1
|
Abstract
Schizophrenia is increasingly recognized as a systemic disease, characterized by dysregulation in multiple physiological systems (eg, neural, cardiovascular, endocrine). Many of these changes are observed as early as the first psychotic episode, and in people at high risk for the disorder. Expanding the search for biomarkers of schizophrenia beyond genes, blood, and brain may allow for inexpensive, noninvasive, and objective markers of diagnosis, phenotype, treatment response, and prognosis. Several anatomic and physiologic aspects of the eye have shown promise as biomarkers of brain health in a range of neurological disorders, and of heart, kidney, endocrine, and other impairments in other medical conditions. In schizophrenia, thinning and volume loss in retinal neural layers have been observed, and are associated with illness progression, brain volume loss, and cognitive impairment. Retinal microvascular changes have also been observed. Abnormal pupil responses and corneal nerve disintegration are related to aspects of brain function and structure in schizophrenia. In addition, studying the eye can inform about emerging cardiovascular, neuroinflammatory, and metabolic diseases in people with early psychosis, and about the causes of several of the visual changes observed in the disorder. Application of the methods of oculomics, or eye-based biomarkers of non-ophthalmological pathology, to the treatment and study of schizophrenia has the potential to provide tools for patient monitoring and data-driven prediction, as well as for clarifying pathophysiology and course of illness. Given their demonstrated utility in neuropsychiatry, we recommend greater adoption of these tools for schizophrenia research and patient care.
Collapse
Affiliation(s)
- Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Joy J Choi
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Kyle M Green
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Rajeev S Ramchandran
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
2
|
Marvan T, Polák M, Bachmann T, Phillips WA. Apical amplification-a cellular mechanism of conscious perception? Neurosci Conscious 2021; 2021:niab036. [PMID: 34650815 PMCID: PMC8511476 DOI: 10.1093/nc/niab036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
We present a theoretical view of the cellular foundations for network-level processes involved in producing our conscious experience. Inputs to apical synapses in layer 1 of a large subset of neocortical cells are summed at an integration zone near the top of their apical trunk. These inputs come from diverse sources and provide a context within which the transmission of information abstracted from sensory input to their basal and perisomatic synapses can be amplified when relevant. We argue that apical amplification enables conscious perceptual experience and makes it more flexible, and thus more adaptive, by being sensitive to context. Apical amplification provides a possible mechanism for recurrent processing theory that avoids strong loops. It makes the broadcasting hypothesized by global neuronal workspace theories feasible while preserving the distinct contributions of the individual cells receiving the broadcast. It also provides mechanisms that contribute to the holistic aspects of integrated information theory. As apical amplification is highly dependent on cholinergic, aminergic, and other neuromodulators, it relates the specific contents of conscious experience to global mental states and to fluctuations in arousal when awake. We conclude that apical dendrites provide a cellular mechanism for the context-sensitive selective amplification that is a cardinal prerequisite of conscious perception.
Collapse
Affiliation(s)
- Tomáš Marvan
- Department of Analytic Philosophy, Institute of Philosophy, Czech Academy of Sciences, Jilská 1, Prague 110 00, Czech Republic
| | - Michal Polák
- Department of Philosophy, University of West Bohemia, Sedláčkova 19, Pilsen 306 14, Czech Republic
| | - Talis Bachmann
- School of Law and Cognitive Neuroscience Laboratory, University of Tartu (Tallinn branch), Kaarli pst 3, Tallinn 10119, Estonia
| | - William A Phillips
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
3
|
The Imbalanced Plasticity Hypothesis of Schizophrenia-Related Psychosis: A Predictive Perspective. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:679-697. [PMID: 34050524 DOI: 10.3758/s13415-021-00911-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
A considerable number of studies have attempted to account for the psychotic aspects of schizophrenia in terms of the influential predictive coding (PC) hypothesis. We argue that the prediction-oriented perspective on schizophrenia-related psychosis may benefit from a mechanistic model that: 1) gives due weight to the extent to which alterations in short- and long-term synaptic plasticity determine the degree and the direction of the functional disruption that occurs in psychosis; and 2) addresses the distinction between the two central syndromes of psychosis in schizophrenia: disorganization and reality-distortion. To accomplish these goals, we propose the Imbalanced Plasticity Hypothesis - IPH, and demonstrate that it: 1) accounts for commonalities and differences between disorganization and reality distortion in terms of excessive (hyper) or insufficient (hypo) neuroplasticity, respectively; 2) provides distinct predictions in the cognitive and electrophysiological domains; and 3) is able to reconcile conflicting PC-oriented accounts of psychosis.
Collapse
|
4
|
Silverstein SM, Lai A. The Phenomenology and Neurobiology of Visual Distortions and Hallucinations in Schizophrenia: An Update. Front Psychiatry 2021; 12:684720. [PMID: 34177665 PMCID: PMC8226016 DOI: 10.3389/fpsyt.2021.684720] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia is characterized by visual distortions in ~60% of cases, and visual hallucinations (VH) in ~25-50% of cases, depending on the sample. These symptoms have received relatively little attention in the literature, perhaps due to the higher rate of auditory vs. visual hallucinations in psychotic disorders, which is the reverse of what is found in other neuropsychiatric conditions. Given the clinical significance of these perceptual disturbances, our aim is to help address this gap by updating and expanding upon prior reviews. Specifically, we: (1) present findings on the nature and frequency of VH and distortions in schizophrenia; (2) review proposed syndromes of VH in neuro-ophthalmology and neuropsychiatry, and discuss the extent to which these characterize VH in schizophrenia; (3) review potential cortical mechanisms of VH in schizophrenia; (4) review retinal changes that could contribute to VH in schizophrenia; (5) discuss relationships between findings from laboratory measures of visual processing and VH in schizophrenia; and (6) integrate findings across biological and psychological levels to propose an updated model of VH mechanisms, including how their content is determined, and how they may reflect vulnerabilities in the maintenance of a sense of self. In particular, we emphasize the potential role of alterations at multiple points in the visual pathway, including the retina, the roles of multiple neurotransmitters, and the role of a combination of disinhibited default mode network activity and enhanced state-related apical/contextual drive in determining the onset and content of VH. In short, our goal is to cast a fresh light on the under-studied symptoms of VH and visual distortions in schizophrenia for the purposes of informing future work on mechanisms and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States.,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States.,Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States.,Center for Visual Science, University of Rochester Medical Center, Rochester, NY, United States
| | - Adriann Lai
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
5
|
Wu T, Schulz KP, Fan J. Activation of the cognitive control network associated with information uncertainty. Neuroimage 2020; 230:117703. [PMID: 33385564 PMCID: PMC8558818 DOI: 10.1016/j.neuroimage.2020.117703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/02/2022] Open
Abstract
The cognitive control network (CCN) that comprises regions of the frontoparietal network, the cingulo-opercular network, and other sub-cortical regions as core structures is commonly activated by events with an increase in information uncertainty. However, it is not clear whether this CCN activation is associated with both information entropy that represents the information conveyed by the context formed by a sequence of events and the surprise that quantifies the information conveyed by a specific type of event in the context. We manipulated entropy and surprise in this functional magnetic resonance imaging study by varying the probability of occurrence of two types of events in both the visual and auditory modalities and measured brain response as a function of entropy and surprise. We found that activation in regions of the CCN increased as a function of entropy and surprise in both the visual and auditory tasks. The frontoparietal network and additional structures in the CCN mediated the relationship between these information measures and behavioral response. These results suggest that the CCN is a high-level modality-general neural entity for the control of the processing of information conveyed by both context and event.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA
| | - Kurt P Schulz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jin Fan
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA.
| |
Collapse
|
6
|
Silverstein SM, Fradkin SI, Demmin DL. Schizophrenia and the retina: Towards a 2020 perspective. Schizophr Res 2020; 219:84-94. [PMID: 31708400 PMCID: PMC7202990 DOI: 10.1016/j.schres.2019.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Differences between people with schizophrenia and psychiatrically healthy controls have been consistently demonstrated on measures of retinal function such as electroretinography (ERG), and measures of retinal structure such as optical coherence tomography (OCT). Since our 2015 review of this literature, multiple new studies have been published using these techniques. At the same time, the accumulation of data has highlighted the "fault lines" in these fields, suggesting methodological considerations that need greater attention in future studies. METHODS We reviewed studies of ERG and OCT in schizophrenia, as well as data from studies whose findings are relevant to interpreting these papers, such as those on effects of the following on ERG and OCT data: comorbid medical conditions that are over-represented in schizophrenia, smoking, antipsychotic medication, substance abuse, sex and gender, obesity, attention, motivation, and influences of brain activity on retinal function. RESULTS Recent ERG and OCT studies continue to support the hypothesis of retinal structural and functional abnormalities in schizophrenia, and suggest that these are relevant to understanding broader aspects of pathophysiology, neurodevelopment, and neurodegeneration in this disorder. However, there are differences in findings which suggest that the effects of multiple variables on ERG and OCT data need further clarification. CONCLUSIONS The retina, as the only component of the CNS that can be imaged directly in live humans, has potential to clarify important aspects of schizophrenia. With greater attention to specific methodological issues, the true potential of ERG and OCT as biomarkers for important clinical phenomena in schizophrenia should become apparent.
Collapse
Affiliation(s)
- Steven M Silverstein
- Rutgers University Behavioral Health Care, United States; Rutgers University, Robert Wood Johnson Medical School, Departments of Psychiatry and Ophthalmology, United States.
| | | | - Docia L Demmin
- Rutgers University, Department of Psychology, United States.
| |
Collapse
|
7
|
Abstract
BACKGROUND Differences between people with schizophrenia and psychiatrically healthy controls have been consistently demonstrated on measures of retinal function such as electroretinography (ERG), and measures of retinal structure such as optical coherence tomography (OCT). Since our 2015 review of this literature, multiple new studies have been published using these techniques. At the same time, the accumulation of data has highlighted the "fault lines" in these fields, suggesting methodological considerations that need greater attention in future studies. METHODS We reviewed studies of ERG and OCT in schizophrenia, as well as data from studies whose findings are relevant to interpreting these papers, such as those on effects of the following on ERG and OCT data: comorbid medical conditions that are over-represented in schizophrenia, smoking, antipsychotic medication, substance abuse, sex and gender, obesity, attention, motivation, and influences of brain activity on retinal function. RESULTS Recent ERG and OCT studies continue to support the hypothesis of retinal structural and functional abnormalities in schizophrenia, and suggest that these are relevant to understanding broader aspects of pathophysiology, neurodevelopment, and neurodegeneration in this disorder. However, there are differences in findings which suggest that the effects of multiple variables on ERG and OCT data need further clarification. CONCLUSIONS The retina, as the only component of the CNS that can be imaged directly in live humans, has potential to clarify important aspects of schizophrenia. With greater attention to specific methodological issues, the true potential of ERG and OCT as biomarkers for important clinical phenomena in schizophrenia should become apparent.
Collapse
|
8
|
Retinal ganglion cells dysfunctions in schizophrenia patients with or without visual hallucinations. Schizophr Res 2020; 219:47-55. [PMID: 31353068 DOI: 10.1016/j.schres.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022]
Abstract
The electroretinogram has revealed photoreceptor, bipolar cell, and, in one prior study, retinal ganglion cell (RGC) dysfunction in schizophrenia. The structural abnormalities of the RGC are well documented in schizophrenia and such abnormalities have been associated with visual hallucinations (VH) in neurological disorders. The goals of this study were: 1) to examine the functional responses of photoreceptors and RGC in schizophrenia patients in comparison with healthy controls; and 2) to compare the extent of retinal dysfunction in schizophrenia patients with or without VH. We recorded the flash electroretinogram in scotopic and photopic conditions, and the pattern electroretinogram, in schizophrenia patients (n = 29) and healthy controls (n = 29). Schizophrenia patients were divided in two groups: schizophrenia patients with VH (VH group, n = 12) and schizophrenia patients with auditory hallucinations or no hallucinations (AHNH group, n = 17). Our results replicate previous findings regarding photoreceptor dysfunction in schizophrenia. PERG results showed a significant increase of the P50 implicit time in schizophrenia patients compared with controls (t(55) = 2.1, p < .05, d = 0.55) and a significant increase of the N95 implicit time in schizophrenia patients compared with controls (t(55) = 4.2; p < .001, d = 0.66). We found an increased rod b-wave implicit time (dark-adapted 0.01 ERG) in the VH group compared to the AHNH group and to the control group, which was associated with lifetime VH score. Our results demonstrate a slowing of RGC signaling in schizophrenia patients, which could affect the quality of visual information reaching the visual cortex. The implications of the data for understanding VH in schizophrenia are discussed.
Collapse
|
9
|
Loued-Khenissi L, Preuschoff K. Information Theoretic Characterization of Uncertainty Distinguishes Surprise From Accuracy Signals in the Brain. Front Artif Intell 2020; 3:5. [PMID: 33733125 PMCID: PMC7861235 DOI: 10.3389/frai.2020.00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 12/02/2022] Open
Abstract
Uncertainty presents a problem for both human and machine decision-making. While utility maximization has traditionally been viewed as the motive force behind choice behavior, it has been theorized that uncertainty minimization may supersede reward motivation. Beyond reward, decisions are guided by belief, i.e., confidence-weighted expectations. Evidence challenging a belief evokes surprise, which signals a deviation from expectation (stimulus-bound surprise) but also provides an information gain. To support the theory that uncertainty minimization is an essential drive for the brain, we probe the neural trace of uncertainty-related decision variables, namely confidence, surprise, and information gain, in a discrete decision with a deterministic outcome. Confidence and surprise were elicited with a gambling task administered in a functional magnetic resonance imaging experiment, where agents start with a uniform probability distribution, transition to a non-uniform probabilistic state, and end in a fully certain state. After controlling for reward expectation, we find confidence, taken as the negative entropy of a trial, correlates with a response in the hippocampus and temporal lobe. Stimulus-bound surprise, taken as Shannon information, correlates with responses in the insula and striatum. In addition, we also find a neural response to a measure of information gain captured by a confidence error, a quantity we dub accuracy. BOLD responses to accuracy were found in the cerebellum and precuneus, after controlling for reward prediction errors and stimulus-bound surprise at the same time point. Our results suggest that, even absent an overt need for learning, the human brain expends energy on information gain and uncertainty minimization.
Collapse
Affiliation(s)
- Leyla Loued-Khenissi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kerstin Preuschoff
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Geneva Finance Research Institute, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Fradkin SI, Erickson MA, Demmin DL, Silverstein SM. Absence of Excess Intra-Individual Variability in Retinal Function in People With Schizophrenia. Front Psychiatry 2020; 11:543963. [PMID: 33329084 PMCID: PMC7714716 DOI: 10.3389/fpsyt.2020.543963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/27/2020] [Indexed: 01/26/2023] Open
Abstract
People with schizophrenia exhibit increased intra-individual variability in both behavioral and neural signatures of cognition. Examination of intra-individual variability may uncover a unique functionally relevant aspect of impairment that is not captured by typical between-group comparisons of mean or median values. We and others have observed that retinal activity measured using electroretinography (ERG) is significantly reduced in people with schizophrenia; however, it is currently unclear whether greater intra-individual variability in the retinal response can also be observed. To investigate this, we examined intra-individual variability from 25 individuals with schizophrenia and 24 healthy controls under two fERG conditions: (1) a light-adapted condition in which schizophrenia patients demonstrated reduced amplitudes; and (2) a dark-adapted condition in which the groups did not differ in amplitudes. Intraclass correlation coefficients (ICC) were generated to measure intra-individual variability for each subject, reflecting the consistency of activation values (in μv) across all sampling points (at a 2 kHz sampling rate) within all trials within a condition. Contrary to our predictions, results indicated that the schizophrenia and healthy control groups did not differ in intra-individual variability in fERG responses in either the light- or dark-adapted conditions. This finding remained consistent when variability was calculated as the standard deviation (SD) and coefficient of variation (CV) of maximum positive and negative microvolt values within the a- and b-wave time windows. This suggests that although elevated variability in schizophrenia may be observed at perceptual and cognitive levels of processing, it is not present in the earliest stages of sensory processing in vision.
Collapse
Affiliation(s)
- Samantha I Fradkin
- Department of Psychology, Rutgers University, Piscataway, NJ, United States.,University Behavioral Health Care, Rutgers University, Piscataway, NJ, United States.,Department of Psychology, University of Rochester, Rochester, NY, United States
| | - Molly A Erickson
- Department of Psychiatry, University of Chicago, Chicago, IL, United States
| | - Docia L Demmin
- Department of Psychology, Rutgers University, Piscataway, NJ, United States.,University Behavioral Health Care, Rutgers University, Piscataway, NJ, United States
| | - Steven M Silverstein
- University Behavioral Health Care, Rutgers University, Piscataway, NJ, United States.,Departments of Psychiatry and Ophthalmology, Rutgers University, Piscataway, NJ, United States.,Departments of Psychiatry, Neuroscience, and Ophthalmology, and Center for Visual Science, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
11
|
Mäki-Marttunen T, Devor A, Phillips WA, Dale AM, Andreassen OA, Einevoll GT. Computational Modeling of Genetic Contributions to Excitability and Neural Coding in Layer V Pyramidal Cells: Applications to Schizophrenia Pathology. Front Comput Neurosci 2019; 13:66. [PMID: 31616272 PMCID: PMC6775251 DOI: 10.3389/fncom.2019.00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Pyramidal cells in layer V of the neocortex are one of the most widely studied neuron types in the mammalian brain. Due to their role as integrators of feedforward and cortical feedback inputs, they are well-positioned to contribute to the symptoms and pathology in mental disorders-such as schizophrenia-that are characterized by a mismatch between the internal perception and external inputs. In this modeling study, we analyze the input/output properties of layer V pyramidal cells and their sensitivity to modeled genetic variants in schizophrenia-associated genes. We show that the excitability of layer V pyramidal cells and the way they integrate inputs in space and time are altered by many types of variants in ion-channel and Ca2+ transporter-encoding genes that have been identified as risk genes by recent genome-wide association studies. We also show that the variability in the output patterns of spiking and Ca2+ transients in layer V pyramidal cells is altered by these model variants. Importantly, we show that many of the predicted effects are robust to noise and qualitatively similar across different computational models of layer V pyramidal cells. Our modeling framework reveals several aspects of single-neuron excitability that can be linked to known schizophrenia-related phenotypes and existing hypotheses on disease mechanisms. In particular, our models predict that single-cell steady-state firing rate is positively correlated with the coding capacity of the neuron and negatively correlated with the amplitude of a prepulse-mediated adaptation and sensitivity to coincidence of stimuli in the apical dendrite and the perisomatic region of a layer V pyramidal cell. These results help to uncover the voltage-gated ion-channel and Ca2+ transporter-associated genetic underpinnings of schizophrenia phenotypes and biomarkers.
Collapse
Affiliation(s)
| | - Anna Devor
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States.,Department of Radiology, University of California San Diego, La Jolla, CA, United States.,Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| | - William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Anders M Dale
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States.,Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gaute T Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Information Theory and Cognition: A Review. ENTROPY 2018; 20:e20090706. [PMID: 33265795 PMCID: PMC7513233 DOI: 10.3390/e20090706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/31/2018] [Accepted: 09/08/2018] [Indexed: 01/12/2023]
Abstract
We examine how information theory has been used to study cognition over the last seven decades. After an initial burst of activity in the 1950s, the backlash that followed stopped most work in this area. The last couple of decades has seen both a revival of interest, and a more firmly grounded, experimentally justified use of information theory. We can view cognition as the process of transforming perceptions into information—where we use information in the colloquial sense of the word. This last clarification is one of the problems we run into when trying to use information theoretic principles to understand or analyze cognition. Information theory is mathematical, while cognition is a subjective phenomenon. It is relatively easy to discern a subjective connection between cognition and information; it is a different matter altogether to apply the rigor of information theory to the process of cognition. In this paper, we will look at the many ways in which people have tried to alleviate this problem. These approaches range from narrowing the focus to only quantifiable aspects of cognition or borrowing conceptual machinery from information theory to address issues of cognition. We describe applications of information theory across a range of cognition research, from neural coding to cognitive control and predictive coding.
Collapse
|
13
|
Barceló F, Cooper PS. Quantifying Contextual Information For Cognitive Control. Front Psychol 2018; 9:1693. [PMID: 30250445 PMCID: PMC6139323 DOI: 10.3389/fpsyg.2018.01693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/22/2018] [Indexed: 01/25/2023] Open
Affiliation(s)
- Francisco Barceló
- Laboratory of Neuropsychology, University of the Balearic Islands, Mallorca, Spain
| | - Patrick S Cooper
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia.,Priority Research Centre for Brain and Mental Health, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
14
|
Wallace R. Culture and the Trajectories of Developmental Pathology: Insights from Control and Information Theories. Acta Biotheor 2018; 66:79-112. [PMID: 29616380 DOI: 10.1007/s10441-018-9320-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/30/2018] [Indexed: 12/17/2022]
Abstract
Cognition in living entities-and their social groupings or institutional artifacts-is necessarily as complicated as their embedding environments, which, for humans, includes a particularly rich cultural milieu. The asymptotic limit theorems of information and control theories permit construction of a new class of empirical 'regression-like' statistical models for cognitive developmental processes, their dynamics, and modes of dysfunction. Such models may, as have their simpler analogs, prove useful in the study and re-mediation of cognitive failure at and across the scales and levels of organization that constitute and drive the phenomena of life. These new models particularly focus on the roles of sociocultural environment and stress, in a large sense, as both trigger for the failure of the regulation of bio-cognition and as 'riverbanks' determining the channels of pathology, with implications across life-course developmental trajectories. We examine the effects of an embedding cultural milieu and its socioeconomic implementations using the 'lenses' of metabolic optimization, control system theory, and an extension of symmetry-breaking appropriate to information systems. A central implication is that most, if not all, human developmental disorders are fundamentally culture-bound syndromes. This has deep implications for both individual treatment and public health policy.
Collapse
|
15
|
Giersch A, Mishara AL. Is Schizophrenia a Disorder of Consciousness? Experimental and Phenomenological Support for Anomalous Unconscious Processing. Front Psychol 2017; 8:1659. [PMID: 29033868 PMCID: PMC5625017 DOI: 10.3389/fpsyg.2017.01659] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/08/2017] [Indexed: 12/27/2022] Open
Abstract
Decades ago, several authors have proposed that disorders in automatic processing lead to intrusive symptoms or abnormal contents in the consciousness of people with schizophrenia. However, since then, studies have mainly highlighted difficulties in patients' conscious experiencing and processing but rarely explored how unconscious and conscious mechanisms may interact in producing this experience. We report three lines of research, focusing on the processing of spatial frequencies, unpleasant information, and time-event structure that suggest that impairments occur at both the unconscious and conscious level. We argue that focusing on unconscious, physiological and automatic processing of information in patients, while contrasting that processing with conscious processing, is a first required step before understanding how distortions or other impairments emerge at the conscious level. We then indicate that the phenomenological tradition of psychiatry supports a similar claim and provides a theoretical framework helping to understand the relationship between the impairments and clinical symptoms. We base our argument on the presence of disorders in the minimal self in patients with schizophrenia. The minimal self is tacit and non-verbal and refers to the sense of bodily presence. We argue this sense is shaped by unconscious processes, whose alteration may thus affect the feeling of being a unique individual. This justifies a focus on unconscious mechanisms and a distinction from those associated with consciousness.
Collapse
Affiliation(s)
- Anne Giersch
- INSERM U1114, Pôle de Psychiatrie, Fédération de Médecine Translationnelle de Strasbourg, Centre Hospitalier Régional Universitaire of Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Aaron L. Mishara
- Department of Clinical Psychology, The Chicago School of Professional Psychology, Los Angeles, CA, United States
| |
Collapse
|