1
|
Zhang H, Zhong X, Wen J, Xi J, Feng Z, Liu Z, Ye L. Hydrogel coating containing heparin and cyclodextrin/paclitaxel inclusion complex for retrievable vena cava filter towards high biocompatibility and easy removal. Int J Biol Macromol 2024; 277:134509. [PMID: 39111508 DOI: 10.1016/j.ijbiomac.2024.134509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Aiming to improve the retrieval rate of retrievable vena cava filters (RVCF) and extend its dwelling time in vivo, a novel hydrogel coating loaded with 10 mg/mL heparin and 30 mg/mL cyclodextrin/paclitaxel (PTX) inclusion complex (IC) was prepared. The drug-release behavior in the phosphate buffer solution demonstrated both heparin and PTX could be sustainably released over approximately two weeks. Furthermore, it was shown that the hydrogel-coated RVCF (HRVCF) with 10 mg/mL heparin and 30 mg/mL PTX IC effectively extended the blood clotting time to above the detection limit and inhibited EA.hy926 and CCC-SMC-1 cells' proliferation in vitro compared to the commercially available bare RVCF. Both the HRVCF and the bare RVCF were implanted into the vena cava of sheep and retrieved at at 2nd and 4th week after implantation, revealing that the HRVCF had a significantly higher retrieval rate of 67 % than the bare RVCF (0 %) at 4th week. Comprehensive analyses, including histological, immunohistological, and immunofluorescent assessments of the explanted veins demonstrated the HRVCF exhibited anti-hyperplasia and anticoagulation properties in vivo, attributable to the hydrogel coating, thereby improving the retrieval rate in sheep. Consequently, the as-prepared HRVCF shows promising potential for clinical application to enhance the retrieval rates of RVCFs.
Collapse
Affiliation(s)
- Huan Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xuanshu Zhong
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Wen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianing Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zongjian Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China.
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
2
|
Beheshtizadeh N, Mohammadzadeh M, Mostafavi M, Seraji AA, Esmaeili Ranjbar F, Tabatabaei SZ, Ghafelehbashi R, Afzali M, Lolasi F. Improving hemocompatibility in tissue-engineered products employing heparin-loaded nanoplatforms. Pharmacol Res 2024; 206:107260. [PMID: 38906204 DOI: 10.1016/j.phrs.2024.107260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
The enhancement of hemocompatibility through the use of nanoplatforms loaded with heparin represents a highly desirable characteristic in the context of emerging tissue engineering applications. The significance of employing heparin in biological processes is unquestionable, owing to its ability to interact with a diverse range of proteins. It plays a crucial role in numerous biological processes by engaging in interactions with diverse proteins and hydrogels. This review provides a summary of recent endeavors focused on augmenting the hemocompatibility of tissue engineering methods through the utilization of nanoplatforms loaded with heparin. This study also provides a comprehensive review of the various applications of heparin-loaded nanofibers and nanoparticles, as well as the techniques employed for encapsulating heparin within these nanoplatforms. The biological and physical effects resulting from the encapsulation of heparin in nanoplatforms are examined. The potential applications of heparin-based materials in tissue engineering are also discussed, along with future perspectives in this field.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mahsa Mohammadzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Seraji
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada; Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Faezeh Esmaeili Ranjbar
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zoha Tabatabaei
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Robabehbeygom Ghafelehbashi
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; Department of Materials and Textile Engineering, College of Engineering, Razi University, Kermanshah, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maede Afzali
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farshad Lolasi
- Department of pharmaceutical biotechnology, Faculty of Pharmacy And Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
3
|
Yang Z, Zhang Y, Chen Y, Fu L, Sun Y, Yang Z, Cui T, Wang J, Wan Y. In situ densification and heparin immobilization of bacterial cellulose vascular patch for potential vascular applications. Int J Biol Macromol 2024; 270:132181. [PMID: 38740155 DOI: 10.1016/j.ijbiomac.2024.132181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Nowadays, developing vascular grafts (e.g., vascular patches and tubular grafts) is challenging. Bacterial cellulose (BC) with 3D fibrous network has been widely investigated for vascular applications. In this work, different from BC vascular patch cultured with the routine culture medium, dopamine (DA)-containing culture medium is employed to in situ synthesize dense BC fibrous structure with significantly increased fiber diameter and density. Simultaneously, BC fibers are modified by DA during in situ synthesis process. Then DA on BC fibers can self-polymerize into polydopamine (PDA) accompanied with the removal of bacteria in NaOH solution, obtaining PDA-modified dense BC (PDBC) vascular patch. Heparin (Hep) is subsequently covalently immobilized on PDBC fibers to form Hep-immobilized PDBC (Hep@PDBC) vascular patch. The obtained results indicate that Hep@PDBC vascular patch exhibits remarkable tensile and burst strength due to its dense fibrous structure. More importantly, compared with BC and PDBC vascular patches, Hep@PDBC vascular patch not only displays reduced platelet adhesion and improved anticoagulation activity, but also promotes the proliferation, adhesion, spreading, and protein expression of human umbilical vein endothelial cells, contributing to the endothelialization process. The combined strategy of in situ densification and Hep immobilization provides a feasible guidance for the construction of BC-based vascular patches.
Collapse
Affiliation(s)
- Zhiwei Yang
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Yichuan Zhang
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Yuqin Chen
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Ling Fu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Yanan Sun
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Zhengzhao Yang
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Teng Cui
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Jie Wang
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China.
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Liu Y, Liu Y, Bai Z, Wang D, Xu Y, Li Q. Nanofibrous polytetrafluoroethylene/poly(ε-caprolactone) membrane with hierarchical structures for vascular patch. J Tissue Eng Regen Med 2022; 16:1163-1172. [PMID: 36330594 DOI: 10.1002/term.3354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/01/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
With the prevalence of cardiovascular diseases, developing cardiovascular supplements is becoming increasingly urgent. The ability of cells to rapidly adhere and proliferate to achieve endothelialization is extremely important for vascular grafts. In this work, we electrospun polytetrafluoroethylene (PTFE) nanofibrous membranes and used induced crystallization to manufacture poly(ε-caprolactone) (PCL) shish-kebab microstructures on PTFE nanofibers to overcome the inertness of PTFE, and promote cell adhesion and proliferation. PCL lamella periodically grew on the surface of PTFE nanofibers yielding a hierarchical structure, which improved the biocompatibility and mechanical properties of the PTFE nanofibrous membrane. The deposition of PCL lamella improved the hydrophilicity of electrospun PTFE nanofibers membrane, leading to good cell proliferation and adhesion. Also, due to the surface inertness of the substrate material PTFE, this PTFE/PCL composite film has good anti-platelet adhesion properties. Furthermore, cell proliferation could be regulated by controlling the integrity of the PCL crystal network. The vascular patch showed similar mechanical properties to natural blood vessels, providing a new strategy for vascular tissue engineering.
Collapse
Affiliation(s)
- Yulu Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China
| | - Ya Liu
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Zhiyuan Bai
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Dongfang Wang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Yiyang Xu
- Henan NanoNew Material Technology Co., LTD, Zhengzhou, China
| | - Qian Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Tu C, Zhang Y, Xiao Y, Xing Y, Jiao Y, Geng X, Zhang A, Ye L, Gu Y, Feng Z. Hydrogel-complexed small-diameter vascular graft loaded with tissue-specific vascular extracellular matrix components used for tissue engineering. BIOMATERIALS ADVANCES 2022; 142:213138. [PMID: 36219919 DOI: 10.1016/j.bioadv.2022.213138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Tissue engineering is thought to the most promising strategy to develop successful small diameter vascular grafts (SDVG) to meet clinical demand. The introduction of natural substances into the SDVG made from synthetic biomaterials can improve the biocompatibility to promote the regeneration of SDVG in vivo. Due to that natural materials from different sources may have property deviation, it is vital to determine the source of natural materials to optimize SDVG fabrication for tissue engineering applications. In this study, bioactive SDVGs were prepared via coating of heparin-modified poly-(ε-caprolactone) scaffolds with a precursor solution containing vascular extracellular matrix (VECM) components and subsequent in situ gelation. The mechanical properties, degradation behaviors, and morphologies of the SDVGs were thoroughly characterized and evaluated. Cell experiments demonstrated the in vitro tissue specificity of the VECM that could promote the proliferation of endothelial cells better than skin-derived collagen. Furthermore, three types of SDVGs, SDVGs with blank hydrogel, SDVGs with skin-derived collagen, and SDVGs with vascular extracellular matrix (VECM-SDVGs), were implanted into the abdominal aorta of rats for one month. The explanted SDVGs were then comprehensively evaluated using hematoxylin and eosin, Masson, von Kossa staining, and immunohistochemical staining for CD31, α-SMA, and MHC. The results showed that the VECM-SDVGs showed the best endothelium regeneration, appropriate intima regeneration, and no calcification, indicating the in vivo specificity of the fabricated VECM-SDVGs. Thus, long-term implantation of VECM-SDVGs was performed. The results showed that a complete endothelial layer formed after 6 months of implantation, and the amount of contractile SMCs in the regenerative smooth muscle layer approached the amount of native aorta at the 12th month. Consequently, relying on vascular tissue specificity, VECM-SDVGs can modulate the regenerative behavior of the implanted SDVGs in vivo to achieve satisfactory vascular regeneration both in short- and long-term implantation.
Collapse
Affiliation(s)
- Chengzhao Tu
- School of Materials Science and Engineering, Beijing Institution of Technology, Beijing 100081, China
| | - Yuanguo Zhang
- Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institution of Technology, Beijing 100081, China
| | - Yuehao Xing
- Department of Cardiovascular Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yuhao Jiao
- Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institution of Technology, Beijing 100081, China
| | - Aiying Zhang
- School of Materials Science and Engineering, Beijing Institution of Technology, Beijing 100081, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institution of Technology, Beijing 100081, China.
| | - Yongquan Gu
- Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institution of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Cuenca JP, Kang HJ, Fahad MAA, Park M, Choi M, Lee HY, Lee BT. Physico-mechanical and biological evaluation of heparin/VEGF-loaded electrospun polycaprolactone/decellularized rat aorta extracellular matrix for small-diameter vascular grafts. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1664-1684. [PMID: 35446751 DOI: 10.1080/09205063.2022.2069398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Although the continuous development of small-diameter vascular grafts (SDVGs) (D < 5 mm) continues, most vascular grafts are made from synthetic polymers, which lead to serious complications from arteriosclerosis, thrombosis, and vascular ischemia. Here, to address these shortcomings, we combine synthetic polymers with natural decellularized small-diameter vessels and loaded with growth factor. We fabricated vascular grafts by electrospinning polycaprolactone (PCL) to decellularized rat aorta matrix (ECM) followed by heparin and vascular endothelial growth factor (VEGF) loading. In- vitro studies showed that PCL/ECM/VEGF vascular grafts, showed excellent hemocompatibility and biocompatibility properties. The vascular grafts implanted into the rat aorta revealed that the PCL/ECM/VEGF grafts promotes endothelial cells and smooth-muscle cells infiltration with a rate of FLK-1, ICAM1, and a-SMA distribution higher than that of the PCL and PCL/ECM vascular grafts at 2 weeks and 4 weeks after implantation. The PCL/ECM/VEGF vascular graft should be considered for potential small-diameter vascular grafts in clinical fields.
Collapse
Affiliation(s)
- John Patrick Cuenca
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Hoe-Jin Kang
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Minji Choi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Hyun-Yong Lee
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
7
|
Kumar S, Shandilya M, Uniyal P, Thakur S, Parihar N. Efficacy of polymeric nanofibrous membranes for proficient wastewater treatment. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: a review. Lab Anim Res 2022; 38:18. [PMID: 35778730 PMCID: PMC9247923 DOI: 10.1186/s42826-022-00128-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The animal model deals with the species other than the human, as it can imitate the disease progression, its’ diagnosis as well as a treatment similar to human. Discovery of a drug and/or component, equipment, their toxicological studies, dose, side effects are in vivo studied for future use in humans considering its’ ethical issues. Here lies the importance of the animal model for its enormous use in biomedical research. Animal models have many facets that mimic various disease conditions in humans like systemic autoimmune diseases, rheumatoid arthritis, epilepsy, Alzheimer’s disease, cardiovascular diseases, Atherosclerosis, diabetes, etc., and many more. Besides, the model has tremendous importance in drug development, development of medical devices, tissue engineering, wound healing, and bone and cartilage regeneration studies, as a model in vascular surgeries as well as the model for vertebral disc regeneration surgery. Though, all the models have some advantages as well as challenges, but, present review has emphasized the importance of various small and large animal models in pharmaceutical drug development, transgenic animal models, models for medical device developments, studies for various human diseases, bone and cartilage regeneration model, diabetic and burn wound model as well as surgical models like vascular surgeries and surgeries for intervertebral disc degeneration considering all the ethical issues of that specific animal model. Despite, the process of using the animal model has facilitated researchers to carry out the researches that would have been impossible to accomplish in human considering the ethical prohibitions.
Collapse
Affiliation(s)
- P Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - S Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - D Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - S K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India.
| |
Collapse
|
9
|
Hu M, Ling Z, Ren X. Extracellular matrix dynamics: tracking in biological systems and their implications. J Biol Eng 2022; 16:13. [PMID: 35637526 PMCID: PMC9153193 DOI: 10.1186/s13036-022-00292-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
The extracellular matrix (ECM) constitutes the main acellular microenvironment of cells in almost all tissues and organs. The ECM not only provides mechanical support, but also mediates numerous biochemical interactions to guide cell survival, proliferation, differentiation, and migration. Thus, better understanding the everchanging temporal and spatial shifts in ECM composition and structure - the ECM dynamics - will provide fundamental insight regarding extracellular regulation of tissue homeostasis and how tissue states transition from one to another during diverse pathophysiological processes. This review outlines the mechanisms mediating ECM-cell interactions and highlights how changes in the ECM modulate tissue development and disease progression, using the lung as the primary model organ. We then discuss existing methodologies for revealing ECM compositional dynamics, with a particular focus on tracking newly synthesized ECM proteins. Finally, we discuss the ramifications ECM dynamics have on tissue engineering and how to implement spatial and temporal specific extracellular microenvironments into bioengineered tissues. Overall, this review communicates the current capabilities for studying native ECM dynamics and delineates new research directions in discovering and implementing ECM dynamics to push the frontier forward.
Collapse
Affiliation(s)
- Michael Hu
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
10
|
Niu L, Liu Z, Geng X, Zhong X, Zhao H, Zhang H, Xi Resource J, Feng Z, Zhang F, Ye L. Anti-coagulation and anti-hyperplasia coating for retrievable vena cava filters by electrospraying and their performance in vivo. Int J Pharm 2022; 619:121690. [PMID: 35331832 DOI: 10.1016/j.ijpharm.2022.121690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
A novel drug eluting retrievable vena cava filter (RVCF) with a heparin-modified poly(ε-caprolactone) (hPCL) coating containing rapamycin was prepared by electrospraying. The in vitro drug release pattern showed that the encapsulated rapamycin in the coating can be sustainably released within one month, whereas activated partial thromboplastin time (APTT) and in vitro cell culture showed that the drug eluting RVCF can effectively extend blood clotting time and inhibit smooth muscle cell (SMC) and endothelial cell (EC) proliferation, respectively. The as-prepared drug eluting RVCF and corresponding commercial RVCF were implanted into the vena cava of sheep. The retrieval operation at a predetermined time point showed that the drug eluting RVCF had a much higher retrieval rate than the commercial RVCF. Comprehensive investigations, including histological, immunohistological and immunofluorescence analyses, on explanted veins were carried out. The results demonstrated that the as-prepared RVCF possessed excellent antihyperplasia properties in vivo, significantly improving the retrieval rate and extending the in vivo dwelling time in sheep. Consequently, the drug eluting RVCF has promising potential for application in the clinic to improve RVCF retrieval rates.
Collapse
Affiliation(s)
- Luyuan Niu
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Zongjian Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xuanshu Zhong
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Zhao
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Huan Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| | - Jianing Xi Resource
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China.
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fuxian Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
11
|
Fang Z, Xiao Y, Geng X, Jia L, Xing Y, Ye L, Gu Y, Zhang AY, Feng ZG. Fabrication of heparinized small diameter TPU/PCL bi-layered artificial blood vessels and in vivo assessment in a rabbit carotid artery replacement model. BIOMATERIALS ADVANCES 2022; 133:112628. [PMID: 35527159 DOI: 10.1016/j.msec.2021.112628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Increasingly growing problems in vascular access for long-term hemodialysis lead to a considerable demand for synthetic small diameter vascular prostheses, which usually suffer from some drawbacks and are associated to high failure rates. Incorporating the concept of in situ tissue engineering (TE) into synthetic small diameter blood vessels, for example, thermoplastic poly(ether urethane) (TPU) ones, could provide an alternative approach for vascular access that profits from the advantages of excellent mechanical properties of synthetic polymer materials (early cannulation) and unique biointegration regeneration of autologous neovascular tissues (long-term fistulae). In this study, a kind of heparinized small diameter (d = 2.5 mm) TPU/poly(ε-caprolactone) (TPU/PCL-Hep) bi-layered blood vessels was electrospun with an inner layer of PCL and an outer layer of TPU. Afterward, the inner surface heparinization was conducted by coupling H2N-PEG-NH2 to the corroded PCL layer and then heparin to the attached H2N-PEG-NH2 via the EDCI/NHS chemistry. Herein a heparinized PCL inner layer could not only inhibit thrombosis, but also provide sufficient space for the neotissue regeneration via biodegradation with time. Meanwhile, a TPU outer layer could confer the vascular access the good mechanical properties, such as flexibility, viability and fitness of elasticity between the grafts and host blood vessels as evidenced by the adequate mechanical properties, such as compliance (4.43 ± 0.07%/ 100 mmHg), burst pressure (1447 ± 127 mmHg) and suture retention strength (1.26 ± 0.07 N) without blood seepage after implantation. Furthermore, a rabbit carotid aortic replacement model for 5 months was demonstrated 100% animal survival and 86% graft patency. Puncture assay also revealed the puncture resistance and self-sealing (hemostatic time < 2 min). Histological analysis highlighted neotissue regeneration, host cell infiltration and graft remodeling in terms of extracellular matrix turnover. Altogether, these results showed promising aspects of small diameter TPU/PCL-Hep bi-layered grafts for hemodialytic vascular access applications.
Collapse
Affiliation(s)
- Zhiping Fang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Liujun Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital National Cardiovascular Center, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Yuehao Xing
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China
| | - Ai-Ying Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
12
|
Zhang Y, Luo J, Zhang Q, Deng T. Growth factors, as biological macromolecules in bioactivity enhancing of electrospun wound dressings for diabetic wound healing: A review. Int J Biol Macromol 2021; 193:205-218. [PMID: 34627847 DOI: 10.1016/j.ijbiomac.2021.09.210] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 01/07/2023]
Abstract
Impaired wound healing is of the most conspicuous characteristics of diabetic mellitus. Reduced blood flow, chronic inflammatory reactions, infection, endothelial dysfunction, elevated levels of reactive oxygen species, and metabolic disorders cause wounds to heal more slowly in these patients. Previous studies have reported useful impacts of growth factors in management of such wounds. However, due to their short half-life and low stability, a suitable delivery platform with sustained release profile may boost their healing potential. Controlled and localized delivery of growth factors via electrospun fibers have been extensively explored in previous studies. The electrospinning method; although not new, has turned out to be extremely effective for the preparation of delivery carriers for growth factors. Due to their structural resemblance to native tissues' extracellular matrix, high encapsulation efficacy, tunability, and high surface to volume ratio, electrospun scaffolds have gained significant attention in drug delivery and tissue engineering. In the current review, careful integration of current research regarding the applications of growth factors' delivery through electrospun fibers in diabetic wounds healing has been done. This review will not only give an insight into the current updates, but will also highlights the future perspectives and challenges.
Collapse
Affiliation(s)
- Yunwu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingsong Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Zhang
- School of Nursing, Peking University, Beijing 100191, China
| | - Tingting Deng
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
13
|
Ye L, Takagi T, Tu C, Hagiwara A, Geng X, Feng Z. The performance of heparin modified poly(ε-caprolactone) small diameter tissue engineering vascular graft in canine-A long-term pilot experiment in vivo. J Biomed Mater Res A 2021; 109:2493-2505. [PMID: 34096176 DOI: 10.1002/jbm.a.37243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 01/22/2023]
Abstract
Long-term in vivo observation in large animal model is critical for evaluating the potential of small diameter tissue engineering vascular graft (SDTEVG) in clinical application, but is rarely reported. In this study, a SDTEVG is fabricated by the electrospinning of poly(ε-caprolactone) and subsequent heparin modification. SDTEVG is implanted into canine's abdominal aorta for 511 days in order to investigate its clinical feasibility. An active and robust remodeling process was characterized by a confluent endothelium, macrophage infiltrate, extracellular matrix deposition and remodeling on the explanted graft. The immunohistochemical and immunofluorescence analysis further exhibit the regeneration of endothelium and smooth muscle layer on tunica intima and tunica media, respectively. Thus, long-term follow-up reveals viable neovessel formation beyond graft degradation. Furthermore, the von Kossa staining exhibits no occurrence of calcification. However, although no TEVG failure or rupture happens during the follow-up, the aneurysm is found by both Doppler ultrasonic and gross observation. Consequently, as-prepared TEVG shows promising potential in vascular tissue engineering if it can be appropriately strengthened to prevent the occurrence of aneurysm.
Collapse
Affiliation(s)
- Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.,Department of Medical Life System, Doshisha University, Kyoto, Japan
| | - Toshitaka Takagi
- Department of Medical Life System, Doshisha University, Kyoto, Japan
| | - Chengzhao Tu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Akeo Hagiwara
- Department of Medical Life System, Doshisha University, Kyoto, Japan
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, China
| |
Collapse
|
14
|
Patel H. Blood biocompatibility enhancement of biomaterials by heparin immobilization: a review. Blood Coagul Fibrinolysis 2021; 32:237-247. [PMID: 33443929 DOI: 10.1097/mbc.0000000000001011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood contacting materials are concerned with biocompatibility including thrombus formation, decrease blood coagulation time, hematology, activation of complement system, platelet aggression. Interestingly, recent research suggests that biocompatibility is increasing by incorporating various materials including heparin using different methods. Basic of heparin including uses and complications was mentioned, in which burst release of heparin is major issue. To minimize the problem of biocompatibility and unpredictable heparin release, present review article potentially reviews the reported work and investigates the various immobilization methods of heparin onto biomaterials, such as polymers, metals, and alloys. Detailed explanation of different immobilization methods through different intermediates, activation, incubation method, plasma treatment, irradiations and other methods are also discussed, in which immobilization through intermediates is the most exploitable method. In addition to biocompatibility, other required properties of biomaterials like mechanical and corrosion resistance properties that increase by attachment of heparin are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Himanshu Patel
- Department of Applied Science and Humanities, Pacific School of Engineering, Surat, Gujarat
| |
Collapse
|
15
|
Zhang Q, Bosch-Rué È, Pérez RA, Truskey GA. Biofabrication of tissue engineering vascular systems. APL Bioeng 2021; 5:021507. [PMID: 33981941 PMCID: PMC8106537 DOI: 10.1063/5.0039628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death among persons aged 65 and older in the United States and many other developed countries. Tissue engineered vascular systems (TEVS) can serve as grafts for CVD treatment and be used as in vitro model systems to examine the role of various genetic factors during the CVD progressions. Current focus in the field is to fabricate TEVS that more closely resembles the mechanical properties and extracellular matrix environment of native vessels, which depends heavily on the advance in biofabrication techniques and discovery of novel biomaterials. In this review, we outline the mechanical and biological design requirements of TEVS and explore the history and recent advances in biofabrication methods and biomaterials for tissue engineered blood vessels and microvascular systems with special focus on in vitro applications. In vitro applications of TEVS for disease modeling are discussed.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Èlia Bosch-Rué
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès 08195, Spain
| | - Román A. Pérez
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès 08195, Spain
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
16
|
Lepedda AJ, Nieddu G, Formato M, Baker MB, Fernández-Pérez J, Moroni L. Glycosaminoglycans: From Vascular Physiology to Tissue Engineering Applications. Front Chem 2021; 9:680836. [PMID: 34084767 PMCID: PMC8167061 DOI: 10.3389/fchem.2021.680836] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases represent the number one cause of death globally, with atherosclerosis a major contributor. Despite the clinical need for functional arterial substitutes, success has been limited to arterial replacements of large-caliber vessels (diameter > 6 mm), leaving the bulk of demand unmet. In this respect, one of the most challenging goals in tissue engineering is to design a "bioactive" resorbable scaffold, analogous to the natural extracellular matrix (ECM), able to guide the process of vascular tissue regeneration. Besides adequate mechanical properties to sustain the hemodynamic flow forces, scaffold's properties should include biocompatibility, controlled biodegradability with non-toxic products, low inflammatory/thrombotic potential, porosity, and a specific combination of molecular signals allowing vascular cells to attach, proliferate and synthesize their own ECM. Different fabrication methods, such as phase separation, self-assembly and electrospinning are currently used to obtain nanofibrous scaffolds with a well-organized architecture and mechanical properties suitable for vascular tissue regeneration. However, several studies have shown that naked scaffolds, although fabricated with biocompatible polymers, represent a poor substrate to be populated by vascular cells. In this respect, surface functionalization with bioactive natural molecules, such as collagen, elastin, fibrinogen, silk fibroin, alginate, chitosan, dextran, glycosaminoglycans (GAGs), and growth factors has proven to be effective. GAGs are complex anionic unbranched heteropolysaccharides that represent major structural and functional ECM components of connective tissues. GAGs are very heterogeneous in terms of type of repeating disaccharide unit, relative molecular mass, charge density, degree and pattern of sulfation, degree of epimerization and physicochemical properties. These molecules participate in a number of vascular events such as the regulation of vascular permeability, lipid metabolism, hemostasis, and thrombosis, but also interact with vascular cells, growth factors, and cytokines to modulate cell adhesion, migration, and proliferation. The primary goal of this review is to perform a critical analysis of the last twenty-years of literature in which GAGs have been used as molecular cues, able to guide the processes leading to correct endothelialization and neo-artery formation, as well as to provide readers with an overall picture of their potential as functional molecules for small-diameter vascular regeneration.
Collapse
Affiliation(s)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Matthew Brandon Baker
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| | - Julia Fernández-Pérez
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| |
Collapse
|
17
|
Heparin-Eluting Tissue-Engineered Bioabsorbable Vascular Grafts. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The creation of small-diameter tissue-engineered vascular grafts using biodegradable materials has the potential to change the quality of cardiovascular surgery in the future. The implantation of these tissue-engineered arterial grafts has yet to reach clinical application. One of the reasons for this is thrombus occlusion of the graft in the acute phase. In this paper, we first describe the causes of accelerated thrombus formation and discuss the drugs that are thought to inhibit thrombus formation. We then review the latest research on methods to locally bind the anticoagulant heparin to biodegradable materials and methods to extend the duration of sustained heparin release. We also discuss the results of studies using large animal models and the challenges that need to be overcome for future clinical applications.
Collapse
|
18
|
Biomimetic tubular scaffold with heparin conjugation for rapid degradation in in situ regeneration of a small diameter neoartery. Biomaterials 2021; 274:120874. [PMID: 34051629 DOI: 10.1016/j.biomaterials.2021.120874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 01/22/2023]
Abstract
To address the clinical need for readily available small diameter vascular grafts, biomimetic tubular scaffolds were developed for rapid in situ blood vessel regeneration. The tubular scaffolds were designed to have an inner layer that is porous, interconnected, and with a nanofibrous architecture, which provided an excellent microenvironment for host cell invasion and proliferation. Through the synthesis of poly(spirolactic-co-lactic acid) (PSLA), a highly functional polymer with a norbornene substituting a methyl group in poly(l-lactic acid) (PLLA), we were able to covalently attach biomolecules onto the polymer backbone via thiol-ene click chemistry to impart desirable functionalities to the tubular scaffolds. Specifically, heparin was conjugated on the scaffolds in order to prevent thrombosis when implanted in situ. By controlling the amount of covalently attached heparin we were able to modulate the physical properties of the tubular scaffold, resulting in tunable wettability and degradation rate while retaining the porous and nanofibrous morphology. The scaffolds were successfully tested as rat abdominal aortic replacements. Patency and viability were confirmed through dynamic ultrasound and histological analysis of the regenerated tissue. The harvested tissue showed excellent vascular cellular infiltration, proliferation, and migration with laminar cellular arrangement. Furthermore, we achieved both complete reendothelialization of the vessel lumen and native-like media extracellular matrix. No signs of aneurysm or hyperplasia were observed after 3 months of vessel replacement. Taken together, we have developed an effective vascular graft able to generate small diameter blood vessels that can function in a rat model.
Collapse
|
19
|
Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. Chem Rev 2021; 121:11194-11237. [DOI: 10.1021/acs.chemrev.0c00816] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry and Helmholtz Institute for RNA Based Infection Research, 97074 Würzburg, Germany
| | - Michael Schmitz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
20
|
Zhang C, Wang J, Xie Y, Wang L, Yang L, Yu J, Miyamoto A, Sun F. Development of FGF-2-loaded electrospun waterborne polyurethane fibrous membranes for bone regeneration. Regen Biomater 2020; 8:rbaa046. [PMID: 33732492 PMCID: PMC7947599 DOI: 10.1093/rb/rbaa046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
Guided bone regeneration (GBR) membrane has been used to improve functional outcomes for periodontal regeneration. However, few studies have focused on the biomimetic membrane mimicking the vascularization of the periodontal membrane. This study aimed to fabricate waterborne polyurethane (WPU) fibrous membranes loaded fibroblast growth factor-2 (FGF-2) via emulsion electrospinning, which can promote regeneration of periodontal tissue via the vascularization of the biomimetic GBR membrane. A biodegradable WPU was synthesized by using lysine and dimethylpropionic acid as chain extenders according to the rule of green chemical synthesis technology. The WPU fibers with FGF-2 was fabricated via emulsion electrospinning. The results confirmed that controlled properties of the fibrous membrane had been achieved with controlled degradation, suitable mechanical properties and sustained release of the factor. The immunohistochemical expression of angiogenic-related factors was positive, meaning that FGF-2 loaded in fibers can significantly promote cell vascularization. The fiber scaffold loaded FGF-2 has the potential to be used as a functional GBR membrane to promote the formation of extraosseous blood vessels during periodontal repairing.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Jianxiong Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Yujie Xie
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Li Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Lishi Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Jihua Yu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Akira Miyamoto
- Faculty of Rehabilitation, Department of Physical Therapy, Kobe International University, Kobe, Japan
| | - Fuhua Sun
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
- Correspondence address. Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Taiping Street 25, Luzhou 646000, P.R. China. Tel.: +81-18428397607; E-mail:
| |
Collapse
|
21
|
Aslani S, Kabiri M, HosseinZadeh S, Hanaee-Ahvaz H, Taherzadeh ES, Soleimani M. The applications of heparin in vascular tissue engineering. Microvasc Res 2020; 131:104027. [DOI: 10.1016/j.mvr.2020.104027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
22
|
Xu Z, Feng Z, Guo L, Ye L, Tong Z, Geng X, Wang C, Jin X, Hui X, Gu Y. Biocompatibility evaluation of heparin-conjugated poly(ε-caprolactone) scaffolds in a rat subcutaneous implantation model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:76. [PMID: 32761269 DOI: 10.1007/s10856-020-06419-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Vascular grafts prepared from synthetic polymers have serious shortcomings that can be resolved by surface modification, such as by immobilizing heparin. In this study, the mechanical properties, biocompatibility, anticoagulation property, and water contact angle of two heparin-conjugated poly(ε-caprolactone) scaffolds (PCL-hexamethylendiamine-heparin, PCL-HMD-H. PCL-lysine-heparin, PCL-LYS-H) were compared to identify a preferred heparin conjugation method. An evaluation of the subcutaneous tissue biocompatibility of the scaffolds demonstrated that PCL-HMD-H had better endothelial cell proliferation than the PCL-LYS-H and was therefore a promising scaffold candidate for use in vascular tissue-engineering.
Collapse
Affiliation(s)
- Zeqin Xu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, 100053, Beijing, China
| | - Zengguo Feng
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, 100053, Beijing, China
| | - Lin Ye
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Zhu Tong
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, 100053, Beijing, China
| | - Xue Geng
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, 100053, Beijing, China
| | - Xin Jin
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Xin Hui
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, 100053, Beijing, China.
| |
Collapse
|
23
|
Peng J, Zhao H, Tu C, Xu Z, Ye L, Zhao L, Gu Z, Zhao D, Zhang J, Feng Z. In situ hydrogel dressing loaded with heparin and basic fibroblast growth factor for accelerating wound healing in rat. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111169. [PMID: 32806292 DOI: 10.1016/j.msec.2020.111169] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/15/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
Abstract
In order to accelerate the healing of chronic wound, a hydrogel dressing encapsulating with heparin and basic fibroblast growth factor is prepared by the Michael addition of 4-arm acrylated polyethylene glycol and dithiothreitol. As-prepared hydrogel dressing can combine the advantages of wet healing theory and exogenous growth factor supplement. Furthermore, the encapsulated heparin can play a role in diminishing inflammation and accelerating wound healing in addition to its well-known function of stabilizing basic fibroblast growth factor. In vitro release test shows the hydrogel network is able to sustainably release basic fibroblast growth factor within 10 days by the regulation of heparin, while released growth factor can significantly promote fibroblast's proliferation in vitro. Moreover, the wound healing in rat shows that as-prepared hydrogel dressing could accelerate wound healing in vivo much more effectively compared with blank hydrogel dressing and negative control. Hematoxylin-eosin and Masson's Trichrome staining exhibit the formation of complete and uniform epidermis. Immunohistochemical staining exhibits heparin can help hydrogel dressing to possess low inflammation in early stage, which is beneficial for accelerating wound healing as well as preventing the production of scar tissue. The enzyme-linked immunosorbent assay results demonstrate the exogenous bFGF in hydrogel can significantly upgrade the expressing of vascular endothelial growth factor and transforming growth factor-β in wound site, which indicate better angiogenesis, and better on-site cell proliferation in wound site, respectively. Those results are further demonstrated by immunohistochemical and immunofluorescence staining. Consequently, as-prepared hydrogel dressing shows promising potential to perform better therapy efficacy in clinic for accelerating wound healing.
Collapse
Affiliation(s)
- Jia Peng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Zhao
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Chengzhao Tu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zeqin Xu
- Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing 100081, China.
| | - Liang Zhao
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.
| | - Zongheng Gu
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Dong Zhao
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Jie Zhang
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing 100081, China
| |
Collapse
|
24
|
Hao D, Fan Y, Xiao W, Liu R, Pivetti C, Walimbe T, Guo F, Zhang X, Farmer DL, Wang F, Panitch A, Lam KS, Wang A. Rapid endothelialization of small diameter vascular grafts by a bioactive integrin-binding ligand specifically targeting endothelial progenitor cells and endothelial cells. Acta Biomater 2020; 108:178-193. [PMID: 32151698 DOI: 10.1016/j.actbio.2020.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022]
Abstract
Establishing and maintaining a healthy endothelium on vascular and intravascular devices is crucial for the prevention of thrombosis and stenosis. Generating a biofunctional surface on vascular devices to recruit endothelial progenitor cells (EPCs) and endothelial cells (ECs) has proven efficient in promoting in situ endothelialization. However, molecules conventionally used for EPC/EC capturing generally lack structural stability, capturing specificity, and biological functionalities, which have limited their applications. Discovery of effective, specific, and structurally stable EPC/EC capturing ligands is desperately needed. Using the high-throughput One-Bead One-Compound combinatorial library screening technology, we recently identified a disulfide cyclic octa-peptide LXW7 (cGRGDdvc), which possesses strong binding affinity and functionality to EPCs/ECs, weak binding to platelets, and no binding to inflammatory cells. Because LXW7 is cyclic and 4 out of the 8 amino acids are unnatural D-amino acids, LXW7 is highly proteolytically stable. In this study, we applied LXW7 to modify small diameter vascular grafts using a Click chemistry approach. In vitro studies demonstrated that LXW7-modified grafts significantly improved EPC attachment, proliferation and endothelial differentiation and suppressed platelet attachment. In a rat carotid artery bypass model, LXW7 modification of the small diameter vascular grafts significantly promoted EPC/EC recruitment and rapidly achieved endothelialization. At 6 weeks after implantation, LXW7-modified grafts retained a high patency of 83%, while the untreated grafts had a low patency of 17%. Our results demonstrate that LXW7 is a potent EPC/EC capturing and platelet suppressing ligand and LXW7-modified vascular grafts rapidly generate a healthy and stable endothelial interface between the graft surface and the circulation to reduce thrombosis and improve patency. STATEMENT OF SIGNIFICANCE: In this study, One-Bead One-Compound (OBOC) technology has been applied for the first time in discovering bioactive ligands for tissue regeneration applications. Current molecules used to modify artificial vascular grafts generally lack EPC/EC capturing specificity, biological functionalities and structural stability. Using OBOC technology, we identified LXW7, a constitutionally stable disulfide cyclic octa-peptide with strong binding affinity and biological functionality to EPCs/ECs, very weak binding to platelets and no binding to inflammatory cells. These characteristics are crucial for promoting rapid endothelialization to prevent thrombosis and improve patency of vascular grafts. LXW7 coating technology could be applied to a wide range of vascular and intravascular devices, including grafts, stents, cardiac valves, and catheters, where a "living" endothelium and healthy blood interface are needed.
Collapse
|
25
|
Li J, Cai Z, Cheng J, Wang C, Fang Z, Xiao Y, Feng ZG, Gu Y. Characterization of a heparinized decellularized scaffold and its effects on mechanical and structural properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:999-1023. [PMID: 32138617 DOI: 10.1080/09205063.2020.1736741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Decellularization is a promising approach in tissue engineering to generate small-diameter blood vessels. However, some challenges still exist. We performed two decellularization phases to develop an optimal decellularized scaffold and analyze the relationship between the extracellular matrix (ECM) composition and mechanical properties. In decellularization phase I, we tested sodium dodecylsulfate (SDS), Triton X-100 (TX100) and trypsin at different concentrations and exposure times. In decellularization phase II, we systematically compared five combined decellularization protocols based on the results of phase I to identify the optimal method. These protocols tested cell removal, ECM preservation, mechanical properties, and residual cytotoxicity. We further immobilized heparin to optimal decellularized scaffolds and determined its anticoagulant activity and mechanical properties. The combined decellularization protocol comprising treatment with 0.5% SDS followed by 1% TX100 could completely remove the cellular contents and preserve the mechanical properties and ECM architecture better. In addition, the heparinized decellularized scaffolds not only had sustained anticoagulant activity, but also similar mechanical properties to native vessels. In conclusion, heparinized decellularized scaffolds represent a promising direction for small-diameter vascular grafts, although further in vivo studies are needed.
Collapse
Affiliation(s)
- Ji Li
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwen Cai
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jin Cheng
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiping Fang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Kim D, Chung JJ, Jung Y, Kim SH. The effect of Substance P/Heparin conjugated PLCL polymer coating of bioinert ePTFE vascular grafts on the recruitment of both ECs and SMCs for accelerated regeneration. Sci Rep 2019; 9:17083. [PMID: 31745143 PMCID: PMC6863833 DOI: 10.1038/s41598-019-53514-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Artificial vascular grafts consisting of ePTFE have been mainly used in clinics for the treatment of cardiovascular disease. However, artificial grafts can become clogged after a long time due to thrombosis, as graft maturation by endothelialization is limited. The strategy introduced in this study is to induce graft remodeling through interaction between the bioinert graft and the body. The Substance P (SP) and heparin were covalently conjugated with PLCL, an elastic biocompatible copolymer and the Substance P-conjugated PLCL (SP-PLCL) and/or heparin-conjugated PLCL (Hep-PLCL) were vacuum-coated onto ePTFE vascular grafts. To assess the effectiveness of the coating, coated samples were evaluated by implanting them subcutaneously into SD-Rats. Coatings allow grafts to be remodeled by creating a microenvironment where cells can grow by infiltrating into the grafts while also greatly enhancing angiogenesis. In particular, a double coating of Hep-PLCL and SP-PLCL (Hep/SP-PLCL) at four weeks showed markedly improved vascular remodeling through the recruitment of mesenchymal stem cells (MSCs), vascular cells (ECs, SMCs) and M2 macrophages. Based on these results, it is expected that when the Hep/SP-PLCL-coated ePTFE vascular grafts are implanted in situ, long-term patency will be assured due to the appropriate formation of an endothelial layer and smooth muscle cells in the grafts like native vessels.
Collapse
Affiliation(s)
- Donghak Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Justin J Chung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, 305-350, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, 305-350, Republic of Korea.
| |
Collapse
|
27
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
28
|
Tejeda-Alejandre R, Lammel-Lindemann JA, Lara-Padilla H, Dean D, Rodriguez CA. Influence of Electrical Field Collector Positioning and Motion Scheme on Electrospun Bifurcated Vascular Graft Membranes. MATERIALS 2019; 12:ma12132123. [PMID: 31269641 PMCID: PMC6651616 DOI: 10.3390/ma12132123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/19/2022]
Abstract
Currently, electrospinning membranes for vascular graft applications has been limited, due to random fiber alignment, to use in mandrel-spun, straight tubular shapes. However, straight, circular tubes with constant diameters are rare in the body. This study presents a method to fabricate curved, non-circular, and bifurcated vascular grafts based on electrospinning. In order to create a system capable of electrospinning membranes to meet specific patient needs, this study focused on characterizing the influence of fiber source, electrical field collector position (inside vs. outside the mandrel), and the motion scheme of the mandrel (rotation vs. rotation and tilting) on the vascular graft membrane morphology and mechanical properties. Given the extensive use of poly(ε-caprolactone) (PCL) in tubular vascular graft membranes, the same material was used here to facilitate a comparison. Our results showed that the best morphology was obtained using orthogonal sources and collector positioning, and a well-timed rotation and tilting motion scheme. In terms of mechanical properties, our bifurcated vascular graft membranes showed burst pressure comparable to that of tubular vascular graft membranes previously reported, with values up to 5126 mmHg. However, the suture retention strength shown by the bifurcated vascular graft membranes was less than desired, not clinically viable values. Process improvements are being contemplated to introduce these devices into the clinical range.
Collapse
Affiliation(s)
- Raquel Tejeda-Alejandre
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, N.L. 64849, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADIT), Apodaca, N.L. 66629, Mexico
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Jan A Lammel-Lindemann
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, N.L. 64849, Mexico
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Hernan Lara-Padilla
- Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171-5-231B, Ecuador
| | - David Dean
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Ciro A Rodriguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, N.L. 64849, Mexico.
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADIT), Apodaca, N.L. 66629, Mexico.
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
29
|
Darge HF, Andrgie AT, Tsai HC, Lai JY. Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. Int J Biol Macromol 2019; 133:545-563. [DOI: 10.1016/j.ijbiomac.2019.04.131] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/19/2023]
|
30
|
Jin X, Geng X, Jia L, Xu Z, Ye L, Gu Y, Zhang AY, Feng ZG. Preparation of Small-Diameter Tissue-Engineered Vascular Grafts Electrospun from Heparin End-Capped PCL and Evaluation in a Rabbit Carotid Artery Replacement Model. Macromol Biosci 2019; 19:e1900114. [PMID: 31222914 DOI: 10.1002/mabi.201900114] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Aiming to construct small diameter (ID <6 mm) off-the-shelf tissue-engineered vascular grafts, the end-group heparinizd poly(ε-caprolactone) (PCL) is synthesized by a three-step process and then electrospun into an inner layer of double-layer vascular scaffolds (DLVSs) showing a hierarchical double distribution of nano- and microfibers. Afterward, PCL without the end-group heparinization is electrospun into an outer layer. A steady release of grafted heparin and the existence of a glycocalyx structure give the grafts anticoagulation activity and the conjugation of heparin also improves hydrophilicity and accelerates degradation of the scaffolds. The DLVSs are evaluated in six rabbits via a carotid artery interpositional model for a period of three months. All the grafts are patent until explantation, and meanwhile smooth endothelialization and fine revascularization are observed in the grafts. The composition of the outer layer of scaffolds exhibits a significant effect on the aneurysm dilation after implantation. Only one aneurysm dilation is detected at two months and no calcification is formed in the follow-up term. How to prevent aneurysms remains a challenging topic.
Collapse
Affiliation(s)
- Xin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Liujun Jia
- Beijing Key Laboratory of Pre-clinic Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital National Cardiovascular Center, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Zeqin Xu
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, 100053, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, 100053, China
| | - Ai-Ying Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
31
|
Zündel M, Ehret AE, Mazza E. The multiscale stiffness of electrospun substrates and aspects of their mechanical biocompatibility. Acta Biomater 2019; 84:146-158. [PMID: 30447336 DOI: 10.1016/j.actbio.2018.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/10/2018] [Accepted: 11/07/2018] [Indexed: 02/04/2023]
Abstract
In contrast to homogeneous materials, the mechanical properties of fibrous substrates depend on the probing lengthscale. This suggests that cells feel very different mechanical cues than expected from the macroscale characterisation of the substrate materials. By means of multiscale computational analyses we study here the mechanical environment of cells adhering to typical electrospun networks used in biomedical applications, with comparable macroscopic stiffness but different fibre diameters. The stiffness evaluated at the level of focal adhesions varies significantly, and the overall magnitude is strongly affected by the fibre diameter. The microscopic stiffness evaluated at cell scale depends substantially on the network topology and is about one order of magnitude lower than the macroscopic stiffness of the substrate, and two to three orders of magnitude below the fibres' elastic modulus. Moreover, the translation of stiffness over the scales is modulated by global deformations of the scaffold. In particular, uniaxial or biaxial stretching of the substrate induces nonlinear microscopic stiffening. Finally, although electrospun networks allow long-range transmission of cell-induced deformations, the comparison between the range of forces measured in cell traction force microscopy and those required to markedly deform typical electrospun networks reveals an order of magnitude difference, suggesting that these scaffolds provide a rather rigid environment for cells. All these results underline that the achievement of mechanical biocompatibility at all relevant lengthscales, and over the whole range of physiological loading states is extremely challenging. At the same time, the study shows that the diameter, length and curvature of fibre segments might be tunable towards achieving this goal. STATEMENT OF SIGNIFICANCE: Electrospun fabrics have growing use as substrates and scaffolds in tissue engineering and other biomedical applications. Based on multiscale computational analyses, this study shows that substrates of comparable macroscopic stiffness can provide tremendously different mechanical micro-environments, and that cells adhering to fibrous substrates may thus experience by orders of magnitude different mechanical cues than it would be expected from macroscale material characterisation. The simulations further reveal that the transfer of stiffness over the length scales changes with macroscopic deformation, and identify some key parameters that govern the transfer ratio. We believe that such refined understanding of the multiscale aspects of mechanical biocompatibility is key to the development of successful scaffold materials.
Collapse
Affiliation(s)
- Manuel Zündel
- ETH Zürich, Institute for Mechanical Systems, 8092 Zürich, Switzerland
| | - Alexander E Ehret
- ETH Zürich, Institute for Mechanical Systems, 8092 Zürich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Edoardo Mazza
- ETH Zürich, Institute for Mechanical Systems, 8092 Zürich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
32
|
Xu Z, Gu Y, Li J, Feng Z, Guo L, Tong Z, Ye L, Wang C, Wang R, Geng X, Wang C, Zhang J. Vascular Remodeling Process of Heparin-Conjugated Poly(ε-Caprolactone) Scaffold in a Rat Abdominal Aorta Replacement Model. J Vasc Res 2018; 55:338-349. [PMID: 30485863 DOI: 10.1159/000494509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/15/2018] [Indexed: 11/19/2022] Open
Abstract
In the field of vascular graft research, poly-ε-caprolactone (PCL) is used owing to its good mechanical strength and biocompatibility. In this study, PCL scaffold was prepared by electrospinning and surface modification with heparin via hexamethylenediamine. Then the scaffolds were implanted into the infrarenal abdominal aorta of Wistar rats and contrast-enhanced micro-ultrasound was used to monitor the patency of grafts after implantation. These grafts were extracted from the rats at 1, 3, and 6 months for histological analysis, immunofluorescence staining, and scanning electron microscopy observation. Although some grafts experienced aneurysmal change, results showed that all implanted grafts were patent during the course of 6 months and these grafts demonstrated well-organized neotissue with endothelium formation, smooth muscle regeneration, and extracellular matrix formation. Such findings confirm feasibility to create heparin-conjugated scaffolds of next-generation vascular grafts.
Collapse
Affiliation(s)
- Zeqin Xu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Jianxin Li
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Zhu Tong
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Chunmei Wang
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Rong Wang
- Department of Central Laboratory, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Jian Zhang
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China,
| |
Collapse
|
33
|
Gonzalez D, Ragusa J, Angeletti PC, Larsen G. Preparation and characterization of functionalized heparin-loaded poly-Ɛ-caprolactone fibrous mats to prevent infection with human papillomaviruses. PLoS One 2018; 13:e0199925. [PMID: 29966006 PMCID: PMC6028096 DOI: 10.1371/journal.pone.0199925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
In this study, heparin-loaded poly-ɛ-caprolactone (PCL) fibrous mats were prepared and characterized based on their physical, cytotoxic, thermal, and biological properties. The main objective of the work described here was to test the hypothesis that incorporation of heparin into a PCL carrier could serve as bio-compatible material capable of inhibiting Human Papillomavirus (HPV) infection. The idea of firmly anchoring heparin to capture soluble virus, vs. a slow heparin release to inhibit a virus in solution was tested. Thus, one material was produced via conventional heparin matrix encapsulation and electrohydrodynamic fiber processing in one step. A second type of material was obtained via heparin crosslinking. This was achieved by running a carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling reaction on preformed PCL fibers. In vitro HPV16 L1 protein binding capacity studies were performed. Infectivity assays were done using HPV16 pseudoviruses (PsVs) carrying a GFP plasmid to directly test the ability of the fibrous mats to prevent internalization of HPV PsVs. The crosslinked heparin material presented a dissociation constant (Kd) value comparable to those found in the literature for different heparin-protein L1 peptide interactions. Both materials significantly reduced internalization of HPV PsVs, with a reduction of 94% of PsVs internalization when matrix encapsulated heparin-loaded material was present. Differences in performance between the two proposed structures are discussed.
Collapse
Affiliation(s)
- Daniela Gonzalez
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jorge Ragusa
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Peter C. Angeletti
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (PCA); (GL)
| | - Gustavo Larsen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (PCA); (GL)
| |
Collapse
|
34
|
Bao S, Kang J, Tu C, Xu C, Ye L, Zhang H, Zhao H, Zhang A, Feng Z, Zhang F. Chemical coatings relying on the self-polymerization of catechol for retrievable vena cava filters. NEW J CHEM 2018. [DOI: 10.1039/c7nj04138a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
After covalent conjugation with catechol, heparin and paclitaxel can be chemically coated on a Ti–Ni alloy to endow anti-thrombosis and anti-intimal hyperplasia properties, respectively.
Collapse
Affiliation(s)
- Songhao Bao
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Jialin Kang
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Chengzhao Tu
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Chengfeng Xu
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Lin Ye
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
| | - Huan Zhang
- Shijitan Hospital
- Capital Medical University
- Beijing 100038
- China
| | - Hui Zhao
- Luhe Hospital
- Capital Medical University
- Beijing 101149
- China
| | - Aiying Zhang
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
| | - Zengguo Feng
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
| | - Fuxian Zhang
- Shijitan Hospital
- Capital Medical University
- Beijing 100038
- China
| |
Collapse
|
35
|
Performance improvements of the BNC tubes from unique double-silicone-tube bioreactors by introducing chitosan and heparin for application as small-diameter artificial blood vessels. Carbohydr Polym 2017; 178:394-405. [DOI: 10.1016/j.carbpol.2017.08.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 01/04/2023]
|
36
|
Li C, Wang F, Chen P, Zhang Z, Guidoin R, Wang L. Preventing collapsing of vascular scaffolds: The mechanical behavior of PLA/PCL composite structure prostheses during in vitro degradation. J Mech Behav Biomed Mater 2017; 75:455-462. [PMID: 28823899 DOI: 10.1016/j.jmbbm.2017.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 11/26/2022]
Abstract
The success of blood conduit replacement with synthetic graft is highly dependent on the architecture, and mechanical properties of the graft, especially for biodegradable grafts serving as scaffolds for in-situ tissue engineering. Particularly, the property of the radial compression recovery represents a critical to keep the patency during biointegration. Bi-component composite vascular grafts (cVG) made of polylactic acid (PLA) fabric and polycaprolactone (PCL) were developed with superior mechanical properties. In this research, the compressive and tensile properties of the prototypes were characterized when they were subjected to accelerated degradation. In addition, the prepared cVG were analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide angle X-ray diffraction (WAXD) to illustrate the gradual loss of mechanical properties. The results demonstrated that the cVG retained the circular cross-section even through its tensile strength decreased during degradation. The cVG samples containing a high percentage of PLA fibers lost their tensile strength faster, while the samples with lower PLA percentage lost the compressive resistance strength more quickly. This unique fabric-based composite biodegradable vascular prosthesis with an outstanding radical compression recovery could be a good candidate for in-situ formation of tissue engineered vascular graft.
Collapse
Affiliation(s)
- Chaojing Li
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Department of Surgery, Laval University and Division of Regenerative Medicine, Research Center CHU, Quebec, QC, Canada
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Peifeng Chen
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ze Zhang
- Department of Surgery, Laval University and Division of Regenerative Medicine, Research Center CHU, Quebec, QC, Canada
| | - Robert Guidoin
- Department of Surgery, Laval University and Division of Regenerative Medicine, Research Center CHU, Quebec, QC, Canada
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
37
|
Cao J, Geng X, Wen J, Li Q, Ye L, Zhang A, Feng Z, Guo L, Gu Y. The penetration and phenotype modulation of smooth muscle cells on surface heparin modified poly(ɛ-caprolactone) vascular scaffold. J Biomed Mater Res A 2017. [PMID: 28643432 DOI: 10.1002/jbm.a.36144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tubular porous poly(ɛ-caprolactone) (PCL) scaffold was fabricated by electrospinning. After then, the scaffold's surface was firstly eroded by hexyldiamine to endow amine group, and heparin was covalently grafted to the surface to get surface heparin modified scaffold (ShPCL scaffold). It was found that ShPCL scaffold can induce smooth muscle cells (SMCs) to penetrate the scaffold surface, while the SMCs cannot penetrate the surface of PCL scaffold. Subsequently, the rabbit SMCs were seeded on the ShPCL scaffold and cultured for 14 days. It was found the expression of α-smooth muscle actin in ShPCL scaffold maintained much higher level than that in culture plate, which implied the SMC differentiation in ShPCL scaffold. Furthermore, the immunefluorescence staining of the cross-sections of ShPCL scaffold exhibited the expression of calponin in ShPCL scaffold can be detected after 7 and 14 days, whereas the expression of smooth muscle myosin heavy chain can also be detected at 14 days. These results proved that penetrated SMCs preferably differentiated in to contractile phenotype. The successful SMC penetration and the contractile phenotype expression implied ShPCL scaffold is a suitable candidate for regenerating smooth muscle layer in vascular tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2806-2815, 2017.
Collapse
Affiliation(s)
- Jie Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China
| | - Juan Wen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qingxuan Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China
| | - Aiying Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China
| | - Lianrui Guo
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yongquan Gu
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
38
|
Carson D, Hnilova M, Yang X, Nemeth CL, Tsui JH, Smith AS, Jiao A, Regnier M, Murry CE, Tamerler C, Kim DH. Nanotopography-Induced Structural Anisotropy and Sarcomere Development in Human Cardiomyocytes Derived from Induced Pluripotent Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21923-32. [PMID: 26866596 PMCID: PMC5681855 DOI: 10.1021/acsami.5b11671] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Understanding the phenotypic development of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is a prerequisite to advancing regenerative cardiac therapy, disease modeling, and drug screening applications. Lack of consistent hiPSC-CM in vitro data can be largely attributed to the inability of conventional culture methods to mimic the structural, biochemical, and mechanical aspects of the myocardial niche accurately. Here, we present a nanogrid culture array comprised of nanogrooved topographies, with groove widths ranging from 350 to 2000 nm, to study the effect of different nanoscale structures on the structural development of hiPSC-CMs in vitro. Nanotopographies were designed to have a biomimetic interface, based on observations of the oriented myocardial extracellular matrix (ECM) fibers found in vivo. Nanotopographic substrates were integrated with a self-assembling chimeric peptide containing the Arg-Gly-Asp (RGD) cell adhesion motif. Using this platform, cell adhesion to peptide-coated substrates was found to be comparable to that of conventional fibronectin-coated surfaces. Cardiomyocyte organization and structural development were found to be dependent on the nanotopographical feature size in a biphasic manner, with improved development achieved on grooves in the 700-1000 nm range. These findings highlight the capability of surface-functionalized, bioinspired substrates to influence cardiomyocyte development, and the capacity for such platforms to serve as a versatile assay for investigating the role of topographical guidance cues on cell behavior. Such substrates could potentially create more physiologically relevant in vitro cardiac tissues for future drug screening and disease modeling studies.
Collapse
Affiliation(s)
- Daniel Carson
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Marketa Hnilova
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Xiulan Yang
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Cameron L. Nemeth
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan H. Tsui
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Alec S.T. Smith
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Alex Jiao
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Charles E. Murry
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Candan Tamerler
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Mechanical Engineering and Bioengineering Research Center, University of Kansas, Lawrence, Kansas 66045, United States
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
- Corresponding Author: . Phone: 1-206-616-1133. Fax: 1-206-685-3300
| |
Collapse
|
39
|
Duan N, Geng X, Ye L, Zhang A, Feng Z, Guo L, Gu Y. A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation. ACTA ACUST UNITED AC 2016; 11:035007. [PMID: 27206161 DOI: 10.1088/1748-6041/11/3/035007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this article, a tubular vascular tissue engineering scaffold with core-shell structured fibers was produced by coaxial electrospinning at an appropriate flow rate ratio between the inner and outer solution. PCL was selected as the core to provide the mechanical property and integrity to the scaffold while collagen was used as the shell to improve the attachment and proliferation of vascular cells due to its excellent biocompatibility. The fine core-shell structured fibers were demonstrated by scanning electron microscope and transmission electron microscope observations. Subsequently, the collagen shell was crosslinked by genipin and further bound with heparin. The crosslinking process was confirmed by the increasing of tensile strength, swelling ratio and thermogravimetric analysis measurements while the surface heparin content was characterized by means of a UV-spectrophotometer and activated partial thromboplastin time tests. Furthermore, the mechanical properties such as stitch strength and bursting pressure of the as-prepared scaffold were measured. Moreover, the biocompatibility of the scaffold was evaluated by cytotoxicity investigation with L929 cells via MTT assay. Endothelial cell adhesion assessments were conducted to reveal the possibility of the formation of an endothelial cell layer on the scaffold surface, while the ability of smooth muscle cell penetration into the scaffold wall was also assessed by confocal laser scanning microscopy. The as-prepared core-shell structured scaffold showed promising potential for use in vascular tissue engineering.
Collapse
Affiliation(s)
- Nannan Duan
- School of Materials Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
40
|
Kang SN, Park C, Kim SM, Park KW, Park BJ, Han DK, Joung YK. Effect of stromal cell derived factor-1α release from heparin-coated Co-Cr stent substrate on the recruitment of endothelial progenitor cells. Macromol Res 2015. [DOI: 10.1007/s13233-015-4002-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Ye L, Cao J, Chen L, Geng X, Zhang AY, Guo LR, Gu YQ, Feng ZG. The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture. J Biomed Mater Res A 2015; 103:3863-71. [PMID: 26123627 DOI: 10.1002/jbm.a.35531] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/24/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022]
Abstract
A continuous electrospinning technique was applied to fabricate double layer tubular tissue engineering vascular graft (TEVG) scaffold. The luminal layer was made from poly(ɛ-caprolac-tone)(PCL) ultrafine fibers via common single axial electrospinning followed by the outer layer of core-shell structured nanofibers via coaxial electrospinning. For preparing the outer layernano-fibers, the PCL was electrospun into the shell and both bovine serum albumin (BSA) and tetrapeptide val-gal-pro-gly (VAPG) were encapsulated into the core. The core-shell structure in the outer layer fibers was observed by transmission electron microscope (TEM). The in vitro release tests exhibited the sustainable release behavior of BSA and VAPG so that they provided a better cell growth environment in the interior of tubular scaffold wall. The in vitro culture of smooth muscle cells (SMCs) demonstrated their potential to penetrate into the scaffold wall for the 3D cell culture. Subsequently, 3D cell coculture was conducted. First, SMCs were seeded on the luminal surface of the scaffold and cultured for 5 days, and then endothelial cells (ECs) were also seeded on the luminal surface and cocultured with SMCs for another 2 days. After stained with antibodies, 3D cell distribution on the scaffold was revealed by confocal laser scanning microscopy (CLSM) where ECs were mainly located on the luminal surface whereas SMCs penetrated into the surface and distributed inside the scaffold wall. This double layer tubular scaffold with 3D cell distribution showed the promise to develop it into a novel TEVG for clinical trials in the near future.
Collapse
Affiliation(s)
- Lin Ye
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jie Cao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lamei Chen
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xue Geng
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ai-Ying Zhang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lian-Rui Guo
- Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yong-Quan Gu
- Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zeng-Guo Feng
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
42
|
Cao C, Song Y, Yao Q, Yao Y, Wang T, Huang B, Gong P. Preparation and preliminaryin vitroevaluation of a bFGF-releasing heparin-conjugated poly(ε-caprolactone) membrane for guided bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:600-16. [DOI: 10.1080/09205063.2015.1049044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Gao M, Zeng C, Zhu A, Tao H, Yang L, Quan D. Improved poly(d,l-lactide-co-1,3-trimethylene carbonate)6 copolymer microparticle vehicles for sustained and controlled delivery of bioactive basic fibroblast growth factor. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515578869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A novel, biocompatible and biodegradable six-arm branched copolymer poly(d,l-lactide)-co-(1,3-trimethylene carbonate)6 has been synthesized and fabricated as a porous microparticle with an oil-in-water single emulsion method. Poly(d,l-lactide-co-1,3-trimethylene carbonate)6 microparticles were further conjugated with heparin by 1-ethyl-3-3-dimethylamino-propylcarbodiimide/ N-hydroxysuccinimide chemistry and characterized using 1H-nuclear magnetic resonance and scanning electron microscopy. The heparin-loading capacity of poly(d,l-lactide-co-1,3-trimethylene carbonate)6 microparticles was identified as 213 ± 6 pmol/mg-particle determined with toluidine blue method. The resultant binding efficiency and release profile of basic fibroblast growth factor which is bound on heparin–poly(d,l-lactide-co-1,3-trimethylene carbonate)6 microparticles were quantitatively analyzed by enzyme-linked immunosorbent assay. Thus, the developed poly(d,l-lactide-co-1,3-trimethylene carbonate)6 porous microparticles presented superior capacity of growth factor cargo as 1965 ± 117 pg basic fibroblast growth factor per mg-microparticles and displayed a sustained release profile over 4 weeks with quite low initial burst. Additionally, the viability of dissociated basic fibroblast growth factor was confirmed with methylthiazolyltetrazolium quantitative assay along with in vitro culturing model of rodent neural stem cell. Collectively, our results demonstrate that heparin–poly(d,l-lactide-co-1,3-trimethylene carbonate)6 microparticles attained controllable and sustained delivery of bioactive basic fibroblast growth factor for 4 weeks with significantly reduced burst release. The present heparin–poly(d,l-lactide-co-1,3-trimethylene carbonate)6 porous microparticulate system could be potentially developed to foster a novel bioengineering platform for repair and regeneration of injured nervous system.
Collapse
Affiliation(s)
- Mingyong Gao
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenguang Zeng
- DSAPM and PCFM Lab, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Aiping Zhu
- DSAPM and PCFM Lab, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Haiyin Tao
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liu Yang
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daping Quan
- DSAPM and PCFM Lab, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
The preparation of cationic folic acid and its application in drug delivery system. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1542-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Wang W, Hu J, He C, Nie W, Feng W, Qiu K, Zhou X, Gao Y, Wang G. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property. J Biomed Mater Res A 2014; 103:1784-97. [PMID: 25196988 DOI: 10.1002/jbm.a.35315] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/10/2014] [Accepted: 08/26/2014] [Indexed: 11/10/2022]
Abstract
The success of tissue engineered vascular grafts depends greatly on the synthetic tubular scaffold, which can mimic the architecture, mechanical, and anticoagulation properties of native blood vessels. In this study, small-diameter tubular scaffolds were fabricated with different weight ratios of poly(l-lactic acid) (PLLA) and poly(l-lactide-co-ɛ-caprolactone) (PLCL) by means of thermally induced phase separation technique. To improve the anticoagulation property of materials, heparin was covalently linked to the tubular scaffolds by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide coupling chemistry. The as-prepared PLLA/PLCL scaffolds retained microporous nanofibrous structure as observed in the neat PLLA scaffolds, and their structural and mechanical properties can be fine-tuned by changing the ratio of two components. The scaffold containing 60% PLCL content was found to be the most promising scaffold for engineering small-diameter blood vessel in terms of elastic properties and structural integrity. The heparinized scaffolds showed higher hydrophilicity, lower protein adsorption ability, and better in vitro anticoagulation property than their untreated counterparts. Pig iliac endothelial cells seeded on the heparinized scaffold showed good cellular attachment, spreading, proliferation, and phenotypic maintenance. Furthermore, the heparinized scaffolds exhibited neovascularization after subcutaneous implantation into the New Zealand white rabbits for 1 and 2 months. Taken together, the heparinized PLLA/PLCL nanofibrous scaffolds have the great potential for vascular tissue engineering application.
Collapse
Affiliation(s)
- Weizhong Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Duan HY, Ye L, Wu X, Guan Q, Yang XF, Han F, Liang N, Wang ZF, Wang ZG. The in vivo characterization of electrospun heparin-bonded polycaprolactone in small-diameter vascular reconstruction. Vascular 2014; 23:358-65. [PMID: 25208900 DOI: 10.1177/1708538114550737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective To evaluate the possibility of using heparin-bonded polycaprolactone grafts to replace small-diameter arteries. Methods Polycaprolactone was bonded with heparin. The activated partial thromboplastin time of heparin-bonded polycaprolactone grafts was determined in vitro. Small-diameter grafts were electrospun with heparin-bonded polycaprolactone and polycaprolactone and were implanted in dogs to substitute part of the femoral artery. Angiography was used to investigate the patency and aneurysm of the grafts after transplantation. After angiography, the patent grafts were explanted for histology analysis. The degradation of the grafts and the collagen content of the grafts were measured. Results Activated partial thromboplastin time tests in vitro showed that heparin-bonded polycaprolactone grafts exhibit obvious anticoagulation. Arteriography showed that two heparin-bonded polycaprolactone and three polycaprolactone grafts were obstructed. Other grafts were patent, without aneurysm formation. Histological analysis showed that the tested grafts degraded evidently over the implantation time and that the luminal surface of the tested grafts had become covered by endothelial cells. Collagen deposition in heparin-bonded polycaprolactone increased with time. There were no calcifications in the grafts. Gel permeation chromatography showed the heparin-bonded polycaprolactone explants at 12 weeks lose about 32% for Mw and 24% for Mn. The collagen content on the heparin-bonded polycaprolactone grafts increased over time. Conclusion This preliminary study demonstrates that heparin-bonded polycaprolactone is a suitable graft for small artery reconstruction. However, heparin-bonded polycaprolactone degrades more rapidly than polycaprolactone in vivo.
Collapse
Affiliation(s)
- Hong-Yong Duan
- Department of Vascular Surgery, Shanxi Provincial People’s Hospital, Taiyuan, PR China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Xin Wu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Qiang Guan
- Department of Vascular Surgery, Shanxi Provincial People’s Hospital, Taiyuan, PR China
| | - Xiao-Fei Yang
- Department of Vascular Surgery, Shanxi Provincial People’s Hospital, Taiyuan, PR China
| | - Feng Han
- Department of Vascular Surgery, Shanxi Provincial People’s Hospital, Taiyuan, PR China
| | - Ning Liang
- Department of Vascular Surgery, Shanxi Provincial People’s Hospital, Taiyuan, PR China
| | - Zhen-Feng Wang
- Department of Vascular Surgery, Shanxi Provincial People’s Hospital, Taiyuan, PR China
| | - Zhong-Gao Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
47
|
Hettiaratchi MH, Miller T, Temenoff JS, Guldberg RE, McDevitt TC. Heparin microparticle effects on presentation and bioactivity of bone morphogenetic protein-2. Biomaterials 2014; 35:7228-38. [PMID: 24881028 DOI: 10.1016/j.biomaterials.2014.05.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/04/2014] [Indexed: 11/29/2022]
Abstract
Biomaterials capable of providing localized and sustained presentation of bioactive proteins are critical for effective therapeutic growth factor delivery. However, current biomaterial delivery vehicles commonly suffer from limitations that can result in low retention of growth factors at the site of interest or adversely affect growth factor bioactivity. Heparin, a highly sulfated glycosaminoglycan, is an attractive growth factor delivery vehicle due to its ability to reversibly bind positively charged proteins, provide sustained delivery, and maintain protein bioactivity. This study describes the fabrication and characterization of heparin methacrylamide (HMAm) microparticles for recombinant growth factor delivery. HMAm microparticles were shown to efficiently bind several heparin-binding growth factors (e.g. bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (FGF-2)), including a wide range of BMP-2 concentrations that exceeds the maximum binding capacity of other common growth factor delivery vehicles, such as gelatin. BMP-2 bioactivity was assessed on the basis of alkaline phosphatase (ALP) activity induced in skeletal myoblasts (C2C12). Microparticles loaded with BMP-2 stimulated comparable C2C12 ALP activity to soluble BMP-2 treatment, indicating that BMP-2-loaded microparticles retain bioactivity and potently elicit a functional cell response. In summary, our results suggest that heparin microparticles stably retain large amounts of bioactive BMP-2 for prolonged periods of time, and that presentation of BMP-2 via heparin microparticles can elicit cell responses comparable to soluble BMP-2 treatment. Consequently, heparin microparticles present an effective method of delivering and spatially retaining growth factors that could be used in a variety of systems to enable directed induction of cell fates and tissue regeneration.
Collapse
Affiliation(s)
- Marian H Hettiaratchi
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 315 Ferst Drive, Atlanta, GA 30332, USA
| | - Tobias Miller
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 315 Ferst Drive, Atlanta, GA 30332, USA
| | - Johnna S Temenoff
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 315 Ferst Drive, Atlanta, GA 30332, USA; The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA
| | - Robert E Guldberg
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA; The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332, USA
| | - Todd C McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 315 Ferst Drive, Atlanta, GA 30332, USA; The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA.
| |
Collapse
|
48
|
Zhao W, Liu W, Li J, Lin X, Wang Y. Preparation of animal polysaccharides nanofibers by electrospinning and their potential biomedical applications. J Biomed Mater Res A 2014; 103:807-18. [DOI: 10.1002/jbm.a.35187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/24/2014] [Accepted: 03/29/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology; School of Life Sciences, Northwestern Polytechnical University; Xi'an Shaanxi People's Republic of China
| | - Wenlong Liu
- Key Laboratory for Space Biosciences and Biotechnology; School of Life Sciences, Northwestern Polytechnical University; Xi'an Shaanxi People's Republic of China
| | - Jiaojiao Li
- Key Laboratory for Space Biosciences and Biotechnology; School of Life Sciences, Northwestern Polytechnical University; Xi'an Shaanxi People's Republic of China
| | - Xiao Lin
- Key Laboratory for Space Biosciences and Biotechnology; School of Life Sciences, Northwestern Polytechnical University; Xi'an Shaanxi People's Republic of China
| | - Ying Wang
- Key Laboratory for Space Biosciences and Biotechnology; School of Life Sciences, Northwestern Polytechnical University; Xi'an Shaanxi People's Republic of China
| |
Collapse
|
49
|
Ye L, Zhou Y, Zhang A, Feng Z. Preparation and characterization of a smart binary-drug delivery system based on poly(ε-caprolactone)-heparin conjugate. J Control Release 2013. [DOI: 10.1016/j.jconrel.2013.08.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Ye L, Gao Z, Zhou Y, Yin X, Zhang X, Zhang A, Feng Z. A pH-sensitive binary drug delivery system based on poly(caprolactone)-heparin conjugates. J Biomed Mater Res A 2013; 102:880-9. [DOI: 10.1002/jbm.a.34735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Lin Ye
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology; Beijing 100081 China
| | - Zemin Gao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology; Beijing 100081 China
| | - Yu Zhou
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology; Beijing 100081 China
| | - Xuan Yin
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology; Beijing 100081 China
| | - Xinpeng Zhang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology; Beijing 100081 China
| | - Aiying Zhang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology; Beijing 100081 China
| | - Zengguo Feng
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology; Beijing 100081 China
| |
Collapse
|