1
|
Kotlarz P, Lankinen K, Hakonen M, Turpin T, Polimeni JR, Ahveninen J. Multilayer Network Analysis across Cortical Depths in Resting-State 7T fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.23.573208. [PMID: 38187540 PMCID: PMC10769454 DOI: 10.1101/2023.12.23.573208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In graph theory, "multilayer networks" represent systems involving several interconnected topological levels. One example in neuroscience is the stratification of connections between different cortical depths or "laminae", which is becoming non-invasively accessible in humans using ultra-high-resolution functional MRI (fMRI). Here, we applied multilayer graph theory to examine functional connectivity across different cortical depths in humans, using 7T fMRI (1-mm3 voxels; 30 participants). Blood oxygenation level dependent (BOLD) signals were derived from five depths between the white matter and pial surface. We compared networks where the inter-regional connections were limited to a single cortical depth only ("layer-by-layer matrices") to those considering all possible connections between areas and cortical depths ("multilayer matrix"). We utilized global and local graph theory features that quantitatively characterize network attributes including network composition, nodal centrality, path-based measures, and hub segregation. Detecting functional differences between cortical depths was improved using multilayer connectomics compared to the layer-by-layer versions. Superficial depths of the cortex dominated information transfer and deeper depths drove clustering. These differences were largest in frontotemporal and limbic regions. fMRI functional connectivity across different cortical depths may contain neurophysiologically relevant information; thus, multilayer connectomics could provide a methodological framework for studies on how information flows across this stratification.
Collapse
Affiliation(s)
- Parker Kotlarz
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kaisu Lankinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Maria Hakonen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Tu JC, Millar PR, Strain JF, Eck A, Adeyemo B, Snyder AZ, Daniels A, Karch C, Huey ED, McDade E, Day GS, Yakushev I, Hassenstab J, Morris J, Llibre-Guerra JJ, Ibanez L, Jucker M, Mendez PC, Perrin RJ, Benzinger TLS, Jack CR, Betzel R, Ances BM, Eggebrecht AT, Gordon BA, Wheelock MD. Increasing hub disruption parallels dementia severity in autosomal dominant Alzheimer's disease. Netw Neurosci 2024; 8:1265-1290. [PMID: 39735502 PMCID: PMC11674321 DOI: 10.1162/netn_a_00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/23/2024] [Indexed: 12/31/2024] Open
Abstract
Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer's disease (AD). Computational simulations and animal experiments have hinted at the theory of activity-dependent degeneration as the cause of this hub vulnerability. However, two critical issues remain unresolved. First, past research has not clearly distinguished between two scenarios: hub regions facing a higher risk of connectivity disruption (targeted attack) and all regions having an equal risk (random attack). Second, human studies offering support for activity-dependent explanations remain scarce. We refined the hub disruption index to demonstrate a hub disruption pattern in functional connectivity in autosomal dominant AD that aligned with targeted attacks. This hub disruption is detectable even in preclinical stages, 12 years before the expected symptom onset and is amplified alongside symptomatic progression. Moreover, hub disruption was primarily tied to regional differences in global connectivity and sequentially followed changes observed in amyloid-beta positron emission tomography cortical markers, consistent with the activity-dependent degeneration explanation. Taken together, our findings deepen the understanding of brain network organization in neurodegenerative diseases and could be instrumental in refining diagnostic and targeted therapeutic strategies for AD in the future.
Collapse
Affiliation(s)
- Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Peter R. Millar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeremy F. Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Eck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Abraham Z. Snyder
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Alisha Daniels
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Celeste Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Edward D. Huey
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Igor Yakushev
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - John Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Laura Ibanez
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Richard J. Perrin
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Beau M. Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam T. Eggebrecht
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian A. Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Muriah D. Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
3
|
Jin S, Wang J, He Y. The brain network hub degeneration in Alzheimer's disease. BIOPHYSICS REPORTS 2024; 10:213-229. [PMID: 39281195 PMCID: PMC11399886 DOI: 10.52601/bpr.2024.230025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/26/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) has been conceptualized as a syndrome of brain network dysfunction. Recent imaging connectomics studies have provided unprecedented opportunities to map structural and functional brain networks in AD. By reviewing molecular, imaging, and computational modeling studies, we have shown that highly connected brain hubs are primarily distributed in the medial and lateral prefrontal, parietal, and temporal regions in healthy individuals and that the hubs are selectively and severely affected in AD as manifested by increased amyloid-beta deposition and regional atrophy, hypo-metabolism, and connectivity dysfunction. Furthermore, AD-related hub degeneration depends on the imaging modality with the most notable degeneration in the medial temporal hubs for morphological covariance networks, the prefrontal hubs for structural white matter networks, and in the medial parietal hubs for functional networks. Finally, the AD-related hub degeneration shows metabolic, molecular, and genetic correlates. Collectively, we conclude that the brain-network-hub-degeneration framework is promising to elucidate the biological mechanisms of network dysfunction in AD, which provides valuable information on potential diagnostic biomarkers and promising therapeutic targets for the disease.
Collapse
Affiliation(s)
- Suhui Jin
- Institute for Brain Research and Rehabilitation, Guangzhou 510631, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Yong He
- IDG/McGovern Institute for Brain Research, Beijing 100875, China
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Febo M, Mahar R, Rodriguez NA, Buraima J, Pompilus M, Pinto AM, Grudny MM, Bruijnzeel AW, Merritt ME. Age-related differences in affective behaviors in mice: possible role of prefrontal cortical-hippocampal functional connectivity and metabolomic profiles. Front Aging Neurosci 2024; 16:1356086. [PMID: 38524115 PMCID: PMC10957556 DOI: 10.3389/fnagi.2024.1356086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction The differential expression of emotional reactivity from early to late adulthood may involve maturation of prefrontal cortical responses to negative valence stimuli. In mice, age-related changes in affective behaviors have been reported, but the functional neural circuitry warrants further investigation. Methods We assessed age variations in affective behaviors and functional connectivity in male and female C57BL6/J mice. Mice aged 10, 30 and 60 weeks (wo) were tested over 8 weeks for open field activity, sucrose preference, social interactions, fear conditioning, and functional neuroimaging. Prefrontal cortical and hippocampal tissues were excised for metabolomics. Results Our results indicate that young and old mice differ significantly in affective behavioral, functional connectome and prefrontal cortical-hippocampal metabolome. Young mice show a greater responsivity to novel environmental and social stimuli compared to older mice. Conversely, late middle-aged mice (60wo group) display variable patterns of fear conditioning and during re-testing in a modified context. Functional connectivity between a temporal cortical/auditory cortex network and subregions of the anterior cingulate cortex and ventral hippocampus, and a greater network modularity and assortative mixing of nodes was stronger in young versus older adult mice. Metabolome analyses identified differences in several essential amino acids between 10wo mice and the other age groups. Discussion The results support differential expression of 'emotionality' across distinct stages of the mouse lifespan involving greater prefrontal-hippocampal connectivity and neurochemistry.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Nicholas A. Rodriguez
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Joy Buraima
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marjory Pompilus
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Aeja M. Pinto
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Matteo M. Grudny
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Adriaan W. Bruijnzeel
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
5
|
Febo M, Mahar R, Rodriguez NA, Buraima J, Pompilus M, Pinto AM, Grudny MM, Bruijnzeel AW, Merritt ME. Age-Related Differences in Affective Behaviors in Mice: Possible Role of Prefrontal Cortical-Hippocampal Functional Connectivity and Metabolomic Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566691. [PMID: 38014219 PMCID: PMC10680600 DOI: 10.1101/2023.11.13.566691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The differential expression of emotional reactivity from early to late adulthood may involve maturation of prefrontal cortical responses to negative valence stimuli. In mice, age-related changes in affective behaviors have been reported, but the functional neural circuitry warrants further investigation. We assessed age variations in affective behaviors and functional connectivity in male and female C57BL6/J mice. Mice aged 10, 30 and 60 weeks (wo) were tested over 8 weeks for open field activity, sucrose preference, social interactions, fear conditioning, and functional neuroimaging. Prefrontal cortical and hippocampal tissues were excised for metabolomics. Our results indicate that young and old mice differ significantly in affective behavioral, functional connectome and prefrontal cortical-hippocampal metabolome. Young mice show a greater responsivity to novel environmental and social stimuli compared to older mice. Conversely, late middle-aged mice (60wo group) display variable patterns of fear conditioning and with re-testing with a modified context. Functional connectivity between a temporal cortical/auditory cortex network and subregions of the anterior cingulate cortex and ventral hippocampus, and a greater network modularity and assortative mixing of nodes was stronger in young versus older adult mice. Metabolome analyses identified differences in several essential amino acids between 10wo mice and the other age groups. The results support differential expression of 'emotionality' across distinct stages of the mouse lifespan involving greater prefrontal-hippocampal connectivity and neurochemistry.
Collapse
|
6
|
Tu JC, Millar PR, Strain JF, Eck A, Adeyemo B, Daniels A, Karch C, Huey ED, McDade E, Day GS, Yakushev I, Hassenstab J, Morris J, Llibre-Guerra JJ, Ibanez L, Jucker M, Mendez PC, Bateman RJ, Perrin RJ, Benzinger T, Jack CR, Betzel R, Ances BM, Eggebrecht AT, Gordon BA, Wheelock MD. Increasing hub disruption parallels dementia severity in autosomal dominant Alzheimer disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564633. [PMID: 37961586 PMCID: PMC10634945 DOI: 10.1101/2023.10.29.564633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer Disease (AD). Given their essential role in neural communication, disruptions to these hubs have profound implications for overall brain network integrity and functionality. Hub disruption, or targeted impairment of functional connectivity at the hubs, is recognized in AD patients. Computational models paired with evidence from animal experiments hint at a mechanistic explanation, suggesting that these hubs may be preferentially targeted in neurodegeneration, due to their high neuronal activity levels-a phenomenon termed "activity-dependent degeneration". Yet, two critical issues were unresolved. First, past research hasn't definitively shown whether hub regions face a higher likelihood of impairment (targeted attack) compared to other regions or if impairment likelihood is uniformly distributed (random attack). Second, human studies offering support for activity-dependent explanations remain scarce. We applied a refined hub disruption index to determine the presence of targeted attacks in AD. Furthermore, we explored potential evidence for activity-dependent degeneration by evaluating if hub vulnerability is better explained by global connectivity or connectivity variations across functional systems, as well as comparing its timing relative to amyloid beta deposition in the brain. Our unique cohort of participants with autosomal dominant Alzheimer Disease (ADAD) allowed us to probe into the preclinical stages of AD to determine the hub disruption timeline in relation to expected symptom emergence. Our findings reveal a hub disruption pattern in ADAD aligned with targeted attacks, detectable even in pre-clinical stages. Notably, the disruption's severity amplified alongside symptomatic progression. Moreover, since excessive local neuronal activity has been shown to increase amyloid deposition and high connectivity regions show high level of neuronal activity, our observation that hub disruption was primarily tied to regional differences in global connectivity and sequentially followed changes observed in Aβ PET cortical markers is consistent with the activity-dependent degeneration model. Intriguingly, these disruptions were discernible 8 years before the expected age of symptom onset. Taken together, our findings not only align with the targeted attack on hubs model but also suggest that activity-dependent degeneration might be the cause of hub vulnerability. This deepened understanding could be instrumental in refining diagnostic techniques and developing targeted therapeutic strategies for AD in the future.
Collapse
Affiliation(s)
- Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Peter R Millar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Jeremy F Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Andrew Eck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Alisha Daniels
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Celeste Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Edward D Huey
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, 02912
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Gregory S Day
- Department of Neurology, Mayo Clinic College of Medicine, Jacksonville, FL, USA, 32224
| | - Igor Yakushev
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany, 81675
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - John Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Jorge J Llibre-Guerra
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Laura Ibanez
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA, 63108
- NeuroGenomics and Informatics Center, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany, 72076
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany, 72076
| | | | - Randell J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Richard J Perrin
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Tammie Benzinger
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, USA 55905
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN USA, 47405
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Adam T Eggebrecht
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| | - Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA, 63108
| |
Collapse
|
7
|
Razban RM, Pachter JA, Dill KA, Mujica-Parodi LR. Early path dominance as a principle for neurodevelopment. Proc Natl Acad Sci U S A 2023; 120:e2218007120. [PMID: 37053187 PMCID: PMC10120000 DOI: 10.1073/pnas.2218007120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023] Open
Abstract
We perform targeted attack, a systematic computational unlinking of the network, to analyze its effects on global communication across the brain network through its giant cluster. Across diffusion magnetic resonance images from individuals in the UK Biobank, Adolescent Brain Cognitive Development Study and Developing Human Connectome Project, we find that targeted attack procedures on increasing white matter tract lengths and densities are remarkably invariant to aging and disease. Time-reversing the attack computation suggests a mechanism for how brains develop, for which we derive an analytical equation using percolation theory. Based on a close match between theory and experiment, our results demonstrate that tracts are limited to emanate from regions already in the giant cluster and tracts that appear earliest in neurodevelopment are those that become the longest and densest.
Collapse
Affiliation(s)
- Rostam M. Razban
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY11794
| | - Jonathan Asher Pachter
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY11794
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY11794
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY11794
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY11794
| | - Lilianne R. Mujica-Parodi
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY11794
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY11794
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY11794
- Program in Neuroscience, Stony Brook University, Stony Brook, NY11794
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129
| |
Collapse
|