., A.E., R.C., G.P.), Lund University, Sweden
| | - Arne G. Lindgren
- Department of Neurology, Scania University Hospital, Lund, Sweden (L.R., W.A., A.G.L., G.P.)
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center (A.G., A.E., R.C., G.P.), Lund University, Sweden
- Wallenberg Center for Molecular Medicine (G.P.), Lund University, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden (L.R., W.A., A.G.L., G.P.)
| |
Collapse
|
10
|
Ma F, Zhang Q, Li J, Wu L, Zhang H. Risk factors for post-cerebral infarction cognitive dysfunction in older adults: a retrospective study. BMC Neurol 2024; 24:72. [PMID: 38378548 PMCID: PMC10877785 DOI: 10.1186/s12883-024-03574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/16/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE Our research aims to elucidate the significance of type 2 diabetes (T2D) and provides an insight into a novel risk model for post-cerebral infarction cognitive dysfunction (PCICD). METHODS Our study recruited inpatients hospitalized with cerebral infarction in Xijing hospital, who underwent cognitive assessment of Mini-Mental State Examination (MMSE) from January 2010 to December 2021. Cognitive status was dichotomized into normal cognition and cognitive impairment. Collected data referred to Demographic Features, Clinical Diseases, scale tests, fluid biomarkers involving inflammation, coagulation function, hepatorenal function, lipid and glycemic management. RESULTS In our pooled dataset from 924 eligible patients, we included 353 in the final analysis (age range 65-91; 30.31% female). Multivariate logistic regression analysis was performed to show that Rural Areas (OR = 1.976, 95%CI = 1.111-3.515, P = 0.020), T2D (OR = 2.125, 95%CI = 1.267-3.563, P = 0.004), Direct Bilirubin (OR = 0.388, 95%CI = 0.196-0.769, P = 0.007), Severity of Dependence in terms of Barthel Index (OR = 1.708, 95%CI = 1.193-2.445, P = 0.003) that were independently associated with PCICD, constituting a model with optimal predictive efficiency. CONCLUSION To the best of our knowledge, this study provides a practicable map of strategical predictors to robustly identify cognitive dysfunction at risk of post-cerebral infarction for clinicians in a broad sense. Of note, our findings support that the decline in serum direct bilirubin (DBil) concentration is linked to protecting cognitive function.
Collapse
Affiliation(s)
- Fanyuan Ma
- Department of Geriatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Qian Zhang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jinke Li
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Liping Wu
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Hua Zhang
- Department of Geriatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
11
|
Sri S, Greenstein A, Granata A, Collcutt A, Jochems ACC, McColl BW, Castro BD, Webber C, Reyes CA, Hall C, Lawrence CB, Hawkes C, Pegasiou-Davies CM, Gibson C, Crawford CL, Smith C, Vivien D, McLean FH, Wiseman F, Brezzo G, Lalli G, Pritchard HAT, Markus HS, Bravo-Ferrer I, Taylor J, Leiper J, Berwick J, Gan J, Gallacher J, Moss J, Goense J, McMullan L, Work L, Evans L, Stringer MS, Ashford MLJ, Abulfadl M, Conlon N, Malhotra P, Bath P, Canter R, Brown R, Ince S, Anderle S, Young S, Quick S, Szymkowiak S, Hill S, Allan S, Wang T, Quinn T, Procter T, Farr TD, Zhao X, Yang Z, Hainsworth AH, Wardlaw JM. A multi-disciplinary commentary on preclinical research to investigate vascular contributions to dementia. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100189. [PMID: 37941765 PMCID: PMC10628644 DOI: 10.1016/j.cccb.2023.100189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder.
Collapse
Affiliation(s)
- Sarmi Sri
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Adam Greenstein
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Alex Collcutt
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Angela C C Jochems
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Barry W McColl
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Blanca Díaz Castro
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Caleb Webber
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Carmen Arteaga Reyes
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Catherine Hall
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Catherine B Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cheryl Hawkes
- Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | | | - Claire Gibson
- School of Psychology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Colin L Crawford
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie University, UNICAEN, INSERM UMR-S U1237, , GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of clinical research, Caen-Normandie University Hospital, Caen, France
| | - Fiona H McLean
- Division of Systems Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Frances Wiseman
- UK Dementia Research Institute, University College London, London WC1N 3BG, UK
| | - Gaia Brezzo
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Giovanna Lalli
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Harry A T Pritchard
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Hugh S Markus
- Stroke Research Group, Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Isabel Bravo-Ferrer
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Jade Taylor
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James Leiper
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Jian Gan
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - John Gallacher
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Jonathan Moss
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Jozien Goense
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois, Urbana-Champaign, Champaign, IL, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- School of Psychology and Neuroscience, University of Glasgow, UK
| | - Letitia McMullan
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Lorraine Work
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow; Glasgow; UK
| | - Lowri Evans
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Michael S Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - MLJ Ashford
- Division of Systems Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Mohamed Abulfadl
- Dementia Research Group, Department of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK
| | - Nina Conlon
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Paresh Malhotra
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Neurology, Imperial College Healthcare NHS Trust, London, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, UK
| | - Philip Bath
- Stroke Trials Unit, University of Nottingham, Nottingham, UK; Stroke, Medicine Division, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rebecca Canter
- Dementia Discovery Fund, SV Health Managers LLP, London, UK
| | - Rosalind Brown
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Selvi Ince
- Dementia Research Group, Department of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK
| | - Silvia Anderle
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - Simon Young
- Dementias Platform UK, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Sophie Quick
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Stefan Szymkowiak
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Steve Hill
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tao Wang
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Terry Quinn
- College of Medical Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Tessa Procter
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Tracy D Farr
- School of Life Sciences, Physiology, Pharmacology, and Neuroscience Division, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Xiangjun Zhao
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Zhiyuan Yang
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St George's University of London SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Wang Y, Du W, Sun Y, Zhang J, Ma C, Jin X. CRTC1 is a potential target to delay aging-induced cognitive deficit by protecting the integrity of the blood-brain barrier via inhibiting inflammation. J Cereb Blood Flow Metab 2023; 43:1042-1059. [PMID: 37086081 PMCID: PMC10291461 DOI: 10.1177/0271678x231169133] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
Aging can cause attenuation in the functioning of multiple organs, and blood-brain barrier (BBB) breakdown could promote the occurrence of disorders of the central nervous system during aging. Since inflammation is considered to be an important factor underlying BBB injury during aging, vascular endothelial cell senescence serves as a critical pathological basis for the destruction of BBB integrity. In the current review, we have first introduced the concepts related to aging-induced cognitive deficit and BBB integrity damage. Thereafter, we reviewed the potential relationship between disruption of BBB integrity and cognition deficit and the role of inflammation, vascular endothelial cell senescence, and BBB injury. We have also briefly introduced the function of CREB-regulated transcription co-activator 1 (CRTC1) in cognition and aging-induced CRTC1 changes as well as the critical roles of CRTC1/cyclooxygenase-2 (COX-2) in regulating inflammation, endothelial cell senescence, and BBB injury. Finally, the underlying mechanisms have been summarized and we propose that CRTC1 could be a promising target to delay aging-induced cognitive deficit by protecting the integrity of BBB through promoting inhibition of inflammation-mediated endothelial cell senescence.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, the Second Hospital of Jiaxing City, Jiaxing, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junfang Zhang
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Chaolin Ma
- School of Life Science and Institute of Life Science, Nanchang University, Nanchang, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Cai J, Bidulescu A. The association between food insecurity and cognitive impairment among the US adults: The mediation role of anxiety or depression. J Affect Disord 2023; 325:73-82. [PMID: 36603601 DOI: 10.1016/j.jad.2022.12.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Using a nationally representative sample, this study aimed to examine (1) socio-demographic and health-related disparities in cognitive impairment, (2) the association between food insecurity and cognitive impairment, and (3) the mediation role of anxiety or depression in the pathway between food insecurity and cognitive impairment. METHODS Cross-sectional data of 28,508 adults from the 2020 National Health Interview Survey were analyzed. Multivariable logistic regression models were used to estimate associations with cognitive impairment. Mediation analyses were conducted using the four-way decomposition method under a counterfactual framework. RESULTS Disparities in cognitive impairment were observed across socio-demographic and health-related characteristics (all p < 0.0001). Food insecurity was significantly associated with cognitive impairment in the overall population and the magnitude of the association was greater for the young or middle-aged, females and non-Hispanic Blacks than the general population (AOR ranged from 1.19 to 2.54, all p < 0.01). With anxiety as a mediator, 28.66 % of the total effect of food insecurity on cognitive impairment was attributable to mediation only, and 22.39 % was attributable to interaction (between food insecurity and anxiety) and mediation. With depression as a mediator, 22.33 % of the total effect was attributable to mediation only, and 16.00 % was attributable to interaction (between food insecurity and depression) and mediation. LIMITATIONS The cross-sectional design prevents inference of causality. CONCLUSIONS Ensuring available and adequate food resources is important to prevent adverse cognitive outcomes. Clinical interventions or treatments for anxiety or depression may help improve cognitive function.
Collapse
Affiliation(s)
- Jiahui Cai
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, United States of America.
| | - Aurelian Bidulescu
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, United States of America
| |
Collapse
|
14
|
Zhang J, Li Y, Zhou T. Nerolidol Attenuates Cerebral Ischemic Injury in Middle Cerebral Artery Occlusion-Induced Rats via Regulation of Inflammation, Apoptosis, and Oxidative Stress Markers. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221137380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Background Cerebral ischemia is a syndrome that occurs due to the restricted flow of oxygen-rich blood to the brain, causing damage to the brain cells. Globally, ischemia ranks second in causing mortality and third in causing disability in stroke patients. Nerolidol is a bioactive compound present in the essential oil of plants with a floral odour. It is a natural sesquiterpene alcohol used in cosmetics, perfumes, and as a food flavouring agent. It also possesses antioxidant, antimicrobial, anti-inflammatory, and anticancer properties. Materials and Methods In this study, we assessed the anti-ischemic property of nerolidol in cerebral ischemia-induced mice. Healthy male Wistar rats were induced into cerebral ischemia with middle cerebral artery occlusion (MCAO) and treated with 10 mg and 20 mg nerolidol for 21 days. The brain morphometric, antioxidant, and MMP levels were estimated in the brain tissue of MCAO-performed and nerolidol-treated rats. The cerebral infarct-alleviating potency of nerolidol was analysed by estimating the levels of inflammatory cytokines and apoptotic proteins. It was further confirmed by assessing the levels of COX-2/PGE-2 signalling proteins in brain tissue from MCAO-performed in rats. Results Nerolidol significantly reduced the cerebral infarct volume and brain edema via increased antioxidant levels and decreased MMPs. It also decreased the pro-inflammatory cytokines and proapoptotic proteins in brain tissue. The inflammatory signalling proteins NFκB, COX-2, and PGE-2 were significantly decreased in nerolidol-treated MCAO-performed rats, confirming the antiischemic property of nerolidol. Conclusion Our results prove nerolidol significantly alleviates cerebral ischemia in rats, and it can be subjected to further trials to be formulated as an anti-ischemic drug.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurosurgery, Laizhou City People’s Hospital, Laizhou, Shandong, China
| | - Yanli Li
- School of Health, Binzhou Polytechnical College, Binzhou, Shandong, China
| | - Tao Zhou
- Department of Neurosurgery, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
15
|
Sergi D, Zauli E, Tisato V, Secchiero P, Zauli G, Cervellati C. Lipids at the Nexus between Cerebrovascular Disease and Vascular Dementia: The Impact of HDL-Cholesterol and Ceramides. Int J Mol Sci 2023; 24:ijms24054403. [PMID: 36901834 PMCID: PMC10002119 DOI: 10.3390/ijms24054403] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cerebrovascular diseases and the subsequent brain hypoperfusion are at the basis of vascular dementia. Dyslipidemia, marked by an increase in circulating levels of triglycerides and LDL-cholesterol and a parallel decrease in HDL-cholesterol, in turn, is pivotal in promoting atherosclerosis which represents a common feature of cardiovascular and cerebrovascular diseases. In this regard, HDL-cholesterol has traditionally been considered as being protective from a cardiovascular and a cerebrovascular prospective. However, emerging evidence suggests that their quality and functionality play a more prominent role than their circulating levels in shaping cardiovascular health and possibly cognitive function. Furthermore, the quality of lipids embedded in circulating lipoproteins represents another key discriminant in modulating cardiovascular disease, with ceramides being proposed as a novel risk factor for atherosclerosis. This review highlights the role of HDL lipoprotein and ceramides in cerebrovascular diseases and the repercussion on vascular dementia. Additionally, the manuscript provides an up-to-date picture of the impact of saturated and omega-3 fatty acids on HDL circulating levels, functionality and ceramide metabolism.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Carlo Cervellati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
16
|
Induced Inflammatory and Oxidative Markers in Cerebral Microvasculature by Mentally Depressive Stress. Mediators Inflamm 2023; 2023:4206316. [PMID: 36852396 PMCID: PMC9966573 DOI: 10.1155/2023/4206316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 11/24/2022] [Indexed: 02/20/2023] Open
Abstract
Background Cerebrovascular disease (CVD) is recognized as the leading cause of permanent disability worldwide. Depressive disorders are associated with increased incidence of CVD. The goal of this study was to establish a chronic restraint stress (CRS) model for mice and examine the effect of stress on cerebrovascular inflammation and oxidative stress responses. Methods A total of forty 6-week-old male C57BL/6J mice were randomly divided into the CRS and control groups. In the CRS group (n = 20), mice were placed in a well-ventilated Plexiglas tube for 6 hours per day for 28 consecutive days. On day 29, open field tests (OFT) and sucrose preference tests (SPT) were performed to assess depressive-like behaviors for the two groups (n = 10/group). Macrophage infiltration into the brain tissue upon stress was analyzed by measuring expression of macrophage marker (CD68) with immunofluorescence in both the CRS and control groups (n = 10/group). Cerebral microvasculature was isolated from the CRS and controls (n = 10/group). mRNA and protein expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), vascular cell adhesion molecule-1 (VCAM-1), and macrophage chemoattractant protein-1 (MCP-1) in the brain vessels were measured by real-time PCR and Western blot (n = 10/group). Reactive oxygen species (ROS), hydrogen peroxide (H2O2), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activities were quantified by ELISA to study the oxidative profile of the brain vessels (n = 10/group). Additionally, mRNA and protein expressions of NOX subunits (gp91phox, p47phox, p67phox, and p22phox) in the cerebrovascular endothelium were analyzed by real-time PCR and Western blot (n = 10/group). Results CRS decreased the total distances (p < 0.05) and the time spent in the center zone in OFT (p < 0.001) and sucrose preference test ratio in SPT (p < 0.01). Positive ratio of CD68+ was increased with CRS in the entire region of the brain (p < 0.001), reflecting increased macrophage infiltration. CRS increased the expression of inflammatory factors and oxidative stress in the cerebral microvasculature, including TNF-α (p < 0.001), IL-1β (p < 0.05), IL-6 (p < 0.05), VCAM-1 (p < 0.01), MCP-1 (p < 0.01), ROS (p < 0.001), and H2O2 (p < 0.001). NADPH oxidase (NOX) was activated by CRS (p < 0.01), and mRNA and protein expressions of NOX subunits (gp91phox, p47phox, p67phox, and p22phox) in brain microvasculature were found to be increased. Conclusions To our knowledge, this is the first study to demonstrate that CRS induces depressive stress and causes inflammatory and oxidative stress responses in the brain microvasculature.
Collapse
|
17
|
Kapasi A, Schneider JA, Yu L, Lamar M, Bennett DA, Boyle PA. Association of Stroke and Cerebrovascular Pathologies With Scam Susceptibility in Older Adults. JAMA Neurol 2023; 80:49-57. [PMID: 36315115 PMCID: PMC9623479 DOI: 10.1001/jamaneurol.2022.3711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023]
Abstract
Importance Scam susceptibility is associated with adverse financial and health outcomes, including an increased risk of cognitive decline and dementia. Very little is known about the role of cerebrovascular pathologies with scam susceptibility. Objective To examine the association of diverse cerebrovascular pathologies (globally and regionally) with scam susceptibility. Design, setting, and Participants This clinical-pathological cohort study included participants from 2 ongoing studies of aging that began enrollment in 1994 and 1997. In 2010, participants were enrolled in the decision-making and behavioral economics substudy and were followed up for a mean (SD) of 3.4 (2.6) years prior to death. From 1365 older persons with clinical evaluations, 69 were excluded for having dementia at baseline. From 538 older persons who died, 408 had annual assessments for scam susceptibility, cardiovascular risk burden, and cognitive function and consented to brain donation for detailed neuropathologic examination. Data were analyzed from June 2021 through September 2022. Exposures Neuropathologic examination identified the presence of macroscopic and microscopic infarcts, atherosclerosis, arteriolosclerosis, cerebral amyloid angiopathy, and common neurodegenerative pathologies (Alzheimer disease, limbic-predominant age-related transactive response DNA-binding protein 43 encephalopathy, and Lewy bodies). Results There was a total of 408 participants. The mean (SD) age at death was 91 (6.1) years, the mean (SD) amount of education was 15.6 (3.1) years, and 297 (73%) were women. Participants included 4 Latino individuals (1%), 7 non-Latino Black individuals (2%), and 397 non-Latino White individuals (97%). The frequency of participants with macroscopic infarcts was 38% (n = 154), microinfarcts was 40% (n = 163), and moderate to severe vessel disease; specifically, atherosclerosis was 20% (n = 83), arteriolosclerosis was 25% (n = 100), and cerebral amyloid angiopathy was 35% (n = 143). In linear regression models adjusted for demographics and neurodegenerative pathologies, macroscopic infarcts were associated with greater scam susceptibility (estimate [SE], 0.18 [0.07]; P = .009). This association persisted after adjusting for cardiovascular risk burden and global cognition. Regionally, infarcts localized to the frontal, temporal, and occipital lobes and thalamus were associated with greater scam susceptibility. Neither arteriosclerosis, atherosclerosis, cerebral amyloid angiopathy, nor microinfarcts were associated with scam susceptibility. Conclusions and Relevance Cerebrovascular pathologies, specifically cerebral infarcts, is linked with greater scam susceptibility in older adults, independent of common neurodegenerative diseases such as Alzheimer disease. Future studies examining in vivo magnetic resonance imaging markers of cerebrovascular pathologies with scam susceptibility and related decision-making outcomes will be important.
Collapse
Affiliation(s)
- Alifiya Kapasi
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, Illinois
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Melissa Lamar
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
18
|
Puvogel S, Alsema A, Kracht L, Webster MJ, Weickert CS, Sommer IEC, Eggen BJL. Single-nucleus RNA sequencing of midbrain blood-brain barrier cells in schizophrenia reveals subtle transcriptional changes with overall preservation of cellular proportions and phenotypes. Mol Psychiatry 2022; 27:4731-4740. [PMID: 36192459 PMCID: PMC9734060 DOI: 10.1038/s41380-022-01796-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
The midbrain is an extensively studied brain region in schizophrenia, in view of its reported dopamine pathophysiology and neuroimmune changes associated with this disease. Besides the dopaminergic system, the midbrain contains other cell types that may be involved in schizophrenia pathophysiology. The neurovascular hypothesis of schizophrenia postulates that both the neurovasculature structure and the functioning of the blood-brain barrier (BBB) are compromised in schizophrenia. In the present study, potential alteration in the BBB of patients with schizophrenia was investigated by single-nucleus RNA sequencing of post-mortem midbrain tissue (15 schizophrenia cases and 14 matched controls). We did not identify changes in the relative abundance of the major BBB cell types, nor in the sub-populations, associated with schizophrenia. However, we identified 14 differentially expressed genes in the cells of the BBB in schizophrenia as compared to controls, including genes that have previously been related to schizophrenia, such as FOXP2 and PDE4D. These transcriptional changes were limited to the ependymal cells and pericytes, suggesting that the cells of the BBB are not broadly affected in schizophrenia.
Collapse
Affiliation(s)
- Sofía Puvogel
- Department of Biomedical Sciences of Cells and Systems, section Cognitive Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Astrid Alsema
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura Kracht
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Iris E C Sommer
- Department of Biomedical Sciences of Cells and Systems, section Cognitive Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Famularo G. Stroke after COVID-19 vaccination. Acta Neurol Scand 2022; 145:787-788. [PMID: 35257361 PMCID: PMC9111246 DOI: 10.1111/ane.13608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
|
20
|
Rost NS, Brodtmann A, Pase MP, van Veluw SJ, Biffi A, Duering M, Hinman JD, Dichgans M. Post-Stroke Cognitive Impairment and Dementia. Circ Res 2022; 130:1252-1271. [PMID: 35420911 DOI: 10.1161/circresaha.122.319951] [Citation(s) in RCA: 263] [Impact Index Per Article: 131.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Poststroke cognitive impairment and dementia (PSCID) is a major source of morbidity and mortality after stroke worldwide. PSCID occurs as a consequence of ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage. Cognitive impairment and dementia manifesting after a clinical stroke is categorized as vascular even in people with comorbid neurodegenerative pathology, which is common in elderly individuals and can contribute to the clinical expression of PSCID. Manifestations of cerebral small vessel disease, such as covert brain infarcts, white matter lesions, microbleeds, and cortical microinfarcts, are also common in patients with stroke and likewise contribute to cognitive outcomes. Although studies of PSCID historically varied in the approach to timing and methods of diagnosis, most of them demonstrate that older age, lower educational status, socioeconomic disparities, premorbid cognitive or functional decline, life-course exposure to vascular risk factors, and a history of prior stroke increase risk of PSCID. Stroke characteristics, in particular stroke severity, lesion volume, lesion location, multiplicity and recurrence, also influence PSCID risk. Understanding the complex interaction between an acute stroke event and preexisting brain pathology remains a priority and will be critical for developing strategies for personalized prediction, prevention, targeted interventions, and rehabilitation. Current challenges in the field relate to a lack of harmonization of definition and classification of PSCID, timing of diagnosis, approaches to neurocognitive assessment, and duration of follow-up after stroke. However, evolving knowledge on pathophysiology, neuroimaging, and biomarkers offers potential for clinical applications and may inform clinical trials. Preventing stroke and PSCID remains a cornerstone of any strategy to achieve optimal brain health. We summarize recent developments in the field and discuss future directions closing with a call for action to systematically include cognitive outcome assessment into any clinical studies of poststroke outcome.
Collapse
Affiliation(s)
- Natalia S Rost
- J. Philip Kistler Stroke Research Center (N.S.R., S.J.v.V., A. Biffi), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Amy Brodtmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia (A. Brodtmann).,Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia (A. Brodtmann. M.P.P.)
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia (A. Brodtmann. M.P.P.).,Harvard T.H. Chan School of Public Health, Boston (M.P.P.)
| | - Susanne J van Veluw
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown (S.J.v.V.)
| | - Alessandro Biffi
- J. Philip Kistler Stroke Research Center (N.S.R., S.J.v.V., A. Biffi), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Divisions of Memory Disorders and Behavioral Neurology (A. Biffi), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Marco Duering
- J. Philip Kistler Stroke Research Center (N.S.R., S.J.v.V., A. Biffi), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany (M. Duering, M. Dichgans).,Medical Image Analysis Center and Department of Biomedical Engineering, University of Basel, Switzerland (M. Duering)
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (J.D.H.).,Department of Neurology, West Los Angeles VA Medical Center, CA (J.D.H.)
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany (M. Duering, M. Dichgans).,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany (M. Dichgans).,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M. Dichgans)
| |
Collapse
|
21
|
Abstract
As life expectancy grows, brain health is increasingly seen as central to what we mean by successful aging-and vascular brain health as central to overall brain health. Cerebrovascular pathologies are highly prevalent independent contributors to age-related cognitive impairment and at least partly modifiable with available treatments. The current Focused Update addresses vascular brain health from multiple angles, ranging from pathophysiologic mechanisms and neuroimaging features to epidemiologic risk factors, social determinants, and candidate treatments. Here we highlight some of the shared themes that cut across these distinct perspectives: 1) the lifetime course of vascular brain injury pathogenesis and progression; 2) the scientific and ethical imperative to extend vascular brain health research in non-White and non-affluent populations; 3) the need for improved tools to study the cerebral small vessels themselves; 4) the potential role for brain recovery mechanisms in determining vascular brain health and resilience; and 5) the cross-pathway mechanisms by which vascular and neurodegenerative processes may interact. The diverse perspectives featured in this Focused Update offer a sense of the multidisciplinary approaches and collaborations that will be required to launch our populations towards improved brain health and successful aging.
Collapse
Affiliation(s)
- Steven M Greenberg
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|