1
|
Berdugo‐Vega G, Dhingra S, Calegari F. Sharpening the blades of the dentate gyrus: how adult-born neurons differentially modulate diverse aspects of hippocampal learning and memory. EMBO J 2023; 42:e113524. [PMID: 37743770 PMCID: PMC11059975 DOI: 10.15252/embj.2023113524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
For decades, the mammalian hippocampus has been the focus of cellular, anatomical, behavioral, and computational studies aimed at understanding the fundamental mechanisms underlying cognition. Long recognized as the brain's seat for learning and memory, a wealth of knowledge has been accumulated on how the hippocampus processes sensory input, builds complex associations between objects, events, and space, and stores this information in the form of memories to be retrieved later in life. However, despite major efforts, our understanding of hippocampal cognitive function remains fragmentary, and models trying to explain it are continually revisited. Here, we review the literature across all above-mentioned domains and offer a new perspective by bringing attention to the most distinctive, and generally neglected, feature of the mammalian hippocampal formation, namely, the structural separability of the two blades of the dentate gyrus into "supra-pyramidal" and "infra-pyramidal". Next, we discuss recent reports supporting differential effects of adult neurogenesis in the regulation of mature granule cell activity in these two blades. We propose a model for how differences in connectivity and adult neurogenesis in the two blades can potentially provide a substrate for subtly different cognitive functions.
Collapse
Affiliation(s)
- Gabriel Berdugo‐Vega
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
- Present address:
Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL)LausanneSwitzerland
| | - Shonali Dhingra
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| | - Federico Calegari
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| |
Collapse
|
2
|
Borzello M, Ramirez S, Treves A, Lee I, Scharfman H, Stark C, Knierim JJ, Rangel LM. Assessments of dentate gyrus function: discoveries and debates. Nat Rev Neurosci 2023; 24:502-517. [PMID: 37316588 PMCID: PMC10529488 DOI: 10.1038/s41583-023-00710-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/16/2023]
Abstract
There has been considerable speculation regarding the function of the dentate gyrus (DG) - a subregion of the mammalian hippocampus - in learning and memory. In this Perspective article, we compare leading theories of DG function. We note that these theories all critically rely on the generation of distinct patterns of activity in the region to signal differences between experiences and to reduce interference between memories. However, these theories are divided by the roles they attribute to the DG during learning and recall and by the contributions they ascribe to specific inputs or cell types within the DG. These differences influence the information that the DG is thought to impart to downstream structures. We work towards a holistic view of the role of DG in learning and memory by first developing three critical questions to foster a dialogue between the leading theories. We then evaluate the extent to which previous studies address our questions, highlight remaining areas of conflict, and suggest future experiments to bridge these theories.
Collapse
Affiliation(s)
- Mia Borzello
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | | | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Helen Scharfman
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology and Psychiatry and the Neuroscience Institute, New York University Langone Health, New York, NY, USA
- The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Craig Stark
- Department of Neurobiology and Behaviour, University of California, Irvine, Irvine, CA, USA
| | - James J Knierim
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Lara M Rangel
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Chambers JE. From Mourning and Melancholia to Neurobiology in an Era of Global Warming, Pandemic Disease, and Social Chasms: Grief as a Requisite for Change. Psychodyn Psychiatry 2023; 51:45-62. [PMID: 36867183 DOI: 10.1521/pdps.2023.51.1.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We find ourselves in a unique time in history with the confluence of a pandemic, global warming, and social chasms felt throughout the world. In this article, it is suggested that the grieving process is necessary for progress. The article addresses grief from a psychodynamic lens and progresses through the neurobiological changes that occur in the grieving process. The article discusses grief as both a result of and a necessary response to COVID-19, global warming, and social unrest. It is argued that grief is a vital process in order to fully change as a society and move forward. The role of psychiatry, and specifically psychodynamic psychiatry, is integral in paving the way to this new understanding and a new future.
Collapse
Affiliation(s)
- Joanna E Chambers
- Associate Professor of Clinical Psychiatry and Clinical Obstetrics and Gynecology, Indiana University School of Medicine
| |
Collapse
|
4
|
Gozel O, Gerstner W. A functional model of adult dentate gyrus neurogenesis. eLife 2021; 10:66463. [PMID: 34137370 PMCID: PMC8260225 DOI: 10.7554/elife.66463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
In adult dentate gyrus neurogenesis, the link between maturation of newborn neurons and their function, such as behavioral pattern separation, has remained puzzling. By analyzing a theoretical model, we show that the switch from excitation to inhibition of the GABAergic input onto maturing newborn cells is crucial for their proper functional integration. When the GABAergic input is excitatory, cooperativity drives the growth of synapses such that newborn cells become sensitive to stimuli similar to those that activate mature cells. When GABAergic input switches to inhibitory, competition pushes the configuration of synapses onto newborn cells toward stimuli that are different from previously stored ones. This enables the maturing newborn cells to code for concepts that are novel, yet similar to familiar ones. Our theory of newborn cell maturation explains both how adult-born dentate granule cells integrate into the preexisting network and why they promote separation of similar but not distinct patterns.
Collapse
Affiliation(s)
- Olivia Gozel
- School of Life Sciences and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Departments of Neurobiology and Statistics, University of Chicago, Chicago, United States.,Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, United States
| | - Wulfram Gerstner
- School of Life Sciences and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
DeCostanzo AJ, Fung CCA, Fukai T. Hippocampal Neurogenesis Reduces the Dimensionality of Sparsely Coded Representations to Enhance Memory Encoding. Front Comput Neurosci 2019; 12:99. [PMID: 30666194 PMCID: PMC6330828 DOI: 10.3389/fncom.2018.00099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Adult neurogenesis in the hippocampal dentate gyrus (DG) of mammals is known to contribute to memory encoding in many tasks. The DG also exhibits exceptionally sparse activity compared to other systems, however, whether sparseness and neurogenesis interact during memory encoding remains elusive. We implement a novel learning rule consistent with experimental findings of competition among adult-born neurons in a supervised multilayer feedforward network trained to discriminate between contexts. From this rule, the DG population partitions into neuronal ensembles each of which is biased to represent one of the contexts. This corresponds to a low dimensional representation of the contexts, whereby the fastest dimensionality reduction is achieved in sparse models. We then modify the rule, showing that equivalent representations and performance are achieved when neurons compete for synaptic stability rather than neuronal survival. Our results suggest that competition for stability in sparse models is well-suited to developing ensembles of what may be called memory engram cells.
Collapse
Affiliation(s)
- Anthony J DeCostanzo
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Saitama, Japan.,Ascent Robotics Inc., Tokyo, Japan
| | - Chi Chung Alan Fung
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Saitama, Japan
| | - Tomoki Fukai
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
6
|
França TFA. Plasticity and redundancy in the integration of adult born neurons in the hippocampus. Neurobiol Learn Mem 2018; 155:136-142. [PMID: 30031119 DOI: 10.1016/j.nlm.2018.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 01/05/2023]
Abstract
Hippocampal neurogenesis (HN) is an extreme form of plasticity that inevitably rewires the hippocampal circuit and this rewiring was put forward as a possible mechanism for neurogenesis' behavioral effects. Here, I critically evaluate multiple lines of evidence to argue that structural plasticity induced by HN is, to a large extent, functionally redundant and thus has limited impact on behavior. The associative plasticity rules along with properties of immature neurons should only allow the survival of new neurons whose pre and postsynaptic partners have correlated activity, leading to functional redundancy. Moreover, non-redundant rewiring, even with its computational benefits, would impair meaningful communication between the hippocampus and other brain regions. This implies that associative plasticity rules constrain structural plasticity induced by neurogenesis, allowing the brain to balance plasticity and stability to maintain proper functioning. It also implies that behavioral effects of HN are mediated by other mechanisms apart from circuit rewiring.
Collapse
Affiliation(s)
- Thiago F A França
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Curso de graduação em Ciências Biológicas, Universidade Federal do Rio Grande -FURG, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| |
Collapse
|
7
|
Fang J, Demic S, Cheng S. The reduction of adult neurogenesis in depression impairs the retrieval of new as well as remote episodic memory. PLoS One 2018; 13:e0198406. [PMID: 29879169 PMCID: PMC5991644 DOI: 10.1371/journal.pone.0198406] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/20/2018] [Indexed: 11/29/2022] Open
Abstract
Major depressive disorder (MDD) is associated with an impairment of episodic memory, but the mechanisms underlying this deficit remain unclear. Animal models of MDD find impaired adult neurogenesis (AN) in the dentate gyrus (DG), and AN in DG has been suggested to play a critical role in reducing the interference between overlapping memories through pattern separation. Here, we study the effect of reduced AN in MDD on the accuracy of episodic memory using computational modeling. We focus on how memory is affected when periods with a normal rate of AN (asymptomatic states) alternate with periods with a low rate (depressive episodes), which has never been studied before. Also, unlike previous models of adult neurogenesis, which consider memories as static patterns, we model episodic memory as sequences of neural activity patterns. In our model, AN adds additional random components to the memory patterns, which results in the decorrelation of similar patterns. Consistent with previous studies, higher rates of AN lead to higher memory accuracy in our model, which implies that memories stored in the depressive state are impaired. Intriguingly, our model makes the novel prediction that memories stored in an earlier asymptomatic state are also impaired by a later depressive episode. This retrograde effect exacerbates with increased duration of the depressive episode. Finally, pattern separation at the sensory processing stage does not improve, but rather worsens, the accuracy of episodic memory retrieval, suggesting an explanation for why AN is found in brain areas serving memory rather than sensory function. In conclusion, while cognitive retrieval biases might contribute to episodic memory deficits in MDD, our model suggests a mechanistic explanation that affects all episodic memories, regardless of emotional relevance.
Collapse
Affiliation(s)
- Jing Fang
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
- Mercator Research Group “Structure of Memory”, Ruhr University Bochum, Bochum, Germany
- Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | | | - Sen Cheng
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
- Mercator Research Group “Structure of Memory”, Ruhr University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
8
|
Pozhilenkova EA, Lopatina OL, Komleva YK, Salmin VV, Salmina AB. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Rev Neurosci 2018; 28:397-415. [PMID: 28195555 DOI: 10.1515/revneuro-2016-0071] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/23/2016] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis is one of the most important mechanisms contributing to brain development, learning, and memory. Alterations in neurogenesis underlie a wide spectrum of brain diseases. Neurogenesis takes place in highly specialized neurogenic niches. The concept of neurogenic niches is becoming widely accepted due to growing evidence of the important role of the microenvironment established in the close vicinity to stem cells in order to provide adequate control of cell proliferation, differentiation, and apoptosis. Neurogenic niches represent the platform for tight integration of neurogenesis and angiogenesis supported by specific properties of cerebral microvessel endothelial cells contributing to establishment of partially compromised blood-brain barrier (BBB) for the adjustment of local conditions to the current metabolic needs of stem and progenitor cells. Here, we review up-to-date data on microvascular dynamics in activity-dependent neurogenesis, specific properties of BBB in neurogenic niches, endothelial-driven mechanisms of clonogenic activity, and future perspectives for reconstructing the neurogenic niches in vitro.
Collapse
|
9
|
Cahill SP, Yu RQ, Green D, Todorova EV, Snyder JS. Early survival and delayed death of developmentally-born dentate gyrus neurons. Hippocampus 2017; 27:1155-1167. [PMID: 28686814 DOI: 10.1002/hipo.22760] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 01/20/2023]
Abstract
The storage and persistence of memories depends on plasticity in the hippocampus. Adult neurogenesis produces new neurons that mature through critical periods for plasticity and cellular survival, which determine their contributions to learning and memory. However, most granule neurons are generated prior to adulthood; the maturational timecourse of these neurons is poorly understood compared to adult-born neurons but is essential to identify how the dentate gyrus (DG), as a whole, contributes to behavior. To characterize neurons born in the early postnatal period, we labeled DG neurons born on postnatal day 6 (P6) with BrdU and quantified maturation and survival across early (1 hr to 8 weeks old) and late (2-6 months old) cell ages. We find that the dynamics of developmentally-born neuron survival is essentially the opposite of neurons born in adulthood: P6-born neurons did not go through a period of cell death during their immature stages (from 1 to 8 weeks). In contrast, 17% of P6-born neurons died after reaching maturity, between 2 and 6 months of age. Delayed death was evident from the loss of BrdU+ cells as well as pyknotic BrdU+ caspase3+ neurons within the superficial granule cell layer. Patterns of DCX, NeuN, and activity-dependent Fos expression indicate that developmentally-born neurons mature over several weeks and a sharp peak in zif268 expression at 2 weeks suggests that developmentally-born neurons mature faster than adult-born neurons (which peak at 3 weeks). Collectively, our findings are relevant for understanding how developmentally-born DG neurons contribute to memory and disorders throughout the lifespan. High levels of early survival and zif268 expression may promote learning, while also rendering neurons sensitive to insults at defined stages. Late neuronal death in young adulthood may result in the loss of hundreds of thousands of DG neurons, which could impact memory persistence and contribute to hippocampal/DG atrophy in disorders such as depression.
Collapse
Affiliation(s)
- Shaina P Cahill
- Department of Psychology & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ru Qi Yu
- Department of Psychology & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dylan Green
- Department of Psychology & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evgenia V Todorova
- Department of Psychology & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason S Snyder
- Department of Psychology & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Chambers RA, Wallingford SC. On Mourning and Recovery: Integrating Stages of Grief and Change Toward a Neuroscience-Based Model of Attachment Adaptation in Addiction Treatment. Psychodyn Psychiatry 2017; 45:451-473. [PMID: 29244621 PMCID: PMC6383361 DOI: 10.1521/pdps.2017.45.4.451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Interpersonal attachment and drug addiction share many attributes across their behavioral and neurobiological domains. Understanding the overlapping brain circuitry of attachment formation and addiction illuminates a deeper understanding of the pathogenesis of trauma-related mental illnesses and comorbid substance use disorders, and the extent to which ending an addiction is complicated by being a sort of mourning process. Attention to the process of addiction recovery-as a form of grieving-in which Kubler-Ross's stages of grief and Prochaska's stages of change are ultimately describing complementary viewpoints on a general process of neural network and attachment remodeling, could lead to more effective and integrative psychotherapy and medication strategies.
Collapse
Affiliation(s)
- R. Andrew Chambers
- Director, Addiction Psychiatry Training Program & Lab for Translational Neuroscience of Dual Diagnosis, Associate Professor, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - Sue C. Wallingford
- Chair, Division of Transpersonal Counseling and Psychology, Associate Professor, Graduate School of Counseling & Psychology, Naropa University, Boulder, CO
| |
Collapse
|
11
|
Abstract
The restriction of adult neurogenesis to only a handful of regions of the brain is suggestive of some shared requirement for this dramatic form of structural plasticity. However, a common driver across neurogenic regions has not yet been identified. Computational studies have been invaluable in providing insight into the functional role of new neurons; however, researchers have typically focused on specific scales ranging from abstract neural networks to specific neural systems, most commonly the dentate gyrus area of the hippocampus. These studies have yielded a number of diverse potential functions for new neurons, ranging from an impact on pattern separation to the incorporation of time into episodic memories to enabling the forgetting of old information. This review will summarize these past computational efforts and discuss whether these proposed theoretical functions can be unified into a common rationale for why neurogenesis is required in these unique neural circuits.
Collapse
Affiliation(s)
- James B Aimone
- Data Driven and Neural Computing Group, Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185-1327
| |
Collapse
|
12
|
|
13
|
van Dijk RM, Lazic SE, Slomianka L, Wolfer DP, Amrein I. Large-scale phenotyping links adult hippocampal neurogenesis to the reaction to novelty. Hippocampus 2015; 26:646-57. [DOI: 10.1002/hipo.22548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 01/25/2023]
Affiliation(s)
- R. Maarten van Dijk
- Institute of Anatomy; University of Zürich; Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zürich Switzerland
- Institute of Human Movement Sciences and Sport; Department of Health Sciences and Technology; ETH Zurich; Zürich Switzerland
| | - Stanley E. Lazic
- In Silico Lead Discovery, Novartis Institutes for Biomedical Research; Basel Switzerland
| | | | - David P. Wolfer
- Institute of Anatomy; University of Zürich; Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zürich Switzerland
- Institute of Human Movement Sciences and Sport; Department of Health Sciences and Technology; ETH Zurich; Zürich Switzerland
| | - Irmgard Amrein
- Institute of Anatomy; University of Zürich; Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zürich Switzerland
| |
Collapse
|
14
|
Finnegan R, Becker S. Neurogenesis paradoxically decreases both pattern separation and memory interference. Front Syst Neurosci 2015; 9:136. [PMID: 26500511 PMCID: PMC4593858 DOI: 10.3389/fnsys.2015.00136] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/18/2015] [Indexed: 01/01/2023] Open
Abstract
The hippocampus has been the focus of memory research for decades. While the functional role of this structure is not fully understood, it is widely recognized as being vital for rapid yet accurate encoding and retrieval of associative memories. Since the discovery of adult hippocampal neurogenesis in the dentate gyrus by Altman and Das in the 1960's, many theories and models have been put forward to explain the functional role it plays in learning and memory. These models postulate different ways in which new neurons are introduced into the dentate gyrus and their functional importance for learning and memory. Few if any previous models have incorporated the unique properties of young adult-born dentate granule cells and the developmental trajectory. In this paper, we propose a novel computational model of the dentate gyrus that incorporates the developmental trajectory of the adult-born dentate granule cells, including changes in synaptic plasticity, connectivity, excitability and lateral inhibition, using a modified version of the Restricted Boltzmann machine. Our results show superior performance on memory reconstruction tasks for both recent and distally learned items, when the unique characteristics of young dentate granule cells are taken into account. Even though the hyperexcitability of the young neurons generates more overlapping neural codes, reducing pattern separation, the unique properties of the young neurons nonetheless contribute to reducing retroactive and proactive interference, at both short and long time scales. The sparse connectivity is particularly important for generating distinct memory traces for highly overlapping patterns that are learned within the same context.
Collapse
Affiliation(s)
- Rory Finnegan
- Neurotechnology and Neuroplasticity Lab, McMaster Integrative Neuroscience Discovery & Study, McMaster University Hamilton, ON, Canada
| | - Suzanna Becker
- Neurotechnology and Neuroplasticity Lab, Department of Psychology, Neuroscience and Behaviour, McMaster University Hamilton, ON, Canada
| |
Collapse
|
15
|
The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function. PLoS One 2013; 8:e68208. [PMID: 23840835 PMCID: PMC3695928 DOI: 10.1371/journal.pone.0068208] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/27/2013] [Indexed: 11/29/2022] Open
Abstract
Postnatal neurogenesis of granule cells (GCs) in the dentate gyrus (DG) produces GCs that normally migrate from the subgranular zone to the GC layer. However, GCs can mismigrate into the hilus, the opposite direction. Previous descriptions of these hilar ectopic GCs (hEGCs) suggest that they are rare unless there are severe seizures. However, it is not clear if severe seizures are required, and it also is unclear if severe seizures are responsible for the abnormalities of hEGCs, which include atypical dendrites and electrophysiological properties. Here we show that large numbers of hEGCs develop in a transgenic mouse without severe seizures. The mice have a deletion of BAX, which normally regulates apoptosis. Surprisingly, we show that hEGCs in the BAX-/- mouse have similar abnormalities as hEGCs that arise after severe seizures. We next asked if there are selective effects of hEGCs, i.e., whether a robust population of hEGCs would have any effect on the DG if they were induced without severe seizures. Indeed, this appears to be true, because it has been reported that BAX-/- mice have defects in a behavior that tests pattern separation, which depends on the DG. However, inferring functional effects of hEGCs is difficult in mice with a constitutive BAX deletion because there is decreased apoptosis in and outside the DG. Therefore, a computational model of the normal DG and hippocampal subfield CA3 was used. Adding a small population of hEGCs (5% of all GCs), with characteristics defined empirically, was sufficient to disrupt a simulation of pattern separation and completion. Modeling results also showed that effects of hEGCs were due primarily to “backprojections” of CA3 pyramidal cell axons to the hilus. The results suggest that hEGCs can develop for diverse reasons, do not depend on severe seizures, and a small population of hEGCs may impair DG-dependent function.
Collapse
|
16
|
Buhle JT, Silvers JA, Wager TD, Lopez R, Onyemekwu C, Kober H, Weber J, Ochsner KN. Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb Cortex 2013; 24:2981-90. [PMID: 23765157 DOI: 10.1093/cercor/bht154] [Citation(s) in RCA: 1120] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years, an explosion of neuroimaging studies has examined cognitive reappraisal, an emotion regulation strategy that involves changing the way one thinks about a stimulus in order to change its affective impact. Existing models broadly agree that reappraisal recruits frontal and parietal control regions to modulate emotional responding in the amygdala, but they offer competing visions of how this is accomplished. One view holds that control regions engage ventromedial prefrontal cortex (vmPFC), an area associated with fear extinction, that in turn modulates amygdala responses. An alternative view is that control regions modulate semantic representations in lateral temporal cortex that indirectly influence emotion-related responses in the amygdala. Furthermore, while previous work has emphasized the amygdala, whether reappraisal influences other regions implicated in emotional responding remains unknown. To resolve these questions, we performed a meta-analysis of 48 neuroimaging studies of reappraisal, most involving downregulation of negative affect. Reappraisal consistently 1) activated cognitive control regions and lateral temporal cortex, but not vmPFC, and 2) modulated the bilateral amygdala, but no other brain regions. This suggests that reappraisal involves the use of cognitive control to modulate semantic representations of an emotional stimulus, and these altered representations in turn attenuate activity in the amygdala.
Collapse
Affiliation(s)
- Jason T Buhle
- Department of Psychology, Columbia University, New York, NY, USA
| | | | - Tor D Wager
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - Richard Lopez
- Department of Psychology, Dartmouth College, Hanover, NH, USA and
| | | | - Hedy Kober
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Jochen Weber
- Department of Psychology, Columbia University, New York, NY, USA
| | - Kevin N Ochsner
- Department of Psychology, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Chambers RA. Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders. Drug Alcohol Depend 2013; 130:1-12. [PMID: 23279925 PMCID: PMC3640791 DOI: 10.1016/j.drugalcdep.2012.12.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND As knowledge deepens about how new neurons are born, differentiate, and wire into the adult mammalian brain, growing evidence depicts hippocampal neurogenesis as a special form of neuroplasticity that may be impaired across psychiatric disorders. This review provides an integrated-evidence based framework describing a neurogenic basis for addictions and addiction vulnerability in mental illness. METHODS Basic studies conducted over the last decade examining the effects of addictive drugs on adult neurogenesis and the impact of neurogenic activity on addictive behavior were compiled and integrated with relevant neurocomputational and human studies. RESULTS While suppression of hippocampal neurogenic proliferation appears to be a universal property of addictive drugs, the pathophysiology of addictions involves neuroadaptative processes within frontal-cortical-striatal motivation circuits that the neurogenic hippocampus regulates via direct projections. States of suppressed neurogenic activity may simultaneously underlie psychiatric and cognitive symptoms, but also confer or signify hippocampal dysfunction that heightens addiction vulnerability in mental illness as a basis for dual diagnosis disorders. CONCLUSIONS Research on pharmacological, behavioral and experiential strategies that enhance adaptive regulation of hippocampal neurogenesis holds potential in advancing preventative and integrative treatment strategies for addictions and dual diagnosis disorders.
Collapse
Affiliation(s)
- R Andrew Chambers
- Laboratory for Translational Neuroscience of Dual Diagnosis & Development, Department of Psychiatry, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, United States.
| |
Collapse
|
18
|
|
19
|
Dunlap KD, Chung M. Social novelty enhances brain cell proliferation, cell survival, and chirp production in an electric fish, Apteronotus leptorhynchus. Dev Neurobiol 2012; 73:324-32. [PMID: 23076841 DOI: 10.1002/dneu.22063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 12/12/2022]
Abstract
For many animals, enriched environments and social interaction promote adult neurogenesis. However, in some cases, the effect is transient, and long-term environmental stimuli have little benefit for neurogenesis. In electric fish, Apteronotus leptorhynchus, fish housed in pairs for 7 days show higher density of newborn brain cells (cell addition) than isolated fish, but fish paired for 14 days have rates of cell addition similar to isolated controls. We examined whether introduction of social novelty can sustain elevated levels of cell addition and prevent long-term habituation to social interaction. We also monitored electrocommunication signals ("chirps") as a measure of the behavioral response to social novelty. We paired fish for 14 days with one continuous partner (no social novelty), two sequential partners changed after 7 days (low novelty) or seven sequential partners changed every 2 days (high novelty). On Day 11, we injected fish with BrdU, sacrificed fish 3 days later and quantified BrdU labeling in the diencephalic periventricular zone. Fish exposed to no novelty had BrdU labeling similar to isolated fish. Fish with low novelty showed small increases in BrdU labeling and those with high novelty had much greater BrdU labeling. Similarly, chirp rates were greater in fish with low novelty than with no novelty and greatest yet in fish with high novelty. By varying the timing of novelty relative to BrdU injection, we showed that social novelty promoted both proliferation and survival of newborn cells. These results indicated that brain cell proliferation and survival is influenced more by social change than simply the presence of social stimuli.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, Connecticut 06106, USA.
| | | |
Collapse
|
20
|
Barker JM, Boonstra R, Wojtowicz JM. From pattern to purpose: how comparative studies contribute to understanding the function of adult neurogenesis. Eur J Neurosci 2012; 34:963-77. [PMID: 21929628 DOI: 10.1111/j.1460-9568.2011.07823.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The study of adult neurogenesis has had an explosion of fruitful growth. Yet numerous uncertainties and challenges persist. Our review begins with a survey of species that show evidence of adult neurogenesis. We then discuss how neurogenesis varies across brain regions and point out that regional specializations can indicate functional adaptations. Lifespan and aging are key life-history traits. Whereas 'adult neurogenesis' is the common term in the literature, it does not reflect the reality of neurogenesis being primarily a 'juvenile' phenomenon. We discuss the sharp decline with age as a universal trait of neurogenesis with inevitable functional consequences. Finally, the main body of the review focuses on the function of neurogenesis in birds and mammals. Selected examples illustrate how our understanding of avian and mammalian neurogenesis can complement each other. It is clear that although the two phyla have some common features, the function of adult neurogenesis may not be similar between them and filling the gaps will help us understand neurogenesis as an evolutionarily conserved trait to meet particular ecological pressures.
Collapse
Affiliation(s)
- Jennifer M Barker
- GIGA Neurosciences, University of Liège, 1 avenue de l'Hôpital, B-4000 Liège, Belgium.
| | | | | |
Collapse
|
21
|
Vaillancourt T, Duku E, Becker S, Schmidt LA, Nicol J, Muir C, MacMillan H. Peer victimization, depressive symptoms, and high salivary cortisol predict poorer memory in children. Brain Cogn 2011; 77:191-9. [DOI: 10.1016/j.bandc.2011.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 06/28/2011] [Indexed: 12/30/2022]
|
22
|
Noguès X, Corsini MM, Marighetto A, Abrous DN. Functions for adult neurogenesis in memory: an introduction to the neurocomputational approach and to its contribution. Behav Brain Res 2011; 227:418-25. [PMID: 21856335 DOI: 10.1016/j.bbr.2011.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 08/04/2011] [Accepted: 08/06/2011] [Indexed: 01/26/2023]
Abstract
Until recently, it was believed that the introduction of new neurons in neuronal networks was incompatible with memory function. Since the rediscovery of adult hippocampal neurogenesis, behavioral data demonstrate that adult neurogenesis is required for memory processing. We examine neurocomputational studies to identify which basic mechanisms involved in memory might be mediated by adult neurogenesis. Mainly, adult neurogenesis might be involved in the reduction of catastrophic interference and in a time-related pattern separation function. Artificial neuronal networks suggest that the selective recruitment of new-born or old neurons is not stochastic, but depends on environmental requirements. This leads us to propose the novel concept of "soft-supervision". Soft-supervision would be a biologically plausible process, by which the environment is able to influence activation and learning rules of neurons differentially.
Collapse
Affiliation(s)
- X Noguès
- INSERM U862, Neurocenter Magendie, Pathophysiology of Declarative Memory group, Bordeaux F33077, France.
| | | | | | | |
Collapse
|
23
|
A possible mechanism of transfer of memories from the hippocampus to the cortex. Med Hypotheses 2011; 77:234-43. [DOI: 10.1016/j.mehy.2011.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 04/04/2011] [Indexed: 01/03/2023]
|
24
|
Aimone JB, Gage FH. Modeling new neuron function: a history of using computational neuroscience to study adult neurogenesis. Eur J Neurosci 2011; 33:1160-9. [PMID: 21395860 DOI: 10.1111/j.1460-9568.2011.07615.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Adult neurogenesis is a sophisticated biological process whose function has remained a mystery to neuroscience researchers. To address this question, a number of unique modeling studies have explored the computational implications of adding new neurons to the adult dentate gyrus. Models of neurogenesis fall into two broad categories: abstract models that explore the function of new neurons in simple networks, and biologically based models that investigate the role of new neurons in networks based on the anatomy of the hippocampus. In this review, we summarize the strategies and results of these different modeling approaches, and we discuss their conclusions and limitations in the face of new biological findings.
Collapse
Affiliation(s)
- James B Aimone
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | |
Collapse
|
25
|
Appleby PA, Kempermann G, Wiskott L. The role of additive neurogenesis and synaptic plasticity in a hippocampal memory model with grid-cell like input. PLoS Comput Biol 2011; 7:e1001063. [PMID: 21298080 PMCID: PMC3029236 DOI: 10.1371/journal.pcbi.1001063] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 12/17/2010] [Indexed: 11/17/2022] Open
Abstract
Recently, we presented a study of adult neurogenesis in a simplified hippocampal memory model. The network was required to encode and decode memory patterns despite changing input statistics. We showed that additive neurogenesis was a more effective adaptation strategy compared to neuronal turnover and conventional synaptic plasticity as it allowed the network to respond to changes in the input statistics while preserving representations of earlier environments. Here we extend our model to include realistic, spatially driven input firing patterns in the form of grid cells in the entorhinal cortex. We compare network performance across a sequence of spatial environments using three distinct adaptation strategies: conventional synaptic plasticity, where the network is of fixed size but the connectivity is plastic; neuronal turnover, where the network is of fixed size but units in the network may die and be replaced; and additive neurogenesis, where the network starts out with fewer initial units but grows over time. We confirm that additive neurogenesis is a superior adaptation strategy when using realistic, spatially structured input patterns. We then show that a more biologically plausible neurogenesis rule that incorporates cell death and enhanced plasticity of new granule cells has an overall performance significantly better than any one of the three individual strategies operating alone. This adaptation rule can be tailored to maximise performance of the network when operating as either a short- or long-term memory store. We also examine the time course of adult neurogenesis over the lifetime of an animal raised under different hypothetical rearing conditions. These growth profiles have several distinct features that form a theoretical prediction that could be tested experimentally. Finally, we show that place cells can emerge and refine in a realistic manner in our model as a direct result of the sparsification performed by the dentate gyrus layer. Contrary to the long-standing belief that no new neurons are added to the adult brain, it is now known that new neurons are born in a number of different brain regions and animals. One such region is the hippocampus, an area that plays an important role in learning and memory. In this paper we explore the effect of adding new neurons in a computational model of rat hippocampal function. Our hypothesis is that adding new neurons helps in forming new memories without disrupting memories that have already been stored. We find that adding new units is indeed superior to either changing connectivity or allowing neuronal turnover (where old units die and are replaced). We then show that a more biologically plausible mechanism that combines all three of these processes produces the best performance. Our work provides a strong theoretical argument as to why new neurons are born in the adult hippocampus: the new units allow the network to adapt in a way that is not possible by rearranging existing connectivity using conventional plasticity or neuronal turnover.
Collapse
Affiliation(s)
- Peter A Appleby
- School of Computing, University of Leeds, Leeds, United Kingdom.
| | | | | |
Collapse
|
26
|
Aimone JB, Deng W, Gage FH. Adult neurogenesis: integrating theories and separating functions. Trends Cogn Sci 2010; 14:325-37. [PMID: 20471301 DOI: 10.1016/j.tics.2010.04.003] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/08/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
The continuous incorporation of new neurons in the dentate gyrus of the adult hippocampus raises exciting questions about memory and learning, and has inspired new computational models to understand the function of adult neurogenesis. These theoretical approaches suggest distinct roles for new neurons as they slowly integrate into the existing dentate gyrus network: immature adult-born neurons seem to function as pattern integrators of temporally adjacent events, thereby enhancing pattern separation for events separated in time; whereas maturing adult-born neurons possibly contribute to pattern separation by being more amenable to learning new information, leading to dedicated groups of granule cells that respond to experienced environments. We review these hypothesized functions and supporting empirical research and point to new directions for future theoretical efforts.
Collapse
Affiliation(s)
- James B Aimone
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
27
|
Barker JM, Galea LAM. Males show stronger contextual fear conditioning than females after context pre-exposure. Physiol Behav 2010; 99:82-90. [PMID: 19879284 DOI: 10.1016/j.physbeh.2009.10.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/17/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
Estradiol affects the structure and function of the hippocampus. We have found that repeated estradiol affects neurogenesis and cell death in the hippocampus of adult female, but not male rats. In the present study we sought to determine whether using the same regimen of estradiol would influence hippocampus-dependent behaviour. Adult male and female rats were given estradiol or sesame oil for 15 days, and then tested using a contextual pre-exposure paradigm in which performance depends on the hippocampus. The time spent freezing displayed by rats was scored on subsequent days in (1) the training context, (2) a novel context in which rats had never been shocked, and (3) the training context a second time. Irrespective of treatment, males showed stronger memory for the context by exhibiting greater freezing in both the training context exposures and the novel context. Previous estradiol treatment, in either sex, did not affect the ability to learn and retain information about the training context. However, female rats treated with estradiol and exposed to a novel context after fear conditioning exhibited less freezing behaviour than controls. Taken together, our results demonstrate that gonadectomized male rats outperform females, regardless of previous treatment with estradiol, on a hippocampus-contextual fear conditioning test, and that previous estradiol treatment has a subtle effect on performance in female but not male rats.
Collapse
Affiliation(s)
- Jennifer M Barker
- Graduate Program in Neuroscience, Brain Research Centre, Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
28
|
BMP signaling mediates effects of exercise on hippocampal neurogenesis and cognition in mice. PLoS One 2009; 4:e7506. [PMID: 19841742 PMCID: PMC2759555 DOI: 10.1371/journal.pone.0007506] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/24/2009] [Indexed: 12/30/2022] Open
Abstract
Exposure to exercise or to environmental enrichment increases the generation of new neurons in the adult hippocampus and promotes certain kinds of learning and memory. While the precise role of neurogenesis in cognition has been debated intensely, comparatively few studies have addressed the mechanisms linking environmental exposures to cellular and behavioral outcomes. Here we show that bone morphogenetic protein (BMP) signaling mediates the effects of exercise on neurogenesis and cognition in the adult hippocampus. Elective exercise reduces levels of hippocampal BMP signaling before and during its promotion of neurogenesis and learning. Transgenic mice with decreased BMP signaling or wild type mice infused with a BMP inhibitor both exhibit remarkable gains in hippocampal cognitive performance and neurogenesis, mirroring the effects of exercise. Conversely, transgenic mice with increased BMP signaling have diminished hippocampal neurogenesis and impaired cognition. Exercise exposure does not rescue these deficits, suggesting that reduced BMP signaling is required for environmental effects on neurogenesis and learning. Together, these observations show that BMP signaling is a fundamental mechanism linking environmental exposure with changes in cognitive function and cellular properties in the hippocampus.
Collapse
|
29
|
Weisz VI, Argibay PF. A putative role for neurogenesis in neuro-computational terms: inferences from a hippocampal model. Cognition 2009; 112:229-40. [PMID: 19481201 DOI: 10.1016/j.cognition.2009.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 05/05/2009] [Accepted: 05/05/2009] [Indexed: 12/19/2022]
Abstract
New neurons are generated daily in the hippocampus during adult life. They are integrated into the existing neuronal circuits according to several factors such as age, physical exercise and hormonal status. At present, the role of these new neurons is debated. Computational simulations of hippocampal function allow the effects of neurogenesis to be explored, at least from a computational perspective. The present work implements a model of neurogenesis in the hippocampus with artificial neural networks, based on a standard theoretical model of biologically plausible hippocampal circuits. The performance of the model in retrieval of a variable number of patterns or memories was evaluated (episodic memory evaluation). The model increased, in a phase subsequent to initial learning, the number of granular cells by 30% relative to their initial number. In contrast to a model without neurogenesis, the retrieval of recent memories was very significantly improved, although remote memories were only slightly affected by neurogenesis. This increase in the quality of retrieval of new memories represents a clear advantage that we attribute to the neurogenesis process. This advantage becomes more significant for higher storage loads. The model presented here suggests an important functional role of neurogenesis on learning and memory.
Collapse
Affiliation(s)
- Victoria I Weisz
- Department of Theoretical Biology, Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires, Potosí 4240 8(o) P, C1199ACL Buenos Aires, Argentina
| | | |
Collapse
|
30
|
Butz M, Teuchert-Noodt G, Grafen K, van Ooyen A. Inverse relationship between adult hippocampal cell proliferation and synaptic rewiring in the dentate gyrus. Hippocampus 2009; 18:879-98. [PMID: 18481284 DOI: 10.1002/hipo.20445] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adult neurogenesis is a key feature of the hippocampal dentate gyrus (DG). Neurogenesis is accompanied by synaptogenesis as new cells become integrated into the circuitry of the hippocampus. However, little is known to what extent the embedding of new neurons rewires the pre-existing network. Here we investigate synaptic rewiring in the DG of gerbils (Meriones unguiculatus) under different rates of adult cell proliferation caused by different rearing conditions as well as juvenile methamphetamine treatment. Surprisingly, we found that an increased cell proliferation reduced the amount of synaptic rewiring. To help explain this unexpected finding, we developed a novel model of dentate network formation incorporating neurogenesis and activity-dependent synapse formation and remodelling. In the model, we show that homeostasis of neuronal activity can account for the inverse relationship between cell proliferation and synaptic rewiring.
Collapse
Affiliation(s)
- Markus Butz
- Bernstein Center for Computational Neuroscience Göttingen, Max-Planck-Institut for Dynamics and Selforganization, Bunsenstr. 10, Göttingen, Germany.
| | | | | | | |
Collapse
|
31
|
Appleby PA, Wiskott L. Additive neurogenesis as a strategy for avoiding interference in a sparsely-coding dentate gyrus. NETWORK (BRISTOL, ENGLAND) 2009; 20:137-161. [PMID: 19731146 DOI: 10.1080/09548980902993156] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recently we presented a model of additive neurogenesis in a linear, feedforward neural network that performed an encoding-decoding memory task in a changing input environment. Growing the neural network over time allowed the network to adapt to changes in input statistics without disrupting retrieval properties, and we proposed that adult neurogenesis might fulfil a similar computational role in the dentate gyrus of the hippocampus. Here we explicitly evaluate this hypothesis by examining additive neurogenesis in a simplified hippocampal memory model. The model incorporates a divergence in unit number from the entorhinal cortex to the dentate gyrus and sparse coding in the dentate gyrus, both notable features of hippocampal processing. We evaluate two distinct adaptation strategies; neuronal turnover, where the network is of fixed size but units may be deleted and new ones added, and additive neurogenesis, where the network grows over time, and quantify the performance of the network across the full range of adaptation levels from zero in a fixed network to one in a fully adapting network. We find that additive neurogenesis is always superior to neuronal turnover as it permits the network to be responsive to changes in input statistics while at the same time preserving representations of earlier environments.
Collapse
Affiliation(s)
- Peter A Appleby
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin 10115, Germany.
| | | |
Collapse
|
32
|
Gelperin A. Neural Computations with Mammalian Infochemicals. J Chem Ecol 2008; 34:928-42. [DOI: 10.1007/s10886-008-9483-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 12/28/2007] [Accepted: 04/23/2008] [Indexed: 12/22/2022]
|
33
|
Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R. Que PASA? The posterior-anterior shift in aging. Cereb Cortex 2008; 18:1201-9. [PMID: 17925295 PMCID: PMC2760260 DOI: 10.1093/cercor/bhm155] [Citation(s) in RCA: 859] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A consistent finding from functional neuroimaging studies of cognitive aging is an age-related reduction in occipital activity coupled with increased frontal activity. This posterior-anterior shift in aging (PASA) has been typically attributed to functional compensation. The present functional magnetic resonance imaging sought to 1) confirm that PASA reflects the effects of aging rather than differences in task difficulty; 2) test the compensation hypothesis; and 3) investigate whether PASA generalizes to deactivations. Young and older participants were scanned during episodic retrieval and visual perceptual tasks, and age-related changes in brain activity common to both tasks were identified. The study yielded 3 main findings. First, inconsistent with a difficulty account, the PASA pattern was found across task and confidence levels when matching performance among groups. Second, supporting the compensatory hypothesis, age-related increases in frontal activity were positively correlated with performance and negatively correlated with the age-related occipital decreases. Age-related increases and correlations with parietal activity were also found. Finally, supporting the generalizability of the PASA pattern to deactivations, aging reduced deactivations in posterior midline cortex but increased deactivations in medial frontal cortex. Taken together, these findings demonstrate the validity, function, and generalizability of PASA, as well as its importance for the cognitive neuroscience of aging.
Collapse
Affiliation(s)
- Simon W. Davis
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Nancy A. Dennis
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Sander M. Daselaar
- Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Mathias S. Fleck
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
34
|
van den Hurk P, Mars RB, van Elswijk G, Hegeman J, Pasman JW, Bloem BR, Toni I. Online Maintenance of Sensory and Motor Representations: Effects on Corticospinal Excitability. J Neurophysiol 2007; 97:1642-8. [PMID: 17135470 DOI: 10.1152/jn.01005.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Flexible behavior requires the ability to delay a response until it is appropriate. This can be achieved by holding either a sensory or a motor representation online. Here we assess whether maintenance of sensory or motor material drives the motor system to different functional states, as indexed by alterations of corticospinal excitability. We used single-pulse TMS to measure corticospinal excitability evoked during the delay period of a novel paradigm in which task contingencies, rather than explicit verbal instructions, induced participants to use either sensory or motor codes to solve a delay-nonmatch-to-sample (DNMS) task. This approach allowed us to probe the state of the motor system while the participants were retaining either sensory or motor codes to cross the delay period, rather than the control of short-term storage driven by verbal instructions. When participants could prepare the movement in advance (preparation trials), the excitability of the motor cortex contralateral to the moving hand increased, whereas the excitability of the ipsilateral motor cortex decreased. The increase in excitability was confined to the prime mover, whereas the decrease in excitability extended to cortical territories controlling muscles unrelated to the response. Crucially, these changes in excitability were evoked only during preparation trials and not during trials in which subjects needed to maintain sensory items online (memory trials). We infer that short-term storage of sensory information and preparation of motor responses have differential and specific access to the output stage of the motor system.
Collapse
Affiliation(s)
- Paul van den Hurk
- F.C. Donders Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Kapittelweg 29, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|