1
|
Hsieh JK, Prakash PR, Flint RD, Fitzgerald Z, Mugler E, Wang Y, Crone NE, Templer JW, Rosenow JM, Tate MC, Betzel R, Slutzky MW. Cortical sites critical to language function act as connectors between language subnetworks. Nat Commun 2024; 15:7897. [PMID: 39284848 PMCID: PMC11405775 DOI: 10.1038/s41467-024-51839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/15/2024] [Indexed: 09/20/2024] Open
Abstract
Historically, eloquent functions have been viewed as localized to focal areas of human cerebral cortex, while more recent studies suggest they are encoded by distributed networks. We examined the network properties of cortical sites defined by stimulation to be critical for speech and language, using electrocorticography from sixteen participants during word-reading. We discovered distinct network signatures for sites where stimulation caused speech arrest and language errors. Both demonstrated lower local and global connectivity, whereas sites causing language errors exhibited higher inter-community connectivity, identifying them as connectors between modules in the language network. We used machine learning to classify these site types with reasonably high accuracy, even across participants, suggesting that a site's pattern of connections within the task-activated language network helps determine its importance to function. These findings help to bridge the gap in our understanding of how focal cortical stimulation interacts with complex brain networks to elicit language deficits.
Collapse
Affiliation(s)
- Jason K Hsieh
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Prashanth R Prakash
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611, USA
| | - Robert D Flint
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zachary Fitzgerald
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Emily Mugler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jessica W Templer
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joshua M Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Matthew C Tate
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Cognitive Science Program, Program in Neuroscience, and Network Science Institute, Indiana University, Bloomington, IN, 47401, USA
| | - Marc W Slutzky
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA.
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Gili T, Avila B, Pasquini L, Holodny A, Phillips D, Boldi P, Gabrielli A, Caldarelli G, Zimmer M, Makse HA. Fibration symmetry-breaking supports functional transitions in a brain network engaged in language. ARXIV 2024:arXiv:2409.02674v1. [PMID: 39279833 PMCID: PMC11398549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
In his book 'A Beautiful Question', physicist Frank Wilczek argues that symmetry is 'nature's deep design,' governing the behavior of the universe, from the smallest particles to the largest structures. While symmetry is a cornerstone of physics, it has not yet been found widespread applicability to describe biological systems, particularly the human brain. In this context, we study the human brain network engaged in language and explore the relationship between the structural connectivity (connectome or structural network) and the emergent synchronization of the mesoscopic regions of interest (functional network). We explain this relationship through a different kind of symmetry than physical symmetry, derived from the categorical notion of Grothendieck fibrations. This introduces a new understanding of the human brain by proposing a local symmetry theory of the connectome, which accounts for how the structure of the brain's network determines its coherent activity. Among the allowed patterns of structural connectivity, synchronization elicits different symmetry subsets according to the functional engagement of the brain. We show that the resting state is a particular realization of the cerebral synchronization pattern characterized by a fibration symmetry that is broken in the transition from rest to language. Our findings suggest that the brain's network symmetry at the local level determines its coherent function, and we can understand this relationship from theoretical principles.
Collapse
Affiliation(s)
- Tommaso Gili
- Networks Unit, IMT Scuola Alti Studi Lucca, Piazza San Francesco 15, 55100-Lucca, Italy
- Institute for Complex Systems (ISC), CNR, UoS Sapienza, Rome, 00185, Italy
| | - Bryant Avila
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
| | - Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, 00189, Italy
| | - Andrei Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY, 10021, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - David Phillips
- Division of Mathematics, Computer and Information Systems, Office of Naval Research, Arlington, VA 22217, USA
- Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Paolo Boldi
- Department of Computer Science, University of Milan, Milano, Italy
| | - Andrea Gabrielli
- 'Enrico Fermi' Research Center (CREF), Via Panisperna 89A, 00184 - Rome, Italy
- Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche, Università degli Studi 'Roma Tre', Via Vito Volterra 62, 00146 - Rome, Italy
| | - Guido Caldarelli
- Institute for Complex Systems (ISC), CNR, UoS Sapienza, Rome, 00185, Italy
- Department of Molecular Science and Nanosystems and ECLT, Ca Foscari University of Venice, Venice, 30123, Italy
- London Institute for Mathematical Sciences, Royal Institution, 21 Albemarle St London W1S 4BS, UK
| | - Manuel Zimmer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Hernán A Makse
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Pasquini L, Jenabi M, Graham M, Peck KK, Schöder H, Holodny AI, Krebs S. Tumors Affect the Metabolic Connectivity of the Human Brain Measured by 18 F-FDG PET. Clin Nucl Med 2024; 49:822-829. [PMID: 38693648 PMCID: PMC11300165 DOI: 10.1097/rlu.0000000000005227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
PURPOSE 18 F-FDG PET captures the relationship between glucose metabolism and synaptic activity, allowing for modeling brain function through metabolic connectivity. We investigated tumor-induced modifications of brain metabolic connectivity. PATIENTS AND METHODS Forty-three patients with left hemispheric tumors and 18 F-FDG PET/MRI were retrospectively recruited. We included 37 healthy controls (HCs) from the database CERMEP-IDB-MRXFDG. We analyzed the whole brain and right versus left hemispheres connectivity in patients and HC, frontal versus temporal tumors, active tumors versus radiation necrosis, and patients with high Karnofsky performance score (KPS = 100) versus low KPS (KPS < 70). Results were compared with 2-sided t test ( P < 0.05). RESULTS Twenty high-grade glioma, 4 low-grade glioma, and 19 metastases were included. The patients' whole-brain network displayed lower connectivity metrics compared with HC ( P < 0.001), except assortativity and betweenness centrality ( P = 0.001). The patients' left hemispheres showed decreased similarity, and lower connectivity metrics compared with the right ( P < 0.01), with the exception of betweenness centrality ( P = 0.002). HC did not show significant hemispheric differences. Frontal tumors showed higher connectivity metrics ( P < 0.001) than temporal tumors, but lower betweenness centrality ( P = 4.5 -7 ). Patients with high KPS showed higher distance local efficiency ( P = 0.01), rich club coefficient ( P = 0.0048), clustering coefficient ( P = 0.00032), betweenness centrality ( P = 0.008), and similarity ( P = 0.0027) compared with low KPS. Patients with active tumor(s) (14/43) demonstrated significantly lower connectivity metrics compared with necroses. CONCLUSIONS Tumors cause reorganization of metabolic brain networks, characterized by formation of new connections and decreased centrality. Patients with frontal tumors retained a more efficient, centralized, and segregated network than patients with temporal tumors. Stronger metabolic connectivity was associated with higher KPS.
Collapse
Affiliation(s)
- Luca Pasquini
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mehrnaz Jenabi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maya Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY
- The Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kyung K. Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Radiology, Weill Medical College of Cornell University, New York, NY
| | - Andrei I. Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Radiology, Weill Medical College of Cornell University, New York, NY
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Radiology, Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
4
|
Gili T, Avila B, Pasquini L, Holodny A, Phillips D, Boldi P, Gabrielli A, Caldarelli G, Zimmer M, Makse HA. Fibration symmetry-breaking supports functional transitions in a brain network engaged in language. RESEARCH SQUARE 2024:rs.3.rs-4409330. [PMID: 38883794 PMCID: PMC11177955 DOI: 10.21203/rs.3.rs-4409330/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In his book 'A Beautiful Question' 1, physicist Frank Wilczek argues that symmetry is 'nature's deep design,' governing the behavior of the universe, from the smallest particles to the largest structures 1-4. While symmetry is a cornerstone of physics, it has not yet been found widespread applicability to describe biological systems 5, particularly the human brain. In this context, we study the human brain network engaged in language and explore the relationship between the structural connectivity (connectome or structural network) and the emergent synchronization of the mesoscopic regions of interest (functional network). We explain this relationship through a different kind of symmetry than physical symmetry, derived from the categorical notion of Grothendieck fibrations 6. This introduces a new understanding of the human brain by proposing a local symmetry theory of the connectome, which accounts for how the structure of the brain's network determines its coherent activity. Among the allowed patterns of structural connectivity, synchronization elicits different symmetry subsets according to the functional engagement of the brain. We show that the resting state is a particular realization of the cerebral synchronization pattern characterized by a fibration symmetry that is broken 7 in the transition from rest to language. Our findings suggest that the brain's network symmetry at the local level determines its coherent function, and we can understand this relationship from theoretical principles.
Collapse
Affiliation(s)
- Tommaso Gili
- Networks Unit, IMT Scuola Alti Studi Lucca, Piazza San Francesco 15, 55100- Lucca, Italy
- Institute for Complex Systems (ISC), CNR, UoS Sapienza, Rome, 00185, Italy
| | - Bryant Avila
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
| | - Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, 00189, Italy
| | - Andrei Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY, 10021, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - David Phillips
- Division of Mathematics, Computer and Information Systems, Office of Naval Research, Arlington, VA 22217, USA
- Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Paolo Boldi
- Department of Computer Science, University of Milan, Milano, Italy
| | - Andrea Gabrielli
- 'Enrico Fermi' Research Center (CREF), Via Panisperna 89A, 00184 - Rome, Italy
- Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche, Università degli Studi 'Roma Tre', Via Vito Volterra 62, 00146 - Rome, Italy
| | - Guido Caldarelli
- Institute for Complex Systems (ISC), CNR, UoS Sapienza, Rome, 00185, Italy
- Department of Molecular Science and Nanosystems and ECLT, Ca Foscari University of Venice, Venice, 30123, Italy
- London Institute for Mathematical Sciences, Royal Institution, 21 Albemarle St London W1S 4BS, UK
| | - Manuel Zimmer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Hernán A Makse
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
5
|
Pasquini L, Tao A, Ferraro GD, Jenabi M, Peck KK, Napolitano A, Fahy TA, Brennan C, Moss NS, Tabar V, Makse H, Holodny AI. Association of Lack of Speech Arrest During Cortical Stimulation With Interhemispheric Reorganization of the Functional Language Network in Patients With Brain Tumors. AJR Am J Roentgenol 2023; 221:806-816. [PMID: 37377358 DOI: 10.2214/ajr.23.29434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
BACKGROUND. Brain tumors induce language reorganization, which may influence the extent of resection in surgical planning. Direct cortical stimulation (DCS) allows definitive language mapping during awake surgery by locating areas of speech arrest (SA) surrounding the tumor. Although functional MRI (fMRI) combined with graph theory analysis can illustrate whole-brain network reorganization, few studies have corroborated these findings with DCS intraoperative mapping and clinical language performance. OBJECTIVE. We evaluated whether patients with low-grade gliomas (LGGs) without SA during DCS show increased right-hemispheric connections and better speech performance compared with patients with SA. METHODS. We retrospectively recruited 44 consecutive patients with left perisylvian LGG, preoperative language task-based fMRI, speech performance evaluation, and awake surgery with DCS. We generated language networks from ROIs corresponding to known language areas (i.e., language core) on fMRI using optimal percolation. Language core connectivity in the left and right hemispheres was quantified as fMRI laterality index (LI) and connectivity LI on the basis of fMRI activation maps and connectivity matrices. We compared fMRI LI and connectivity LI between patients with SA and without SA and used multivariable logistic regression (p < .05) to assess associations between DCS and connectivity LI, fMRI LI, tumor location, Broca area and Wernicke area involvement, prior treatments, age, handedness, sex, tumor size, and speech deficit before surgery, within 1 week after surgery, and 3-6 months after surgery. RESULTS. Patients with SA showed left-dominant connectivity; patients without SA lateralized more to the right hemisphere (p < .001). Between patients with SA and those without, fMRI LI was not significantly different. Patients without SA showed right-greater-than-left connectivity of Broca area and premotor area compared with patients with SA. Regression analysis showed significant association between no SA and right-lateralized connectivity LI (p < .001) and fewer speech deficits before (p < .001) and 1 week after (p = .02) surgery. CONCLUSION. Patients without SA had increased right-hemispheric connections and right translocation of the language core, suggesting language reorganization. Lack of interoperative SA was associated with fewer speech deficits both before and immediately after surgery. CLINICAL IMPACT. These findings support tumor-induced language plasticity as a compensatory mechanism, which may lead to fewer postsurgical deficits and allow extended resection.
Collapse
Affiliation(s)
- Luca Pasquini
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alice Tao
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | | | - Mehrnaz Jenabi
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | - Kyung K Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Tara A Fahy
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | - Cameron Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nelson S Moss
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vivian Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hernan Makse
- Levich Institute and Physics Department, City College of New York, New York, NY
| | - Andrei I Holodny
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- Department of Neuroscience, Weill Cornell Medicine Graduate School of the Medical Sciences, New York, NY
- Department of Radiology, Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
6
|
Pasquini L, Yildirim O, Silveira P, Tamer C, Napolitano A, Lucignani M, Jenabi M, Peck KK, Holodny A. Effect of tumor genetics, pathology, and location on fMRI of language reorganization in brain tumor patients. Eur Radiol 2023; 33:6069-6078. [PMID: 37074422 PMCID: PMC10415458 DOI: 10.1007/s00330-023-09610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVES Language reorganization may follow tumor invasion of the dominant hemisphere. Tumor location, grade, and genetics influence the communication between eloquent areas and tumor growth dynamics, which are drivers of language plasticity. We evaluated tumor-induced language reorganization studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness). METHODS The study was retrospective cross-sectional. We included patients with left-hemispheric tumors (study group) and right-hemispheric tumors (controls). We calculated five fMRI laterality indexes (LI): hemispheric, temporal lobe, frontal lobe, Broca's area (BA), Wernicke's area (WA). We defined LI ≥ 0.2 as left-lateralized (LL) and LI < 0.2 as atypical lateralized (AL). Chi-square test (p < 0.05) was employed to identify the relationship between LI and tumor/patient variables in the study group. For those variables having significant results, confounding factors were evaluated in a multinomial logistic regression model. RESULTS We included 405 patients (235 M, mean age: 51 years old) and 49 controls (36 M, mean age: 51 years old). Contralateral language reorganization was more common in patients than controls. The statistical analysis demonstrated significant association between BA LI and patient sex (p = 0.005); frontal LI, BA LI, and tumor location in BA (p < 0.001); hemispheric LI and fibroblast growth factor receptor (FGFR) mutation (p = 0.019); WA LI and O6-methylguanine-DNA methyltransferase promoter (MGMT) methylation in high-grade gliomas (p = 0.016). CONCLUSIONS Tumor genetics, pathology, and location influence language laterality, possibly due to cortical plasticity. Increased fMRI activation in the right hemisphere was seen in patients with tumors in the frontal lobe, BA and WA, FGFR mutation, and MGMT promoter methylation. KEY POINTS • Patients harboring left-hemispheric tumors present with contralateral translocation of language function. Influential variables for this phenomenon included frontal tumor location, BA location, WA location, sex, MGMT promoter methylation, and FGFR mutation. • Tumor location, grade, and genetics may influence language plasticity, thereby affecting both communication between eloquent areas and tumor growth dynamics. • In this retrospective cross-sectional study, we evaluated language reorganization in 405 brain tumor patients by studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness).
Collapse
Affiliation(s)
- Luca Pasquini
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- NESMOS Department, Neuroradiology Unit, Sant'Andrea Hospital, La Sapienza University, 00189, Rome, Italy.
| | - Onur Yildirim
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Patrick Silveira
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christel Tamer
- Diagnostic Radiology Department, American University of Beirut Medical Center, Beirut, 1107 2020, Lebanon
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Mehrnaz Jenabi
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kyung K Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Andrei Holodny
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY, 10065, USA
| |
Collapse
|
7
|
Pasquini L, Peck KK, Jenabi M, Holodny A. Functional MRI in Neuro-Oncology: State of the Art and Future Directions. Radiology 2023; 308:e222028. [PMID: 37668519 PMCID: PMC10546288 DOI: 10.1148/radiol.222028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 09/06/2023]
Abstract
Since its discovery in the early 1990s, functional MRI (fMRI) has been used to study human brain function. One well-established application of fMRI in the clinical setting is the neurosurgical planning of patients with brain tumors near eloquent cortical areas. Clinical fMRI aims to preoperatively identify eloquent cortices that serve essential functions in daily life, such as hand movement and language. The primary goal of neurosurgery is to maximize tumor resection while sparing eloquent cortices adjacent to the tumor. When a lesion presents in the vicinity of an eloquent cortex, surgeons may use fMRI to plan their best surgical approach by determining the proximity of the lesion to regions of activation, providing guidance for awake brain surgery and intraoperative brain mapping. The acquisition of fMRI requires patient preparation prior to imaging, determination of functional paradigms, monitoring of patient performance, and both processing and analysis of images. Interpretation of fMRI maps requires a strong understanding of functional neuroanatomy and familiarity with the technical limitations frequently present in brain tumor imaging, including neurovascular uncoupling, patient compliance, and data analysis. This review discusses clinical fMRI in neuro-oncology, relevant ongoing research topics, and prospective future developments in this exciting discipline.
Collapse
Affiliation(s)
- Luca Pasquini
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Kyung K. Peck
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Mehrnaz Jenabi
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Andrei Holodny
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| |
Collapse
|
8
|
Pasquini L, Peck KK, Tao A, Del Ferraro G, Correa DD, Jenabi M, Kobylarz E, Zhang Z, Brennan C, Tabar V, Makse H, Holodny AI. Longitudinal Evaluation of Brain Plasticity in Low-Grade Gliomas: fMRI and Graph-Theory Provide Insights on Language Reorganization. Cancers (Basel) 2023; 15:cancers15030836. [PMID: 36765795 PMCID: PMC9913404 DOI: 10.3390/cancers15030836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Language reorganization may represent an adaptive phenomenon to compensate tumor invasion of the dominant hemisphere. However, the functional changes over time underlying language plasticity remain unknown. We evaluated language function in patients with low-grade glioma (LGG), using task-based functional MRI (tb-fMRI), graph-theory and standardized language assessment. We hypothesized that functional networks obtained from tb-fMRI would show connectivity changes over time, with increased right-hemispheric participation. We recruited five right-handed patients (4M, mean age 47.6Y) with left-hemispheric LGG. Tb-fMRI and language assessment were conducted pre-operatively (pre-op), and post-operatively: post-op1 (4-8 months), post-op2 (10-14 months) and post-op3 (16-23 months). We computed the individual functional networks applying optimal percolation thresholding. Language dominance and hemispheric connectivity were quantified by laterality indices (LI) on fMRI maps and connectivity matrices. A fixed linear mixed model was used to assess the intra-patient correlation trend of LI values over time and their correlation with language performance. Individual networks showed increased inter-hemispheric and right-sided connectivity involving language areas homologues. Two patterns of language reorganization emerged: Three/five patients demonstrated a left-to-codominant shift from pre-op to post-op3 (type 1). Two/five patients started as atypical dominant at pre-op, and remained unchanged at post-op3 (type 2). LI obtained from tb-fMRI showed a significant left-to-right trend in all patients across timepoints. There were no significant changes in language performance over time. Type 1 language reorganization may be related to the treatment, while type 2 may be tumor-induced, since it was already present at pre-op. Increased inter-hemispheric and right-side connectivity may represent the initial step to develop functional plasticity.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, Italy
- Correspondence:
| | - Kyung K. Peck
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alice Tao
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gino Del Ferraro
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Denise D. Correa
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Mehrnaz Jenabi
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erik Kobylarz
- Department of Neurology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Zhigang Zhang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cameron Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hernán Makse
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
| | - Andrei I. Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
9
|
Quinones A, Jenabi M, Pasquini L, Peck KK, Moss NS, Brennan C, Tabar V, Holodny A. Use of longitudinal functional MRI to demonstrate translocation of language function in patients with brain tumors. J Neurosurg 2022:1-9. [DOI: 10.3171/2022.10.jns221212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE
The ability of functional MRI (fMRI) to localize patient-specific eloquent areas has proved worthwhile in efforts to maximize resection while minimizing risk of iatrogenic damage in patients with brain tumors. Although cortical reorganization has been described, the frequency of its occurrence and the factors that influence incidence are not well understood. The authors investigated changes in language laterality between 2 fMRI studies in patients with brain tumors to elucidate factors contributing to cortical reorganization.
METHODS
The authors analyzed 33 patients with brain tumors involving eloquent language areas who underwent 2 separate presurgical, language task–based fMRI examinations (fMRI1 and fMRI2). Pathology consisted of low-grade glioma (LGG) in 15, and high-grade glioma (HGG) in 18. The mean time interval between scans was 35 ± 38 months (mean ± SD). Regions of interest were drawn for Broca’s area (BA) and the contralateral BA homolog. The laterality index (LI) was calculated and categorized as follows: > 0.2, left dominance; 0.2 to –0.2, codominance; and < −0.2, right dominance. Translocation of language function was defined as a shift across one of these thresholds between the 2 scans. Comparisons between the 2 groups, translocation of language function (reorganized group) versus no translocation (constant group), were performed using the Mann-Whitney U-test.
RESULTS
Nine (27%) of 33 patients demonstrated translocation of language function. Eight of 9 patients with translocation had tumor involvement of BA, compared to 5/24 patients without translocation (p < 0.0001). There was no difference in LI between the 2 groups at fMRI1. However, the reorganized group showed a decreased LI at fMRI2 compared to the constant group (−0.1 vs 0.53, p < 0.01). The reorganized cohort showed a significant difference between LI1 and LI2 (0.50 vs –0.1, p < 0.0001) whereas the constant cohort did not. A longer time interval was found in the reorganized group between fMRI1 and fMRI2 for patients with LGG (34 vs 107 months, p < 0.002). Additionally, the reorganized cohort had a greater proportion of local tumor invasion into eloquent areas at fMRI2 than the constant group. Aphasia was present following fMRI2 in 13/24 (54%) patients who did not exhibit translocation, compared to 2/9 (22%) patients who showed translocation.
CONCLUSIONS
Translocation of language function in patients with brain tumor is associated with tumor involvement of BA, longer time intervals between scans, and is seen in both LGG and HGG. The reduced incidence of aphasia in the reorganized group raises the possibility that reorganization supports the conservation of language function. Therefore, longitudinal fMRI is useful because it may point to reorganization and could affect therapeutic planning for patients.
Collapse
Affiliation(s)
- Addison Quinones
- Departments of Radiology,
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Luca Pasquini
- Departments of Radiology,
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | | | - Nelson S. Moss
- Neurosurgery, Memorial Sloan Kettering Cancer Center, New York
| | - Cameron Brennan
- Neurosurgery, Memorial Sloan Kettering Cancer Center, New York
| | - Viviane Tabar
- Neurosurgery, Memorial Sloan Kettering Cancer Center, New York
| | - Andrei Holodny
- Departments of Radiology,
- Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York; and
- Department of Radiology, Joan & Sanford I. Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
10
|
Unraveling the functional attributes of the language connectome: crucial subnetworks, flexibility and variability. Neuroimage 2022; 263:119672. [PMID: 36209795 DOI: 10.1016/j.neuroimage.2022.119672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Language processing is a highly integrative function, intertwining linguistic operations (processing the language code intentionally used for communication) and extra-linguistic processes (e.g., attention monitoring, predictive inference, long-term memory). This synergetic cognitive architecture requires a distributed and specialized neural substrate. Brain systems have mainly been examined at rest. However, task-related functional connectivity provides additional and valuable information about how information is processed when various cognitive states are involved. We gathered thirteen language fMRI tasks in a unique database of one hundred and fifty neurotypical adults (InLang [Interactive networks of Language] database), providing the opportunity to assess language features across a wide range of linguistic processes. Using this database, we applied network theory as a computational tool to model the task-related functional connectome of language (LANG atlas). The organization of this data-driven neurocognitive atlas of language was examined at multiple levels, uncovering its major components (or crucial subnetworks), and its anatomical and functional correlates. In addition, we estimated its reconfiguration as a function of linguistic demand (flexibility) or several factors such as age or gender (variability). We observed that several discrete networks could be specifically shaped to promote key functional features of language: coding-decoding (Net1), control-executive (Net2), abstract-knowledge (Net3), and sensorimotor (Net4) functions. The architecture of these systems and the functional connectivity of the pivotal brain regions varied according to the nature of the linguistic process, gender, or age. By accounting for the multifaceted nature of language and modulating factors, this study can contribute to enriching and refining existing neurocognitive models of language. The LANG atlas can also be considered a reference for comparative or clinical studies involving various patients and conditions.
Collapse
|
11
|
Skipper JI. A voice without a mouth no more: The neurobiology of language and consciousness. Neurosci Biobehav Rev 2022; 140:104772. [PMID: 35835286 DOI: 10.1016/j.neubiorev.2022.104772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
Most research on the neurobiology of language ignores consciousness and vice versa. Here, language, with an emphasis on inner speech, is hypothesised to generate and sustain self-awareness, i.e., higher-order consciousness. Converging evidence supporting this hypothesis is reviewed. To account for these findings, a 'HOLISTIC' model of neurobiology of language, inner speech, and consciousness is proposed. It involves a 'core' set of inner speech production regions that initiate the experience of feeling and hearing words. These take on affective qualities, deriving from activation of associated sensory, motor, and emotional representations, involving a largely unconscious dynamic 'periphery', distributed throughout the whole brain. Responding to those words forms the basis for sustained network activity, involving 'default mode' activation and prefrontal and thalamic/brainstem selection of contextually relevant responses. Evidence for the model is reviewed, supporting neuroimaging meta-analyses conducted, and comparisons with other theories of consciousness made. The HOLISTIC model constitutes a more parsimonious and complete account of the 'neural correlates of consciousness' that has implications for a mechanistic account of mental health and wellbeing.
Collapse
|
12
|
Pasquini L, Jenabi M, Yildirim O, Silveira P, Peck KK, Holodny AI. Brain Functional Connectivity in Low- and High-Grade Gliomas: Differences in Network Dynamics Associated with Tumor Grade and Location. Cancers (Basel) 2022; 14:cancers14143327. [PMID: 35884387 PMCID: PMC9324249 DOI: 10.3390/cancers14143327] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
Brain tumors lead to modifications of brain networks. Graph theory plays an important role in clarifying the principles of brain connectivity. Our objective was to investigate network modifications related to tumor grade and location using resting-state functional magnetic resonance imaging (fMRI) and graph theory. We retrospectively studied 30 low-grade (LGG), 30 high-grade (HGG) left-hemispheric glioma patients and 20 healthy controls (HC) with rs-fMRI. Tumor location was labeled as: frontal, temporal, parietal, insular or occipital. We collected patients’ clinical data from records. We analyzed whole-brain and hemispheric networks in all patients and HC. Subsequently, we studied lobar networks in subgroups of patients divided by tumor location. Seven graph-theoretical metrics were calculated (FDR p < 0.05). Connectograms were computed for significant nodes. The two-tailed Student t-test or Mann−Whitney U-test (p < 0.05) were used to compare graph metrics and clinical data. The hemispheric network analysis showed increased ipsilateral connectivity for LGG (global efficiency p = 0.03) and decreased contralateral connectivity for HGG (degree/cost p = 0.028). Frontal and temporal tumors showed bilateral modifications; parietal and insular tumors showed only local effects. Temporal tumors led to a bilateral decrease in all graph metrics. Tumor grade and location influence the pattern of network reorganization. LGG may show more favorable network changes than HGG, reflecting fewer clinical deficits.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.J.); (O.Y.); (K.K.P.); (A.I.H.)
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, Italy
- Correspondence:
| | - Mehrnaz Jenabi
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.J.); (O.Y.); (K.K.P.); (A.I.H.)
| | - Onur Yildirim
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.J.); (O.Y.); (K.K.P.); (A.I.H.)
| | - Patrick Silveira
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Kyung K. Peck
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.J.); (O.Y.); (K.K.P.); (A.I.H.)
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrei I. Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.J.); (O.Y.); (K.K.P.); (A.I.H.)
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, USA
- Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
13
|
Bottino F, Lucignani M, Pasquini L, Mastrogiovanni M, Gazzellini S, Ritrovato M, Longo D, Figà-Talamanca L, Rossi Espagnet MC, Napolitano A. Spatial Stability of Functional Networks: A Measure to Assess the Robustness of Graph-Theoretical Metrics to Spatial Errors Related to Brain Parcellation. Front Neurosci 2022; 15:736524. [PMID: 35250432 PMCID: PMC8894326 DOI: 10.3389/fnins.2021.736524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
There is growing interest in studying human brain connectivity and in modelling the brain functional structure as a network. Brain network creation requires parcellation of the cerebral cortex to define nodes. Parcellation might be affected by possible errors due to inter- and intra-subject variability as a consequence of brain structural and physiological characteristics and shape variations related to ageing and diseases, acquisition noise, and misregistration. These errors could induce a knock-on effect on network measure variability. The aim of this study was to investigate spatial stability, a measure of functional connectivity variations induced by parcellation errors. We simulated parcellation variability with random small spatial changes and evaluated its effects on twenty-seven graph-theoretical measures. The study included subjects from three public online datasets. Two brain parcellations were performed using FreeSurfer with geometric atlases. Starting from these, 100 new parcellations were created by increasing the area of 30% of parcels, reducing the area of neighbour parcels, with a rearrangement of vertices. fMRI data were filtered with linear regression, CompCor, and motion correction. Adjacency matrices were constructed with 0.1, 0.2, 0.3, and 0.4 thresholds. Differences in spatial stability between datasets, atlases, and threshold were evaluated. The higher spatial stability resulted for Characteristic-path-length, Density, Transitivity, and Closeness-centrality, and the lower spatial stability resulted for Bonacich and Katz. Multivariate analysis showed a significant effect of atlas, datasets, and thresholds. Katz and Bonacich centrality, which was subject to larger variations, can be considered an unconventional graph measure, poorly implemented in the clinical field and not yet investigated for reliability assessment. Spatial stability (SS) is affected by threshold, and it decreases with increasing threshold for several measures. Moreover, SS seems to depend on atlas choice and scanning parameters. Our study highlights the importance of paying close attention to possible parcellation-related spatial errors, which may affect the reliability of functional connectivity measures.
Collapse
Affiliation(s)
- Francesca Bottino
- Medical Physics Department, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Luca Pasquini
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Simone Gazzellini
- Neuroscience and Neurorehabilitation Department, Bambino Gesù Children’s Hospital – IRCCS, Rome, Italy
| | - Matteo Ritrovato
- Health Technology and Safety Research Unit, Bambino Gesù Children’s Hospital – IRCCS, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenzo Figà-Talamanca
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria Camilla Rossi Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- NESMOS, Neuroradiology Department, S. Andrea Hospital Sapienza Rome University, Rome, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
- *Correspondence: Antonio Napolitano,
| |
Collapse
|
14
|
Pasquini L, Di Napoli A, Rossi-Espagnet MC, Visconti E, Napolitano A, Romano A, Bozzao A, Peck KK, Holodny AI. Understanding Language Reorganization With Neuroimaging: How Language Adapts to Different Focal Lesions and Insights Into Clinical Applications. Front Hum Neurosci 2022; 16:747215. [PMID: 35250510 PMCID: PMC8895248 DOI: 10.3389/fnhum.2022.747215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
When the language-dominant hemisphere is damaged by a focal lesion, the brain may reorganize the language network through functional and structural changes known as adaptive plasticity. Adaptive plasticity is documented for triggers including ischemic, tumoral, and epileptic focal lesions, with effects in clinical practice. Many questions remain regarding language plasticity. Different lesions may induce different patterns of reorganization depending on pathologic features, location in the brain, and timing of onset. Neuroimaging provides insights into language plasticity due to its non-invasiveness, ability to image the whole brain, and large-scale implementation. This review provides an overview of language plasticity on MRI with insights for patient care. First, we describe the structural and functional language network as depicted by neuroimaging. Second, we explore language reorganization triggered by stroke, brain tumors, and epileptic lesions and analyze applications in clinical diagnosis and treatment planning. By comparing different focal lesions, we investigate determinants of language plasticity including lesion location and timing of onset, longitudinal evolution of reorganization, and the relationship between structural and functional changes.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
- Radiology Department, Castelli Hospital, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Emiliano Visconti
- Neuroradiology Unit, Cesena Surgery and Trauma Department, M. Bufalini Hospital, AUSL Romagna, Cesena, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Kyung K. Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Andrei I. Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
- Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY, United States
| |
Collapse
|
15
|
Pasquini L, Di Napoli A, Napolitano A, Lucignani M, Dellepiane F, Vidiri A, Villani V, Romano A, Bozzao A. Glioblastoma radiomics to predict survival: Diffusion characteristics of surrounding nonenhancing tissue to select patients for extensive resection. J Neuroimaging 2021; 31:1192-1200. [PMID: 34231927 DOI: 10.1111/jon.12903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Glioblastoma (GBM) is an aggressive primary CNS neoplasm with poor overall survival (OS) despite standard of care. On MRI, GBM is usually characterized by an enhancing portion (CET) (surgery target) and a nonenhancing surrounding (NET). Extent of resection is a long debated issue in GBM, with recent evidence suggesting that both CET and NET should be resected in <65 years old patients, regardless of other risk factors (i.e., molecular biomarkers). Our aim was to test a radiomic model for patient survival stratification in <65 years old patients, by analyzing MRI features of NET, to aid tumor resection. METHODS Sixty-eight <65 years old GBM patients, with extensive CET resection, were selected. Resection was evaluated by manually segmenting CET on volumetric T1-weighted MRI pre and postsurgery (within 72 h). All patients underwent the same treatment protocol including chemoradiation. NET radiomic features were extracted with a custom version of Pyradiomics. Feature selection was performed with principal component analysis (PCA) and its effect on survival tested with Cox regression model. Twelve months OS discrimination was tested by t-test followed by logistic regression. Statistical significance was set at p<0.05. The most relevant features were identified from the component matrix. RESULTS Five PCA components (PC1-5) explained 90% of the variance. PC5 resulted significant in the Cox model (p = 0.002; exp(B) = 0.686), at t-test (p = 0.002) and logistic regression analysis (p = 0.006). Apparent diffusion coefficient (ADC)-based features were the most significant for patient survival stratification. CONCLUSIONS ADC radiomic features on NET predict survival after standard therapy and could be used to improve patient selection for more extensive surgery.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA.,Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy.,Radiology Department, Castelli Romani Hospital, Rome, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Dellepiane
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging Department, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Veronica Villani
- Neuro-Oncology Unit, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy
| |
Collapse
|
16
|
Li Q, Pasquini L, Del Ferraro G, Gene M, Peck KK, Makse HA, Holodny AI. Monolingual and bilingual language networks in healthy subjects using functional MRI and graph theory. Sci Rep 2021; 11:10568. [PMID: 34012006 PMCID: PMC8134560 DOI: 10.1038/s41598-021-90151-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
Bilingualism requires control of multiple language systems, and may lead to architectural differences in language networks obtained from clinical fMRI tasks. Emerging connectivity metrics such as k-core may capture these differences, highlighting crucial network components based on resiliency. We investigated the influence of bilingualism on clinical fMRI language tasks and characterized bilingual networks using connectivity metrics to provide a patient care benchmark. Sixteen right-handed subjects (mean age 42-years; nine males) without neurological history were included: eight native English-speaking monolinguals and eight native Spanish-speaking (L1) bilinguals with acquired English (L2). All subjects underwent fMRI with gold-standard clinical language tasks. Starting from active clusters on fMRI, we inferred the persistent functional network across subjects and ran centrality measures to characterize differences. Our results demonstrated a persistent network "core" consisting of Broca's area, the pre-supplementary motor area, and the premotor area. K-core analysis showed that Wernicke's area was engaged by the "core" with weaker connection in L2 than L1.
Collapse
Affiliation(s)
- Qiongge Li
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA ,grid.253482.a0000 0001 0170 7903Department of Physics, Graduate Center of City University of New York, New York, NY 10016 USA ,grid.21107.350000 0001 2171 9311Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Luca Pasquini
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.7841.aNeuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, RM Italy
| | - Gino Del Ferraro
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA ,grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY 10003 USA
| | - Madeleine Gene
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Kyung K. Peck
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.51462.340000 0001 2171 9952Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Hernán A. Makse
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA
| | - Andrei I. Holodny
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.137628.90000 0004 1936 8753New York University School of Medicine, New York, NY 10016 USA ,grid.5386.8000000041936877XDepartment of Neuroscience, Weill Medical College of Cornell University, New York, NY 10065 USA
| |
Collapse
|
17
|
Abstract
Knowledge of functional neuroanatomy is essential to design the most appropriate clinical functional MR imaging (fMR imaging) paradigms and to properly interpret fMR imaging study results. The correlation between neuroanatomy and brain function is also useful in general radiologic practice, as it improves the radiologist's ability to read routine brain examinations. Functional MR imaging is used primarily to determine the areas involved in functioning of movements, speech, and vision. Preoperative fMR imaging findings also play a key role in the neurosurgeon's decision to perform a biopsy, a subtotal resection, or a maximal resection using awake craniotomy.
Collapse
Affiliation(s)
- Raquel A Moreno
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Instituto do Câncer do Estado de São Paulo (ICESP), Rua Vergueiro, 5400, ap 232 torre 01 Vila Firminiano Pinto, São Paulo-SP 04272-000, Brazil.
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
18
|
Abstract
There are many technical and nontechnical steps involved in a successful clinical functional MRI (fMRI) scan. The output from scanning and analysis can only be as good as the input, so task instruction and rehearsal are the most important steps during an clinical fMRI procedure. Properly pre-processed data significantly affects statistical analysis, which has a great impact on image interpretation. Even though there is general agreement on how to process clinical fMRI data, such as algorithms for head motion detection and correction, the theory and practicalities associated with data processing remain complex and constantly evolving.
Collapse
|
19
|
Urquhart EL, Wanniarachchi H, Wang X, Gonzalez-Lima F, Alexandrakis G, Liu H. Transcranial photobiomodulation-induced changes in human brain functional connectivity and network metrics mapped by whole-head functional near-infrared spectroscopy in vivo. BIOMEDICAL OPTICS EXPRESS 2020; 11:5783-5799. [PMID: 33149986 PMCID: PMC7587286 DOI: 10.1364/boe.402047] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Transcranial photobiomodulation (tPBM) with near-infrared light on the human head has been shown to enhance human cognition. In this study, tPBM-induced effects on resting state brain networks were investigated using 111-channel functional near-infrared spectroscopy over the whole head. Measurements were collected with and without 8-minute tPBM in 19 adults. Functional connectivity (FC) and brain network metrics were quantified using Pearson's correlation coefficients and graph theory analysis (GTA), respectively, for the periods of pre-, during, and post-tPBM. Our results revealed that tPBM (1) enhanced information processing speed and efficiency of the brain network, and (2) increased FC significantly in the frontal-parietal network, shedding light on a better understanding of tPBM effects on brain networks.
Collapse
Affiliation(s)
- Elizabeth L. Urquhart
- University of Texas at Arlington, Department of Bioengineering, Arlington, TX 76010, USA
| | - Hashini Wanniarachchi
- University of Texas at Arlington, Department of Bioengineering, Arlington, TX 76010, USA
| | - Xinlong Wang
- University of Texas at Arlington, Department of Bioengineering, Arlington, TX 76010, USA
| | - Francisco Gonzalez-Lima
- University of Texas at Austin, Department of Psychology and Institute for Neuroscience, Austin, TX 78712, USA
| | - George Alexandrakis
- University of Texas at Arlington, Department of Bioengineering, Arlington, TX 76010, USA
| | - Hanli Liu
- University of Texas at Arlington, Department of Bioengineering, Arlington, TX 76010, USA
| |
Collapse
|