1
|
Tokushige SI, Matsuda S, Tada M, Yabe I, Takeda A, Tanaka H, Hatakenaka M, Enomoto H, Kobayashi S, Shimizu K, Shimizu T, Kotsuki N, Inomata-Terada S, Furubayashi T, Ichikawa Y, Hanajima R, Tsuji S, Ugawa Y, Terao Y. Roles of the cerebellum and basal ganglia in temporal integration: Insights from a synchronized tapping task. Clin Neurophysiol 2024; 158:1-15. [PMID: 38113692 DOI: 10.1016/j.clinph.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 10/07/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE The aim of this study was to clarify the roles of the cerebellum and basal ganglia for temporal integration. METHODS We studied 39 patients with spinocerebellar degeneration (SCD), comprising spinocerebellar atrophy 6 (SCA6), SCA31, Machado-Joseph disease (MJD, also called SCA3), and multiple system atrophy (MSA). Thirteen normal subjects participated as controls. Participants were instructed to tap on a button in synchrony with isochronous tones. We analyzed the inter-tap interval (ITI), synchronizing tapping error (STE), negative asynchrony, and proportion of delayed tapping as indicators of tapping performance. RESULTS The ITI coefficient of variation was increased only in MSA patients. The standard variation of STE was larger in SCD patients than in normal subjects, especially for MSA. Negative asynchrony, which is a tendency to tap the button before the tones, was prominent in SCA6 and MSA patients, with possible basal ganglia involvement. SCA31 patients exhibited normal to supranormal performance in terms of the variability of STE, which was surprising. CONCLUSIONS Cerebellar patients generally showed greater STE variability, except for SCA31. The pace of tapping was affected in patients with possible basal ganglia pathology. SIGNIFICANCE Our results suggest that interaction between the cerebellum and the basal ganglia is essential for temporal processing. The cerebellum and basal ganglia and their interaction regulate synchronized tapping, resulting in distinct tapping pattern abnormalities among different SCD subtypes.
Collapse
Affiliation(s)
- Shin-Ichi Tokushige
- Department of Neurology, Graduate School of Medicine, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Neurology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Shunichi Matsuda
- Department of Neurology, Graduate School of Medicine, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masayoshi Tada
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Atsushi Takeda
- Department of Neurology, Sendai Nishitaga Hospital, 2-11-11, Kagitori-honcho, Taihaku-ku, Sendai 982-8555, Japan
| | - Hiroyasu Tanaka
- Department of Neurology, Sendai Nishitaga Hospital, 2-11-11, Kagitori-honcho, Taihaku-ku, Sendai 982-8555, Japan
| | - Megumi Hatakenaka
- Department of Neurology, Morinomiya Hospital, 2-1-88, Morinomiya, Joto-ku, Osaka 536-0025, Japan
| | - Hiroyuki Enomoto
- Department of Neurology, Faculty of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Shunsuke Kobayashi
- Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8606, Japan
| | - Kazutaka Shimizu
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago, Tottori 683-8504, Japan
| | - Takahiro Shimizu
- Department of Neurology, Kitasato University School of Medicine, 1-15-1, Kitazato, Minami, Sagamihara, Kanagawa 252-0375, Japan
| | - Naoki Kotsuki
- Department of Neurology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Satomi Inomata-Terada
- Department of Medical Physiology, School of Medicine, Kyorin University, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Toshiaki Furubayashi
- Graduate School of Health and Environment Science, Tohoku Bunka Gakuen University, 6-45-1 Kunimi, Sendai, Miyagi 981-8551, Japan
| | - Yaeko Ichikawa
- Department of Neurology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Ritsuko Hanajima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago, Tottori 683-8504, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, the University of Tokyo and International University of Health and Welfare, 4-3, Kozunomori, Narita-shi, Chiba-ken 286-8686, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Yasuo Terao
- Department of Neurology, Graduate School of Medicine, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Medical Physiology, School of Medicine, Kyorin University, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan.
| |
Collapse
|
2
|
Guo Y, Zheng H, Long J. Gating at cortical level contributes to auditory-motor synchronization during repetitive finger tapping. Cereb Cortex 2022; 33:6198-6206. [PMID: 36563001 DOI: 10.1093/cercor/bhac495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022] Open
Abstract
Sensory integration contributes to temporal coordination of the movement with external rhythms. How the information flowing of sensory inputs is regulated with increasing tapping rates and its function remains unknown. Here, somatosensory evoked potentials to ulnar nerve stimulation were recorded during auditory-cued repetitive right-index finger tapping at 0.5, 1, 2, 3, and 4 Hz in 13 healthy subjects. We found that sensory inputs were suppressed at subcortical level (represented by P14) and primary somatosensory cortex (S1, represented by N20/P25) during repetitive tapping. This suppression was decreased in S1 but not in subcortical level during fast repetitive tapping (2, 3, and 4 Hz) compared with slow repetitive tapping (0.5 and 1 Hz). Furthermore, we assessed the ability to analyze temporal information in S1 by measuring the somatosensory temporal discrimination threshold (STDT). STDT increased during fast repetitive tapping compared with slow repetitive tapping, which was negatively correlated with the task performance of phase shift and positively correlated with the peak-to-peak amplitude (% of resting) in S1 but not in subcortical level. These novel findings indicate that the increased sensory input (lower sensory gating) in S1 may lead to greater temporal uncertainty for sensorimotor integration dereasing the performance of repetitive movement during increasing tapping rates.
Collapse
Affiliation(s)
- Yaqiu Guo
- Jinan University, College of Information Science and Technology, Guangzhou 510632, China
| | - Huixian Zheng
- Jinan University, College of Information Science and Technology, Guangzhou 510632, China
| | - Jinyi Long
- Jinan University, College of Information Science and Technology, Guangzhou 510632, China
| |
Collapse
|
3
|
White matter microstructural properties correlate with sensorimotor synchronization abilities. Neuroimage 2016; 138:1-12. [PMID: 27165760 DOI: 10.1016/j.neuroimage.2016.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 01/24/2023] Open
Abstract
Sensorimotor synchronization (SMS) to an external auditory rhythm is a developed ability in humans, particularly evident in dancing and singing. This ability is typically measured in the lab via a simple task of finger tapping to an auditory beat. While simplistic, there is some evidence that poor performance on this task could be related to impaired phonological and reading abilities in children. Auditory-motor synchronization is hypothesized to rely on a tight coupling between auditory and motor neural systems, but the specific pathways that mediate this coupling have not been identified yet. In this study, we test this hypothesis and examine the contribution of fronto-temporal and callosal connections to specific measures of rhythmic synchronization. Twenty participants went through SMS and diffusion magnetic resonance imaging (dMRI) measurements. We quantified the mean asynchrony between an auditory beat and participants' finger taps, as well as the time to resynchronize (TTR) with an altered meter, and examined the correlations between these behavioral measures and diffusivity in a small set of predefined pathways. We found significant correlations between asynchrony and fractional anisotropy (FA) in the left (but not right) arcuate fasciculus and in the temporal segment of the corpus callosum. On the other hand, TTR correlated with FA in the precentral segment of the callosum. To our knowledge, this is the first demonstration that relates these particular white matter tracts with performance on an auditory-motor rhythmic synchronization task. We propose that left fronto-temporal and temporal-callosal fibers are involved in prediction and constant comparison between auditory inputs and motor commands, while inter-hemispheric connections between the motor/premotor cortices contribute to successful resynchronization of motor responses with a new external rhythm, perhaps via inhibition of tapping to the previous rhythm. Our results indicate that auditory-motor synchronization skills are associated with anatomical pathways that have been previously related to phonological awareness, thus offering a possible anatomical basis for the behavioral covariance between these abilities.
Collapse
|
4
|
Tal I, Abeles M. Temporal accuracy of human cortico-cortical interactions. J Neurophysiol 2016; 115:1810-20. [PMID: 26843604 PMCID: PMC4869482 DOI: 10.1152/jn.00956.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/29/2016] [Indexed: 11/22/2022] Open
Abstract
The precision in space and time of interactions among multiple cortical sites was evaluated by examining repeating precise spatiotemporal patterns of instances in which cortical currents showed brief amplitude undulations. The amplitudes of the cortical current dipoles were estimated by applying a variant of synthetic aperture magnetometry to magnetoencephalographic (MEG) recordings of subjects tapping to metric auditory rhythms of drum beats. Brief amplitude undulations were detected in the currents by template matching at a rate of 2–3 per second. Their timing was treated as point processes, and precise spatiotemporal patterns were searched for. By randomly teetering these point processes within a time window W, we estimated the accuracy of the timing of these brief amplitude undulations and compared the results with those obtained by applying the same analysis to traces composed of random numbers. The results demonstrated that the timing accuracy of patterns was better than 3 ms. Successful classification of two different cognitive processes based on these patterns suggests that at least some of the repeating patterns are specific to a cognitive process.
Collapse
Affiliation(s)
- Idan Tal
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; and
| | - Moshe Abeles
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; and The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Bavassi L, Kamienkowski JE, Sigman M, Laje R. Sensorimotor synchronization: neurophysiological markers of the asynchrony in a finger-tapping task. PSYCHOLOGICAL RESEARCH 2015; 81:143-156. [PMID: 26563397 DOI: 10.1007/s00426-015-0721-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Sensorimotor synchronization (SMS) is a form of referential behavior in which an action is coordinated with a predictable external stimulus. The neural bases of the synchronization ability remain unknown, even in the simpler, paradigmatic task of finger tapping to a metronome. In this task the subject is instructed to tap in synchrony with a periodic sequence of brief tones, and the time difference between each response and the corresponding stimulus tone (asynchrony) is recorded. We make a step towards the identification of the neurophysiological markers of SMS by recording high-density EEG event-related potentials and the concurrent behavioral response-stimulus asynchronies during an isochronous paced finger-tapping task. Using principal component analysis, we found an asymmetry between the traces for advanced and delayed responses to the stimulus, in accordance with previous behavioral observations from perturbation studies. We also found that the amplitude of the second component encodes the higher-level percept of asynchrony 100 ms after the current stimulus. Furthermore, its amplitude predicts the asynchrony of the next step, past 300 ms from the previous stimulus, independently of the period length. Moreover, the neurophysiological processing of synchronization errors is performed within a fixed-duration interval after the stimulus. Our results suggest that the correction of a large asynchrony in a periodic task and the recovery of synchrony after a perturbation could be driven by similar neural processes.
Collapse
|
6
|
Todd NPM, Lee CS. Source analysis of electrophysiological correlates of beat induction as sensory-guided action. Front Psychol 2015; 6:1178. [PMID: 26321991 PMCID: PMC4536380 DOI: 10.3389/fpsyg.2015.01178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 07/27/2015] [Indexed: 11/13/2022] Open
Abstract
In this paper we present a reanalysis of electrophysiological data originally collected to test a sensory-motor theory of beat induction (Todd et al., 2002; Todd and Seiss, 2004; Todd and Lee, 2015). The reanalysis is conducted in the light of more recent findings and in particular the demonstration that auditory evoked potentials contain a vestibular dependency. At the core of the analysis is a model which predicts brain dipole source current activity over time in temporal and frontal lobe areas during passive listening to a rhythm, or active synchronization, where it dissociates the frontal activity into distinct sources which can be identified as respectively pre-motor and motor in origin. The model successfully captures the main features of the rhythm in showing that the metrical structure is manifest in an increase in source current activity during strong compared to weak beats. In addition the outcomes of modeling suggest that: (1) activity in both temporal and frontal areas contribute to the metrical percept and that this activity is distributed over time; (2) transient, time-locked activity associated with anticipated beats is increased when a temporal expectation is confirmed following a previous violation, such as a syncopation; (3) two distinct processes are involved in auditory cortex, corresponding to tangential and radial (possibly vestibular dependent) current sources. We discuss the implications of these outcomes for the insights they give into the origin of metrical structure and the power of syncopation to induce movement and create a sense of groove.
Collapse
Affiliation(s)
- Neil P. M. Todd
- Faculty of Life Science, University of ManchesterManchester, UK
| | | |
Collapse
|
7
|
The 3-second rule in hereditary pure cerebellar ataxia: a synchronized tapping study. PLoS One 2015; 10:e0118592. [PMID: 25706752 PMCID: PMC4337906 DOI: 10.1371/journal.pone.0118592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
The '3-second rule' has been proposed based on miscellaneous observations that a time period of around 3 seconds constitutes the fundamental unit of time related to the neuro-cognitive machinery in normal humans. The aim of paper was to investigate the temporal processing in patients with spinocerebellar ataxia type 6 (SCA6) and SCA31, pure cerebellar types of spinocerebellar degeneration, using a synchronized tapping task. Seventeen SCA patients (11 SCA6, 6 SCA31) and 17 normal age-matched volunteers participated. The task required subjects to tap a keyboard in synchrony with sequences of auditory stimuli presented at fixed interstimulus intervals (ISIs) between 200 and 4800 ms. In this task, the subjects required non-motor components to estimate the time of forthcoming tone in addition to motor components to tap. Normal subjects synchronized their taps to the presented tones at shorter ISIs, whereas as the ISI became longer, the normal subjects displayed greater latency between the tone and the tapping (transition zone). After the transition zone, normal subjects pressed the button delayed relative to the tone. On the other hand, SCA patients could not synchronize their tapping with the tone even at shorter ISIs, although they pressed the button delayed relative to the tone earlier than normal subjects did. The earliest time of delayed tapping appearance after the transition zone was 4800 ms in normal subjects but 1800 ms in SCA patients. The span of temporal integration in SCA patients is shortened compared to that in normal subjects. This could represent non-motor cerebellar dysfunction in SCA patients.
Collapse
|
8
|
Nozaradan S. Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130393. [PMID: 25385771 PMCID: PMC4240960 DOI: 10.1098/rstb.2013.0393] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability to perceive a regular beat in music and synchronize to this beat is a widespread human skill. Fundamental to musical behaviour, beat and meter refer to the perception of periodicities while listening to musical rhythms and often involve spontaneous entrainment to move on these periodicities. Here, we present a novel experimental approach inspired by the frequency-tagging approach to understand the perception and production of rhythmic inputs. This approach is illustrated here by recording the human electroencephalogram responses at beat and meter frequencies elicited in various contexts: mental imagery of meter, spontaneous induction of a beat from rhythmic patterns, multisensory integration and sensorimotor synchronization. Collectively, our observations support the view that entrainment and resonance phenomena subtend the processing of musical rhythms in the human brain. More generally, they highlight the potential of this approach to help us understand the link between the phenomenology of musical beat and meter and the bias towards periodicities arising under certain circumstances in the nervous system. Entrainment to music provides a highly valuable framework to explore general entrainment mechanisms as embodied in the human brain.
Collapse
Affiliation(s)
- Sylvie Nozaradan
- Institute of Neuroscience (Ions), Université catholique de Louvain (UCL), 53, Avenue Mounier-UCL 53.75, Bruxelles 1200, Belgium International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada H3C 3J7
| |
Collapse
|
9
|
Bourguignon M, Piitulainen H, De Tiège X, Jousmäki V, Hari R. Corticokinematic coherence mainly reflects movement-induced proprioceptive feedback. Neuroimage 2014; 106:382-90. [PMID: 25463469 PMCID: PMC4295920 DOI: 10.1016/j.neuroimage.2014.11.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/04/2014] [Accepted: 11/14/2014] [Indexed: 02/03/2023] Open
Abstract
Corticokinematic coherence (CKC) reflects coupling between magnetoencephalographic (MEG) signals and hand kinematics, mainly occurring at hand movement frequency (F0) and its first harmonic (F1). Since CKC can be obtained for both active and passive movements, it has been suggested to mainly reflect proprioceptive feedback to the primary sensorimotor (SM1) cortex. However, the directionality of the brain-kinematics coupling has not been previously assessed and was thus quantified in the present study by means of renormalized partial directed coherence (rPDC). MEG data were obtained from 15 subjects who performed right index-finger movements and whose finger was, in another session, passively moved, with or without tactile input. Four additional subjects underwent the same task with slowly varying movement pace, spanning the 1-5 Hz frequency range. The coupling between SM1 activity recorded with MEG and finger kinematics was assessed with coherence and rPDC. In all conditions, the afferent rPDC spectrum, which resembled the coherence spectrum, displayed higher values than the efferent rPDC spectrum. The afferent rPDC was 37% higher when tactile input was present, and it was at highest at F1 of the passive conditions; the efferent rPDC level did not differ between conditions. The apparent latency for the afferent input, estimated within the framework of the rPDC analysis, was 50-100 ms. The higher directional coupling between hand kinematics and SM1 activity in afferent than efferent direction strongly supports the view that CKC mainly reflects movement-related somatosensory proprioceptive afferent input to the contralateral SM1 cortex.
Collapse
Affiliation(s)
- Mathieu Bourguignon
- Brain Research Unit and MEG Core, O.V. Lounasmaa Laboratory, Aalto University School of Science, PO BOX 15100, FI-00076-AALTO Espoo, Finland.
| | - Harri Piitulainen
- Brain Research Unit and MEG Core, O.V. Lounasmaa Laboratory, Aalto University School of Science, PO BOX 15100, FI-00076-AALTO Espoo, Finland
| | - Xavier De Tiège
- Laboratoire de Cartographie Fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, 808 Lennik Street, B-1070 Bruxelles, Belgium
| | - Veikko Jousmäki
- Brain Research Unit and MEG Core, O.V. Lounasmaa Laboratory, Aalto University School of Science, PO BOX 15100, FI-00076-AALTO Espoo, Finland
| | - Riitta Hari
- Brain Research Unit and MEG Core, O.V. Lounasmaa Laboratory, Aalto University School of Science, PO BOX 15100, FI-00076-AALTO Espoo, Finland
| |
Collapse
|
10
|
Thaut MH, Demartin M, Sanes JN. Brain networks for integrative rhythm formation. PLoS One 2008; 3:e2312. [PMID: 18509462 PMCID: PMC2386151 DOI: 10.1371/journal.pone.0002312] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 04/12/2008] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Performance of externally paced rhythmic movements requires brain and behavioral integration of sensory stimuli with motor commands. The underlying brain mechanisms to elaborate beat-synchronized rhythm and polyrhythms that musicians readily perform may differ. Given known roles in perceiving time and repetitive movements, we hypothesized that basal ganglia and cerebellar structures would have greater activation for polyrhythms than for on-the-beat rhythms. METHODOLOGY/PRINCIPAL FINDINGS Using functional MRI methods, we investigated brain networks for performing rhythmic movements paced by auditory cues. Musically trained participants performed rhythmic movements at 2 and 3 Hz either at a 1:1 on-the-beat or with a 3:2 or a 2:3 stimulus-movement structure. Due to their prior musical experience, participants performed the 3:2 or 2:3 rhythmic movements automatically. Both the isorhythmic 1:1 and the polyrhythmic 3:2 or 2:3 movements yielded the expected activation in contralateral primary motor cortex and related motor areas and ipsilateral cerebellum. Direct comparison of functional MRI signals obtained during 3:2 or 2:3 and on-the-beat rhythms indicated activation differences bilaterally in the supplementary motor area, ipsilaterally in the supramarginal gyrus and caudate-putamen and contralaterally in the cerebellum. CONCLUSIONS/SIGNIFICANCE The activated brain areas suggest the existence of an interconnected brain network specific for complex sensory-motor rhythmic integration that might have specificity for elaboration of musical abilities.
Collapse
Affiliation(s)
- Michael H. Thaut
- Center for Biomedical Research in Music, Colorado State University, Fort Collins, Colorado, United States of America
- Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Martina Demartin
- Institute of Experimental Medicine, National Research Council, Rome, Italy
| | - Jerome N. Sanes
- Department of Neuroscience, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Laboratory of Functional Neuroimaging, Foundation Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
11
|
Müller K, Aschersleben G, Schmitz F, Schnitzler A, Freund HJ, Prinz W. Inter- versus intramodal integration in sensorimotor synchronization: a combined behavioral and magnetoencephalographic study. Exp Brain Res 2007; 185:309-18. [PMID: 17932661 PMCID: PMC2755785 DOI: 10.1007/s00221-007-1155-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 09/24/2007] [Indexed: 12/29/2022]
Abstract
Although the temporal occurrence of the pacing signal is predictable in sensorimotor synchronization tasks, normal subjects perform on-the-beat-tapping to an isochronous auditory metronome with an anticipatory error. This error originates from an intermodal task, that is, subjects have to bring information from the auditory and tactile modality to coincide. The aim of the present study was to illuminate whether the synchronization error is a finding specific to an intermodal timing task and whether the underlying cortical mechanisms are modality-specific or supramodal. We collected behavioral data and cortical evoked responses by magneto-encephalography (MEG) during performance of cross- and unimodal tapping-tasks. As expected, subjects showed negative asynchrony in performing an auditorily paced tapping task. However, no asynchrony emerged during tactile pacing, neither during pacing at the opposite finger nor at the toe. Analysis of cortical signals resulted in a three dipole model best explaining tap-contingent activity in all three conditions. The temporal behavior of the sources was similar between the conditions and, thus, modality independent. The localization of the two earlier activated sources was modality-independent as well whereas location of the third source varied with modality. In the auditory pacing condition it was localized in contralateral primary somatosensory cortex, during tactile pacing it was localized in contralateral posterior parietal cortex. In previous studies with auditory pacing the functional role of this third source was contradictory: A special temporal coupling pattern argued for involvement of the source in evaluating the temporal distance between tap and click whereas subsequent data gave no evidence for such an interpretation. Present data shed new light on this question by demonstrating differences between modalities in the localization of the third source with similar temporal behavior.
Collapse
Affiliation(s)
- Katharina Müller
- Department of Neurology, Heinrich-Heine University, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Chen JL, Zatorre RJ, Penhune VB. Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. Neuroimage 2006; 32:1771-81. [PMID: 16777432 DOI: 10.1016/j.neuroimage.2006.04.207] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 04/18/2006] [Accepted: 04/21/2006] [Indexed: 11/16/2022] Open
Abstract
When listening to music, we often spontaneously synchronize our body movements to a rhythm's beat (e.g. tapping our feet). The goals of this study were to determine how features of a rhythm such as metric structure, can facilitate motor responses, and to elucidate the neural correlates of these auditory-motor interactions using fMRI. Five variants of an isochronous rhythm were created by increasing the contrast in sound amplitude between accented and unaccented tones, progressively highlighting the rhythm's metric structure. Subjects tapped in synchrony to these rhythms, and as metric saliency increased across the five levels, louder tones evoked longer tap durations with concomitant increases in the BOLD response at auditory and dorsal premotor cortices. The functional connectivity between these regions was also modulated by the stimulus manipulation. These results show that metric organization, as manipulated via intensity accentuation, modulates motor behavior and neural responses in auditory and dorsal premotor cortex. Auditory-motor interactions may take place at these regions with the dorsal premotor cortex interfacing sensory cues with temporally organized movement.
Collapse
Affiliation(s)
- Joyce L Chen
- Montreal Neurological Institute, McGill University, Rm. 276, 3801 University St., Montreal, QC, Canada H3A 2B4.
| | | | | |
Collapse
|
13
|
Abstract
Sensorimotor synchronization (SMS), the rhythmic coordination of perception and action, occurs in many contexts, but most conspicuously in music performance and dance. In the laboratory, it is most often studied in the form of finger tapping to a sequence of auditory stimuli. This review summarizes theories and empirical findings obtained with the tapping task. Its eight sections deal with the role of intention, rate limits, the negative mean asynchrony, variability, models of error correction, perturbation studies, neural correlates of SMS, and SMS in musical contexts. The central theoretical issue is considered to be how best to characterize the perceptual information and the internal processes that enable people to achieve and maintain SMS. Recent research suggests that SMS is controlled jointly by two error correction processes (phase correction and period correction) that differ in their degrees of cognitive control and may be associated with different brain circuits. They exemplify the general distinction between subconscious mechanisms of action regulation and conscious processes involved in perceptual judgment and action planning.
Collapse
Affiliation(s)
- Bruno H Repp
- Haskins Laboratories, New Haven, CT 06511-6624, USA.
| |
Collapse
|
14
|
Doumas M, Praamstra P, Wing AM. Low frequency rTMS effects on sensorimotor synchronization. Exp Brain Res 2005; 167:238-45. [PMID: 16078033 DOI: 10.1007/s00221-005-0029-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 03/28/2005] [Indexed: 10/25/2022]
Abstract
Previous studies using low frequency (1 Hz) rTMS over the motor and premotor cortex have examined repetitive movements, but focused either on motor aspects of performance such as movement speed, or on variability of the produced intervals. A novel question is whether TMS affects the synchronization of repetitive movements with an external cue (sensorimotor synchronization). In the present study participants synchronized finger taps with the tones of an auditory metronome. The aim of the study was to examine whether motor and premotor cortical inhibition induced by rTMS affects timing aspects of synchronization performance such as the coupling between the tap and the tone and error correction after a metronome perturbation. Metronome sequences included perturbations corresponding to a change in the duration of a single interval (phase shifts) that were either small and below the threshold for conscious perception (10 ms) or large and perceivable (50 ms). Both premotor and motor cortex stimulation induced inhibition, as reflected in a lengthening of the silent period. Neither motor nor premotor cortex rTMS altered error correction after a phase shift. However, motor cortex stimulation made participants tap closer to the tone, yielding a decrease in tap-tone asynchrony. This provides the first neurophysiological demonstration of a dissociation between error correction and tap-tone asynchrony in sensorimotor synchronization. We discuss the results in terms of current theories of timing and error correction.
Collapse
Affiliation(s)
- Michail Doumas
- Behavioural Brain Sciences Center, School of Psychology, The University of Birmingham, Edgbaston, UK.
| | | | | |
Collapse
|
15
|
Molinari M, Leggio MG, Filippini V, Gioia MC, Cerasa A, Thaut MH. Sensorimotor transduction of time information is preserved in subjects with cerebellar damage. Brain Res Bull 2005; 67:448-58. [PMID: 16216693 DOI: 10.1016/j.brainresbull.2005.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 07/03/2005] [Indexed: 11/19/2022]
Abstract
The cerebellar contribution to motor entrainment through rhythmic auditory stimuli was analyzed by comparing rhythmic motor responses in subjects with cerebellar pathologies and in healthy controls. Eleven patients with cerebellar lesions and eight healthy subjects tapped in synchrony with an auditory rhythmic stimulus using a hand-held pencil-shaped electrode connected to a PC. A 60-stimulus sequence was delivered with an ISI of 500 ms and changed at random to a new ISI value with either consciously perceived (+/-50 ms) or unperceived tempo changes (+/-10 ms). Synchronization patterns for both groups were computed based on the timing of inter-response intervals (IRIs) and synchronization errors (SE). Variability of IRI as well as the timing of adaptation patterns after the tempo changes were modeled and analyzed mathematically using a logistic/sigmoid function. Healthy subjects performed with significantly lower IRI variability than cerebellar patients. Patients with focal lesions performed with significantly lower IRI variability than patients with atrophic lesions. Asymptote parameters during isochronous synchronization as well as slope angles and symmetry points of the adaptation curves after tempo perturbation showed no significant differences between groups. Present data indicate that temporal variability of rhythmic motor responses is differentially affected by distinct cerebellar pathologies but that motor entrainment to auditory rhythms is not affected by lesion of the cerebellar circuits.
Collapse
Affiliation(s)
- Marco Molinari
- I.R.C.S.S. Santa Lucia Foundation, Department of Neurorehabilitation, University of Rome, Via Ardeatina 306, 00179 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Adequate interaction with our physical and social environment requires accurate timing abilities. Since planning and control of movements is closely related to sensorimotor synchronization, the investigation of synchronization abilities may allow insights into fundamental principles of motor behaviour. The finger-tapping task has frequently been used to study the synchronization of one's own movements in relation to external events. Data from behavioural studies gave rise to the assumption that it is not the peripheral event (i.e., finger-tap or pacing signal) that is synchronized but its central representation. The neural foundations of sensorimotor synchronization have only recently been investigated and are still poorly understood. The present article reviews data from neurophysiological studies investigating sensorimotor synchronization to shed light on the neurophysiological processes associated with sensorimotor synchronization. This review focuses on studies investigating neuroelectric and neuromagnetic activity associated with simple repetitive synchronization tasks.
Collapse
Affiliation(s)
- Bettina Pollok
- Department of Neurology, MEG-Laboratory, Heinrich-Heine, University, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | | | | |
Collapse
|
17
|
Pollok B, Müller K, Aschersleben G, Schnitzler A, Prinz W. Bimanual coordination: neuromagnetic and behavioral data. Neuroreport 2004; 15:449-52. [PMID: 15094501 DOI: 10.1097/00001756-200403010-00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It has been suggested that bimanual coordination is associated with stronger activation of the left motor cortex in right-handers. The aim of the present study was to investigate whether left motor cortex dominance constitutes a fundamental feature of bimanual coordination. We investigated neuromagnetic responses while subjects performed a bimanual tapping task using a 122-channel whole-head neuromagnetometer. Three neuromagnetic sources localized in the primary sensorimotor cortex of each hemisphere were found. Sources represent neuromagnetic correlates of the motor command and of somatosensory feedback. Since we found no differences of amplitudes or latencies of corresponding sources of both hemispheres, our data suggest that dominance of the left motor cortex is not a fundamental characteristic for bimanual coordination.
Collapse
Affiliation(s)
- Bettina Pollok
- Department of Neurology, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
18
|
Hesse CW, Seiss E, Bracewell RM, Praamstra P. Absence of gaze direction effects on EEG measures of sensorimotor function. Clin Neurophysiol 2004; 115:29-38. [PMID: 14706466 DOI: 10.1016/s1388-2457(03)00302-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Gaze direction is known to modulate the activation patterns of sensorimotor areas as seen at the single cell level and in functional magnetic resonance imaging (fMRI). To determine whether such gaze direction effects can be observed in scalp-recorded electroencephalogram (EEG) measures of sensorimotor function we investigated somatosensory evoked potentials (SEPs) and steady state movement related cortical potentials (MRPs). METHODS In two separate experiments, SEPs were elicited by electrical stimulation of the median nerve (experiment 1) and steady state MRPs were induced by 2 Hz tapping paced by an auditory cue (experiment 2), while subjects directed their gaze 15 degrees to the left or to the right. RESULTS Gaze direction failed to produce any appreciable differences in the waveforms of the SEPs or MRPs. In particular, there was no effect on peak amplitude, peak latency and peak scalp topography measures of SEP and MRP components, or on spatial or temporal parameters of dipole models of the underlying cortical generators. Additional frequency domain analyses did not reveal reliable gaze-related changes in induced power at electrode sites overlying somatosensory and motor areas, or in coherence between pairs of parietal, central and frontal electrodes, across a broad range of frequencies. CONCLUSIONS EEG measures of sensorimotor function, obtained in a non-visual motor task, are insensitive to modulatory effects of gaze direction in sensorimotor areas that are observable with fMRI.
Collapse
Affiliation(s)
- C W Hesse
- Sensory Motor Neuroscience Group, Behavioural Brain Sciences Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
19
|
Praamstra P, Turgeon M, Hesse CW, Wing AM, Perryer L. Neurophysiological correlates of error correction in sensorimotor-synchronization. Neuroimage 2003; 20:1283-97. [PMID: 14568497 DOI: 10.1016/s1053-8119(03)00351-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Revised: 06/03/2003] [Accepted: 06/03/2003] [Indexed: 11/25/2022] Open
Abstract
In a sensorimotor synchronization task requiring subjects to tap in synchrony with an auditory stimulus, occasional perturbations (i.e., interval changes) in an otherwise isochronous sequence of auditory metronome stimuli are known to be compensated remarkably swift and with surprising precision, even when they are too small to be consciously perceived. To investigate the neural substrate and the informational basis of error correction in sensorimotor synchronization, we recorded movement-related, auditory-evoked, and error-related EEG potentials. Experiment 1 confirmed rapid adjustment to stimulus phase shifts, with faster correction of large (50 ms) compared to small (15 ms) shifts. In addition to being corrected faster, there was overcorrection of the 50 ms shifts, attributed to engagement of period correction mechanisms. For +50 ms shifts, a neural correlate of period correction was identified in the form of medial frontal cortex activation, preceded by an error-related brain potential (ERN). Auditory-evoked potential (AEP) amplitudes were sensitive to stimulus phase shifts of both large and small magnitude. Further experiments with a smaller magnitude 10 ms phase shift (Experiment 2) and passive auditory stimulation (Experiment 3) provided evidence that the modulation of AEP amplitudes is not due to metronome interval changes, but may represent auditory-somatosensory activation. Together, behavioral and neurophysiological data support the hypothesis that phase correction is a largely automatic process, not dependent on conscious perception of changes in timing. By contrast, perceivable phase shifts may invoke timekeeper adjustments accompanied by medial frontal cortex activity.
Collapse
Affiliation(s)
- P Praamstra
- Behavioral Brain Sciences Centre, University of Birmingham, Birmingham, UK.
| | | | | | | | | |
Collapse
|
20
|
Thaut MH, Kenyon GP. Rapid motor adaptations to subliminal frequency shifts during syncopated rhythmic sensorimotor synchronization. Hum Mov Sci 2003; 22:321-38. [PMID: 12967761 DOI: 10.1016/s0167-9457(03)00048-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The synchronization of rhythmic arm movements to a syncopated metronome cue was studied in a step-change design whereby small tempo shifts were inserted at fixed time points into the metronome frequency. The cueing sequence involved three stimulus types: (1) target contact in synchrony with the metronome beats, (2) syncopated target contact midway in time between audible beats, and (3) syncopated target contact following either a +2% or -2% change in stimulus frequency. Analysis of normalized and aggregated data revealed that (1) during the syncopation condition the response period showed a rapid adaptation to the frequency-incremented stimulus period, (2) response period was less variable during syncopated movement, (3) mean synchronization error and variability, calculated during syncopation relative to the mathematical midpoint of the stimulus cycle, were reduced during syncopated movements, and (4) synchronization error following the frequency increment showed trends to return linearly to pre-increment values which was fully achieved in the -2% change condition only. The results suggest that frequency entrainment to stimulus period was possible during syncopated movement with the response and stimulus onsets 180 degrees out of phase. Most remarkably, 70-80% of the adaptation of the response period to the new stimulus period was immediately attained during the second half cycle of the syncopated movement. Finally, a mathematical model, based on recursion, was introduced that accurately modeled actual data as a function of the previous stimulus and response intervals and a weighted response of period error and synchronization error, which showed dominance of frequency entrainment over phase entrainment during rhythmic synchronization.
Collapse
Affiliation(s)
- Michael H Thaut
- Molecular, Cellular, and Integrative Neuroscience Program, Center for Biomedical Research in Music, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
21
|
Riecker A, Wildgruber D, Mathiak K, Grodd W, Ackermann H. Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditorily cued finger tapping: a fMRI study. Neuroimage 2003; 18:731-9. [PMID: 12667850 DOI: 10.1016/s1053-8119(03)00003-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A multitude of functional imaging studies revealed a mass activation effect at the level of the sensorimotor cortex during repetitive finger-tapping or finger-to-thumb opposition tasks in terms of either a stepwise or a monotonic relationship between movement rate and hemodynamic response. With respect to subcortical structures of the centralmotor system, there is, by contrast, some preliminary evidence for nonlinear rate/response functions within basal ganglia and cerebellum. To further specify these hemodynamic mechanisms, functional magnetic resonance imaging (fMRI) was performed during a finger-tapping task in response to acoustic stimuli (six different frequencies: 2.0, 2.5, 3.0, 4.0, 5.0 and 6.0 Hz; applied via headphones). Passive listening to the same auditory stimuli served as a control condition. Statistical evaluation of the obtained data considered two approaches: categorical and parametric analysis. As expected, the magnitude of the elicited hemodynamic response within left sensorimotor cortex (plateau phase at frequencies above 4 Hz) and mesiofrontal cortex paralleled movement rate. The observed bipartite mesial response pattern, most presumably, reflects functional compartmentalization of supplementary motor area (SMA) in a rostral component (pre-SMA) and in a caudal (SMA proper) component. At the level of the cerebellum, two significant hemodynamic responses within the hemisphere ipsilateral to the hand engaged into finger tapping (anterior/posterior quadrangular lobule and posterior quadrangular lobule) could be observed. Both activation foci exhibited a stepwise rate/response function. In accordance with clinical data, these data indicate different cerebellar contributions to motor control at frequencies below or above about 3 Hz, respectively. Caudate nucleus, putamen, and external pallidum of the left hemisphere displayed, by contrast, a negative linear rate/response relationship. The physiological significance of these latter findings remains to be clarified.
Collapse
Affiliation(s)
- Axel Riecker
- Department of Neurology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D-72076, Tuebingen, Germany.
| | | | | | | | | |
Collapse
|
22
|
Pollok B, Müller K, Aschersleben G, Schmitz F, Schnitzler A, Prinz W. Cortical activations associated with auditorily paced finger tapping. Neuroreport 2003; 14:247-50. [PMID: 12598739 DOI: 10.1097/00001756-200302100-00018] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated neuromagnetic responses during an auditorily paced synchronization task using a 122-channel whole-head neuromagnetometer. Eight healthy right handed subjects were asked to synchronize left and right unilateral finger taps to a regular binaural pacing signal. Synchronization of the right hand with an auditory pacing signal is known to be associated with three tap-related neuromagnetic sources localized in the contralateral primary sensorimotor cortex. While the first source represents the neuromagnetic correlate of the motor command the second one reflects somatosensory feedback due to the finger movement. The functional meaning of the third source, which is also localized in the primary somatosensory cortex is still unclear. On the one hand this source represents a neuromagnetic correlate of somatosensory feedback due to the finger tap. On the other hand it has been suggested that the function of this source could additionally represent a cognitive process, which enables the subject to monitor the time distance between taps and clicks. The aim of the present study was to elucidate the function of this source, which would fundamentally reform the meaning of the primary somatosensory cortex in the timing of movements with respect to external events. The data of the present study demonstrate that the three sources in the contralateral sensorimotor cortex are stronger related to the tap than to the click. This result contradicts the assumption of a cognitive process localized in the primary somatosensory cortex. Thus, activation in the primary somatosensory cortex most likely represents exclusively somatosensory feedback and no further cognitive processes.
Collapse
Affiliation(s)
- Bettina Pollok
- Max Planck Institute for Psychological Research, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Under conditions in which the temporal structure of events (e.g., a sequence of tones) is predictable, performing movements in synchrony with this sequence of events (e.g., dancing) is an easy task. A rather simplified version of this task is studied in the sensorimotor synchronization paradigm. Participants are instructed to synchronize their finger taps with an isochronous sequence of signals (e.g., clicks). Although this is an easy task, a systematic error is observed: Taps usually precede clicks by several tens of milliseconds. Different models have been proposed to account for this effect ("negative asynchrony" or "synchronization error"). One group of explanations is based on the idea that synchrony is established at the level of central representations (and not at the level of external events), and that the timing of an action is determined by the (anticipated) action effect. These assumptions are tested by manipulating the amount of sensory feedback available from the tap as well as its temporal characteristics. This article presents an overview of these representational models and the empirical evidence supporting them. It also discusses other accounts briefly in the light of further evidence.
Collapse
|
24
|
Abstract
Human rhythmic activities are variable. Cycle-to-cycle fluctuations form the behavioral observable. Traditional analysis focuses on statistical measures such as mean and variance. In this article we show that, by treating the fluctuations as a time series, one can apply techniques such as power spectra and rescaled range analysis to gain insight into the mechanisms underlying the remarkable abilities of humans to perform a variety of rhythmic movements, from maintaining memorized temporal patterns to anticipating and timing their movements to predictable sensory stimuli.
Collapse
Affiliation(s)
- Mingzhou Ding
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Baton Raton, FL 33431, USA.
| | | | | |
Collapse
|
25
|
Abstract
Zusammenfassung: In diesem Beitrag werden einige theoretische Grundlagenfragen erörtert, die die schwierige Beziehung zwischen kognitiven Funktionen und Handlungen betreffen. Im Anschluss an eine kursorische historische Übersicht werden verschiedene Aspekte der Beziehung zwischen Kognition und Handlung systematisch diskutiert. Im Mittelpunkt steht die Frage, wie (objektive) Handlungen durch (subjektive) Willensprozesse erklärt werden können. Die Erörterung dieser Frage führt zu dem Ergebnis, dass eine geschlossene - und neurobiologisch anschlussfähige - psychologische Handlungstheorie nur entwickelt werden kann, wenn man sich dazu entschließt, auf das Prinzip der psychischen Kausalität zu verzichten. Auf diesem Hintergrund wird ein Rahmenmodell skizziert, das die kognitiven Grundlagen der Handlungssteuerung beschreibt.
Collapse
Affiliation(s)
- Wolfgang Prinz
- Max-Planck-Institut für psychologische Forschung, München
| |
Collapse
|