1
|
Rattananinsruang P, Noonin C, Thongboonkerd V. Comparative analysis of various senescence inducers in proximal renal tubular cells. J Pharm Biomed Anal 2025; 254:116571. [PMID: 39579525 DOI: 10.1016/j.jpba.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Senescence in renal cells has attracted wide attention as the critical factor promoting renal fibrosis and chronic kidney disease. Establishing a reliable cellular model is essential to study mechanisms underlying renal cell senescence. Herein, we compared various inducers to define the most suitable senescence inducer for HK-2 proximal tubular cells. These inducers included hydrogen peroxide (H2O2), high-temperature (HT), glucose, mannitol and hydroxyurea (HU). To screen for optimal concentration/level, the highest concentration/level of each inducer that did not increase cell death (to avoid severe toxicity) was selected for senescence induction and comparative analysis using the two most appropriate markers for HK-2 cell senescence as recently established. The data revealed that 0.4 mM, 43 °C, 80 mM, 80 mM and 100 μM were the optimal concentrations/levels of H2O2, HT, glucose, mannitol and HU, respectively. Comparative analysis using optimal concentration/level of each marker revealed that 0.4 mM H2O2, HT at 43 °C, 80 mM glucose and 80 mM mannitol were the weak senescence inducers. The most effective inducer for HK-2 senescence was 100 μM HU, which provided the greatest fold-changes of cell area and granularity when compared with other stimuli in a time-dependent manner. Based on these data comparing H2O2, HT, glucose, mannitol and HU at their optimal concentrations/levels, 100 μM HU seems to be most effective for senescence induction in HK-2 cells for in vitro study of proximal renal tubular cells.
Collapse
Affiliation(s)
- Piyaporn Rattananinsruang
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chadanat Noonin
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
2
|
Costa CM, Pedrosa SS, Kirkland JL, Reis F, Madureira AR. The senotherapeutic potential of phytochemicals for age-related intestinal disease. Ageing Res Rev 2024; 104:102619. [PMID: 39638096 DOI: 10.1016/j.arr.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
During the last few decades, life expectancy has increased worldwide along with the prevalence of several age-related diseases. Among aging pathways, cellular senescence and chronic inflammation (or "inflammaging") appear to be connected to gut homeostasis and dysbiosis of the microbiome. Cellular senescence is a state of essentially irreversible cell cycle arrest that occurs in response to stress. Although senescent cells (SC) remain metabolically active, they do not proliferate and can secrete inflammatory and other factors comprising the senescence-associated secretory phenotype (SASP). Accumulation of SCs has been linked to onset of several age-related diseases, in the brain, bones, the gastrointestinal tract, and other organs and tissues. The gut microbiome undergoes substantial changes with aging and is tightly interconnected with either successful (healthy) aging or disease. Senotherapeutic drugs are compounds that can clear senescent cells or modulate the release of SASP factors and hence attenuate the impact of the senescence-associated pro-inflammatory state. Phytochemicals, phenolic compounds and terpenes, which have antioxidant and anti-inflammatory activities, could also be senotherapeutic given their ability to act upon senescence-linked cellular pathways. The aim of this review is to dissect links among the gut microbiome, cellular senescence, inflammaging, and disease, as well as to explore phytochemicals as potential senotherapeutics, focusing on their interactions with gut microbiota. Coordinated targeting of these inter-related processes might unveil new strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Célia Maria Costa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| | - Sílvia Santos Pedrosa
- Biorbis, Unipessoal LDA, Edifício de Biotecnologia da Universidade Católica Portuguesa, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| | - James L Kirkland
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3000-548, Portugal; Clinical Academic Center of Coimbra, Coimbra 3004-531, Portugal.
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
3
|
Ciurleo GCV, de Azevedo OGR, Carvalho CGM, Vitek MP, Warren CA, Guerrant RL, Oriá RB. Apolipoprotein E4 and Alzheimer's disease causality under adverse environments and potential intervention by senolytic nutrients. Clin Nutr ESPEN 2024; 64:16-20. [PMID: 39251089 DOI: 10.1016/j.clnesp.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Apolipoprotein E (apoE) has a pivotal role in Alzheimer's Disease (AD) pathophysiology. APOE4 has been recognized as a risk factor for developing late-onset AD. Recently, APOE4 homozygosity was regarded as a new familial genetic trait of AD. In this opinion paper, we summarized the potential pleiotropic antagonism role of APOE4 in children living under early life adversity and afflicted with enteric infection/malnutrition-related pathogenic exposome. APOE4 was found to be neuroprotective early in life despite its increasing risk for AD with aging. We call for awareness of the potential burden this can bring to the public health system when APOE4 carriers, raised under adverse environmental conditions in early life and then aging with unhealthy lifestyles in later life may be at special risk for cognitive impairments and acquired AD. We postulate the importance of anti-senescence therapies to protect these individuals and remediate aging-related chronic illnesses.
Collapse
Affiliation(s)
- Gabriella C V Ciurleo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Orleâncio G R de Azevedo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Camila G M Carvalho
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Michael P Vitek
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Cirle A Warren
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Reinaldo B Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil.
| |
Collapse
|
4
|
Ibrahim Fouad G, Rizk MZ. Neurotoxicity of the antineoplastic drugs: "Doxorubicin" as an example. J Mol Histol 2024; 55:1023-1050. [PMID: 39352546 DOI: 10.1007/s10735-024-10247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/11/2024] [Indexed: 11/16/2024]
Abstract
There is an increased prevalence of cancer, and chemotherapy is widely and routinely utilized to manage the majority of cancers; however, administration of chemotherapeutic drugs has faced limitations concerning the "off-target" cytotoxicity. Chemobrain and impairment of neurocognitive functions have been observed in a significant fraction of cancer patients or survivors and reduce their life quality; this could be ascribed to the ability of chemotherapeutic drugs to alter the structure and function of the brain. Doxorubicin (DOX), an FDA-approved chemotherapeutic drug with therapeutic effectiveness, is commonly used to treat several carcinomas clinically. DOX-triggered neurotoxicity is the most serious adverse reaction after DOX-induced cardiotoxicity which greatly limits its clinical application. DOX-induced neurotoxicity is a net of multiple mechanisms that have been verified in pre-clinical and clinical studies, such as oxidative stress, neuroinflammation, mitochondrial disruption, apoptosis, autophagy, disruption of neurotransmitters, and impairment of neurogenesis. There is a massive need for developing novel therapeutics for both cancer and DOX-associated neurotoxicity; therefore investigating the implicated mechanisms of DOX-induced chemobrain will reveal multi-targets for novel curative strategies. Recently, various neuroprotective mechanisms were employed to mitigate DOX-mediated neurotoxicity. For this purpose, therapeutic interventions using pharmacological compounds were developed to protect healthy "off-target" tissues from DOX-induced toxicity. In addition, nanoplatforms were used to enable target delivery of DOX; to prevent its deposition in non-cancerous tissues. The aim of the current review is to provide some reference value for the future management of DOX-induced neurotoxicity and to summarize the underlying mechanisms of DOX-mediated neurotoxicity and the potential therapeutic interventions.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
5
|
Liao Y, Zhou Z, Jiang X, Wang F, Wan J, Liu S, Deng X, Wei Y, Ouyang Z. Cordyceps cicadae Extracts Exert Antiaging Effects by Activating the AMPK/SIRT1 Pathway in d-Galactose-Induced Aging Rats. J Med Food 2024. [PMID: 39585206 DOI: 10.1089/jmf.2024.k.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Cordyceps cicadae, a valuable traditional edible and medicinal resource, is recognized for its potential in slowing aging but has not been effectively exploited. This study aimed to explore antiaging activity and mechanisms of C. cicadae extracts (CCe). We used liquid chromatography-mass spectrometry to identify 23 CCe compounds and focused on quantifying six nucleoside components as quality markers. We also assessed the antiaging influences in d-galactose (d-gal)-induced aging rats. CCe improved learning memory deficits, enhanced organ indices, and mitigated oxidative brain damage caused by d-gal. CCe elevated superoxide dismutase and glutathione peroxidase activities, while downregulating malondialdehyde. Molecular analyses indicated the involvement of adenosine 5'-monophosphate-activated protein kinase/sirtuin 1 (AMPK/SIRT1) pathway in the antiaging mechanism of CCe. This study demonstrates the potential of CCe in mitigating d-gal-induced damage in aging rats, with the AMPK/SIRT1 pathway emerging as a regulatory axis. These findings contribute to the theoretical foundation for developing antiaging pharmaceuticals and functional foods using CCe, offering promising applications in aging-related contexts in succinct manner.
Collapse
Affiliation(s)
- Yangzhen Liao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhaoyong Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Xue Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Feixuan Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- Nanjing Institute of Product Quality Inspection, Nanjing, China
| | - Jingqiong Wan
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Shangyu Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Xia Deng
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Brito KDNLD, Trentin AG. Role of mesenchymal stromal cell secretome on recovery from cellular senescence: an overview. Cytotherapy 2024:S1465-3249(24)00940-X. [PMID: 39674933 DOI: 10.1016/j.jcyt.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024]
Abstract
Cellular senescence is intricately linked with numerous changes observed in the aging process, including the depletion of the stem cell pool and the decline in tissue and organ functions. Over the past three decades, efforts to halt and reverse aging have intensified, bringing rejuvenation closer to reality. Current strategies involve treatments using stem cells or their derivatives, such as the secretome. This article aims to highlight key points and evaluate the utilization of secretome derived from mesenchymal stromal cells (MSCs) as an antisenescent approach. Employing a quasi-systematic research approach, the authors conducted a comprehensive analysis based on a search algorithm targeting the in vitro effects of MSC-derived secretome on rescuing cells from a senescent state. Reviewing 39 articles out of 687 hits retrieved from PubMed and Scopus without a time limit, the authors synthesized information and identified common types of MSC-tissue sources utilized (including bone marrow-MSCs, umbilical cord-MSCs, iPSC-derived MSCs, adipose tissue-MSCs, dental pulp-MSCs, amniotic membrane-MSCs, placenta-MSCs, gingival-MSCs, urine-MSCs, and commercially available MSC lineages) from both human and other species (such as mice and rats). The authors also examined the forms of secretome tested (including conditioned media and extracellular vesicles), the cell types treated (MSCs or other cell types), methods/biomarkers of monitoring senescence/rejuvenation, and the mechanisms involved. Ultimately, this review underscores the proof-of-principle of the beneficial effects of MSC-derived secretome in reversing cellular senescence across various cell types. Such insights might aid the scientific community in designing improved in vitro and in vivo assays for future research and clinical validation of this promising cell-free therapy.
Collapse
Affiliation(s)
- Karynne de Nazaré Lins de Brito
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil; Faculty of Medicine, Altamira Campus, Federal University of Pará, Altamira, Brazil.
| | - Andréa Gonçalves Trentin
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Li B, Wang S, Kerman B, Hugo C, Shwab EK, Shu C, Chiba-Falek O, Arvanitakis Z, Yassine H. Microglia States are Susceptible to Senescence and Cholesterol Dysregulation in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624141. [PMID: 39605544 PMCID: PMC11601396 DOI: 10.1101/2024.11.18.624141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cellular senescence is a major contributor to aging-related degenerative diseases, including Alzheimer's disease (AD) but much less is known on the key cell types and pathways driving mechanisms of senescence in the brain. We hypothesized that dysregulated cholesterol metabolism is central to cellular senescence in AD. We analyzed whole transcriptomic data and utilized single-cell RNA seq integration techniques to unveil the convoluted cell-type-specific and sub-cell-type-state-specific senescence pathologies in AD using both ROSMAP and Sea-AD datasets. We identified that microglia are central components to AD associated senescence phenotypes in ROSMAP snRNA-seq data (982,384 nuclei from postmortem prefrontal cortex of 239 AD and 188 non-AD) among non-neuron cell types. We identified that homeostatic, inflammatory, phagocytic, lipid processing and neuronal surveillance microglia states were associated with AD associated senescence in ROSMAP (152,459 microglia nuclei from six regions of brain tissue of 138 early AD, 79 late AD and 226 control subject) and in Sea-AD (82,486 microglia nuclei of 42 dementia, 42 no dementia and 5 reference subjects) via integrative analysis, which preserves the meaningful biological information of microglia cell states across the datasets. We assessed top senescence associated bioprocesses including mitochondrial, apoptosis, oxidative stress, ER stress, endosomes, and lysosomes systems. Specifically, we found that senescent microglia have altered cholesterol related bioprocesses and dysregulated cholesterol. We discovered three gene co-expression modules, which represent the specific cholesterol related senescence transcriptomic signatures in postmortem brains. To validate these findings, the activation of specific cholesterol associated senescence transcriptomic signatures was assessed using integrative analysis of snRNA-seq data from iMGs (microglia induced from iPSCs) exposed to myelin, Abeta, and synaptosomes (56,454 microglia across two replicates of untreated and four treated groups). In vivo cholesterol associated senescence transcriptomic signatures were preserved and altered after treatment with AD pathological substrates in iMGs. This study provides the first evidence that dysregulation of cholesterol metabolism in microglia is a major driver of senescence pathologies in AD. Targeting cholesterol pathways in senescent microglia is an attractive strategy to slow down AD progression.
Collapse
|
8
|
Zhang K, Liu Z, Zhang ZQ. Older mothers produce smaller eggs without compromising offspring quality: a study of a thelytokous mite predator (Acari: Phytoseiidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-8. [PMID: 39555574 DOI: 10.1017/s0007485324000658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Negative relationships between the parental age and offspring life history traits have been widely observed across diverse animal taxa. However, there is a lack of studies examining the influence of parental age on offspring performance using mites, particularly phytoseiid predators as subjects. This study explored the influence of maternal age on offspring life history traits in Amblyseius herbicolus (Chant) (Acari: Mesostigmata), a phytoseiid predatory mite reproducing through thelytokous parthenogenesis. We hypothesised that increased maternal age negatively impacts offspring traits, including developmental duration, body size, fecundity and lifespan. Amblyseius herbicolus was reared under controlled laboratory conditions, and the life history traits of offspring from mothers of varying ages were analysed using linear mixed-effect models. Our results showed that the increase in maternal age significantly reduced individual egg volume, but did not significantly affect offspring developmental duration, body size, fecundity or lifespan. These findings indicate that while older A. herbicolus females produced smaller eggs, the subsequent performance (i.e. body size, fecundity and lifespan) of offspring remained largely unaffected, suggesting possible compensatory mechanisms in the offspring or alternative maternal provisioning strategies. The results of this study offer useful insights into the reproductive strategies of phytoseiid predators and asexually reproducing species, enhancing our understanding of how maternal age affects offspring fitness. Further studies can examine how offspring of A. herbicolus from mothers of different ages perform under adverse environmental conditions.
Collapse
Affiliation(s)
- Keshi Zhang
- School of Biological Sciences, University of Auckland, Auckland 1072, New Zealand
- Manaaki Whenua - Landcare Research, Auckland 1072, New Zealand
| | - Zhenguo Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271017, People's Republic of China
| | - Zhi-Qiang Zhang
- School of Biological Sciences, University of Auckland, Auckland 1072, New Zealand
- Manaaki Whenua - Landcare Research, Auckland 1072, New Zealand
| |
Collapse
|
9
|
Kleeblatt E, Lazki-Hagenbach P, Nabet E, Cohen R, Bahri R, Rogers N, Langton A, Bulfone-Paus S, Frenkel D, Sagi-Eisenberg R. p16 Ink4a-induced senescence in cultured mast cells as a model for ageing reveals significant morphological and functional changes. Immun Ageing 2024; 21:77. [PMID: 39529115 PMCID: PMC11552350 DOI: 10.1186/s12979-024-00478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Mast cells (MCs) are tissue resident cells of the immune system, mainly known for their role in allergy. However, mounting evidence indicates their involvement in the pathology of age-related diseases, such as Alzheimer's disease, Parkinson's disease, and cancer. MC numbers increase in aged tissues, but how ageing affects MCs is poorly understood. RESULTS We show that MC ageing is associated with the increased expression of the cell cycle inhibitor p16 Ink4a, a marker and inducer of cellular senescence. Relying on this observation and the tight association of ageing with senescence, we developed a model of inducible senescence based on doxycycline-induced expression of p16Ink4a in cultured bone marrow derived MCs (BMMCs). Using this model, we show that senescent MCs upregulate IL-1β, TNF-α and VEGF-A. We also demonstrate that senescence causes marked morphological changes that impact MC function. Senescent MCs are larger, contain a larger number of secretory granules (SGs) and have less membrane protrusions. Particularly striking are the changes in their SGs, reflected in a significant reduction in the number of electron dense SGs with a concomitant increase in lucent SGs containing intraluminal vesicles. The changes in SG morphology are accompanied by changes in MC degranulation, including a significant increase in receptor-triggered release of CD63-positive extracellular vesicles (EVs) and the exteriorisation of proteoglycans, as opposed to a gradual inhibition of the release of β-hexosaminidase. CONCLUSIONS The inducible expression of p16Ink4a imposes MC senescence, providing a model for tracking the autonomous changes that occur in MCs during ageing. These changes include both morphological and functional alterations. In particular, the increased release of small EVs by senescent MCs suggests an enhanced ability to modulate neighbouring cells.
Collapse
Affiliation(s)
- Elisabeth Kleeblatt
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Pia Lazki-Hagenbach
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ellon Nabet
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Reli Cohen
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Nicholas Rogers
- Department of Environmental Studies, School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Abigail Langton
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Dan Frenkel
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
10
|
Yu W, Yu Y, Sun S, Lu C, Zhai J, Lei Y, Bai F, Wang R, Chen J. Immune Alterations with Aging: Mechanisms and Intervention Strategies. Nutrients 2024; 16:3830. [PMID: 39599617 PMCID: PMC11597283 DOI: 10.3390/nu16223830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Aging is the result of a complex interplay of physical, environmental, and social factors, leading to an increased prevalence of chronic age-related diseases that burden health and social care systems. As the global population ages, it is crucial to understand the aged immune system, which undergoes declines in both innate and adaptive immunity. This immune decline exacerbates the aging process, creating a feedback loop that accelerates the onset of diseases, including infectious diseases, autoimmune disorders, and cancer. Intervention strategies, including dietary adjustments, pharmacological treatments, and immunomodulatory therapies, represent promising approaches to counteract immunosenescence. These interventions aim to enhance immune function by improving the activity and interactions of aging-affected immune cells, or by modulating inflammatory responses through the suppression of excessive cytokine secretion and inflammatory pathway activation. Such strategies have the potential to restore immune homeostasis and mitigate age-related inflammation, thus reducing the risk of chronic diseases linked to aging. In summary, this review provides insights into the effects and underlying mechanisms of immunosenescence, as well as its potential interventions, with particular emphasis on the relationship between aging, immunity, and nutritional factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (W.Y.)
| |
Collapse
|
11
|
Kavyani B, Ahmadi S, Nabizadeh E, Abdi M. Anti-oxidative activity of probiotics; focused on cardiovascular disease, cancer, aging, and obesity. Microb Pathog 2024; 196:107001. [PMID: 39384024 DOI: 10.1016/j.micpath.2024.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
By disturbing the prooxidant-antioxidant balance in the cell, a condition called oxidative stress is created, causing severe damage to the nucleic acid, protein, and lipid of the host cell, and as a result, endangers the viability of the host cell. A relationship between oxidative stress and several different diseases such as cardiovascular diseases, cancer, and obesity has been reported. Therefore, maintaining this prooxidant-antioxidant balance is vital for the cell. Probiotics as one of the potent antioxidants have recently received attention. Many health-promoting and beneficial effects of probiotics are known, and it has been found that the consumption of certain strains of probiotics alone or in combination with food exerts antioxidant efficacy and reduces oxidative damage. Studies have reported that certain probiotic strains implement their antioxidant effects by producing metabolites and antioxidant enzymes, increasing the antioxidant capacity, and reducing host oxidant metabolites. Therefore, we aimed to review and summarize the latest anti-oxidative activity of probiotics and its efficacy in aging, cardiovascular diseases, cancer, and obesity.
Collapse
Affiliation(s)
- Batoul Kavyani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Ahmadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Imam Khomeini Hospital of Piranshahr City, Urmia University of Medical Sciences, Piranshahr, Iran
| | - Milad Abdi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Wyles SP, Yu GT, Gold M, Behfar A. Topical Platelet Exosomes Reduce Senescence Signaling in Human Skin: An Exploratory Prospective Trial. Dermatol Surg 2024; 50:S160-S165. [PMID: 39480039 PMCID: PMC11524632 DOI: 10.1097/dss.0000000000004426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
BACKGROUND Cellular senescence, an irreversible cell cycle arrest with secretory phenotype, is a hallmark of skin aging. Regenerative exosome-based approaches, such as topical human platelet extract (HPE), are emerging to target age-related skin dysfunction. OBJECTIVE To evaluate the cellular and molecular effects of topical HPE for skin rejuvenation after 12 weeks of twice daily use. METHODS Skin biopsies were obtained for histological evaluation of senescence markers, p16INK4a and p21CIP1/WAF1. Telomere-associated foci, coassociation of telomeres, and DNA damage marker, γH2AX, were assessed. RNA sequencing evaluated senescence associated secretory phenotype (SASP) and extracellular matrix pathways. RESULTS p16INK4a and p21CIP1/WAF1 staining in senescent skin cells revealed low and high expression subgroups that did not correspond to chronological age. Topical HPE significantly reduced high p16INK4a cells in the dermis (p = .02). There was also a decrease in telomere damage after topical HPE (p = .03). In patients with high senescent cells at baseline, there was a 40% reduction in proinflammatory SASP. Extracellular matrix remodeling pathways, including collagen and elastic fibers, were up-regulated. CONCLUSION Topical HPE, applied on intact skin, reduced senescence signaling and senescence-associated telomere damage after 12 weeks of twice daily use, targeting a path for skin longevity or healthy skin aging.
Collapse
Affiliation(s)
- Saranya P. Wyles
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, Minnesota
| | - Grace T. Yu
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, and Mayo Clinic Medical Scientist Training Program, Rochester, Minnesota
| | - Michael Gold
- Gold Skin Care Center, Tennessee Clinical Research Center, Nashville, Tennessee
| | - Atta Behfar
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Rochester, Minnesota
| |
Collapse
|
13
|
Hassanpour H, Javdani M, Changaniyan-Khorasgani Z, Rezazadeh E, Jalali R, Mojtahed M. Is castration leading to biological aging in dogs? Assessment of lipid peroxidation, inflammation, telomere length, mitochondrial DNA copy number, and expression of telomerase and age-related genes. BMC Vet Res 2024; 20:485. [PMID: 39448973 PMCID: PMC11515513 DOI: 10.1186/s12917-024-04337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Biological aging is a complex process influenced by various factors, including reproductive status and castration. This study aimed to evaluate the impact of castration on biological aging in dogs. METHOD Fifteen male crossbred dogs were randomly divided into a sham-operation control group (n = 5) and a castrated group (n = 10). Blood samples were collected at weeks 0, 4, 8, 12, 16, and 18 post-surgery. Malondialdehyde (MDA as indicator of Lipid peroxidation), C-reactive protein (as an indicator of inflammation), telomere length, mitochondrial DNA (mtDNA) copy number, and the expression of age-related (P16, P21, TBX2) and telomerase-related (TERT) genes were assessed in blood samples. RESULTS Plasma MDA levels were higher in the control group at weeks 16 and 18, while CRP levels were higher only at week 18. Telomere length and mtDNA copy number were lower in the control group at week 18. Gene expression analysis showed that P16 was lower in the control group at weeks 8 and 12, P21 and TERT were lower at weeks 16 and 18, and TBX2 was lower at weeks 16 and 18. The TBX2/P16 ratio was lower in the control group at weeks 16 and 18 but higher at week 12, while the TBX2/P21 ratio did not differ between groups. CONCLUSION Castration appears to have a protective effect against biological aging in dogs, as evidenced by lower lipid peroxidation, inflammation, and age-related changes in telomere length, mtDNA copy number, and gene expression.
Collapse
Affiliation(s)
- Hossein Hassanpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
- Department of Health Equity, Immunoregulation Research Center, Shahed University, Tehran, Iran.
| | - Moosa Javdani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | | | - Elnaz Rezazadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Reza Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Marzieh Mojtahed
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
15
|
Bhat AA, Moglad E, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Pant K, Singh TG, Dureja H, Singh SK, Dua K, Gupta G, Subramaniyan V. Therapeutic approaches targeting aging and cellular senescence in Huntington's disease. CNS Neurosci Ther 2024; 30:e70053. [PMID: 39428700 PMCID: PMC11491556 DOI: 10.1111/cns.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disease that is manifested by a gradual loss of physical, cognitive, and mental abilities. As the disease advances, age has a major impact on the pathogenic signature of mutant huntingtin (mHTT) protein aggregation. This review aims to explore the intricate relationship between aging, mHTT toxicity, and cellular senescence in HD. Scientific data on the interplay between aging, mHTT, and cellular senescence in HD were collected from several academic databases, including PubMed, Google Scholar, Google, and ScienceDirect. The search terms employed were "AGING," "HUNTINGTON'S DISEASE," "MUTANT HUNTINGTIN," and "CELLULAR SENESCENCE." Additionally, to gather information on the molecular mechanisms and potential therapeutic targets, the search was extended to include relevant terms such as "DNA DAMAGE," "OXIDATIVE STRESS," and "AUTOPHAGY." According to research, aging leads to worsening HD pathophysiology through some processes. As a result of the mHTT accumulation, cellular senescence is promoted, which causes DNA damage, oxidative stress, decreased autophagy, and increased inflammatory responses. Pro-inflammatory cytokines and other substances are released by senescent cells, which may worsen the neuronal damage and the course of the disease. It has been shown that treatments directed at these pathways reduce some of the HD symptoms and enhance longevity in experimental animals, pointing to a new possibility of treating the condition. Through their amplification of the harmful effects of mHTT, aging and cellular senescence play crucial roles in the development of HD. Comprehending these interplays creates novel opportunities for therapeutic measures targeted at alleviating cellular aging and enhancing HD patients' quality of life.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Kumud Pant
- Graphic Era (Deemed to be University), Dehradun, India
| | | | - Harish Dureja
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
- Centre of Medical and Bio‐Allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash UniversityBandar SunwaySelangor Darul EhsanMalaysia
- Department of Medical SciencesSchool of Medical and Life Sciences Sunway UniversityBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
16
|
Lu Y, Li L, Li J, Wang M, Yang J, Zhang M, Jiang Q, Tang X. Prx1/PHB2 axis mediates mitophagy in oral leukoplakia cellular senescence. Pathol Res Pract 2024; 260:155411. [PMID: 38936092 DOI: 10.1016/j.prp.2024.155411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Oral leukoplakia (OLK) is the most common oral potentially malignant disorder (OPMD), which can be malignantly transformed into oral squamous cell carcinoma (OSCC). Peroxiredoxin1(Prx1) has been predicted to bind to Prohibitin2 (PHB2), which confers to affect OLK progression; however, the mechanism of Prx1/PHB2 mediated mitophagy involved in OLK remains unclear. METHODS This study aimed to explore the mechanism of the Prx1/PHB2 axis on senescence in OLK through mediating mitophagy. The positive rate of Ki67 and the expression of p21, p16, PHB2, and LC3 in human normal, OLK, and OSCC tissues were detected by immunohistochemical staining. The mitophagy and mitochondrial function changes were then analyzed in Prx1 knockdown and Prx1C52S mutations in dysplastic oral keratinocyte (DOK) cells treated with H2O2. In situ Proximity Ligation Assay combined with co-immunoprecipitation was used to detect the interaction between Prx1 and PHB2. RESULTS Clinically, the positive rate of Ki67 progressively increased from normal to OLK, OLK with dysplasia, and OSCC. Higher p21, p16, PHB2, and LC3 expression levels were observed in OLK with dysplasia than in normal and OSCC tissues. In vitro, PHB2 and LC3II expression gradually increased with the degree of DOK cell senescence. Prx1/PHB2 regulated mitophagy and affected senescence in H2O2-induced DOK cells. Furthermore, Prx1C52S mutation specifically reduced interaction between Prx1 and PHB2. Prx1Cys52 is associated with mitochondrial reactive oxygen species (ROS) accumulated and cell cycle arrest. CONCLUSION Prx1Cys52 functions as a redox sensor that binds to PHB2 and regulates mitophagy in the senescence of OLK, suggesting its potential as a clinical target.
Collapse
Affiliation(s)
- Yunping Lu
- Department of Prosthodontics, Beijing Stomatology Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Lingyu Li
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jing Li
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Min Wang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jing Yang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Min Zhang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatology Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China.
| | - Xiaofei Tang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
17
|
Ferreira-Silva GÁ, Rodrigues DA, Pressete CG, Caixeta ES, Gamero AMC, Miyazawa M, Hanemann JAC, Fraga CAM, Aissa AF, Ionta M. Selective inhibition of HDAC6 by N-acylhydrazone derivative reduces the proliferation and induces senescence in carcinoma hepatocellular cells. Toxicol In Vitro 2024; 99:105884. [PMID: 38945376 DOI: 10.1016/j.tiv.2024.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths globally. Systemic therapy is the only treatment option for HCC at an advanced stage, with limited therapeutic response. In this study, we evaluated the antitumor potential of four N-acylhydrazone (NAH) derivatives, namely LASSBio-1909, 1911, 1935, and 1936, on HCC cell lines. We have previously demonstrated that the aforementioned NAH derivatives selectively inhibit histone deacetylase 6 (HDAC6) in lung cancer cells, but their effects on HCC cells have not been explored. Thus, the present study aimed to evaluate the effects of NAH derivatives on the proliferative behavior of HCC cells. LASSBio-1911 was the most cytotoxic compound against HCC cells, however its effects were minimal on normal cells. Our results showed that LASSBio-1911 inhibited HDAC6 in HCC cells leading to cell cycle arrest and decreased cell proliferation. There was also an increase in the frequency of cells in mitosis onset, which was associated with disturbing mitotic spindle formation. These events were accompanied by elevated levels of CDKN1A mRNA, accumulation of CCNB1 protein, and sustained ERK1 phosphorylation. Furthermore, LASSBio-1911 induced DNA damage, resulting in senescence and/or apoptosis. Our findings indicate that selective inhibition of HDAC6 may provide an effective therapeutic strategy for the treatment of advanced HCC, including tumor subtypes with integrated viral genome. Further, in vivo studies are required to validate the antitumor effect of LASSBio-1911 on liver cancer.
Collapse
Affiliation(s)
| | - Daniel Alencar Rodrigues
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, RJ, Brazil
| | | | | | - Angel Mauricio Castro Gamero
- Human Genetics Laboratory, Institute of Natural Science, Federal University of Alfenas, zip-code 37130-001, Alfenas, MG, Brazil
| | - Marta Miyazawa
- School of Dentistry, Federal University of Alfenas, 37130-001 MG, Brazil
| | | | - Carlos Alberto Manssour Fraga
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, RJ, Brazil
| | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, MG 37130-001, Brazil.
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, MG 37130-001, Brazil.
| |
Collapse
|
18
|
Huo S, Tang X, Chen W, Gan D, Guo H, Yao Q, Liao R, Huang T, Wu J, Yang J, Xiao G, Han X. Epigenetic regulations of cellular senescence in osteoporosis. Ageing Res Rev 2024; 99:102235. [PMID: 38367814 DOI: 10.1016/j.arr.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Osteoporosis (OP) is a prevalent age-related disease that is characterized by a decrease in bone mineral density (BMD) and systemic bone microarchitectural disorders. With age, senescent cells accumulate and exhibit the senescence-associated secretory phenotype (SASP) in bone tissue, leading to the imbalance of bone homeostasis, osteopenia, changes in trabecular bone structure, and increased bone fragility. Cellular senescence in the bone microenvironment involves osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells (BMSCs), whose effects on bone homeostasis are regulated by epigenetics. Therefore, the epigenetic regulatory mechanisms of cellular senescence have received considerable attention as potential targets for preventing and treating osteoporosis. In this paper, we systematically review the mechanisms of aging-associated epigenetic regulation in osteoporosis, emphasizing the impact of epigenetics on cellular senescence, and summarize three current methods of targeting cellular senescence, which is helpful better to understand the pathogenic mechanisms of cellular senescence in osteoporosis and provides strategies for the development of epigenetic drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China
| | - Xinzheng Tang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China
| | - Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Donghao Gan
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai Guo
- Liuzhou Traditional Chinese Medicine Hospital (Liuzhou Zhuang Medical Hospital), Liuzhou 545001, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rongdong Liao
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tingting Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Junxian Wu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China
| | - Junxing Yang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xia Han
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China.
| |
Collapse
|
19
|
Cecchin-Albertoni C, Deny O, Planat-Bénard V, Guissard C, Paupert J, Vaysse F, Marty M, Casteilla L, Monsarrat P, Kémoun P. The oral organ: A new vision of the mouth as a whole for a gerophysiological approach to healthy aging. Ageing Res Rev 2024; 99:102360. [PMID: 38821417 DOI: 10.1016/j.arr.2024.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
This article brings a new perspective on oral physiology by presenting the oral organ as an integrated entity within the entire organism and its surrounding environment. Rather than considering the mouth solely as a collection of discrete functions, this novel approach emphasizes its role as a dynamic interphase, supporting interactions between the body and external factors. As a resilient ecosystem, the equilibrium of mouth ecological niches is the result of a large number of interconnected factors including the heterogeneity of different oral structures, diversity of resources, external and internal pressures and biological actors. The manuscript seeks to deepen the understanding of age-related changes within the oral cavity and throughout the organism, aligning with the evolving field of gerophysiology. The strategic position and fundamental function of the mouth make it an invaluable target for early prevention, diagnosis, treatment, and even reversal of aging effects throughout the entire organism. Recognizing the oral cavity capacity for sensory perception, element capture and information processing underscores its vital role in continuous health monitoring. Overall, this integrated understanding of the oral physiology aims at advancing comprehensive approaches to the oral healthcare and promoting broader awareness of its implications on the overall well-being.
Collapse
Affiliation(s)
- Chiara Cecchin-Albertoni
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Olivier Deny
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Valérie Planat-Bénard
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Christophe Guissard
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Jenny Paupert
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Frédéric Vaysse
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France
| | - Mathieu Marty
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; LIRDEF, Faculty of Educational Sciences, Paul Valery University, Montpellier CEDEX 5 34199, France
| | - Louis Casteilla
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Paul Monsarrat
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France; Artificial and Natural Intelligence Toulouse Institute ANITI, Toulouse, France
| | - Philippe Kémoun
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France.
| |
Collapse
|
20
|
Hu J, Yang F, Yang G, Pan J, Tan Y, Tang Y, Liu Y, Zhang H, Wang J. Integrating transcriptomics and metabolomics to reveal the protective effect and mechanism of Bushen Kangshuai Granules on the elderly people. Front Pharmacol 2024; 15:1361284. [PMID: 39135783 PMCID: PMC11317404 DOI: 10.3389/fphar.2024.1361284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Background: Aging is characterized by a decline in the adaptability and resistance of the body. In this study, Bushen Kangshuai Granules (BKG), as a kind of Chinese herbal formula, was developed and shown to alleviate aging-related symptoms. Methods: Self-controlled study combined with RNA-seq and metabonomics were used to expound the efficacy and safety of BKG and revealed the regulation mechanism of BKG treating aging. In vitro experiments were used to confirm the analytical results. The aging cell model of AC16 cells were treated with D-galactose. The RT-qPCR was used to detect the impact of BKG on telomere length. The DCFH-DA staining was used for detecting intracellular ROS. The targeted signaling pathway was selected and verified using Western blot. Results: After 8 weeks of treatment, BKG significantly reduced SOD level (p = 0.046), TCM aging symptoms (p < 0.001) and TNF-α level (p = 0.044) in the elderly participants. High-throughput sequencing showed that BKG reversed the expression of 70 and 79 age-related genes and metabolites, respectively. Further enrichment analysis indicated that BKG downregulated the PI3K-AKT signaling pathway, extracellular matrix (ECM)-receptor interaction, and Rap1 signaling pathway, while up-regulating sphingolipid metabolism. The results of in vitro experiments show that, after D-gal treatment, the viability and telomere length of AC16 cells significantly decreased (p < 0.05), while the expression of ROS increased (p < 0.05), BKG significantly increased the telomere length of AC16 cells and reduced the level of ROS expression (p < 0.05). In addition, BKG decreased the expression of THBS1, PDGFRA, and EPS8L1(p < 0.05), consistent with the RNA-seq results. Our results also showed that BKG affects PI3K-AKT signaling pathway. Conclusion: BKG can significantly improve aging-related symptoms and increase SOD levels, which may be associated with the reversal of the expression of various aging-related genes. The PI3K-AKT signaling pathway and sphingolipid metabolism may be potential mechanisms underlying BKG anti-aging effects.
Collapse
Affiliation(s)
- Jun Hu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Guang Yang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juhua Pan
- Research and Development Center of Traditional Chinese Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Boraldi F, Lofaro FD, Bonacorsi S, Mazzilli A, Garcia-Fernandez M, Quaglino D. The Role of Fibroblasts in Skin Homeostasis and Repair. Biomedicines 2024; 12:1586. [PMID: 39062158 PMCID: PMC11274439 DOI: 10.3390/biomedicines12071586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Fibroblasts are typical mesenchymal cells widely distributed throughout the human body where they (1) synthesise and maintain the extracellular matrix, ensuring the structural role of soft connective tissues; (2) secrete cytokines and growth factors; (3) communicate with each other and with other cell types, acting as signalling source for stem cell niches; and (4) are involved in tissue remodelling, wound healing, fibrosis, and cancer. This review focuses on the developmental heterogeneity of dermal fibroblasts, on their ability to sense changes in biomechanical properties of the surrounding extracellular matrix, and on their role in aging, in skin repair, in pathologic conditions and in tumour development. Moreover, we describe the use of fibroblasts in different models (e.g., in vivo animal models and in vitro systems from 2D to 6D cultures) for tissue bioengineering and the informative potential of high-throughput assays for the study of fibroblasts under different disease contexts for personalized healthcare and regenerative medicine applications.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Francesco Demetrio Lofaro
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Susanna Bonacorsi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Alessia Mazzilli
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Institute of Biomedical Investigation (IBIMA), University of Málaga, 29010 Málaga, Spain;
| | - Daniela Quaglino
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| |
Collapse
|
22
|
Min M, Egli C, Sivamani RK. The Gut and Skin Microbiome and Its Association with Aging Clocks. Int J Mol Sci 2024; 25:7471. [PMID: 39000578 PMCID: PMC11242811 DOI: 10.3390/ijms25137471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024] Open
Abstract
Aging clocks are predictive models of biological age derived from age-related changes, such as epigenetic changes, blood biomarkers, and, more recently, the microbiome. Gut and skin microbiota regulate more than barrier and immune function. Recent studies have shown that human microbiomes may predict aging. In this narrative review, we aim to discuss how the gut and skin microbiomes influence aging clocks as well as clarify the distinction between chronological and biological age. A literature search was performed on PubMed/MEDLINE databases with the following keywords: "skin microbiome" OR "gut microbiome" AND "aging clock" OR "epigenetic". Gut and skin microbiomes may be utilized to create aging clocks based on taxonomy, biodiversity, and functionality. The top contributing microbiota or metabolic pathways in these aging clocks may influence aging clock predictions and biological age. Furthermore, gut and skin microbiota may directly and indirectly influence aging clocks through the regulation of clock genes and the production of metabolites that serve as substrates or enzymatic regulators. Microbiome-based aging clock models may have therapeutic potential. However, more research is needed to advance our understanding of the role of microbiota in aging clocks.
Collapse
Affiliation(s)
- Mildred Min
- Integrative Skin Science and Research, 1451 River Park Drive, Suite 222, Sacramento, CA 95819, USA
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA
| | - Caitlin Egli
- Integrative Skin Science and Research, 1451 River Park Drive, Suite 222, Sacramento, CA 95819, USA
- College of Medicine, University of St. George's, University Centre, West Indies, Grenada
| | - Raja K Sivamani
- Integrative Skin Science and Research, 1451 River Park Drive, Suite 222, Sacramento, CA 95819, USA
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA
- Integrative Research Institute, 4825 River Park Drive, Suite 100, Sacramento, CA 95819, USA
- Pacific Skin Institute, 1495 River Park Drive, Sacramento, CA 95815, USA
- Department of Dermatology, University of California-Davis, 3301 C St #1400, Sacramento, CA 95816, USA
| |
Collapse
|
23
|
Wang C, Su J, Li J, Wei W, Yuan Z, Chen R, Wei W, Huang Y, Ye L, Liang H, Jiang J. Blood Lead Mediates the Relationship between Biological Aging and Hypertension: Based on the NHANES Database. Nutrients 2024; 16:2144. [PMID: 38999891 PMCID: PMC11243065 DOI: 10.3390/nu16132144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Hypertension remains a major global public health crisis due to various contributing factors, such as age and environmental exposures. This study delves into exploring the intricate association between biological aging, blood lead levels, and hypertension, along with examining the mediating role of blood lead levels in the relationship between biological aging and hypertension. We analyzed data from two cycles of the NHANES, encompassing 4473 individuals aged 18 years and older. Our findings indicate that biological aging potentially escalates the risk of hypertension and the incidences of systolic blood pressure (SBP) and diastolic blood pressure (DBP) abnormalities. Utilizing weighted quantile sum (WQS) and quantile g-computation (QGC) model analyses, we observed that exposure to heavy metal mixtures, particularly lead, may elevate the likelihood of hypertension, SBP, and DBP abnormalities. Further mediation analysis revealed that lead significantly mediated the relationship between biological aging and hypertension and between biological aging and SBP abnormalities, accounting for 64% (95% CI, 49% to 89%) and 64% (95% CI, 44% to 88%) of the effects, respectively. These outcomes emphasize the criticality of implementing environmental health measures.
Collapse
Affiliation(s)
- Cuixiao Wang
- Guangxi Crucial Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jinming Su
- Guangxi Crucial Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning 530021, China
| | - Jinmiao Li
- Guangxi Crucial Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Wenfei Wei
- Guangxi Crucial Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Zongxiang Yuan
- Guangxi Crucial Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Rongfeng Chen
- Guangxi Crucial Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Wudi Wei
- Guangxi Crucial Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Youjin Huang
- Guangxi Crucial Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Li Ye
- Guangxi Crucial Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning 530021, China
| | - Hao Liang
- Guangxi Crucial Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning 530021, China
| | - Junjun Jiang
- Guangxi Crucial Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
24
|
Kirchner VA, Badshah JS, Kyun Hong S, Martinez O, Pruett TL, Niedernhofer LJ. Effect of Cellular Senescence in Disease Progression and Transplantation: Immune Cells and Solid Organs. Transplantation 2024; 108:1509-1523. [PMID: 37953486 PMCID: PMC11089077 DOI: 10.1097/tp.0000000000004838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Aging of the world population significantly impacts healthcare globally and specifically, the field of transplantation. Together with end-organ dysfunction and prolonged immunosuppression, age increases the frequency of comorbid chronic diseases in transplant candidates and recipients, contributing to inferior outcomes. Although the frequency of death increases with age, limited use of organs from older deceased donors reflects the concerns about organ durability and inadequate function. Cellular senescence (CS) is a hallmark of aging, which occurs in response to a myriad of cellular stressors, leading to activation of signaling cascades that stably arrest cell cycle progression to prevent tumorigenesis. In aging and chronic conditions, senescent cells accumulate as the immune system's ability to clear them wanes, which is causally implicated in the progression of chronic diseases, immune dysfunction, organ damage, decreased regenerative capacity, and aging itself. The intimate interplay between senescent cells, their proinflammatory secretome, and immune cells results in a positive feedback loop, propagating chronic sterile inflammation and the spread of CS. Hence, senescent cells in organs from older donors trigger the recipient's alloimmune response, resulting in the increased risk of graft loss. Eliminating senescent cells or attenuating their inflammatory phenotype is a novel, potential therapeutic target to improve transplant outcomes and expand utilization of organs from older donors. This review focuses on the current knowledge about the impact of CS on circulating immune cells in the context of organ damage and disease progression, discusses the impact of CS on abdominal solid organs that are commonly transplanted, and reviews emerging therapies that target CS.
Collapse
Affiliation(s)
- Varvara A. Kirchner
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Joshua S. Badshah
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Suk Kyun Hong
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Olivia Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Timothy L. Pruett
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
25
|
Kim HT, Ho VT, Nikiforow S, Cutler C, Koreth J, Shapiro RM, Gooptu M, Romee R, Wu CJ, Antin JH, Ritz J, Soiffer RJ. Comparison of Older Related versus Younger Unrelated Donors for Older Recipients of Allogeneic Hematopoietic Cell Transplantation with Acute Myeloid Leukemia or Myelodysplastic Syndrome: A Large Single-Center Analysis. Transplant Cell Ther 2024; 30:687.e1-687.e13. [PMID: 38703824 PMCID: PMC11223961 DOI: 10.1016/j.jtct.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
For patients undergoing allogeneic hematopoietic cell transplantation (alloHCT), HLA-matched related donors (MRDs) have traditionally been the preferred donor source. However, as the age of recipients increases, their sibling donors are aging as well. In this study, we investigated whether younger matched unrelated donors (MUDs) might be a better donor source than similarly aged sibling donors for patients age >60 years with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). A total of 499 patients age 60 to 70 years with AML or MDS who underwent alloHCT from an older MRD (donor age ≥50 years) or a younger MUD (donor age ≤35 years) between 2010 and 2022 were evaluated. Of these, 360 patients (72%) received an MUD graft and 139 (28%) received an MRD graft. The median recipient age was 64 years in the MRD group and 66 years in the MUD group. With a median follow-up among survivors of 53 months (range, 9 to 147 months ), the 4-year progression-free survival was 40% in the MRD group and 41% in the MUD group (P = .79) and the 4-year overall survival was 50% and 44%, respectively (P = .15), with no between-group differences in nonrelapse mortality, relapse, and acute or chronic graft-versus-host disease. In the MUD group, we also compared the effect of donor age 18 to 24 years and donor age 25 to 35 years and found no differences in outcomes between the groups. We conclude that outcomes are comparable between the use of older MRDs and use of younger MUDs for elderly patients with AML or MDS, that there is no donor age effect among younger MUDs, and that the use of either donor type is reasonable.
Collapse
Affiliation(s)
- Haesook T Kim
- Department of Data Science, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts.
| | - Vincent T Ho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sarah Nikiforow
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Corey Cutler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - John Koreth
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Roman M Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mahasweta Gooptu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Joseph H Antin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Idelfonso-García OG, Pacheco-Rivera R, Alarcón-Sánchez BR, Serrano-Luna J, Baltiérrez-Hoyos R, Vásquez-Garzón VR, Muriel P, Villa-Treviño S, Pérez-Carreón JI, Arellanes-Robledo J. Protocol to detect senescence-associated β-galactosidase and immunoperoxidase activity in fresh-frozen murine tissues. STAR Protoc 2024; 5:103009. [PMID: 38602869 PMCID: PMC11017356 DOI: 10.1016/j.xpro.2024.103009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Double labeling to identify different markers in the same tissue section represents a useful tool either for in situ diagnosis or characterization of molecular associations. Here, we present a protocol to detect senescence-associated β-galactosidase (SA-βGal) and immunoperoxidase (IPO) activity in fresh-frozen murine tissues. We describe steps for tissue collection, solution preparation, SA-βGal staining, IPO staining, hematoxylin counterstaining, microscopic observation, and signal quantification. This protocol can be used to detect in situ proteins alongside SA-βGal activity. For complete details on the use and execution of this protocol, please refer to Pacheco-Rivera et al.1.
Collapse
Affiliation(s)
- Osiris Germán Idelfonso-García
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, Mexico City 14610, Mexico; Department of Health Sciences, Metropolitan Autonomous University - Iztapalapa Campus - UAM-I, Mexico City 09340, Mexico.
| | - Ruth Pacheco-Rivera
- Laboratory of Molecular Diagnostics, Department of Biochemistry, National School of Biological Sciences of the National Polytechnic Institute, Mexico City 07738, Mexico
| | - Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, Mexico City 14610, Mexico; Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery, "Benito Juárez" Autonomous University of Oaxaca - UABJO, Mexico City 68120, Mexico; Deputy Directorate of Humanistic and Scientific Research, National Council of Humanities, Sciences and Technologies - CONAHCYT, Mexico City 03940, Mexico
| | - Verónica Rocío Vásquez-Garzón
- Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery, "Benito Juárez" Autonomous University of Oaxaca - UABJO, Mexico City 68120, Mexico; Deputy Directorate of Humanistic and Scientific Research, National Council of Humanities, Sciences and Technologies - CONAHCYT, Mexico City 03940, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Julio Isael Pérez-Carreón
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, Mexico City 14610, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, Mexico City 14610, Mexico; Deputy Directorate of Humanistic and Scientific Research, National Council of Humanities, Sciences and Technologies - CONAHCYT, Mexico City 03940, Mexico.
| |
Collapse
|
27
|
Zhang H, Gu W, Wu G, Yu Y. Aging and Autophagy: Roles in Musculoskeletal System Injury. Aging Dis 2024:AD.2024.0362. [PMID: 38913046 DOI: 10.14336/ad.2024.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Aging is a multifactorial process that ultimately leads to a decline in physiological function and a consequent reduction in the health span, and quality of life in elderly population. In musculoskeletal diseases, aging is often associated with a gradual loss of skeletal muscle mass and strength, resulting in reduced functional capacity and an increased risk of chronic metabolic diseases, leading to impaired function and increased mortality. Autophagy is a highly conserved physiological process by which cells, under the regulation of autophagy-related genes, degrade their own organelles and large molecules by lysosomal degradation. This process is unique to eukaryotic cells and is a strict regulator of homeostasis, the maintenance of energy and substance balance. Autophagy plays an important role in a wide range of physiological and pathological processes such as cell homeostasis, aging, immunity, tumorigenesis and neurodegenerative diseases. On the one hand, under mild stress conditions, autophagy mediates the restoration of homeostasis and proliferation, reduction of the rate of aging and delay of the aging process. On the other hand, under more intense stress conditions, an inadequate suppression of autophagy can lead to cellular aging. Conversely, autophagy activity decreases during aging. Due to the interrelationship between aging and autophagy, limited literature exists on this topic. Therefore, the objective of this review is to summarize the current concepts on aging and autophagy in the musculoskeletal system. The aim is to better understand the mechanisms of age-related changes in bone, joint and muscle, as well as the interaction relationship between autophagy and aging. Its goal is to provide a comprehensive perspective for the improvement of diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Gu
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Genbin Wu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinxian Yu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Popov AA, Petruseva IO, Lavrik OI. Activity of DNA Repair Systems in the Cells of Long-Lived Rodents and Bats. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1014-1023. [PMID: 38981697 DOI: 10.1134/s0006297924060038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 07/11/2024]
Abstract
Damages of various origin accumulated in the genomic DNA can lead to the breach of genome stability, and are considered to be one of the main factors involved in cellular senescence. DNA repair systems in mammalian cells ensure effective damage removal and repair of the genome structure, therefore, activity of these systems is expected to be correlated with high maximum lifespan observed in the long-lived mammals. This review discusses current results of the studies focused on determination of the DNA repair system activity and investigation of the properties of its key regulatory proteins in the cells of long-lived rodents and bats. Based on the works discussed in the review, it could be concluded that the long-lived rodents and bats in general demonstrate high efficiency in functioning and regulation of DNA repair systems. Nevertheless, a number of questions around the study of DNA repair in the cells of long-lived rodents and bats remain poorly understood, answers to which could open up new avenues for further research.
Collapse
Affiliation(s)
- Aleksei A Popov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina O Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk National Research State University, Novosibirsk, 630090, Russia
| |
Collapse
|
29
|
Biemans Y, Bach D, Behrouzi P, Horvath S, Kramer CS, Liu S, Manson JE, Shadyab AH, Stewart J, Whitsel EA, Yang B, de Groot L, Grootswagers P. Identifying the relation between food groups and biological ageing: a data-driven approach. Age Ageing 2024; 53:ii20-ii29. [PMID: 38745494 PMCID: PMC11094402 DOI: 10.1093/ageing/afae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Heterogeneity in ageing rates drives the need for research into lifestyle secrets of successful agers. Biological age, predicted by epigenetic clocks, has been shown to be a more reliable measure of ageing than chronological age. Dietary habits are known to affect the ageing process. However, much remains to be learnt about specific dietary habits that may directly affect the biological process of ageing. OBJECTIVE To identify food groups that are directly related to biological ageing, using Copula Graphical Models. METHODS We performed a preregistered analysis of 3,990 postmenopausal women from the Women's Health Initiative, based in North America. Biological age acceleration was calculated by the epigenetic clock PhenoAge using whole-blood DNA methylation. Copula Graphical Modelling, a powerful data-driven exploratory tool, was used to examine relations between food groups and biological ageing whilst adjusting for an extensive amount of confounders. Two food group-age acceleration networks were established: one based on the MyPyramid food grouping system and another based on item-level food group data. RESULTS Intake of eggs, organ meat, sausages, cheese, legumes, starchy vegetables, added sugar and lunch meat was associated with biological age acceleration, whereas intake of peaches/nectarines/plums, poultry, nuts, discretionary oil and solid fat was associated with decelerated ageing. CONCLUSION We identified several associations between specific food groups and biological ageing. These findings pave the way for subsequent studies to ascertain causality and magnitude of these relationships, thereby improving the understanding of biological mechanisms underlying the interplay between food groups and biological ageing.
Collapse
Affiliation(s)
- Ynte Biemans
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Daimy Bach
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Pariya Behrouzi
- Biometrics, Mathematical and Statistical Methods, Wageningen University and Research, Wageningen, The Netherlands
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Charlotte S Kramer
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Simin Liu
- Departments of Medicine and Surgery, Alpert School of Medicine, Brown University, Providence, RI, USA
- Department of Epidemiology and Center for Global Cardiometabolic Health, School of Public Health, Brown University, Providence, RI, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - James Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Bo Yang
- Department of Epidemiology and Center for Global Cardiometabolic Health, School of Public Health, Brown University, Providence, RI, USA
| | - Lisette de Groot
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Pol Grootswagers
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
30
|
Huang H, Zeng J, Yu X, Du H, Wen C, Mao Y, Tang H, Kuang X, Liu W, Yu H, Liu H, Li B, Long C, Yan J, Shen H. Establishing chronic models of age-related macular degeneration via long-term iron ion overload. Am J Physiol Cell Physiol 2024; 326:C1367-C1383. [PMID: 38406826 DOI: 10.1152/ajpcell.00532.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
Age-related macular degeneration (AMD) is characterized by the degenerative senescence in the retinal pigment epithelium (RPE) and photoreceptors, which is accompanied by the accumulation of iron ions in the aging retina. However, current models of acute oxidative stress are still insufficient to simulate the gradual progression of AMD. To address this, we established chronic injury models by exposing the aRPE-19 cells, 661W cells, and mouse retina to iron ion overload over time. Investigations at the levels of cell biology and molecular biology were performed. It was demonstrated that long-term treatment of excessive iron ions induced senescence-like morphological changes, decreased cell proliferation, and impaired mitochondrial function, contributing to apoptosis. Activation of the mitogen-activated protein kinase (MAPK) pathway and the downstream molecules were confirmed both in the aRPE-19 and 661W cells. Furthermore, iron ion overload resulted in dry AMD-like lesions and decreased visual function in the mouse retina. These findings suggest that chronic exposure to overloading iron ions plays a significant role in the pathogenesis of retinopathy and provide a potential model for future studies on AMD.NEW & NOTEWORTHY To explore the possibility of constructing reliable research carriers on age-related macular degeneration (AMD), iron ion overload was applied to establish models in vitro and in vivo. Subsequent investigations into cellular physiology and molecular biology confirmed the presence of senescence in these models. Through this study, we hope to provide a better option of feasible methods for future researches into AMD.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, People's Republic of China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xinyue Yu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Han Du
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chaojuan Wen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan Mao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Han Tang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei Liu
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, People's Republic of China
| | - Huan Yu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Huijun Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Eye Fundus Department, Affiliated Aier Eye Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Bowen Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
31
|
Zhang W, Zhang K, Shi J, Qiu H, Kan C, Ma Y, Hou N, Han F, Sun X. The impact of the senescent microenvironment on tumorigenesis: Insights for cancer therapy. Aging Cell 2024; 23:e14182. [PMID: 38650467 PMCID: PMC11113271 DOI: 10.1111/acel.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
The growing global burden of cancer, especially among people aged 60 years and over, has become a key public health issue. This trend suggests the need for a deeper understanding of the various cancer types in order to develop universally effective treatments. A prospective area of research involves elucidating the interplay between the senescent microenvironment and tumor genesis. Currently, most oncology research focuses on adulthood and tends to ignore the potential role of senescent individuals on tumor progression. Senescent cells produce a senescence-associated secretory phenotype (SASP) that has a dual role in the tumor microenvironment (TME). While SASP components can remodel the TME and thus hinder tumor cell proliferation, they can also promote tumorigenesis and progression via pro-inflammatory and pro-proliferative mechanisms. To address this gap, our review seeks to investigate the influence of senescent microenvironment changes on tumor development and their potential implications for cancer therapies.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
- Department of PathologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Yujie Ma
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Fang Han
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
- Department of PathologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| |
Collapse
|
32
|
Ogaz-González R, Corpeleijn E, García-Chanes RE, Gutierréz-Robledo LM, Escamilla-Santiago RA, López-Cervantes M. Assessing the relationship between multimorbidity, NCD configurations, frailty phenotypes, and mortality risk in older adults. BMC Geriatr 2024; 24:355. [PMID: 38649809 PMCID: PMC11034053 DOI: 10.1186/s12877-024-04948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Older adults are increasingly susceptible to prolonged illness, multiple chronic diseases, and disabilities, which can lead to the coexistence of multimorbidity and frailty. Multimorbidity may result in various noncommunicable disease (NCD) patterns or configurations that could be associated with frailty and death. Mortality risk may vary depending on the presence of specific chronic diseases configurations or frailty. METHODS The aim was to examine the impact of NCD configurations on mortality risk among older adults with distinct frailty phenotypes. The population was analyzed from the Costa Rican Longevity and Healthy Aging Study Cohort (CRELES). A total of 2,662 adults aged 60 or older were included and followed for 5 years. Exploratory factor analysis and various clustering techniques were utilized to identify NCD configurations. The frequency of NCD accumulation was also assessed for a multimorbidity definition. Frailty phenotypes were set according to Fried et al. criteria. Kaplan‒Meier survival analyses, mortality rates, and Cox proportional hazards models were estimated. RESULTS Four different types of patterns were identified: 'Neuro-psychiatric', 'Metabolic', 'Cardiovascular', and 'Mixt' configurations. These configurations showed a higher mortality risk than the mere accumulation of NCDs [Cardiovascular HR:1.65 (1.07-2.57); 'Mixt' HR:1.49 (1.00-2.22); ≥3 NCDs HR:1.31 (1.09-1.58)]. Frailty exhibited a high and constant mortality risk, irrespective of the presence of any NCD configuration or multimorbidity definition. However, HRs decreased and lost statistical significance when phenotypes were considered in the Cox models [frailty + 'Cardiovascular' HR:1.56 (1.00-2.42); frailty + 'Mixt':1.42 (0.95-2.11); and frailty + ≥ 3 NCDs HR:1.23 (1.02-1.49)]. CONCLUSIONS Frailty accompanying multimorbidity emerges as a more crucial indicator of mortality risk than multimorbidity alone. Therefore, studying NCD configurations is worthwhile as they may offer improved risk profiles for mortality as alternatives to straightforward counts.
Collapse
Affiliation(s)
- Rafael Ogaz-González
- Department of Public Health, Faculty of Medicine, National Autonomous University of México, Sixth Floor, Building B, 411A Circuito Escolar, Copilco Universidad, Mexico City, Coyoacán, 04360, Mexico
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Ricardo Antonio Escamilla-Santiago
- Department of Public Health, Faculty of Medicine, National Autonomous University of México, Sixth Floor, Building B, 411A Circuito Escolar, Copilco Universidad, Mexico City, Coyoacán, 04360, Mexico
| | - Malaquías López-Cervantes
- Department of Public Health, Faculty of Medicine, National Autonomous University of México, Sixth Floor, Building B, 411A Circuito Escolar, Copilco Universidad, Mexico City, Coyoacán, 04360, Mexico.
| |
Collapse
|
33
|
Zheng J, Yang B, Liu S, Xu Z, Ding Z, Mo M. Applications of Exosomal miRNAs from Mesenchymal Stem Cells as Skin Boosters. Biomolecules 2024; 14:459. [PMID: 38672475 PMCID: PMC11048182 DOI: 10.3390/biom14040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The skin is the outer layer of the human body, and it is crucial in defending against injuries and damage. The regenerative capacity of aging and damaged skin caused by exposure to external stimuli is significantly impaired. Currently, the rise in average life expectancy and the modern population's aesthetic standards have sparked a desire for stem-cell-based therapies that can address skin health conditions. In recent years, mesenchymal stem cells (MSCs) as therapeutic agents have provided a promising and effective alternative for managing skin regeneration and rejuvenation, attributing to their healing capacities that can be applied to damaged and aged skin. However, it has been established that the therapeutic effects of MSC may be primarily mediated by paracrine mechanisms, particularly the release of exosomes (Exos). Exosomes are nanoscale extracellular vesicles (EVs) that have lipid bilayer and membrane structures and can be naturally released by different types of cells. They influence the physiological and pathological processes of recipient cells by transferring a variety of bioactive molecules, including lipids, proteins, and nucleic acids such as messenger RNAs (mRNAs) and microRNAs (miRNAs) between cells, thus playing an important role in intercellular communication and activating signaling pathways in target cells. Among them, miRNAs, a type of endogenous regulatory non-coding RNA, are often incorporated into exosomes as important signaling molecules regulating protein biosynthesis. Emerging evidence suggests that exosomal miRNAs from MSC play a key role in skin regeneration and rejuvenation by targeting multiple genes and regulating various biological processes, such as participating in inflammatory responses, cell migration, proliferation, and apoptosis. In this review, we summarize the recent studies and observations on how MSC-derived exosomal miRNAs contribute to the regeneration and rejuvenation of skin tissue, with particular attention to the applications of bioengineering methods for manipulating the miRNA content of exosome cargo to improve their therapeutic potential. This review can provide new clues for the diagnosis and treatment of skin damage and aging, as well as assist investigators in exploring innovative therapeutic strategies for treating a multitude of skin problems with the aim of delaying skin aging, promoting skin regeneration, and maintaining healthy skin.
Collapse
Affiliation(s)
- Jinmei Zheng
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Beibei Yang
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Siqi Liu
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Zhenfeng Xu
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Zhimeng Ding
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Miaohua Mo
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
34
|
Merk D, Cox FF, Jakobs P, Prömel S, Altschmied J, Haendeler J. Dose-Dependent Effects of Lipopolysaccharide on the Endothelium-Sepsis versus Metabolic Endotoxemia-Induced Cellular Senescence. Antioxidants (Basel) 2024; 13:443. [PMID: 38671891 PMCID: PMC11047739 DOI: 10.3390/antiox13040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The endothelium, the innermost cell layer of blood vessels, is not only a physical barrier between the bloodstream and the surrounding tissues but has also essential functions in vascular homeostasis. Therefore, it is not surprising that endothelial dysfunction is associated with most cardiovascular diseases. The functionality of the endothelium is compromised by endotoxemia, the presence of bacterial endotoxins in the bloodstream with the main endotoxin lipopolysaccharide (LPS). Therefore, this review will focus on the effects of LPS on the endothelium. Depending on the LPS concentration, the outcomes are either sepsis or, at lower concentrations, so-called low-dose or metabolic endotoxemia. Sepsis, a life-threatening condition evoked by hyperactivation of the immune response, includes breakdown of the endothelial barrier resulting in failure of multiple organs. A deeper understanding of the underlying mechanisms in the endothelium might help pave the way to new therapeutic options in sepsis treatment to prevent endothelial leakage and fatal septic shock. Low-dose endotoxemia or metabolic endotoxemia results in chronic inflammation leading to endothelial cell senescence, which entails endothelial dysfunction and thus plays a critical role in cardiovascular diseases. The identification of compounds counteracting senescence induction in endothelial cells might therefore help in delaying the onset or progression of age-related pathologies. Interestingly, two natural plant-derived substances, caffeine and curcumin, have shown potential in preventing endothelial cell senescence.
Collapse
Affiliation(s)
- Dennis Merk
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (D.M.); (F.F.C.); (P.J.)
| | - Fiona Frederike Cox
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (D.M.); (F.F.C.); (P.J.)
- Medical Faculty, Institute for Translational Pharmacology, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Philipp Jakobs
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (D.M.); (F.F.C.); (P.J.)
| | - Simone Prömel
- Department of Biology, Institute of Cell Biology, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Joachim Altschmied
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (D.M.); (F.F.C.); (P.J.)
- Medical Faculty, Cardiovascular Research Institute Düsseldorf, CARID, University Hospital and Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Judith Haendeler
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (D.M.); (F.F.C.); (P.J.)
- Medical Faculty, Cardiovascular Research Institute Düsseldorf, CARID, University Hospital and Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
35
|
García-Trejo SS, Gómez-Sierra T, Eugenio-Pérez D, Medina-Campos ON, Pedraza-Chaverri J. Protective Effect of Curcumin on D-Galactose-Induced Senescence and Oxidative Stress in LLC-PK1 and HK-2 Cells. Antioxidants (Basel) 2024; 13:415. [PMID: 38671863 PMCID: PMC11047423 DOI: 10.3390/antiox13040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
D-galactose has been widely used as an inducer of cellular senescence and pathophysiological processes related to aging because it induces oxidative stress. On the other hand, the consumption of antioxidants such as curcumin can be an effective strategy to prevent phenotypes related to the enhanced production of reactive oxygen species (ROS), such as aging and senescence. This study aimed to evaluate the potential protective effect of curcumin on senescence and oxidative stress and endoplasmic reticulum stress induced by D-galactose treatment in Lilly Laboratories Culture-Porcine Kidney 1 (LLC-PK1) and human kidney 2 (HK-2) proximal tubule cell lines from pig and human, respectively. For senescence induction, cells were treated with 300 mM D-galactose for 120 h and, to evaluate the protective effect of the antioxidant, cells were treated with 5 µM curcumin for 24 h and subsequently treated with curcumin + D-galactose for 120 h. In LLC-PK1 cells, curcumin treatment decreased by 20% the number of cells positive for senescence-associated (SA)-β-D-galactosidase staining and by 25% the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and increased by 40% lamin B1 expression. In HK-2 cells, curcumin treatment increased by 60% the expression of proliferating cell nuclear antigen (PCNA, 50% Klotho levels, and 175% catalase activity. In both cell lines, this antioxidant decreased the production of ROS (20% decrease for LLC-PK1 and 10 to 20% for HK-2). These data suggest that curcumin treatment has a moderate protective effect on D-galactose-induced senescence in LLC-PK1 and HK-2 cells.
Collapse
Affiliation(s)
| | | | | | | | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (S.S.G.-T.); (T.G.-S.); (D.E.-P.); (O.N.M.-C.)
| |
Collapse
|
36
|
Balasubramanian P, Kiss T, Gulej R, Nyul Toth A, Tarantini S, Yabluchanskiy A, Ungvari Z, Csiszar A. Accelerated Aging Induced by an Unhealthy High-Fat Diet: Initial Evidence for the Role of Nrf2 Deficiency and Impaired Stress Resilience in Cellular Senescence. Nutrients 2024; 16:952. [PMID: 38612986 PMCID: PMC11013792 DOI: 10.3390/nu16070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
High-fat diets (HFDs) have pervaded modern dietary habits, characterized by their excessive saturated fat content and low nutritional value. Epidemiological studies have compellingly linked HFD consumption to obesity and the development of type 2 diabetes mellitus. Moreover, the synergistic interplay of HFD, obesity, and diabetes expedites the aging process and prematurely fosters age-related diseases. However, the underlying mechanisms driving these associations remain enigmatic. One of the most conspicuous hallmarks of aging is the accumulation of highly inflammatory senescent cells, with mounting evidence implicating increased cellular senescence in the pathogenesis of age-related diseases. Our hypothesis posits that HFD consumption amplifies senescence burden across multiple organs. To scrutinize this hypothesis, we subjected mice to a 6-month HFD regimen, assessing senescence biomarker expression in the liver, white adipose tissue, and the brain. Aging is intrinsically linked to impaired cellular stress resilience, driven by dysfunction in Nrf2-mediated cytoprotective pathways that safeguard cells against oxidative stress-induced senescence. To ascertain whether Nrf2-mediated pathways shield against senescence induction in response to HFD consumption, we explored senescence burden in a novel model of aging: Nrf2-deficient (Nrf2+/-) mice, emulating the aging phenotype. Our initial findings unveiled significant Nrf2 dysfunction in Nrf2+/- mice, mirroring aging-related alterations. HFD led to substantial obesity, hyperglycemia, and impaired insulin sensitivity in both Nrf2+/- and Nrf2+/+ mice. In control mice, HFD primarily heightened senescence burden in white adipose tissue, evidenced by increased Cdkn2a senescence biomarker expression. In Nrf2+/- mice, HFD elicited a significant surge in senescence burden across the liver, white adipose tissue, and the brain. We postulate that HFD-induced augmentation of senescence burden may be a pivotal contributor to accelerated organismal aging and the premature onset of age-related diseases.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tamas Kiss
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
- International Training Program in Geroscience, First Department of Pediatrics, Semmelweis University, 1089 Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adam Nyul Toth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
37
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
38
|
Shreeya T, Ansari MS, Kumar P, Saifi M, Shati AA, Alfaifi MY, Elbehairi SEI. Senescence: A DNA damage response and its role in aging and Neurodegenerative Diseases. FRONTIERS IN AGING 2024; 4:1292053. [PMID: 38596783 PMCID: PMC11002673 DOI: 10.3389/fragi.2023.1292053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Senescence is a complicated, multi-factorial, irreversible cell cycle halt that has a tumor-suppressing effect in addition to being a significant factor in aging and neurological diseases. Damaged DNA, neuroinflammation, oxidative stress and disrupted proteostasis are a few of the factors that cause senescence. Senescence is triggered by DNA damage which initiates DNA damage response. The DNA damage response, which includes the formation of DNA damage foci containing activated H2AX, which is a key factor in cellular senescence, is provoked by a double strand DNA break. Oxidative stress impairs cognition, inhibits neurogenesis, and has an accelerated aging effect. Senescent cells generate pro-inflammatory mediators known as senescence-associated secretory phenotype (SASP). These pro-inflammatory cytokines and chemokines have an impact on neuroinflammation, neuronal death, and cell proliferation. While it is tempting to think of neurodegenerative diseases as manifestations of accelerated aging and senescence, this review will present information on brain ageing and neurodegeneration as a result of senescence and DNA damage response.
Collapse
Affiliation(s)
- Tejal Shreeya
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Mohd Saifullah Ansari
- Institute of Genetics, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Prabhat Kumar
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | | | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
39
|
You Y, Chen Y, Liu R, Zhang Y, Wang M, Yang Z, Liu J, Ma X. Inverted U-shaped relationship between sleep duration and phenotypic age in US adults: a population-based study. Sci Rep 2024; 14:6247. [PMID: 38486063 PMCID: PMC10940593 DOI: 10.1038/s41598-024-56316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Sleep is a modifiable behavior that can be targeted in interventions aimed at promoting healthy aging. This study aims to (i) identify the sleep duration trend in US adults; (ii) investigate the relationship between sleep duration and phenotypic age; and (iii) explore the role of exercise in this relationship. Phenotypic age as a novel index was calculated according to biomarkers collected from US adults based on the National Health and Nutrition Examination Survey (NHANES). Sleep information was self-reported by participants and discerned through individual interviews. The principal analytical method employed was weighted multivariable linear regression modeling, which accommodated for the complex multi-stage sampling design. The potential non-linear relationship was explored using a restricted cubic spline (RCS) model. Furthermore, subgroup analyses evaluated the potential effects of sociodemographic and lifestyle factors on the primary study outcomes. A total of 13,569 participants were finally included in, thereby resulting in a weighted population of 78,880,615. An examination of the temporal trends in sleep duration revealed a declining proportion of individuals with insufficient and markedly deficient sleep time since the 2015-2016 cycle. Taken normal sleep group as a reference, participants with extreme short sleep [β (95% CI) 0.582 (0.018, 1.146), p = 0.044] and long sleep [β (95% CI) 0.694 (0.186, 1.203), p = 0.010] were both positively associated with phenotypic age using the fully adjusted model. According to the dose-response relationship between sleep duration and phenotypic age, long sleep duration can benefit from regular exercise activity, whereas short sleep duration with more exercise tended to have higher phenotypic age. There is an inverted U-shaped relationship between short and long sleep durations and phenotypic age. This study represents an important step forward in our understanding of the complex relationship between sleep and healthy aging. By shedding light on this topic and providing practical exercise recommendations for promoting healthy sleep habits, researchers can help individuals live longer, healthier, and more fulfilling lives.
Collapse
Affiliation(s)
- Yanwei You
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100084, China
- School of Social Sciences, Tsinghua University, Beijing, 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yuquan Chen
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, 3004, Australia
| | - Ruidong Liu
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100084, China
- Sports Coaching College, Beijing Sport University, Beijing, 100091, China
| | - Yangchang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, 100169, China
| | - Meiqing Wang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100084, China
- School of Social Sciences, Tsinghua University, Beijing, 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Zihao Yang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100084, China
- School of Social Sciences, Tsinghua University, Beijing, 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Jianxiu Liu
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100084, China.
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.
| | - Xindong Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100084, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
40
|
Ei ZZ, Srithawirat T, Chunhacha P, Chaotham C, Arunmanee W, Phookphan P, Chanvorachote P. Resveratrol Shows Potent Senescence Reversal in Experimental Cellular Models of Particular Matter 2.5-induced Cellular Senescence in Human Dermal Papilla Cells. In Vivo 2024; 38:665-673. [PMID: 38418101 PMCID: PMC10905444 DOI: 10.21873/invivo.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND/AIM Particular matter 2.5 (PM2.5) pollution is associated with senescence induction. Since the impact of PM2.5 on stem cell senescence and potential compounds capable of reversing this process are largely unknown, this study aimed to examine the senescence effects of PM2.5 on dermal papilla (DP) stem cells. Additionally, we explored the reversal of these effects using natural product-derived substances, such as resveratrol (Res) or Emblica fruits, soybean, and Thunbergia Laurifolia (EST) extract. MATERIALS AND METHODS Cell senescence was determined using the β-Galactosidase (SA-β-gal) assay. The senescence-associated secretory phenotype (SASP) was detected using real-time RT-PCR. For senescence markers, the mRNA and protein levels of p21 and p16 were measured using real-time RT-PCR and immunofluorescence analysis. RESULTS Subtoxic concentration of PM2.5 (50 μg/ml) induced senescence in DP cells. Resveratrol (50, 100 μM) and plant extracts (400, 800 μg/ml) reversed PM2.5-induced cell senescence. Treatment with Res or EST significantly decreased SA-β-gal staining in PM2.5-treated cells. Furthermore, Res and EST decreased the mRNA levels of SASP, including IL1α, IL7, IL8, and CXCL1. DP cells exposed to PM2.5 exhibited an increase in p21 and p16 mRNA and protein levels, which could be reversed by the addition of Res or EST. Res and EST could reduce p21 and p16 in senescent cells approximately 3- and 2-fold, respectively, compared to untreated senescent cells. CONCLUSION PM2.5 induced senescence in human DP stem cells. Res and EST extract potentially reverse the senescence phenotypes of such cells.
Collapse
Affiliation(s)
- Zin Zin Ei
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thunwadee Srithawirat
- Department of Environmental Science, Pibulsongkram Rajabhat University, Phitsanulok, Thailand
| | - Preedakorn Chunhacha
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Chaotham
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wanatchaporn Arunmanee
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Preeyaphan Phookphan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand;
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
41
|
Lim J, Kim H, Kim GHJ, Kim T, Kang CG, Kim SW, Kim D. Enzymatic upcycling of wild-simulated ginseng leaves for enhancing biological activities and compound K. Appl Microbiol Biotechnol 2024; 108:207. [PMID: 38353757 PMCID: PMC10866779 DOI: 10.1007/s00253-024-13028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Compound K (CK), a ginsenoside with high bioavailability, is present at low levels in wild-simulated ginseng leaves (WSGL). WSGL contains the CK precursors, Rd and F2, in amounts up to 26.4 ± 0.4 and 24.1 ± 1.9 mg/g extract, respectively. In this study, CK production in WGSL reached 25.9 ± 1.0 mg/g extract following treatment with Viscozyme, Celluclast 1.5 L, Pectinex Ultra SP-L, and their combination. The antioxidant activities indicated by oxygen radical absorbance capacity, ferric reducing antioxidant power, and ABTS- and DPPH radical scavenging activity of enzyme-treated WSGL were enhanced 1.69-, 2.51-, 2.88-, and 1.80-fold, respectively, compared to non-treated WSGL. Furthermore, the CK-enriched WSGL demonstrated a 1.94-fold decrease in SA-β-galactosidase expression in human dermal fibroblasts and a 3.8-fold enhancement of inhibition of nitric oxide release in lipopolysaccharide-induced RAW 264.7 cells relative to non-treated WSGL. Consequently, WSGL subjected to enzymatic upcycling has potential as a functional material in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Juho Lim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea
| | - Hayeong Kim
- Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergece, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
| | - Gha-Hyun J Kim
- Department of Bioengineering and Therapeutic Sciences and Programs in Biological Sciences and Human Genetics, University of California, San Francisco, CA, 94158, USA
| | - Taeyoon Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea
| | - Choon Gil Kang
- Ottogi Corporation, Anyang-si, Gyeonggi-do, 14060, Republic of Korea
| | - Seung Wook Kim
- Ottogi Corporation, Anyang-si, Gyeonggi-do, 14060, Republic of Korea
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
- Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergece, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
- Fervere Campus Corporation, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
| |
Collapse
|
42
|
Konar GJ, Flickinger Z, Sharma S, Vallone KT, Lyon CE, Doshier C, Lingan A, Lyon W, Patton JG. Damage-Induced Senescent Immune Cells Regulate Regeneration of the Zebrafish Retina. AGING BIOLOGY 2024; 2:e20240021. [PMID: 39156966 PMCID: PMC11328971 DOI: 10.59368/agingbio.20240021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Zebrafish spontaneously regenerate their retinas in response to damage through the action of Müller glia (MG). Even though MG are conserved in higher vertebrates, the capacity to regenerate retinal damage is lost. Recent work has focused on the regulation of inflammation during tissue regeneration, with temporal roles for macrophages and microglia. Senescent cells that have withdrawn from the cell cycle have mostly been implicated in aging but are still metabolically active, releasing a variety of signaling molecules as part of the senescence-associated secretory phenotype. Here, we discover that in response to retinal damage, a subset of cells expressing markers of microglia/macrophages also express markers of senescence. These cells display a temporal pattern of appearance and clearance during retina regeneration. Premature removal of senescent cells by senolytic treatment led to a decrease in proliferation and incomplete repair of the ganglion cell layer after N-methyl-D-aspartate damage. Our results demonstrate a role for modulation of senescent cell responses to balance inflammation, regeneration, plasticity, and repair as opposed to fibrosis and scarring.
Collapse
Affiliation(s)
- Gregory J. Konar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Zachary Flickinger
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Shivani Sharma
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Kyle T. Vallone
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Charles E. Lyon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Claire Doshier
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Audrey Lingan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - William Lyon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
43
|
Khor YS, Wong PF. MicroRNAs-associated with FOXO3 in cellular senescence and other stress responses. Biogerontology 2024; 25:23-51. [PMID: 37646881 DOI: 10.1007/s10522-023-10059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
FOXO3 is a member of the FOXO transcription factor family and is known for regulating cellular survival in response to stress caused by various external and biological stimuli. FOXO3 decides cell fate by modulating cellular senescence, apoptosis and autophagy by transcriptional regulation of genes involved in DNA damage response and oxidative stress resistance. These cellular processes are tightly regulated physiologically, with FOXO3 acting as the hub that integrates signalling networks controlling them. The activity of FOXO3 is influenced by post-translational modifications, altering its subcellular localisation. In addition, FOXO3 can also be regulated directly or indirectly by microRNAs (miRNAs) or vice versa. This review discusses the involvement of various miRNAs in FOXO3-driven cellular responses such as senescence, apoptosis, autophagy, redox and inflammation defence. Given that these responses are linked and influence cell fate, a thorough understanding of the complex regulation by miRNAs would provide key information for developing therapeutic strategy and avoid unintended consequences caused by off-site targeting of FOXO3.
Collapse
Affiliation(s)
- Yi-Sheng Khor
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
44
|
Wei W, Li T, Chen J, Fan Z, Gao F, Yu Z, Jiang Y. SIRT3/6: an amazing challenge and opportunity in the fight against fibrosis and aging. Cell Mol Life Sci 2024; 81:69. [PMID: 38294557 PMCID: PMC10830597 DOI: 10.1007/s00018-023-05093-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 02/01/2024]
Abstract
Fibrosis is a typical aging-related pathological process involving almost all organs, including the heart, kidney, liver, lung, and skin. Fibrogenesis is a highly orchestrated process defined by sequences of cellular response and molecular signals mechanisms underlying the disease. In pathophysiologic conditions associated with organ fibrosis, a variety of injurious stimuli such as metabolic disorders, epigenetic changes, and aging may induce the progression of fibrosis. Sirtuins protein is a kind of deacetylase which can regulate cell metabolism and participate in a variety of cell physiological functions. In this review, we outline our current understanding of common principles of fibrogenic mechanisms and the functional role of SIRT3/6 in aging-related fibrosis. In addition, sequences of novel protective strategies have been identified directly or indirectly according to these mechanisms. Here, we highlight the role and biological function of SIRT3/6 focus on aging fibrosis, as well as their inhibitors and activators as novel preventative or therapeutic interventions for aging-related tissue fibrosis.
Collapse
Affiliation(s)
- Wenxin Wei
- School of Queen Mary, Nanchang University, Nanchang, 330031, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jinlong Chen
- School of Chemistry and Chemical Engineering, Nangchang University, 999 Xuefu Rd, Nanchang, 330031, China
| | - Zhen Fan
- The Hospital Affiliated to Shanxi University of Chinese Medicine, Xianyang, 712000, China.
| | - Feng Gao
- Shanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Zhibiao Yu
- School of Chemistry and Chemical Engineering, Nangchang University, 999 Xuefu Rd, Nanchang, 330031, China
| | - Yihao Jiang
- School of Chemistry and Chemical Engineering, Nangchang University, 999 Xuefu Rd, Nanchang, 330031, China.
| |
Collapse
|
45
|
He Y, Li Z, Niu Y, Duan Y, Wang Q, Liu X, Dong Z, Zheng Y, Chen Y, Wang Y, Zhao D, Sun X, Cai G, Feng Z, Zhang W, Chen X. Progress in the study of aging marker criteria in human populations. Front Public Health 2024; 12:1305303. [PMID: 38327568 PMCID: PMC10847233 DOI: 10.3389/fpubh.2024.1305303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
The use of human aging markers, which are physiological, biochemical and molecular indicators of structural or functional degeneration associated with aging, is the fundamental basis of individualized aging assessments. Identifying methods for selecting markers has become a primary and vital aspect of aging research. However, there is no clear consensus or uniform principle on the criteria for screening aging markers. Therefore, we combine previous research from our center and summarize the criteria for screening aging markers in previous population studies, which are discussed in three aspects: functional perspective, operational implementation perspective and methodological perspective. Finally, an evaluation framework has been established, and the criteria are categorized into three levels based on their importance, which can help assess the extent to which a candidate biomarker may be feasible, valid, and useful for a specific use context.
Collapse
Affiliation(s)
- Yan He
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Zhe Li
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yue Niu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Yuting Duan
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Qian Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Ying Zheng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Yizhi Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
- Department of Nephrology, Hainan Hospital of Chinese PLA General Hospital, Hainan Province Academician Team Innovation Center, Sanya, China
| | - Yong Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Delong Zhao
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Zhe Feng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Weiguang Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xiangmei Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| |
Collapse
|
46
|
Félix J, Martínez de Toda I, Díaz-Del Cerro E, Gil-Agudo F, De la Fuente M. The immunity and redox clocks in mice, markers of lifespan. Sci Rep 2024; 14:1703. [PMID: 38242936 PMCID: PMC10799057 DOI: 10.1038/s41598-024-51978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
Immune function and redox markers are used for estimating the aging rate, namely biological age (BA). However, it is unknown if this BA and its changes can be reflected in longevity. Thus, we must quantify BA in experimental animals. In peritoneal immune cells of 202 female mice (ICR/CD1) in different ages, 10 immune and 6 redox parameters were evaluated to construct two mathematical models for BA quantification in mice by multiple linear regression. Immune and redox parameters were selected as independent variables and chronological age as dependent, developing two models: the Immunity and the Redox Clocks, reaching both an adjusted R2 of 80.9% and a standard error of 6.38 and 8.57 weeks, respectively. Both models were validated in a different group of healthy mice obtaining a Pearson's correlation coefficient of 0.844 and 0.800 (p < 0.001) between chronological and BA. Furthermore, they were applied to adult prematurely aging mice, which showed a higher BA than non-prematurely aging mice. Moreover, after positive and negative lifestyle interventions, mice showed a lower and higher BA, respectively, than their age-matched controls. In conclusion, the Immunity and Redox Clocks allow BA quantification in mice and both the ImmunolAge and RedoxAge in mice relate to lifespan.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041, Madrid, Spain.
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Fernando Gil-Agudo
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041, Madrid, Spain
| |
Collapse
|
47
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
48
|
Kureel SK, Blair B, Sheetz MP. Recent Advancement in Elimination Strategies and Potential Rejuvenation Targets of Senescence. Adv Biol (Weinh) 2024; 8:e2300461. [PMID: 37857532 DOI: 10.1002/adbi.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 10/21/2023]
Abstract
Cellular senescence is a state of exiting the cell cycle, resisting apoptosis, and changing phenotype. Senescent cells (SCs) can be identified by large, distorted morphology and irreversible inability to replicate. In early development, senescence has beneficial roles like tissue patterning and wound healing, where SCs are cleared by the immune system. However, there is a steep rise in SC number as organisms age. The issue with SC accumulation stems from the loss of cellular function, alterations of the microenvironment, and secretions of pro-inflammatory molecules, consisting of cytokines, chemokines, matrix metalloproteinases (MMPs), interleukins, and extracellular matrix (ECM)-associated molecules. This secreted cocktail is referred to as the senescence-associated secretory phenotype (SASP), a hallmark of cellular senescence. The SASP promotes inflammation and displays a bystander effect where paracrine signaling turns proliferating cells into senescent states. To alleviate age-associated diseases, researchers have developed novel methods and techniques to selectively eliminate SCs in aged individuals. Although studies demonstrated that selectively killing SCs improves age-related disorders, there are drawbacks to SC removal. Considering favorable aspects of senescence in the body, this paper reviews recent advancements in elimination strategies and potential rejuvenation targets of senescence to bring researchers in the field up to date.
Collapse
Affiliation(s)
- Sanjay Kumar Kureel
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Brandon Blair
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Michael P Sheetz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
49
|
Steinbach MJ, Denburg NL. Melatonin in Alzheimer's Disease: Literature Review and Therapeutic Trials. J Alzheimers Dis 2024; 101:S193-S204. [PMID: 39422936 DOI: 10.3233/jad-230760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
There are currently no effective treatments to prevent, halt, or reverse Alzheimer's disease (AD), the most common cause of dementia in older adults. Melatonin, a relatively harmless over-the-counter supplement, may offer some benefits to patients with AD. Melatonin is known for its sleep-enhancing properties, but research shows that it may provide other advantages as well, such as antioxidant and anti-amyloidogenic properties. Clinical trials for melatonin use in AD have mixed results but, overall, show modest benefits. However, it is difficult to interpret clinical research in this area as there is little standardization to guide the administration and study of melatonin. This review covers basic biology and clinical research on melatonin in AD focusing on prominent hypotheses of pathophysiology of neurodegeneration and cognitive decline in AD (i.e., amyloid and tau hypotheses, antioxidant and anti-inflammation, insulin resistance and glucose homeostasis, the cholinergic hypothesis, sleep regulation, and the hypothalamic-pituitary-adrenal axis and cortisol). This is followed by a discussion on pending clinical trials, considerations for future research protocols, and open questions in the field.
Collapse
Affiliation(s)
- Marilyn J Steinbach
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Division of Cognitive Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Natalie L Denburg
- Department of Neurology, Division of Cognitive Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
50
|
Liu X, Zhao W, Hu M, Zhang Y, Wang J, Zhang L. Cadmium-induced annulus fibrosus cell senescence contributes to intervertebral disc degeneration via the JNK/p53 signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:588-595. [PMID: 38629100 PMCID: PMC11017839 DOI: 10.22038/ijbms.2024.72312.15728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/18/2023] [Indexed: 04/19/2024]
Abstract
Objectives Investigating the impact of cadmium (Cd) on annulus fibrosus (AF) cells and its potential mechanism was the purpose of the current study. Materials and Methods Cd was cultivated in different concentrations (0, 1, 5, 10, and 20 μM) on AF cells and the potential effects of the metal were assessed. Using the CCK-8 method, cell viability and proliferation were identified. Using transcriptome analysis, the annulus fibrosus cells were sequenced both with and without cadmium chloride. The EdU method was used to determine the rate of cell proliferation; senescence-associated β-galactosidase (SA-β-Gal) staining was used to determine the number of positive cells; and western blot, RT-PCR, and immunofluorescence were used to determine the protein and mRNA expression of senescence-associated proteins (p16, p21, and p53) and c-Jun N-terminal kinase (JNK). Results According to the findings, Cd has the ability to increase the production of senescence-associated genes (p16 and p21) and senescence-associated secreted phenotype (SASP), which includes IL-1β and IL-6. Through the JNK/p53 signal pathway, Cd exposure simultaneously accelerated AF cell senescence and promoted SASP. Following JNK inhibitor (SP600125) treatment, the expression of p53, JNK, and senescence-associated indices were all down-regulated. Conclusion By activating the JNK/p53 signaling pathway, Cd can induce oxidative stress damage and AF cell senescence. These findings could provide a new approach for treating and preventing intervertebral disc degeneration (IVDD) caused by Cd exposure.
Collapse
Affiliation(s)
- Xin Liu
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu, China
- These authors contributed equally to this work
| | - Wenjie Zhao
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning, China
- These authors contributed equally to this work
| | - Man Hu
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning, China
- These authors contributed equally to this work
| | - Yu Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Jingcheng Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu, China
| |
Collapse
|