1
|
Kato-Noguchi H, Kato M. Compounds Involved in the Invasive Characteristics of Lantana camara. Molecules 2025; 30:411. [PMID: 39860280 PMCID: PMC11767948 DOI: 10.3390/molecules30020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Lantana camara L. is native to tropical America and has naturalized in many other tropical, subtropical, and temperate regions in Asia, Africa, Oceania, North and South America, and Europe. L. camara infests diverse habitats with a wide range of climatic factors, and its population increases aggressively as one of the world's 100 worst invasive alien species. Its infestation reduces species diversity and abundance in the natural ecosystems and reduces agricultural production. The life history characteristics of L. camara, such as its high reproductive ability and high adaptive ability to various environmental conditions, may contribute to its ability to infest and increase its population. Possible evidence of the compounds involved in the defense functions of L. camara against natural enemies, such as herbivore mammals and insects, parasitic nematodes, pathogenic fungi and bacteria, and the allelochemicals involved in its allelopathy against neighboring competitive plant species, have accumulated in the literature over three decades. Lantadenes A and B, oleanonic acid, and icterogenin are highly toxic to herbivore mammals, and β-humulene, isoledene, α-copaene thymol, and hexadecanoic acid have high insecticidal activity. β-Caryophyllene and cis-3-hexen-1-ol may function as herbivore-induced plant volatiles which are involved in sending warning signals to undamaged tissues and the next plants of the same species. Farnesol and farnesal may interrupt insect juvenile hormone biosynthesis and cause abnormal metamorphosis of insects. Several triterpenes, such as lantanolic acid, lantoic acid, pomolic acid, camarin, lantacin, camarinin, ursolic acid, and oleanonic acid, have demonstrated nematocidal activity. Lantadene A, β-caryophyllene, germacrene-D, β-curcumene, eicosapentaenoic acid, and loliolide may possess antimicrobial activity. Allelochemicals, such as caffeic acid, ferulic acid, salicylic acid, α-resorcylic acid, p-hydroxybenzoic acid, vanillic acid, unbelliferone, and quercetin, including lantadenes A and B and β-caryophyllene, suppress the germination and growth of neighboring plant species. These compounds may be involved in the defense functions and allelopathy and may contribute to L. camara's ability to infest and to expand its population as an invasive plant species in new habitats. This is the first review to focus on how compounds enhance the invasive characteristics of L. camara.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | | |
Collapse
|
2
|
Nithyanandam A, Saraswathi T, Rani CI, Jena NK, Harish S, Garnepudi SL, Manivannan N, Boopathi NM. Deciphering gene specific molecular characterization and partial gene sequence for combined resistance to tomato leaf curl virus (ToLCV) (Ty-1, Ty-2 and Ty-3), fusarium wilt (I-2) and root- knot nematode (Mi-1) in selected fresh market breeding line of tomato (Solanum lycopersicom L.). Mol Biol Rep 2024; 52:59. [PMID: 39692918 DOI: 10.1007/s11033-024-10150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Tomato (Solanum lycopersicum L.) is a widely cultivated crop in tropical regions, but its production is often hampered by significant losses attributed to diseases like tomato leaf curl virus (ToLCV), fusarium wilt and root-knot nematode. METHODS AND RESULTS This study employed an integrated approach utilizing both co-dominant and dominant SCAR markers, selected for specific resistance genes (ToLCV-Ty-1, Ty-2, Ty-2, Fusarium wilt (Race-2)-I-2, and Root-knot nematode-Mi-1. These markers with their specific gene of interest were used to screen the ten fresh market breeding lines of tomato. The P625 marker played a pivotal role in the identification process of Ty-3 alleles and effectively distinguishing between Ty-3a and Ty-3. I-2/5 (Fusarium wilt I-2), and Mi-23 (Root-knot nematode Mi-1) effectively identified and discriminated between heterozygous and homozygous states of specific genes. All resistant lines and a susceptible line for ToLCV (Ty-1, Ty-2, Ty-3), Fusarium wilt ((Race-2)- I-2) and Root-knot nematode underwent sequencing using specific primer pairs through the Sanger dideoxy technique. The resulting nucleotide sequences were aligned utilizing MEGA7 bioinformatic software and subjected to nucleotide BLAST in the NCBI database to determine sequence per cent identity and query cover, facilitating comparison with other submitted sequences. CONCLUSION The determination of genomic positions for these nucleotide sequences may enable researchers to cartographically pinpoint the locations of genetic variations within the genome.
Collapse
Affiliation(s)
- Arumugam Nithyanandam
- Department of Vegetable Science, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641 037, India.
| | - Thiruvenkatasamy Saraswathi
- Department of Medicinal and Aromatic Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641 037, India
| | - Chandrasekaran Indu Rani
- Department of Vegetable Science, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641 037, India
| | - Nitish Kumar Jena
- Department of Vegetable Science, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641 037, India
| | - Sankarasubramanian Harish
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641 037, India
| | - Sneha Leela Garnepudi
- Department of Vegetable Science, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641 037, India
| | - Narayana Manivannan
- Unit Head, Centre of Excellence in Molecular Breeding, Centre for Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641 037, India
| | - Narayanan Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, (CPMB&B), Tamil Nadu Agricultural University, Coimbatore, 641 037, India
| |
Collapse
|
3
|
Azaryan A, Atighi MR, Shams-Bakhsh M. Infection of tomato plants by tomato yellow leaf curl virus (TYLCV) potentiates the ethylene and salicylic acid pathways to fend off root-knot nematode (Meloidogyne incognita) parasitism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109271. [PMID: 39504658 DOI: 10.1016/j.plaphy.2024.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
In nature, it is common for plants to be infected by multiple pathogens simultaneously, and deciphering the underlying mechanisms of such interactions has remained elusive. The occurrence of root-knot nematode (RKN), Meloidogyne incognita, and tomato yellow leaf curl virus (TYLCV; Begomovirus coheni) has been reported in most tomato cultivation areas. We investigated the interaction between RKN and TYLCV in tomato plants at phenotypic, biochemical, and gene expression levels. Several treatments were considered including mock inoculation, inoculation with TYLCV or RKN alone, simultaneous inoculation with both TYLCV and RKN, and sequential inoculations with a five-day interval. Among them, simultaneous inoculation showed the highest impact on RKN suppression compared to mock-inoculated plants. Biochemical assays in the time-point experiments demonstrated that the pick of defense capacity of plants occurs at 48- and 72-h post-inoculation. Gene expression analyses utilizing marker genes from main hormonal pathways involved in plant defense, including salicylic acid (SA), jasmonic acid (JA), and ethylene (ET), indicated that ET and SA are highly involved in the potentiation of TYLCV-induced defense against RKN. To validate the action of SA and ET in the induction of defense against RKN by TYLCV, transgenic lines deficient in SA (NahG) and ET (ACD) accumulation were co-inoculated with TYLCV and RKN. Both transgenic lines failed to express TYLCV-induced defense against RKN. These findings demonstrate an antagonistic effect of TYLCV against RKN in tomato plants, mediated by SA and ET signaling pathways.
Collapse
Affiliation(s)
- Ayub Azaryan
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Atighi
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Masoud Shams-Bakhsh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Kato-Noguchi H, Kato M. Defense Molecules of the Invasive Plant Species Ageratum conyzoides. Molecules 2024; 29:4673. [PMID: 39407602 PMCID: PMC11478290 DOI: 10.3390/molecules29194673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Ageratum conyzoides L. is native to Tropical America, and it has naturalized in many other tropical, subtropical, and temperate countries in South America, Central and Southern Africa, South and East Asia, Eastern Austria, and Europe. The population of the species has increased dramatically as an invasive alien species, and it causes significant problems in agriculture and natural ecosystems. The life history traits of Ageratum conyzoides, such as its short life cycle, early reproductive maturity, prolific seed production, and high adaptive ability to various environmental conditions, may contribute to its naturalization and increasing population. Possible evidence of the molecules involved in the defense of Ageratum conyzoides against its natural enemies, such as herbivore insects and fungal pathogens, and the allelochemicals involved in its competitive ability against neighboring plant species has been accumulated in the literature. The volatiles, essential oils, extracts, residues, and/or rhizosphere soil of Ageratum conyzoides show insecticidal, fungicidal, nematocidal, and allelopathic activity. The pyrrolizidine alkaloids lycopsamine and echinatine, found in the species, are highly toxic and show insecticidal activity. Benzopyran derivatives precocenes I and II show inhibitory activity against insect juvenile hormone biosynthesis and trichothecene mycotoxin biosynthesis. A mixture of volatiles emitted from Ageratum conyzoides, such as β-caryophyllene, β-bisabolene, and β-farnesene, may work as herbivore-induced plant volatiles, which are involved in the indirect defense function against herbivore insects. Flavonoids, such as nobiletin, eupalestin, 5'-methoxynobiletin, 5,6,7,3',4',5'-hexamethoxyflavone, and 5,6,8,3,4',5'-hexamethoxyflavone, show inhibitory activity against the spore germination of pathogenic fungi. The benzoic acid and cinnamic acid derivatives found in the species, such as protocatechuic acid, gallic acid, p-coumaric acid, p-hydroxybenzoic acid, and ferulic acid, may act as allelopathic agents, causing the germination and growth inhibition of competitive plant species. These molecules produced by Ageratum conyzoides may act as defense molecules against its natural enemies and as allelochemicals against neighboring plant species, and they may contribute to the naturalization of the increasing population of Ageratum conyzoides in new habitats as an invasive plant species. This article presents the first review focusing on the defense function and allelopathy of Ageratum conyzoides.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | | |
Collapse
|
5
|
Han J, Zhu J, Liu S, Sun X, Wang S, Miao G. Enhancing tomato disease resistance through endogenous antifungal proteins and introduced nematode-targeting dsRNA of biocontrol agent Bacillus velezensis HS-3. PEST MANAGEMENT SCIENCE 2024; 80:3839-3851. [PMID: 38511614 DOI: 10.1002/ps.8087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND As a type of biological control agent (BCA), Bacillus velezensis possesses the efficacy of inhibiting pathogenic microorganisms, promoting plant growth, and overcoming continuous cropping obstacles (CCOs). However, there is limited reporting on the optimization of the cultivation conditions for such biocontrol agents and their role as double-stranded RNA (dsRNA) delivery vectors. RESULTS In this study, a Bacillus velezensis strain HS-3 was isolated from the root zone of tomato plants with in vitro anti-Botrytis cinerea activity. The investigation into active compounds revealed that HS-3 predominantly employs proteins with molecular weights greater than 3 kDa for its antifungal activity. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis identified various proteases and chitosanase, further suggesting that HS-3 most likely employs these enzymes to degrade fungal cell walls for its antifungal effect. To optimize the production of extracellular proteins, fermentation parameters for HS-3 were systematically optimized, leading to an optimized medium (OP-M). HS-3 cultured in OP-M demonstrated enhanced capacity to assist tomato plants in withstanding CCOs. However, the presence of excessive nematodes in diseased soil resulted in the disease severity index (DSI) remaining high. An RNA interference mechanism was further introduced to HS-3, targeting the nematode tyrosine phosphatase (TP) gene. Ultimately, HS-3 expressing dsRNA of TP in OP-M effectively assisted tomatoes in mitigating CCOs, reducing DSI to 2.2% and 17.8% of the control after 45 and 90 days of growth, respectively. CONCLUSION The advantages of Bacillus velezensis in crop disease management and the mitigation of CCOs become even more pronounced when utilizing both optimized levels of endogenous enzymes and introduced nematode-targeting dsRNA. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Juan Han
- Department of Bioengineering, Huainan Normal University, Huainan, China
- Institute of Digital Ecology and Health, Huainan Normal University, Huainan, China
| | - Jinchi Zhu
- Department of Bioengineering, Huainan Normal University, Huainan, China
| | - Shuyuan Liu
- Department of Bioengineering, Huainan Normal University, Huainan, China
| | - Xuehan Sun
- Department of Bioengineering, Huainan Normal University, Huainan, China
| | - Shunchang Wang
- Department of Bioengineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan, China
- Institute of Digital Ecology and Health, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| |
Collapse
|
6
|
Dutta TK, Rupinikrishna K, Akhil VS, Vashisth N, Phani V, Pankaj, Sirohi A, Chinnusamy V. CRISPR/Cas9-induced knockout of an amino acid permease gene (AAP6) reduced Arabidopsis thaliana susceptibility to Meloidogyne incognita. BMC PLANT BIOLOGY 2024; 24:515. [PMID: 38851681 PMCID: PMC11162074 DOI: 10.1186/s12870-024-05175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Plant-parasitic root-knot nematode (Meloidogyne incognita) causes global yield loss in agri- and horticultural crops. Nematode management options rely on chemical method. However, only a handful of nematicides are commercially available. Resistance breeding efforts are not sustainable because R gene sources are limited and nematodes have developed resistance-breaking populations against the commercially available Mi-1.2 gene-expressing tomatoes. RNAi crops that manage nematode infection are yet to be commercialized because of the regulatory hurdles associated with transgenic crops. The deployment of the CRISPR/Cas9 system to improve nematode tolerance (by knocking out the susceptibility factors) in plants has emerged as a feasible alternative lately. RESULTS In the present study, a M. incognita-responsive susceptibility (S) gene, amino acid permease (AAP6), was characterized from the model plant Arabidodpsis thaliana by generating the AtAAP6 overexpression line, followed by performing the GUS reporter assay by fusing the promoter of AtAAP6 with the β-glucuronidase (GUS) gene. Upon challenge inoculation with M. incognita, overexpression lines supported greater nematode multiplication, and AtAAP6 expression was inducible to the early stage of nematode infection. Next, using CRISPR/Cas9, AtAAP6 was selectively knocked out without incurring any growth penalty in the host plant. The 'Cas9-free' homozygous T3 line was challenge inoculated with M. incognita, and CRISPR-edited A. thaliana plants exhibited considerably reduced susceptibility to nematode infection compared to the non-edited plants. Additionally, host defense response genes were unaltered between edited and non-edited plants, implicating the direct role of AtAAP6 towards nematode susceptibility. CONCLUSION The present findings enrich the existing literature on CRISPR/Cas9 research in plant-nematode interactions, which is quite limited currently while compared with the other plant-pathogen interaction systems.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Katakam Rupinikrishna
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Voodikala S Akhil
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neeraj Vashisth
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya (UBKV), Balurghat, 733133, India
| | - Pankaj
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
7
|
Leonetti P, Dallera D, De Marchi D, Candito P, Pasotti L, Macovei A. Exploring the putative microRNAs cross-kingdom transfer in Solanum lycopersicum-Meloidogyne incognita interactions. FRONTIERS IN PLANT SCIENCE 2024; 15:1383986. [PMID: 38784062 PMCID: PMC11114104 DOI: 10.3389/fpls.2024.1383986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Introduction Plant-pathogen interaction is an inexhaustible source of information on how to sustainably control diseases that negatively affect agricultural production. Meloidogyne incognita is a root-knot nematode (RKN), representing a pest for many crops, including tomato (Solanum lycopersicum). RKNs are a global threat to agriculture, especially under climate change, and RNA technologies offer a potential alternative to chemical nematicides. While endogenous microRNAs have been identified in both S. lycopersicum and M. incognita, and their roles have been related to the regulation of developmental changes, no study has investigated the miRNAs cross-kingdom transfer during this interaction. Methods Here, we propose a bioinformatics pipeline to highlight potential miRNA-dependent cross-kingdom interactions between tomato and M. incognita. Results The obtained data show that nematode miRNAs putatively targeting tomato genes are mostly related to detrimental effects on plant development and defense. Similarly, tomato miRNAs putatively targeting M. incognita biological processes have negative effects on digestion, mobility, and reproduction. To experimentally test this hypothesis, an in vitro feeding assay was carried out using sly-miRNAs selected from the bioinformatics approach. The results show that two tomato miRNAs (sly-miRNA156a, sly-miR169f) soaked by juvenile larvae (J2s) affected their ability to infect plant roots and form galls. This was also coupled with a significant downregulation of predicted target genes (Minc11367, Minc00111), as revealed by a qRT-PCR analysis. Discussions Therefore, the current study expands the knowledge related to the cross-kingdom miRNAs involvement in host-parasite interactions and could pave the way for the application of exogenous plant miRNAs as tools to control nematode infection.
Collapse
Affiliation(s)
- Paola Leonetti
- Institute for Sustainable Plant Protection of the National Research Council, Unit of Bari, Bari, Italy
| | - Debora Dallera
- Laboratory of Bioinformatics, Mathematical Modelling, and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering - Centre for Health Technology, University of Pavia, Pavia, Italy
| | - Davide De Marchi
- Laboratory of Bioinformatics, Mathematical Modelling, and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering - Centre for Health Technology, University of Pavia, Pavia, Italy
| | - Pamela Candito
- Laboratory of Bioinformatics, Mathematical Modelling, and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering - Centre for Health Technology, University of Pavia, Pavia, Italy
| | - Lorenzo Pasotti
- Laboratory of Bioinformatics, Mathematical Modelling, and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering - Centre for Health Technology, University of Pavia, Pavia, Italy
| | - Anca Macovei
- Plant Biotechnology Laboratory, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Ramadwa TE, Makhubu FN, Eloff JN. The activity of leaf extracts, fractions, and isolated compounds from Ptaeroxylon obliquum against nine phytopathogenic fungi and the nematode Meloidogyne incognita. Heliyon 2024; 10:e28920. [PMID: 38596024 PMCID: PMC11002690 DOI: 10.1016/j.heliyon.2024.e28920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Phytopathogenic fungi and nematodes cause great losses in economically important crops and food production especially in developing countries. To minimize the use of fungicides and nematicides, researchers have concentrated on the use of natural products for crop disease prevention or control. The aim of the study was to investigate the antifungal activity of Ptaeroxylon obliquum leaf extracts, fractions, and isolated compounds (obliquumol and a mixture of lupeol and β-amyrin) and nematocidal activity of fractions (hexane, chloroform and 30% water in methanol and the isolated compounds) on Meloidogyne incognita. Nine phytopathogenic fungi (Aspergillus niger, A. parasiticus, Colletotrichum gloeosporioides, Fusarium oxysporum, Penicillium digitatum, P. expansum, P. italicum, P. janthinellum, and Rhizoctonia solani) were used for testing and nematocidal activity was determined on motility of plant parasitic nematode Meloidogyne incognita race 2 juveniles. Serial microdilution test was utilized to determine the minimum inhibitory concentration (MIC) of each sample against the fungus. Motility tests was done on the second-stage juveniles (J2s) of M. incognita. The most susceptible phytopathogenic fungal species to the acetone crude leaf extracts were A. niger, C. gloeosporioides and P. digitatum with MIC of 80 μg/ml which is considered pharmacological significant. Rhizoctonia solani was the most susceptible fungus against obliquumol and, lupeol and β-amyrin mixture with MIC values of 8 μg/ml and 16 μg/ml respectively. Lupeol & β-amyrin mixture had good activity on juvenile motility at high concentrations used which was significantly high (p ≤ 0.05) after 24 h, further incubation resulted in temporary paralysis at lower concentrations. Fractions and obliquumol showed good activity after 48 h, stable paralysis was observed up to 72 h. The extracts and isolated compounds may be useful as fungicides if the in vitro results can be confirmed under field conditions at levels not toxic to beneficial soil organisms.
Collapse
Affiliation(s)
- Thanyani Emelton Ramadwa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, Florida Campus, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Fikile Nelly Makhubu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Florida Campus, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Jacobus Nicolaas Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa
| |
Collapse
|
9
|
M D, Kamra A, Singh D, Gawade B, Sirohi A. Plant growth promoting Bacillus species elicit defense against Meloidogyne incognita infecting tomato in polyhouse. J Basic Microbiol 2023; 63:1233-1241. [PMID: 37528495 DOI: 10.1002/jobm.202300146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 08/03/2023]
Abstract
The effects of four nematicidal rhizobacterial isolates; Bacillus subtilis, Bacillus pumilus, Bacillus megaterium, and Bacillus cereus on infection and multiplication of root-knot nematode, Meloidogyne incognita on tomato were compared with the application of a chemical nematicide, fluopyram 34.48% SC (Velum Prime). The bio-efficacy trial conducted in pots preinoculated with the above isolates followed by M. incognita inoculation resulted in a significant reduction in percent root galling viz. 91.95 in B. subtilis, 84.21 in B. pumilus, 83.70 in B. megaterium, and 81.8 in B. cereus, at 75 days after inoculation (DAI). The reproduction factor of the nematode was the lowest (15.83) in B. subtilis, followed by B. pumilus (21.00), compared with 48.16 in control, with enhanced photosynthetic and transpiration rates. The mechanism of induced resistance was assessed using quantitative reverse-transcription polymerase chain reaction (qRT-PCR) for quantification of three key defense genes (PR-1b, JERF3, and CAT) at 0,2,4,8 and16 days DAI. The defence genes, PR-1b, JERF3, and CAT were expressed at 2.5-7.5-folds in rhizobacterialtreated plants, but not in nematicide treatment. The defense enzymes viz., super oxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (PO), and phenylalanine ammonia lyase (PAL) when quantified (μmol/mg protein) showed an increase from 1.5 to 17.5 for SOD, 2.1 to 7.8 in PPO, 1.8 to 10.2 in PO, and 1.8 to 8.7 in PAL during 0 to 16 DAI, in rhizobacteria-treated plants.
Collapse
Affiliation(s)
- Devindrappa M
- Division of Crop Protection, Indian Institute of Pulse Research, IIPR, Kanpur, Uttar Pradesh, India
| | - Anju Kamra
- Division of Nematology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Bharat Gawade
- Division of Plant Quarantine, ICAR- National Bureau of Plant Genetic Resources, Pusa, New Delhi, India
| | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| |
Collapse
|
10
|
Rehman FU, Paker NP, Khan M, Naeem M, Munis MFH, Rehman SU, Chaudhary HJ. Bio-fabrication of zinc oxide nanoparticles from Picea smithiana and their potential antimicrobial activities against Xanthomonas campestris pv. Vesicatoria and Ralstonia solanacearum causing bacterial leaf spot and bacterial wilt in tomato. World J Microbiol Biotechnol 2023; 39:176. [PMID: 37115313 DOI: 10.1007/s11274-023-03612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Due to an inevitable disadvantage of chemical or physical synthesis routes, biosynthesis approach to nanoparticles, especially metallic oxide is attractive nowadays. Metallic oxides nanoparticles present a new approach to the control of plant pathogens. ZnO nanoparticles (ZNPs) have very important role in phytopathology. In current study, biosynthesized ZNPs were tested against two devastating bacterial pathogens including Xanthomonas campestris pv. vesicatoria and Ralstonia solanacearum causing bacterial leaf spot and bacterial wilt in tomato. ZNPs were produced using a new extract from the plant Picea smithiana using an environmentally friendly, cost-effective and simple procedure. Zinc acetate was added to P. smithiana extract, stirred and heated to 200 °C. The white precipitation at the bottom were clear indication of synthesis of nanoparticles, which were further dried by subjecting them at 450 °C. X-ray diffraction pattern determined that the ZNPs had a crystallite size of about 26 nm, Fourier transform infrared spectroscopy indicated a peak between 450 and 550 cm-1 and the particle size estimated by dynamic light scattering was about 25 nm on average. Scanning electron microscopic analysis indicated that the particles were hexagonal in shape 31 nm in diameter. Antibacterial tests showed ZNPs synthesized by P. smithiana resulted in clear inhibition zones of 20.1 ± 1.5 and 18.9 ± 1.5 mm and 44.74 and 45.63% reduction in disease severity and 78.40 and 80.91% reduction in disease incidence in X. compestris pv. vesicatoria and R. solanacearum respectively at concentration of 100 µg/ml. Our findings reveal that the concentration of ZNPs was important for their efficient antibacterial activity. Overall, the biosynthesized ZNPs have been found to have effective antimicrobial activities against bacterial wilt and bacterial leaf spot in tomato.
Collapse
Affiliation(s)
- Fazal Ur Rehman
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Najeeba Paree Paker
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Mohsin Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Naeem
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shafiq Ur Rehman
- Department of Botany, University of Okara, Okara, 56300, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
11
|
Sikandar A, Jia L, Wu H, Yang S. Meloidogyne enterolobii risk to agriculture, its present status and future prospective for management. FRONTIERS IN PLANT SCIENCE 2023; 13:1093657. [PMID: 36762171 PMCID: PMC9902769 DOI: 10.3389/fpls.2022.1093657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Meloidogyne enterolobii, commonly known as guava root-knot nematode, poses risk due to its widespread distribution and extensive host range. This species is recognized as the most virulent root-knot nematode (RKN) species because it can emerge and breed in plants that have resistance to other tropical RKNs. They cause chlorosis, stunting, and yield reductions in host plants by producing many root galls. It is extremely challenging for farmers to diagnose due to the symptoms' resemblance to nutritional inadequacies. This pathogen has recently been considered a significant worldwide threat to agricultural production. It is particularly challenging to diagnose a M. enterolobii due to the similarities between this species and other RKN species. Identified using traditional morphological and molecular techniques, which is a crucial first in integrated management. Chemical control, biological control, the adoption of resistant cultivars, and cultural control have all been developed and effectively utilized to combat root-knot nematodes in the past. The object of this study was to get about the geographical distribution, host plants, symptoms, identification, and control techniques of M. enterolobii and recommend future initiatives to progress its management.
Collapse
|
12
|
Talavera-Rubia M, Vela-Delgado MD, Verdejo-Lucas S. A Cost-Benefit Analysis of Soil Disinfestation Methods against Root-Knot Nematodes in Mediterranean Intensive Horticulture. PLANTS (BASEL, SWITZERLAND) 2022; 11:2774. [PMID: 36297797 PMCID: PMC9607077 DOI: 10.3390/plants11202774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Losses caused by phytoparasitic nematodes in crops depend directly on their soil densities at the start of the crop, so reducing their populations before planting is the main aim of nematological management. Efficacies in reducing Meloidogyne soil populations of soil disinfestation methods, such as agrochemicals, botanicals, or biosolarization were estimated on multiple field trials conducted over fourteen years in intensive horticultural crops. Soil nematode populations were reduced by 87 to 78% after fumigation with 1,3-dichloropropene + chloropicrin and dimethyl-disulphide, respectively. Non-fumigant nematicides such as azadirachtin, dazomet, fenamiphos, fluopyram, fosthiazate, metam-sodium, and oxamyl showed efficacies ranging from 51 to 64%, whereas the efficacy of natural products, such as abamectin, garlic extracts, or essential oils was 41 to 48%. Biosolarization with chicken manure had an efficacy of 73%. An economic cost-benefit study of nematode management methods was performed for seven vegetable-M. incognita pathosystems. Fumigation with 1,3-dichloropropene + chloropicrin and biosolarization with chicken manure were the only treatments able to reduce RKN populations above 1000 and 750 J2 per 100 cm3 of soil, respectively, to levels below the nematode economic damage threshold, keeping profitability. Fumigation was able to manage RKN soil densities up to 350 J2 per 100 cm3 of soil in most susceptible crops as aubergine or cucumber and up to 1000 J2 per 100 cm3 of soil for more tolerant crops, such as other cucurbits, pepper, or tomato. Other nematicidal treatments were not able to reduce RKN populations above 200-300 J2/100 cm3 of soil below the economic thresholds but were profitable when RKN densities were below the limits of 200-300 J2/100 cm3 of soil.
Collapse
Affiliation(s)
- Miguel Talavera-Rubia
- Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), IFAPA Centro Alameda del Obispo, Av. Menéndez Pidal s/n, 14004 Cordoba, Cordoba, Spain
| | - María Dolores Vela-Delgado
- Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), IFAPA Centro Rancho de la Merced, Carretera Cañada de la Loba CA-3102, Km. 3,1, 11471 Jerez de la Frontera, Cadiz, Spain
| | - Soledad Verdejo-Lucas
- Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), IFAPA Centro La Mojonera, Autovía del Mediterráneo, Salida 420, Paraje San Nicolás, 04745 La Mojonera, Almeria, Spain
| |
Collapse
|
13
|
Churikova AK, Nekoval SN. Biological agents and their metabolites to control <i>Meloidogyne</i> spp. when growing vegetables (review). SOUTH OF RUSSIA: ECOLOGY, DEVELOPMENT 2022. [DOI: 10.18470/1992-1098-2022-3-175-186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aim. Analysis of modern studies on the effectiveness of fungi and antagonist bacteria against Meloidogyne root‐knot nematodes on vegetable crops.Materials and Methods. Studies of Russian and foreign scientists on the use of biological agents and their metabolites to control Meloidogyne spp. when growing vegetables have been carefully analysed.Results. The harmfulness of gall nematodes on vegetable crops is described. Studies on the most pathogenic species of Meloidogyne, including those common in Russia, are summarised. Information is given regarding features of the relationship between the host plant and phytoparasites are highlighted. An analysis of the range of chemical and biological nematicides is presented. The problem of the lack of effective environmentally friendly products able to control root‐knot nematodes on vegetables, including the prospect of using biological agents, has been identified. The features of ongoing research on the study of the nematicidal activity of biological agents and their metabolites to control various stages of development of Meloidogyne species have been collected, analysed, systematised and described. The prospect of studying the mechanisms of action of microorganisms against root‐knot nematodes is substantiated in order to create new effective biological nematicides that allow the growth of high‐quality and healthy vegetable products.Conclusion. Gall nematodes (Meloidogyne spp.) remain a current pest of soil‐grown vegetables. Scientists are actively working on the study of nematophagous fungi and antagonist bacteria to create environmentally friendly biological nematicides. With proper use, biological agents and their metabolites can help protect plants from phytoparasites at the level of chemical nematicides and have an additional beneficial effect on the growth and development of vegetable crops.
Collapse
Affiliation(s)
| | - S. N. Nekoval
- Federal Research Center of Biological Plant Protection
| |
Collapse
|
14
|
Meloidogyne Haplanaria: An Emerging Threat to Tomato Production in Florida. J Nematol 2022; 54:20220032. [PMID: 36338421 PMCID: PMC9583418 DOI: 10.2478/jofnem-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 11/09/2022] Open
Abstract
The Mi-gene is widely used in different tomato cultivars to resist several Meloidogyne spp. (root-kot nematode; RKN), including M. incognita, M. javanica, and M. arenaria. Tomato cultivars with the Mi-gene are widely used in fields. However, factors such as temperatures, high initial population densities, and gene dosage can interfere with the expression of this gene. In addition, the presence of virulent species of RKN can limit the usefulness of the gene. One of the virulent species is M. haplanaria, which was identified infecting RKN-resistant tomato in Florida in 2015. The objectives of this study were to determine the initial damage threshold of M. haplanaria on tomato under greenhouse conditions and to analyze the impact of temperature and genetic background on virulence in tomato cultivars. The results showed a preliminary damage threshold of three eggs and J2/cm3 of soil. In addition, it was observed that M. haplanaria has a shorter life cycle than the virulent M. enterolobii and can infect, reproduce, and damage homozygous or heterozygous RKN-resistant tomato plants. This research demonstrated that M. haplanaria should be considered highly virulent on RKN-resistant tomato and is an important threat to agriculture in Florida.
Collapse
|
15
|
Singh RR, Wesemael WML. Endophytic Paenibacillus polymyxa LMG27872 inhibits Meloidogyne incognita parasitism, promoting tomato growth through a dose-dependent effect. FRONTIERS IN PLANT SCIENCE 2022; 13:961085. [PMID: 36186028 PMCID: PMC9516289 DOI: 10.3389/fpls.2022.961085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
The root-knot nematode, Meloidogyne incognita, is a major pest in tomato production. Paenibacillus polymyxa, which is primarily found in soil and colonizing roots, is considered a successful biocontrol organism against many pathogens. To evaluate the biocontrol capacity of P. polymyxa LMG27872 against M. incognita in tomato, experiments were conducted both in vitro and in vivo. A dose-response effect [30, 50, and 100% (108 CFU/mL)] of bacterial suspensions (BSs) on growth and tomato susceptibility to M. incognita with soil drenching as a mode of application was first evaluated. The results show that the biological efficacy of P. polymyxa LMG27872 against M. incognita parasitism in tomato was dose-dependent. A significantly reduced number of galls, egg-laying females (ELF), and second-stage juveniles (J2) were observed in BS-treated plants, in a dose-dependent manner. The effect of P. polymyxa on tomato growth was also dose-dependent. A high dose of BSs had a negative effect on growth; however, this negative effect was not observed when the BS-treated plants were challenged with M. incognita, indicating tolerance or a defense priming mechanism. In subsequent in vivo experiments, the direct effect of BSs was evaluated on J2 mortality and egg hatching of M. incognita. The effect of BS on J2 mortality was observed from 12 to 24 h, whereby M. incognita J2 was significantly inhibited by the BS treatment. The effect of P. polymyxa on M. incognita egg hatching was also dependent on the BS dose. The results show a potential of P. polymyxa LMG27872 to protect plants from nematode parasitism and its implementation in integrated nematode management suitable for organic productions.
Collapse
Affiliation(s)
- Richard Raj Singh
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wim M. L. Wesemael
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Plant Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| |
Collapse
|
16
|
Maleita C, Esteves I, Braga MEM, Figueiredo J, Gaspar MC, Abrantes I, de Sousa HC. Juglone and 1,4-Naphthoquinone-Promising Nematicides for Sustainable Control of the Root Knot Nematode Meloidogyne luci. FRONTIERS IN PLANT SCIENCE 2022; 13:867803. [PMID: 35656011 PMCID: PMC9152545 DOI: 10.3389/fpls.2022.867803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/19/2022] [Indexed: 05/16/2023]
Abstract
The scarce availability of efficient and eco-friendly nematicides to control root-knot nematodes (RKN), Meloidogyne spp., has encouraged research toward the development of bionematicides. Naphthoquinones, juglone (JUG) and 1,4-naphthoquinone (1,4-NTQ), are being explored as alternatives to synthetic nematicides to control RKN. This study expands the knowledge on the effects of these natural compounds toward M. luci life cycle (mortality, hatching, penetration, reproduction). M. luci second-stage juveniles (J2)/eggs were exposed to each compound (250, 150, 100, 50, and 20 ppm) to monitor nematode mortality and hatching during 72 h and 15 days, respectively. Tomato seedlings were then inoculated with 200 J2, which had been exposed to JUG/1,4-NTQ for 3 days. The number of nematodes inside the roots was determined at 3 days after inoculation, and the final population density was assessed at 45 days after inoculation. Moreover, the potential mode of action of JUG/1,4-NTQ was investigated for the first time on RKN, through the assessment of reactive oxygen species (ROS) generation, acetylcholinesterase (AChE) in vitro inhibitory activity and expression analysis of ache and glutathione-S-transferase (gst) genes. 1,4-NTQ was the most active compound, causing ≥50% J2 mortality at 250 ppm, within 24 h. At 20 and 50 ppm, hatching was reduced by ≈50% for both compounds. JUG showed a greater effect on M. luci penetration and reproduction, decreasing infection by ≈80% (50 ppm) on tomato plants. However, 1,4-NTQ-induced generation of ROS and nematode vacuolization was observed. Our study confirms that JUG/1,4-NTQ are promising nematicidal compounds, and new knowledge on their physiological impacts on Meloidogyne was provided to open new avenues for the development of innovative sustainable nematicides.
Collapse
Affiliation(s)
- Carla Maleita
- Department of Chemical Engineering, Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Centre for Functional Ecology – Science for People and the Planet, University of Coimbra, Coimbra, Portugal
| | - Ivânia Esteves
- Department of Life Sciences, Centre for Functional Ecology – Science for People and the Planet, University of Coimbra, Coimbra, Portugal
| | - Mara E. M. Braga
- Department of Chemical Engineering, Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal
| | - Joana Figueiredo
- Department of Life Sciences, Centre for Functional Ecology – Science for People and the Planet, University of Coimbra, Coimbra, Portugal
| | - Marisa C. Gaspar
- Department of Chemical Engineering, Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal
| | - Isabel Abrantes
- Department of Life Sciences, Centre for Functional Ecology – Science for People and the Planet, University of Coimbra, Coimbra, Portugal
| | - Hermínio C. de Sousa
- Department of Chemical Engineering, Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Wang D, Li M, Yuan C, Fang Y, Zhang Z. Bioassay-Guided Isolation of Nematicidal Artemisinic Acid and Dihydroartemisinic Acid from Artemisia annua L. and Evaluation of Their Activity against Meloidogyne incognita. Chem Biodivers 2022; 19:e202200083. [PMID: 35344268 DOI: 10.1002/cbdv.202200083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
The extract of Artemisia annua L. has been shown to possess the nematicidal activity but the potent constituents were unclear. Herein, two nematicidal sesquiterpenoid acids artemisinic acid (ArA) and dihydroartemisinic acid (DHArA) were isolated from the methanol extract of the aerial parts of A. annua L. by the bioassay-guided isolation method using Meloidogyne incognita second stage juveniles (J2s) as the screening target. The in vitro activity, control efficacy in the pot experiment, and toxic effects of these two natural compounds against M. incognita were evaluated. The in vitro results showed that the EC50/48h values of ArA and DHArA were 0.37 mM and 0.76 mM against J2s, respectively. In the pot experiment, ArA and DHArA at the dose of 5 mg (a.i.)/pot could achieve the same level of control efficacy compared with avermectins at 2 mg (a.i.)/pot. Microscopic observations indicated the obvious toxic symptoms of J2s after ArA- and DHArA-treatment, including the shrinking body, imperfect body wall, and undiscerning organs. The physiological and biochemical studies, together with the toxic symptoms, revealed that ArA and DHArA had great impacts on the membrane system of J2s. Additionally, ArA occurring the α, β-unsaturated carbonyl was demonstrated to be reactive with glutathione (GSH) and cause the decrease of GSH content in J2s. Taken together, the present study suggests that ArA and DHArA or ArA- and DHArA-based extracts of A. annua L. have a substantial potential to be used as botanical agents for integrated disease management programs against root-knot nematodes in crop protection.
Collapse
Affiliation(s)
- Delong Wang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030001, China
| | - Min Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030001, China
| | - Chunxia Yuan
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030001, China
| | - Yali Fang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030001, China
| | - Zhijia Zhang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030001, China
| |
Collapse
|
18
|
Das S, Wadud MA, Chakraborty S, Khokon MAR. Biorational management of root-knot of brinjal (Solanum melongena L.) caused by Meloidogyne javanica. Heliyon 2022; 8:e09227. [PMID: 35392394 PMCID: PMC8980756 DOI: 10.1016/j.heliyon.2022.e09227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/26/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Production of brinjal (Solanum melongena L.) is considerably reduced by infestations of root-knot nematodes (RKN). As chemical pesticides are increasingly being regulated globally, scientists are focusing on biorational management. An experiment was undertaken to screen resistant brinjal cultivars in Bangladesh against Meloidogyne javanica in a pot trial. Pot and field trials were also conducted to evaluate the efficacy and profitability of individual and combined applications of several biorational components to manage M. javanica on brinjal. Of twenty brinjal cultivars screened, cv. Noagram was found ‘moderately resistant’ and others were ‘susceptible’ to ‘highly susceptible’ against M. javanica. In both pot and field trials, most of the growth parameters of brinjal and reproductive parameters of M. javanica were significantly different than the control for both the individual and combined treatments of different biorational components which included cabbage, marigold, vermicompost, biogas digestate, Bacillus subtilis and Pseudomonas fluorescens. The yield was significantly higher for the combined treatments than the individual applications. The benefit-cost ratio (BCR) differed among the treatments. The highest yield (29.5 t/ha) and BCR (3.67) with the lowest reproductive factor (0.33) was obtained by the combined application of biogas digestate and B. subtilis. This is the first report on the efficiency and profitability assessment of biogas digestate in combination with a bio-agent in addressing the management of RKN, which might be very important considering the global concern of environmental pollution. The cultivar Noagram might be a potential source of resistant genes in brinjal against M. javanica.
Collapse
Affiliation(s)
- Sukalpa Das
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Agricultural Extension, Bangladesh
| | - Md. Abdul Wadud
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Bangladesh Agricultural Research Institute, Bangladesh
| | - Shila Chakraborty
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Atiqur Rahman Khokon
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Corresponding author.
| |
Collapse
|
19
|
Nematicidal activity of seaweed-synthesized silver nanoparticles and extracts against Meloidogyne incognita on tomato plants. Sci Rep 2022; 12:3841. [PMID: 35264583 PMCID: PMC8907182 DOI: 10.1038/s41598-022-06600-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/31/2022] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study was to test the nematicidal activity of extracts of two marine algae (Colpomenia sinuosa and Corallina mediterranea) and their synthesized silver nanoparticles against root-knot nematodes (Meloidogyne incognita) that infest tomato plants. Scanning electron microscopy (SEM) revealed that nanoparticles had aggregated into anisotropic Ag particles, and transmission electron microscopy (TEM) revealed that the particle sizes were less than 40 nm. Fourier Transform Infrared Spectroscopy (FT-IR) analysis revealed that the obtained nanoparticles had a sharp absorbance between 440 and 4000 cm-1, with 13 distinct peaks ranging from 474 to 3915 cm-1. Methylene chloride extracts and nanoparticles synthesized from both algae species were used to treat M. incognita. C. sinuosa nanoparticles had the highest nematicidal activity of any treatment. Furthermore, and in contrast to other treatments, C. sinuosa nanoparticles reduced the number of nematode galls, egg-masses per root, and eggs/egg mass, while also improving plant growth parameters. C. sinuosa's methylene chloride extract was more active than C. mediterranea's, and the most effective eluent of this solvent was hexane: methylene chloride: ethyl acetate (1: 0.5: 0.5, v/v/v). When applied to M. incognita, the third fraction of this eluent was the most effective, resulting in 87.5% mortality after 12 h and 100% mortality after 24 and 72 h of exposure. The presence of seven bioactive constituents was discovered during the analysis of this fraction. In conclusion, the silver nanoparticles synthesized from C. sinuosa could be used as alternative chemical nematicides.
Collapse
|
20
|
De Kesel J, Degroote E, Nkurunziza R, Singh RR, Demeestere K, De Kock K, Anggraini R, Matthys J, Wambacq E, Haesaert G, Debode J, Kyndt T. Cucurbitaceae COld Peeling Extracts (CCOPEs) Protect Plants From Root-Knot Nematode Infections Through Induced Resistance and Nematicidal Effects. FRONTIERS IN PLANT SCIENCE 2022; 12:785699. [PMID: 35154177 PMCID: PMC8826469 DOI: 10.3389/fpls.2021.785699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
With nematicides progressively being banned due to their environmental impact, an urgent need for novel and sustainable control strategies has arisen. Stimulation of plant immunity, a phenomenon referred to as "induced resistance" (IR), is a promising option. In this study, Cucurbitaceae COld Peeling Extracts (CCOPEs) were shown to protect rice (Oryza sativa) and tomato (Solanum lycopersicum) against the root-knot nematodes Meloidogyne graminicola and Meloidogyne incognita, respectively. Focusing on CCOPE derived from peels of melon (Cucumis melo var. cantalupensis; mCOPE), we unveiled that this extract combines an IR-triggering capacity with direct nematicidal effects. Under lab conditions, the observed resistance was comparable to the protection obtained by commercially available IR stimuli or nematicides. Via mRNA sequencing and confirmatory biochemical assays, it was proven that mCOPE-IR in rice is associated with systemic effects on ethylene accumulation, reactive oxygen species (ROS) metabolism and cell wall-related modifications. While no negative trade-offs were detected with respect to plant growth or plant susceptibility to necrotrophic pests or pathogens, additional infection experiments indicated that mCOPE may have a predominant activity toward biotrophs. In summary, the presented data illustrate a propitious potential for these extracts, which can be derived from agro-industrial waste streams.
Collapse
Affiliation(s)
- Jonas De Kesel
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eva Degroote
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Radisras Nkurunziza
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard Raj Singh
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Karen De Kock
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Riska Anggraini
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jasper Matthys
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eva Wambacq
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jane Debode
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Hajihassani A, Marquez J, Woldemeskel M, Hamidi N. Identification of Four Populations of Meloidogyne incognita in Georgia, United States, Capable of Parasitizing Tomato-Bearing Mi-1.2 Gene. PLANT DISEASE 2022; 106:137-143. [PMID: 34410860 DOI: 10.1094/pdis-05-21-0902-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Meloidogyne incognita, the southern root-knot nematode (RKN), is the most predominant plant-parasitic nematode species of tomato and causes significant yield loss. The Mi-1.2 gene confers resistance in tomatoes to M. incognita; however, virulent RKN populations capable of parasitizing resistant tomato cultivars have been reported from different regions in the world. Four naturally occurring virulent populations of M. incognita were found in vegetable fields from four counties in Georgia with no history of tomato cultivation of the Mi gene. Two consecutive greenhouse trials showed that all four virulent RKN populations reproduced on tomato cultivars, including Amelia, Skyway, and Myrtle, with the Mi-1 gene, while an avirulent population of M. incognita race 3 was unable to overcome host resistance. Virulent RKN populations varied in reproduction among resistant cultivars, with Ma6 population having the greatest reproduction potential. No difference in penetration potential of the virulent (Ma6) and avirulent populations was found on susceptible and resistant tomato cultivars. However, virulent Ma6 population females were successful at egg-laying, whereas avirulent female development was arrested in the resistant cultivars. The virulent Ma6 population also induced feeding sites in the roots of resistant cultivars, whereas the avirulent population did not. To our knowledge, this is the first report of resistance-breaking populations of M. incognita in Georgia and the second state in the United States after California.
Collapse
Affiliation(s)
| | - Josiah Marquez
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793
| | | | - Negin Hamidi
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793
| |
Collapse
|
22
|
Regmi H, Abdelsamad N, DiGennaro P, Desaeger J. Potential of nicotinamide adenine dinucleotide (NAD) for management of root-knot nematode in tomato. J Nematol 2021; 53:e2021-94. [PMID: 34790900 PMCID: PMC8588725 DOI: 10.21307/jofnem-2021-094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) has been shown to induce plant defense responses to different plant pathogens, including reducing northern root-knot nematode, Meloidogyne hapla, penetration and increasing plant mass in tomato. We wanted to further evaluate NAD that are effective against the more economically important species, M. incognita and whether NAD treatments of tomato seedlings in transplant trays can protect plants in the field. Different NAD concentrations (1 mM, 0.1 mM and 0.01 mM) and three application timings (pre; post; pre and post inoculation) were evaluated in growth room and greenhouse trials. The highest tested NAD concentration (1 mM) suppressed second-stage juveniles (J2) infection for all three application methods. Root gall ratings at 30 days after inoculation (DAI) were also suppressed by 1 mM NAD compared to the other two concentrations, and egg mass number was significantly suppressed for all concentrations and application timings compared to the non-treated control. The rate of 1 mM NAD for all three application timings also improved plant growth at 30 DAI. Long-term effects of 1 mM NAD (pre, pre + post, or post applications) on nematode infection, growth and yield of tomato were evaluated in two additional experiments. All NAD applications suppressed root galls after 60 days, but only the pre + post 1 mM NAD application suppressed gall severity at 105 days, as well as suppressed egg counts by 50% at 60 DAT. No significant difference in plant biomass and fruit yield after 105 days was observed among the treatments. Two field trials were conducted in spring and fall 2020 using tomato seedlings (cv. HM 1823) treated with two different NAD concentrations (1 mM and 5 mM in spring; 5 mM and 10 mM in fall) and transplanting seedlings in fumigated (chloropicrin ± 1,3-dichloropropene) and non-fumigated plastic-mulch beds. No significant impact of NAD in terms of reducing RKN severity or overall tomato growth and production was seen in fumigated beds, but in non-fumigated beds 5 mM NAD slightly increased early fruit yield in spring, and 10 mM NAD reduced root-knot soil populations in fall.
Collapse
Affiliation(s)
- Homan Regmi
- Entomology and Nematology Department, University of Florida, Gulf Coast Research and Education Center (GCREC), Wimauma, FL, 33598
| | - Noor Abdelsamad
- United States Department of Agriculture-Agriculture Research Services (USDA-ARS), San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648
| | - Peter DiGennaro
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32608
| | - Johan Desaeger
- Entomology and Nematology Department, University of Florida, Gulf Coast Research and Education Center (GCREC), Wimauma, FL, 33598
| |
Collapse
|
23
|
Talavera M, Thoden TC, Vela-Delgado MD, Verdejo-Lucas S, Sánchez-Moreno S. The impact of fluazaindolizine on free-living nematodes and the nematode community structure in a root-knot nematode infested vegetable production system. PEST MANAGEMENT SCIENCE 2021; 77:5220-5227. [PMID: 34275187 DOI: 10.1002/ps.6563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Fluazaindolizine is a novel sulfonamide nematicide that is currently under commercialization in various countries. Four trials (two in tomato, two in zucchini) were carried out over two growing seasons in a root-knot nematode (RKN; Meloidogyne incognita)-infested plastic house to test the effects of a single application of fluazaindolizine at 1000 and 2000 g ha-1 , on RKN, the resident nematode community and to estimate any side effects on the soil food web and soil ecological functions. The composition of the nematode community was evaluated at three sampling times, pre-treatment (before soil preparation), at planting (after nematicide application) and at harvest. Nematode abundance and nematode-based ecological indices, such as maturity indices, soil food web indices (Structure, Basal, Enrichment index) and metabolic footprints were calculated and compared between the untreated and nematicide treatments at various sampling times. RESULTS In both crops the test rates of fluazaindolizine significantly reduced both the soil numbers of RKN as well as the observed root galling at harvest. Fluazaindolizine treatments showed a low impact on the numbers of other plant-parasitic nematodes, and at harvest the numbers of some ectoparasites as Telotylenchus even showed higher values within the nematicide-treated plots than in the untreated control. Overall, fluazaindolizine treatments neither decreased the bacterivorous, fungivorous or omnivorous nematode densities, nor reduced the maturity and soil food web indices. However, we observed some slight reductions in the structure index as well as increases in the basal index that might indicate some adverse impact on soil functions resulting from the nematicide application. Still those impacts were considered small compared to the impact of the soil preparation. CONCLUSIONS Overall, fluazaindolizine showed a good level of selectivity towards RKN and therefore could become a useful tool within integrated nematode management approaches that also complements soil health and maintaining diversity in soil.
Collapse
Affiliation(s)
- Miguel Talavera
- Andalusian Institute for Research and Training in Agriculture, Fishery, Food and ecological Production, IFAPA Centro Alameda del Obispo, Av. Menéndez Pidal, Córdoba, 14004, Spain
| | - Tim C Thoden
- Corteva Agriscience™, DuPont Production Agriscience Deutschland GmbH, München, Germany
| | | | - Soledad Verdejo-Lucas
- IFAPA Centro La Mojonera, Paraje San Nicolás, Autovía del Mediterráneo, Almería, Spain
| | - Sara Sánchez-Moreno
- Departamento de Medio Ambiente y Agronomía, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
24
|
Tileubayeva Z, Avdeenko A, Avdeenko S, Stroiteleva N, Kondrashev S. Plant-parasitic nematodes affecting vegetable crops in greenhouses. Saudi J Biol Sci 2021; 28:5428-5433. [PMID: 34466124 PMCID: PMC8381062 DOI: 10.1016/j.sjbs.2021.05.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/28/2022] Open
Abstract
This work focuses on investigating plant-parasitic nematodes that affect greenhouse vegetables. The study took place in the Rostov region (Russian Federation) between May 2019 and May 2020 and involved 180 samples of soil and roots of 30 different vegetables in the families Cucurbitaceae (6), Solanaceae (8), Umbelliferae (8), Lamiaceae (4) and Allioideae (4) from 20 intensive farming locations. In this study, 11 nematode genera were detected. The most common genus was Meloidogyne, followed by Helicotylenchus, Pratylenchus, and Scutellonema. The highest Meloidogyne densities were detected in cucumbers, green peppers, carrots, eggplants, basil, and celery. Onions were not infected with Meloidogyne at all. Plant diseases caused by Pratylenchus, Scutellonema and Helicotylenchus were present in 29.7%, 51.5% and 81.6% of all crops examined, respectively. Xiphinema were found exclusively in carrots and celery, while Ditylenchus were only present in tomatoes and carrots (for each, the prevalence was 2.1%). The relative abundance of Meloidogyne, Helicotylenchus, and Pratylenchus was 58.3%, 10.4%, and 2.1%, respectively. As regards other genera, the relative abundance was less than 1%. The results show that soil properties are as important for the abundance, distribution and structure of the plant-parasitic nematode communities as the host plant. Findings may be helpful in improving the vegetable pest controls.
Collapse
Affiliation(s)
- Zhanar Tileubayeva
- Department of Biodiversity and Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aleksei Avdeenko
- Department of Agriculture and Storage Technologies for Crop Products, Don State Agrarian University, Persianovsky, Russia
| | - Svetlana Avdeenko
- Department of Agriculture and Storage Technologies for Crop Products, Don State Agrarian University, Persianovsky, Russia
| | - Natalia Stroiteleva
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey Kondrashev
- Department of Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
25
|
Palomares-Rius JE, Hasegawa K, Siddique S, Vicente CSL. Editorial: Protecting Our Crops - Approaches for Plant Parasitic Nematode Control. FRONTIERS IN PLANT SCIENCE 2021; 12:726057. [PMID: 34539718 PMCID: PMC8440992 DOI: 10.3389/fpls.2021.726057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Juan E. Palomares-Rius
- Institute for Sustainable Agriculture-Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Koichi Hasegawa
- Department of Environmental Biology, Chubu University, Kasugai, Japan
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Claudia S. L. Vicente
- MED-Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, University of Évora, Évora, Portugal
- INIAV, I.P. – Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| |
Collapse
|
26
|
Leitão DAHS, Pedrosa EMR, Dickson DW, Oliveira AKS, Rolim MM. Temperature: a driving factor for Meloidogyne floridensis migration toward different hosts. J Nematol 2021; 53:e2021-74. [PMID: 34396147 PMCID: PMC8362795 DOI: 10.21307/jofnem-2021-074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 11/26/2022] Open
Abstract
The peach root-knot nematode, Meloidogyne floridensis, is an emerging species and may become a threat to peach growers if contamination and spread are not avoided. The influence of temperature and two plants – tomato (Solanum lycopersicum) and French marigold (Tagete patula) – on the vertical migration of second-stage juveniles (J2) of M. floridensis was studied using 14-cm long segmented soil columns. Plants were transplanted into cups attached to the top of each column. Nylon meshes were placed between cups and columns to prevent downward root growth. About 1,000 freshly hatched J2 were injected into the base of the columns and then the columns were transferred to growth chambers at 20 and 26°C under a completely randomized block design with four replicates. The number of J2 in each ring of the columns as well as inside tomato or marigold roots was recorded at 3, 6, 9, and 12 days after injection (DAI). Nematode data were subjected to a repeated measures MANOVA. The presence of plants did not improve J2 migration as compared to control. M. floridensis migration was best at 20°C at first, with J2 migrating more than 13 cm as soon as 3 DAI, while it took 9 DAI for J2 to migrate long distances at 26°C. The distribution of J2 along the columns was similar at both temperatures at 12 DAI. Temperature had no influence on J2 penetration. French marigold did not hinder J2 migration, but fewer J2 penetrated its roots.
Collapse
Affiliation(s)
- Diego A H S Leitão
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32608
| | - Elvira M R Pedrosa
- Agricultural Engineering Department, Federal Rural University of Pernambuco, Recife, Pernambuco, 52171-900, Brazil
| | - Donald W Dickson
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32608
| | - Ana Karina S Oliveira
- Agricultural Engineering Department, Federal Rural University of Pernambuco, Recife, Pernambuco, 52171-900, Brazil
| | - Mario Monteiro Rolim
- Agricultural Engineering Department, Federal Rural University of Pernambuco, Recife, Pernambuco, 52171-900, Brazil
| |
Collapse
|
27
|
Sargın S, Devran Z. Degree of resistance of Solanum torvum cultivars to Mi-1.2-virulent and avirulent isolates of Meloidogyne incognita, Meloidogyne javanica, and Meloidogyne luci. J Nematol 2021; 53:e2021-68. [PMID: 34337422 PMCID: PMC8324885 DOI: 10.21307/jofnem-2021-068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 11/11/2022] Open
Abstract
Root-knot nematodes (RKN) cause yield losses in eggplant-growing areas. There are no known varieties of eggplant (Solanum melongena L.) that are resistant to RKNs. However, the wild relative of eggplant, S. torvum (Sw.), provides resistance to some RKN species and is used as a rootstock for cultivated eggplants. Therefore, determination of the reproductive capacity of nematodes on eggplant rootstocks developed from S. torvum is required for effective management of RKNs that are widely present in vegetable growing areas. In the present study, the degree of reproduction of Mi-1.2-virulent and avirulent isolates of M. incognita, M. javanica, and M. luci on eggplant rootstocks, Hawk and Boğaç, was evaluated in a plant growth chamber. Hawk and Boğaç were resistant (< 10 egg masses per whole root system) to all avirulent and virulent isolates of M. incognita, M. javanica, and M. luci. This study is the first report on the resistance of S. torvum to virulent isolates of M. luci. Results indicate that S. torvum offers broad-spectrum resistance against RKNs.
Collapse
Affiliation(s)
- Seren Sargın
- Department of Plant Protection, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Zübeyir Devran
- Department of Plant Protection, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| |
Collapse
|
28
|
Keerthiraj M, Mandal A, Dutta TK, Saha S, Dutta A, Singh A, Kundu A. Nematicidal and Molecular Docking Investigation of Essential Oils from Pogostemon cablin Ecotypes against Meloidogyne incognita. Chem Biodivers 2021; 18:e2100320. [PMID: 34245651 DOI: 10.1002/cbdv.202100320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/06/2021] [Indexed: 11/07/2022]
Abstract
Root-knot nematode, Meloidogyne incognita is one of the most destructive nematodes worldwide. Essential oils (EOs) are being extensively utilized as eco-benign bionematicides, although the precise mechanism of action remains unclear. Pogostemon cablin Benth. is well-known as "Patchouli". It is native to South East Asia and known for ethno-pharmacological properties. In this study, chemical composition and potential nematicidal effect of EOs hydrodistilled from the leaves of P. cablin grown at three different locations in India were comprehensively investigated to correlate their mechanism of action for target specific binding affinities toward nematode proteins. Aromatic volatile Pogostemon essential oils (PEO) from Northern India (PEO-NI), Southern India (PEO-SI) and North Eastern India (PEO-NEI) were analyzed by Gas Chromatography-Mass Spectrometry (GC/MS) to characterize forty volatile compounds. Maximum thirty-three components were identified in PEO-NEI. Sesquiterpenes were predominant with higher content of α-guaiene (2.3-24.4 %), patchoulol (6.1-32.7 %) and α-bulnesene (5.9-27.1 %). Patchoulol was the major component in PEO-SI (32.7±1.2 %) and PEO-NEI (29.2±1.1 %), while α-guaiene in PEO-NI (24.4±1.2 %). In vitro nematicidal assay revealed significant nematicidal action (LC50 44.6-87.0 μg mL-1 ) against juveniles of M. incognita within 24 h exposure. Mortality increases with increasing time to 48 h (LC50 33.6-71.6 μg mL-1 ) and 72 h (LC50 27.7-61.2 μg mL-1 ). Molecular modelling and in silico studies revealed multi-modal inhibitive action of α-bulnesene (-22 to -13 kJ mol-1 ) and α-guaiene (-22 to -12 kJ mol-1 ) against three target proteins namely, acetyl cholinesterase (AChE), odorant response gene-1 (ODR1), odorant response gene-3 (ODR3). Most preferable binding mechanism was observed against AChE due to pi-alkyl, pi-sigma, and hydrophobic interactions. Structure nematicidal activity relationship suggested the presence of hydroxy group for nematicidal activity is nonessential, rather highly depends on synergistic composition of sesquiterpene hydrocarbons.
Collapse
Affiliation(s)
- M Keerthiraj
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Abhishek Mandal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Tushar Kanti Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Supradip Saha
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anirban Dutta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anupama Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
29
|
Soliman MS, El-Deriny MM, Ibrahim DSS, Zakaria H, Ahmed Y. Suppression of root-knot nematode Meloidogyne incognita on tomato plants using the nematode trapping fungus Arthrobotrys oligospora Fresenius. J Appl Microbiol 2021; 131:2402-2415. [PMID: 33837626 DOI: 10.1111/jam.15101] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
AIM The aims of the study were to isolate and characterize the nematode trapping fungus, Arthrobotrys oligospora, to investigate the suppressive and predacious activities of the fungus against Meloidogyne incognita and to study the potentiality of A. oligospora in controlling root-knot caused by M. incognita on tomato plants. METHODS AND RESULTS Arthrobotrys oligospora (MRDS 300) was isolated from sandy soil samples collected from Al-Beheira, Egypt. In vitro experiments revealed a high efficiency of the fungus in capturing and suppressing M. incognita second juveniles (J2 ). Microscopic observations showed that the fungus develops adhesive traps consisting of loops of hyphae. Moreover, an in vitro experiment showed that the culture filtrate of A. oligospora had a high toxic effect on the nematode. Pot experiments carried out in two seasons (2018-2019) showed that A. oligospora significantly suppressed root knot on tomato plants caused by M. incognita. The number of females, galls and nematodes in different developing stages were reduced significantly. The treatment with A. oligospora had a prominent effect on enhancing plant growth. CONCLUSION Arthrobotrys oligospora had significant suppressive and predacious effects against root-knot nematode, M. incognita. The fungus developed different forms of trapping devices in addition to secreting toxic metabolites to M. incognita. The fungus had a plant-growth promoting effect. SIGNIFICANCE AND IMPACT OF THE STUDY Arthrobotrys oligospora (MRDS 300) is a potential biological control agent that can be utilized in controlling the root-knot diseases caused by M. incognita.
Collapse
Affiliation(s)
- M S Soliman
- Plant Quarantine Pathogens Laboratory, Mycology Research & Disease Survey Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - M M El-Deriny
- Nematode Diseases Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - D S S Ibrahim
- Nematode Diseases Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - H Zakaria
- Plant Quarantine Pathogens Laboratory, Mycology Research & Disease Survey Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Y Ahmed
- Plant Quarantine Pathogens Laboratory, Mycology Research & Disease Survey Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
30
|
Murata G, Uesugi K, Uehara T, Kumaishi K, Ichihashi Y, Saito T, Shinmura Y. Solanum palinacanthum: broad-spectrum resistance to root-knot nematodes (Meloidogyne spp.). PEST MANAGEMENT SCIENCE 2020; 76:3945-3953. [PMID: 32506747 DOI: 10.1002/ps.5942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Root-knot nematodes (RKN, Meloidogyne spp.) are harmful phytophagous pests of Solanum spp. Some RKN species are becoming worldwide problems because of their virulence to RKN-resistant Solanum species. A new Solanum species carrying broad-spectrum resistance to Meloidogyne spp. is required for the effective management of this pest. Here we sought to determine the host suitability of RKN to Solanum palinacanthum, a wild Solanum species, and to evaluate its potential effectiveness in RKN management. RESULTS We identified an RKN-resistant Solanum species, S. palinacanthum, by screening Solanum accessions. We tested its spectrum of resistance to common Meloidogyne spp. in Japan. In pot tests inoculated with second-stage juveniles, S. palinacanthum showed poor host suitability for Melidogyne incognita, M. arenaria genotypes A2-J and A2-O, M. javanica and M. hapla, indicating broad-spectrum resistance to RKN. The development of M. incognita within S. palinacanthum roots was significantly poorer than that in susceptible S. melongena and S. lycopersicum at 10 and 21 days after inoculation. Microplot tests confirmed that the number of second-stage juveniles in plots where S. palinacanthum grew and root galling of the root system were significantly lower than those of susceptible S. melongena, suggesting that the resistance could be used to manage RKN under field conditions. CONCLUSION S. palinacanthum showed poor host suitability to all Meloidogyne spp. tested in this study, and it thus has the potential to be used as a genetic resource with broad-spectrum RKN resistance, and it could be effective against multiple RKN species in a field. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gaku Murata
- National Agriculture and Food Research Center (NARO), Kyushu Okinawa Agricultural Research Center, Koshi, Kumamoto, Japan
| | - Kenta Uesugi
- National Agriculture and Food Research Center (NARO), Kyushu Okinawa Agricultural Research Center, Koshi, Kumamoto, Japan
| | - Taketo Uehara
- NARO, Central Region Agricultural Research Center, Tsukuba, Ibaraki, Japan
| | - Kie Kumaishi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Takeo Saito
- NARO, Institute of Vegetable and Floriculture Science, Tsu, Mie, Japan
| | - Yoshimi Shinmura
- NARO, Institute of Vegetable and Floriculture Science, Tsu, Mie, Japan
| |
Collapse
|
31
|
Philbrick AN, Adhikari TB, Louws FJ, Gorny AM. Meloidogyne enterolobii, a Major Threat to Tomato Production: Current Status and Future Prospects for Its Management. FRONTIERS IN PLANT SCIENCE 2020; 11:606395. [PMID: 33304376 PMCID: PMC7701057 DOI: 10.3389/fpls.2020.606395] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/22/2020] [Indexed: 05/07/2023]
Abstract
The guava root-knot nematode, Meloidogyne enterolobii (Syn. M. mayaguensis), is an emerging pathogen to many crops in the world. This nematode can cause chlorosis, stunting, and reduce yields associated with the induction of many root galls on host plants. Recently, this pathogen has been considered as a global threat for tomato (Solanum lycopersicum L.) production due to the lack of known resistance in commercially accepted varieties and the aggressiveness of M. enterolobii. Both conventional morphological and molecular approaches have been used to identify M. enterolobii, an important first step in an integrated management. To combat root-knot nematodes, integrated disease management strategies such as crop rotation, field sanitation, biocontrol agents, fumigants, and resistant cultivars have been developed and successfully used in the past. However, the resistance in tomato varieties mediated by known Mi-genes does not control M. enterolobii. Here, we review the current knowledge on geographic distribution, host range, population biology, control measures, and proposed future strategies to improve M. enterolobii control in tomato.
Collapse
Affiliation(s)
- Ashley N. Philbrick
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Tika B. Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Frank J. Louws
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Adrienne M. Gorny
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
32
|
Suarez-Fernandez M, Marhuenda-Egea FC, Lopez-Moya F, Arnao MB, Cabrera-Escribano F, Nueda MJ, Gunsé B, Lopez-Llorca LV. Chitosan Induces Plant Hormones and Defenses in Tomato Root Exudates. FRONTIERS IN PLANT SCIENCE 2020; 11:572087. [PMID: 33250907 PMCID: PMC7672008 DOI: 10.3389/fpls.2020.572087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
In this work, we use electrophysiological and metabolomic tools to determine the role of chitosan as plant defense elicitor in soil for preventing or manage root pests and diseases sustainably. Root exudates include a wide variety of molecules that plants and root microbiota use to communicate in the rhizosphere. Tomato plants were treated with chitosan. Root exudates from tomato plants were analyzed at 3, 10, 20, and 30 days after planting (dap). We found, using high performance liquid chromatography (HPLC) and excitation emission matrix (EEM) fluorescence, that chitosan induces plant hormones, lipid signaling and defense compounds in tomato root exudates, including phenolics. High doses of chitosan induce membrane depolarization and affect membrane integrity. 1H-NMR showed the dynamic of exudation, detecting the largest number of signals in 20 dap root exudates. Root exudates from plants irrigated with chitosan inhibit ca. twofold growth kinetics of the tomato root parasitic fungus Fusarium oxysporum f. sp. radicis-lycopersici. and reduced ca. 1.5-fold egg hatching of the root-knot nematode Meloidogyne javanica.
Collapse
Affiliation(s)
- Marta Suarez-Fernandez
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Frutos Carlos Marhuenda-Egea
- Department of Agrochemistry and Biochemistry, Multidisciplinary Institute for Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain
| | - Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Marino B. Arnao
- Department of Plant Biology (Plant Physiology), University of Murcia, Murcia, Spain
| | | | - Maria Jose Nueda
- Department of Mathematics, University of Alicante, Alicante, Spain
| | - Benet Gunsé
- Plant Physiology Laboratory, Faculty of Biosciences, Universidad Autonoma de Barcelona, Bellaterra, Spain
| | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| |
Collapse
|
33
|
Nilusmas S, Mercat M, Perrot T, Djian‐Caporalino C, Castagnone‐Sereno P, Touzeau S, Calcagno V, Mailleret L. Multi-seasonal modelling of plant-nematode interactions reveals efficient plant resistance deployment strategies. Evol Appl 2020; 13:2206-2221. [PMID: 33005219 PMCID: PMC7513734 DOI: 10.1111/eva.12989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Root-knot nematodes, Meloidogyne spp., are soil-borne polyphagous pests with major impact on crop yield worldwide. Resistant crops efficiently control avirulent root-knot nematodes, but favour the emergence of virulent forms. Since virulence is associated with fitness costs, susceptible crops counter-select virulent root-knot nematodes. In this study, we identify optimal rotation strategies between susceptible and resistant crops to control root-knot nematodes and maximize crop yield. We developed an epidemiological model describing the within-season dynamics of avirulent and virulent root-knot nematodes on susceptible or resistant plant root-systems, and their between-season survival. The model was fitted to experimental data and used to predict yield-maximizing rotation strategies, with special attention to the impact of epidemic severity and genetic parameters. Crop rotations were found to be efficient under realistic parameter ranges. They were characterized by low ratios of resistant plants and were robust to parameter uncertainty. Rotations provide significant gain over resistant-only strategies, especially under intermediate fitness costs and severe epidemic contexts. Switching from the current general deployment of resistant crops to custom rotation strategies could not only maintain or increase crop yield, but also preserve the few and valuable R-genes available.
Collapse
Affiliation(s)
- Samuel Nilusmas
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORESophia AntipolisFrance
| | - Mathilde Mercat
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
| | - Thomas Perrot
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
| | | | | | - Suzanne Touzeau
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORESophia AntipolisFrance
| | | | - Ludovic Mailleret
- Université Côte d'Azur, INRAE, CNRS, ISASophia AntipolisFrance
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORESophia AntipolisFrance
| |
Collapse
|
34
|
Talavera-Rubia M, Vela-Delgado MD, Verdejo-Lucas S. Nematicidal Efficacy of Milbemectin against Root-Knot Nematodes. PLANTS 2020; 9:plants9070839. [PMID: 32635343 PMCID: PMC7411722 DOI: 10.3390/plants9070839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
Abstract
The nematicidal efficacy of milbemectin and its commercial formulate Milbeknock® on (i) egg hatching, (ii) juvenile motility and (iii) infective capacity of root-knot nematodes was evaluated in vitro and in planta assays. Serial dilutions of pure milbemectin were tested against nematode eggs and juveniles and lethal concentrations LC50 and LC90 calculated. Exposure of egg masses to milbemectin at a concentration of 30 μg/mL for 72 h reduced egg hatching by 52%. The increase in exposure time to 240 h did not increase the egg hatching inhibition at the highest concentration 30 μg/mL (53%) but reduced egg hatching at 15 and 7 μg/mL by 35 and 24%, respectively, when compared to untreated controls. The inhibitory effect of milbemectin on juvenile motility ranged from 41 to 87% depending on its concentration, and this effect was persistent after rinsing the juveniles in water. The probabilistic dose–response model indicated that lethal concentrations of milbemectin for juvenile motility were LC50: 7.4 μg/mL and LC90: 29.9 μg/mL. The pre-plant application of Milbeknock® to soils infested with the nematode reduced its infective capacity by 98–99% compared to untreated soils in pot experiments. Milbeknock® reduced nematode soil population densities by 50–60% in natural infestations under field conditions. Milbemectin shows a high level of efficacy against root-knot nematodes as it reduces egg hatching, persistently immobilizes nematode juveniles, and reduces tomato root infection.
Collapse
Affiliation(s)
- Miguel Talavera-Rubia
- Institute for Research and Training in Agriculture and Fisheries, IFAPA Alameda del Obispo, Av. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Correspondence:
| | - Maria Dolores Vela-Delgado
- Institute for Research and Training in Agriculture and Fisheries, IFAPA Rancho de la Merced, Crtra, CA-3102, Km, 3.1, 11471 Jerez de la Frontera, Cádiz, Spain;
| | - Soledad Verdejo-Lucas
- Institute for Research and Training in Agriculture and Fisheries, IFAPA La Mojonera, Autovía del Mediterráneo, salida 420, Paraje San Nicolás, 04745 La Mojonera, Almería, Spain;
| |
Collapse
|
35
|
Pocurull M, Fullana AM, Ferro M, Valero P, Escudero N, Saus E, Gabaldón T, Sorribas FJ. Commercial Formulates of Trichoderma Induce Systemic Plant Resistance to Meloidogyne incognita in Tomato and the Effect Is Additive to That of the Mi-1.2 Resistance Gene. Front Microbiol 2020; 10:3042. [PMID: 32076417 PMCID: PMC7006539 DOI: 10.3389/fmicb.2019.03042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
Meloidogyne is the most damaging plant parasitic nematode genus affecting vegetable crops worldwide. The induction of plant defense mechanisms against Meloidogyne in tomato by some Trichoderma spp. strains has been proven in pot experiments, but there is no information for tomato bearing the Mi-1.2 resistance gene or for other important fruiting vegetable crops. Moreover, Trichoderma is mostly applied for managing fungal plant pathogens, but there is little information on its effect on nematode-antagonistic fungi naturally occurring in soils. Thus, several experiments were conducted to determine (i) the ability of two commercial formulates of Trichoderma asperellum (T34) and Trichoderma harzianum (T22) to induce systemic resistance in tomato and cucumber against an avirulent Meloidogyne incognita population in split-root experiments; (ii) the effect of combining T34 with tomato carrying the Mi-1.2 resistance gene to an avirulent M. incognita population in sterilized soil; and (iii) the effect of combining T34 with tomato carrying the Mi-1.2 resistance gene to a virulent M. incognita population in two suppressive soils in which Pochonia chlamydosporia is naturally present, and the effect of T34 on the level of P. chlamydosporia egg parasitism. Both Trichoderma formulates induced resistance to M. incognita in tomato but not in cucumber. In tomato, the number of egg masses and eggs per plant were reduced by 71 and 54% by T34, respectively. T22 reduced 48% of the number of eggs per plant but not the number of egg masses. T34 reduced the number of eggs per plant of the virulent M. incognita population in both resistant and susceptible tomato cultivars irrespective of the suppressive soil, and its effect was additive with the Mi-1.2 resistance gene. The percentage of fungal egg parasitism by P. chlamydosporia was not affected by the isolate T34 of T. asperellum.
Collapse
Affiliation(s)
- Miriam Pocurull
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Aïda M Fullana
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Miquel Ferro
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Pau Valero
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Nuria Escudero
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Ester Saus
- Bioinformatics and Genomics Program, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Program, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Catalan Institute for Research and Advance Studies (ICREA), Barcelona, Spain
| | - F Javier Sorribas
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
36
|
Evaluation of Nematicidal Activity of Fluensulfone against Non-Target Free-Living Nematodes under Field Conditions. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The use of nematicides with reduced toxic side-effects against non-target free-living nematodes is a favorable option for farmers to control plant-parasitic nematodes. The nematicide fluensulfone was registered in several countries for the control of the root-knot nematodes, Meloidogyne spp. among other plant-parasitic nematodes. This study aimed to evaluate the nematicidal activity of fluensulfone against non-target nematode fauna in four field experiments, each under different conditions (soils types and plant hosts). Nematodes extracted from soil samples were classified and counted based on their morphological characters. Fluensulfone significantly reduced damage caused by root-knot nematodes to tomato and sweet potato plants, while overall non-target free-living nematode population densities were maintained at the same level as those in control. Different diversity indices (e.g., Shannon-Wiener H’, Simpson’s D, species richness, evenness J’, maturity indices) and principal component analyses in the four experiments showed that fluensulfone treatment kept a similar diversity level of non-target free-living nematode fauna to that of the non-treated control. The results suggested that fluensulfone may have minimal impact to free-living nematode fauna in both population density and diversity when the nematicide was applied to control Meloidogyne spp.
Collapse
|
37
|
Khanna K, Jamwal VL, Sharma A, Gandhi SG, Ohri P, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, Ahmad P. Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. CHEMOSPHERE 2019; 230:628-639. [PMID: 31128509 DOI: 10.1016/j.chemosphere.2019.05.072] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 05/18/2023]
Abstract
The current study evaluated the synergistic role of Plant growth promoting rhizobacteria (PGPR), Pseudomonas aeruginosa and Burkholderia gladioli on different physiological, biochemical and molecular activities of 10-days old Solanum lycopersicum seedlings under Cd stress. Cd toxicity altered the levels of phenolic compounds (total phenols (30.2%), flavonoids (92.7%), anthocyanin (59.5%), polyphenols (368.7%)), osmolytes (total osmolytes (10.3%), total carbohydrates (94%), reducing sugars (64.5%), trehalose (112.5%), glycine betaine (59%), proline (54.8%), and free amino acids (63%)), and organic acids in S. lycopersicum seedlings. Inoculation of P. aeruginosa and B. gladioli alleviated Cd-induced toxicity, which was manifested through enhanced phenolic compound levels and osmolytes. Additionally, the levels of low molecular weight organic acids (fumaric acid, malic acid, succinic acid, and citric acid) were also elevated. The expression of genes encoding enzymes for phenols and organic acid metabolism were also studied to be modulated that included CHS (chalcone synthase; 138.4%), PAL (phenylalanine ammonia lyase; 206.7%), CS (citrate synthase; 61.3%), SUCLG1 (succinyl Co-A ligase; 33.6%), SDH (succinate dehydrogenase; 23.2%), FH (fumarate hydratase; 12.4%), and MS (malate synthase; 41.2%) and found to be upregulated in seedlings inoculated independently with P. aeruginosa and B. gladioli. The results provide insights into the role of micro-organisms in alleviating Cd-induced physiological damage by altering levels of different metabolites.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Vijay Lakshmi Jamwal
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu, 180 001, India
| | - Anket Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu, 180 001, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Asma A Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hayssam M Ali
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
38
|
Ghahremani Z, Escudero N, Saus E, Gabaldón T, Sorribas FJ. Pochonia chlamydosporia Induces Plant-Dependent Systemic Resistance to Meloidogyne incognita. FRONTIERS IN PLANT SCIENCE 2019; 10:945. [PMID: 31456811 PMCID: PMC6700505 DOI: 10.3389/fpls.2019.00945] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/08/2019] [Indexed: 05/02/2023]
Abstract
Meloidogyne spp. are the most damaging plant parasitic nematodes for horticultural crops worldwide. Pochonia chlamydosporia is a fungal egg parasite of root-knot and cyst nematodes able to colonize the roots of several plant species and shown to induce plant defense mechanisms in fungal-plant interaction studies, and local resistance in fungal-nematode-plant interactions. This work demonstrates the differential ability of two out of five P. chlamydosporia isolates, M10.43.21 and M10.55.6, to induce systemic resistance against M. incognita in tomato but not in cucumber in split-root experiments. The M10.43.21 isolate reduced infection (32-43%), reproduction (44-59%), and female fecundity (14.7-27.6%), while the isolate M10.55.6 only reduced consistently nematode reproduction (35-47.5%) in the two experiments carried out. The isolate M10.43.21 induced the expression of the salicylic acid pathway (PR-1 gene) in tomato roots 7 days after being inoculated with the fungal isolate and just after nematode inoculation, and at 7 and 42 days after nematode inoculation too. The jasmonate signaling pathway (Lox D gene) was also upregulated at 7 days after nematode inoculation. Thus, some isolates of P. chlamydosporia can induce systemic resistance against root-knot nematodes but this is plant species dependent.
Collapse
Affiliation(s)
- Zahra Ghahremani
- Departament d’Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Nuria Escudero
- Departament d’Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Ester Saus
- Bioinformatics and Genomics Programs, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programs, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - F. Javier Sorribas
- Departament d’Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
39
|
Hajji-Hedfi L, M’Hamdi-Boughalleb N, Horrigue-Raouani N. Fungal diversity in rhizosphere of root-knot nematode infected tomatoes in Tunisia. Symbiosis 2019. [DOI: 10.1007/s13199-019-00639-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Seiml-Buchinger VV, Zinovieva SV, Udalova ZV, Matveeva EM. Jasmonic acid modulates Meloidogyne incognita – tomato plant interactions. NEMATOLOGY 2019. [DOI: 10.1163/15685411-00003205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Molecular aspects of the responses of tomato (Solanum lycopersicum) plants to invasion by Meloidogyne incognita, as well as the nematode reproduction capacity, were investigated and the role of jasmonic acid (JA) in these interactions was evaluated. Real-time quantitative PCR analysis showed that resistant and susceptible plants had similar levels of Mi1.2, PR1 and PR6 gene expression in stress-free conditions. During nematode invasion resistant plants showed up-regulation of Mi1.2, PR1 and PR6 genes and no reproduction of M. incognita. By contrast, susceptible plants showed no response in gene expression and the nematode had a high level of reproduction. Treatment of tomato plants with JA modulated Mi1.2 and PR6 gene expression that was accompanied by a suppression of the M. incognita reproduction on the roots of JA-treated susceptible plants.
Collapse
Affiliation(s)
- Victoria V. Seiml-Buchinger
- 1Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Russian Federation
| | - Svetlana V. Zinovieva
- 2Center of Parasitology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii Pr., 119071 Moscow, Russian Federation
| | - Zhanna V. Udalova
- 2Center of Parasitology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii Pr., 119071 Moscow, Russian Federation
| | - Elizaveta M. Matveeva
- 1Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Russian Federation
| |
Collapse
|
41
|
Phani V, Shivakumara TN, Davies KG, Rao U. Knockdown of a mucin-like gene in Meloidogyne incognita (Nematoda) decreases attachment of endospores of Pasteuria penetrans to the infective juveniles and reduces nematode fecundity. MOLECULAR PLANT PATHOLOGY 2018; 19:2370-2383. [PMID: 30011135 PMCID: PMC6638177 DOI: 10.1111/mpp.12704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/14/2018] [Accepted: 06/08/2018] [Indexed: 05/30/2023]
Abstract
Mucins are highly glycosylated polypeptides involved in many host-parasite interactions, but their function in plant-parasitic nematodes is still unknown. In this study, a mucin-like gene was cloned from Meloidogyne incognita (Mi-muc-1, 1125 bp) and characterized. The protein was found to be rich in serine and threonine with numerous O-glycosylation sites in the sequence. Quantitative real-time polymerase chain reaction (qRT-PCR) showed the highest expression in the adult female and in situ hybridization revealed the localization of Mi-muc-1 mRNA expression in the tail area in the region of the phasmid. Knockdown of Mi-muc-1 revealed a dual role: (1) immunologically, there was a significant decrease in attachment of Pasteuria penetrans endospores and a reduction in binding assays with human red blood cells (RBCs), suggesting that Mi-MUC-1 is a glycoprotein present on the surface coat of infective second-stage juveniles (J2s) and is involved in cellular adhesion to the cuticle of infective J2s; pretreatment of J2s with different carbohydrates indicated that the RBCs bind to J2 cuticle receptors different from those involved in the interaction of Pasteuria endospores with Mi-MUC-1; (2) the long-term effect of RNA interference (RNAi)-mediated knockdown of Mi-muc-1 led to a significant reduction in nematode fecundity, suggesting a possible function for this mucin as a mediator in the interaction between the nematode and the host plant.
Collapse
Affiliation(s)
- Victor Phani
- Division of NematologyICAR‐Indian Agricultural Research InstituteNew Delhi110012India
| | | | - Keith G Davies
- Department of Biological and Environmental SciencesUniversity of HertfordshireHatfieldAL10 9ABUnited Kingdom
- Norwegian Institute of Bioeconomy ResearchÅs115, 1431Norway
| | - Uma Rao
- Division of NematologyICAR‐Indian Agricultural Research InstituteNew Delhi110012India
| |
Collapse
|
42
|
Kirwa HK, Murungi LK, Beck JJ, Torto B. Elicitation of Differential Responses in the Root-Knot Nematode Meloidogyne incognita to Tomato Root Exudate Cytokinin, Flavonoids, and Alkaloids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11291-11300. [PMID: 30346752 DOI: 10.1021/acs.jafc.8b05101] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Root exudates of plants mediate interactions with a variety of organisms in the rhizosphere, including root-knot nematodes (RKNs, Meloidogyne spp.) We investigated the responses of the motile stage second-stage juveniles (J2s) of Meloidogyne incognita to non-volatile components identified in the root exudate of tomato. Using stylet thrusting, chemotaxis assays, and chemical analysis, we identified specific metabolites in the root exudate that attract and repel J2s. Liquid chromatography quadrupole time-of-flight mass spectrometry analysis of bioactive fractions obtained from the root exudate revealed a high diversity of compounds, of which five were identified as the phytohormone zeatin (cytokinin), the flavonoids quercetin and luteolin, and alkaloids solasodine and tomatidine. In stylet thrusting and chemotaxis assays, the five compounds elicited concentration-dependent responses in J2s relative to 2% dimethyl sulfoxide (negative control) and methyl salicylate (positive control). These results indicate that J2 herbivory is influenced by root exudate chemistry and concentrations of specific compounds, which may have potential applications in RKN management.
Collapse
Affiliation(s)
- Hillary K Kirwa
- Behavioural and Chemical Ecology Unit , International Centre of Insect Physiology and Ecology (ICIPE) , Post Office Box 30772, 00100 Nairobi , Kenya
- Department of Horticulture , Jomo Kenyatta University of Agriculture and Technology , Post Office Box 62000, 00200 Nairobi , Kenya
| | - Lucy K Murungi
- Department of Horticulture , Jomo Kenyatta University of Agriculture and Technology , Post Office Box 62000, 00200 Nairobi , Kenya
| | - John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service (ARS) , United States Department of Agriculture (USDA) , 1700 Southwest 23rd Drive , Gainesville , Florida 32608 , United States
| | - Baldwyn Torto
- Behavioural and Chemical Ecology Unit , International Centre of Insect Physiology and Ecology (ICIPE) , Post Office Box 30772, 00100 Nairobi , Kenya
| |
Collapse
|
43
|
Li T, Wang H, Xia X, Cao S, Yao J, Zhang L. Inhibitory effects of components from root exudates of Welsh onion against root knot nematodes. PLoS One 2018; 13:e0201471. [PMID: 30059521 PMCID: PMC6066241 DOI: 10.1371/journal.pone.0201471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/16/2018] [Indexed: 11/18/2022] Open
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) are obligate endoparasites that infect many crops and cause severe yield losses. In this research, we studied the effect of Welsh onion, grown as a companion plant, on the resistance of cucumber plants to RKN infection and analyzed the most abundant components of Welsh onion root exudates. The results showed that, when grown with Welsh onion as a companion plant, cucumber roots had 77.0% fewer root knots and egg masses than the control cucumber roots. Welsh onion root exudates were collected and extracted with chloroform, ethyl ether, n-butanol and ethyl acetate. High concentrations of the extracts from the Welsh onion root exudates decreased the hatchability of RKN eggs. In particular, the inhibitory effect of the n-butanol extract was significant and the hatchability of RKN eggs did not exceed 10%. Gas chromatographic–mass spectrometric analysis revealed that the most abundant component in the n-butanol extract was 4-hydroxy-benzeneethanol. Treatment with 1.2 mM 4-hydroxy-benzeneethanol decreased egg hatchability to 40%, whereas treatment with 9.6 mM or a higher concentration of 4-hydroxy-benzeneethanol decreased egg hatchability to less than 10%. In addition, 1.2 mM or a higher concentration of 4-hydroxy-benzeneethanol decreased the activity of the second-stage juvenile (J2). Higher 4-hydroxy-benzeneethanol concentrations (9.8 and 19.2 mM) were lethal to RKNs to some extent, with death rates greater than 50% at 48 h of treatment. The present results suggest that cultivation with Welsh onion as a companion plant may represent an alternative to the application of synthetic nematicides, with fewer side effects. We confirmed that 4-hydroxy-benzeneethanol is a natural effective nematicide.
Collapse
Affiliation(s)
- Tao Li
- Yantai Agricultural Science Academy of Shandong Province, Yantai, Shandong, P. R. China
- * E-mail:
| | - Hongyun Wang
- Yantai Agricultural Science Academy of Shandong Province, Yantai, Shandong, P. R. China
| | - Xiubo Xia
- Yantai Agricultural Science Academy of Shandong Province, Yantai, Shandong, P. R. China
| | - Shoujun Cao
- Yantai Agricultural Science Academy of Shandong Province, Yantai, Shandong, P. R. China
| | - Jiangang Yao
- Yantai Agricultural Science Academy of Shandong Province, Yantai, Shandong, P. R. China
| | - Lili Zhang
- Yantai Agricultural Science Academy of Shandong Province, Yantai, Shandong, P. R. China
| |
Collapse
|
44
|
Hajji-Hedfi L, Rebai E, Larayedh A, Regaieg H, Horrigue-Raouani N. Biological control of Meloidogyne javanica on tomato with Dazitol® and soil solarization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17278-17282. [PMID: 29651727 DOI: 10.1007/s11356-018-1962-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Pot and greenhouse trials were conducted for the management of root-knot nematode, Meloidogyne javanica, infestation in tomato. Growth parameters, gall index, soil, and root nematode populations were measured to assess the effect of a novel bio-pesticide (Dazitol®), made from mustard oil and oleoresin of Capsicum, on plant growth and nematode reproduction. Data generated within the pot experiment showed that the tested bio-pesticide did not improve plant growth, but it reduced significantly root-knot nematode damage resulting in a decrease in gall index and root (91%) and soil (62%) population of M. javanica compared with untreated plants. The greenhouse experiment showed that Mocap® and Dazitol® decreased nematode incidence significantly (P < 0.05) on tomato. The result of this study suggested that the best nematode control was obtained by combining soil solarization with chemical or botanical nematicides as an integrated pest management approach.
Collapse
Affiliation(s)
- Lobna Hajji-Hedfi
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott-Mariem, Sousse University, Sousse, Tunisia.
| | - Emna Rebai
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott-Mariem, Sousse University, Sousse, Tunisia
| | - Asma Larayedh
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott-Mariem, Sousse University, Sousse, Tunisia
| | - Hajer Regaieg
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott-Mariem, Sousse University, Sousse, Tunisia
| | - Najet Horrigue-Raouani
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott-Mariem, Sousse University, Sousse, Tunisia
| |
Collapse
|
45
|
Dash M, Dutta TK, Phani V, Papolu PK, Shivakumara TN, Rao U. RNAi-mediated disruption of neuropeptide genes, nlp-3 and nlp-12, cause multiple behavioral defects in Meloidogyne incognita. Biochem Biophys Res Commun 2017; 490:933-940. [PMID: 28655614 DOI: 10.1016/j.bbrc.2017.06.143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 01/17/2023]
Abstract
Owing to the current deficiencies in chemical control options and unavailability of novel management strategies, root-knot nematode (M. incognita) infections remain widespread with significant socio-economic impacts. Helminth nervous systems are peptide-rich and appear to be putative drug targets that could be exploited by antihelmintic chemotherapy. Herein, to characterize the novel peptidergic neurotransmitters, in silico mining of M. incognita genomic and transciptomic datasets revealed the presence of 16 neuropeptide-like protein (nlp) genes with structural hallmarks of neuropeptide preproproteins; among which 13 nlps were PCR-amplified and sequenced. Two key nlp genes (Mi-nlp-3 and Mi-nlp-12) were localized to the basal bulb and tail region of nematode body via in situ hybridization assay. Mi-nlp-3 and Mi-nlp-12 were greatly expressed (in qRT-PCR assay) in the pre-parasitic juveniles and adult females, suggesting the association of these genes in host recognition, development and reproduction of M. incognita. In vitro knockdown of Mi-nlp-3 and Mi-nlp-12 via RNAi demonstrated the significant reduction in attraction and penetration of M. incognita in tomato root in Pluronic gel medium. A pronounced perturbation in development and reproduction of NLP-silenced worms was also documented in adzuki beans in CYG growth pouches. The deleterious phenotypes obtained due to NLP knockdown suggests that transgenic plants engineered to express RNA constructs targeting nlp genes may emerge as an environmentally viable option to manage nematode problems in crop plants.
Collapse
Affiliation(s)
- Manoranjan Dash
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pradeep K Papolu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
46
|
Yang G, Zhou B, Zhang X, Zhang Z, Wu Y, Zhang Y, Lü S, Zou Q, Gao Y, Teng L. Effects of Tomato Root Exudates on Meloidogyne incognita. PLoS One 2016; 11:e0154675. [PMID: 27128659 PMCID: PMC4851295 DOI: 10.1371/journal.pone.0154675] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/18/2016] [Indexed: 11/29/2022] Open
Abstract
Plant root exudates affect root-knot nematodes egg hatch. Chemicals in root exudates can attract nematodes to the roots or result in repellence, motility inhibition or even death. However, until recently little was known about the relationship between tomato root exudates chemicals and root-knot nematodes. In this study, root exudates were extracted from three tomato rootstocks with varying levels of nematode resistance: Baliya (highly resistant, HR), RS2 (moderately resistant, MR) and L-402 (highly susceptible, T). The effects of the root exudates on Meloidogyne incognita (M. incognita) egg hatch, survival and chemotaxis of second-stage juveniles (J2) were explored. The composition of the root exudates was analysed by gas chromatography/mass spectrometry (GC/MS) prior to and following M. incognita inoculation. Four compounds in root exudates were selected for further analysis and their allopathic effect on M. incognita were investigated. Root exudates from each tomato rootstocks (HR, MR and T strains) suppressed M. incognita egg hatch and increased J2 mortality, with the highest rate being observed in the exudates from the HR plants. Exudate from HR variety also repelled M. incognita J2 while that of the susceptible plant, T, was demonstrated to be attractive. The relative amount of esters and phenol compounds in root exudates from HR and MR tomato rootstocks increased notably after inoculation. Four compounds, 2,6-Di-tert-butyl-p-cresol, L-ascorbyl 2,6-dipalmitate, dibutyl phthalate and dimethyl phthalate increased significantly after inoculation. The egg hatch of M. incognita was suppressed by each of the compound. L-ascorbyl 2,6-dipalmitate showed the most notable effect in a concentration-dependent manner. All four compounds were associated with increased J2 mortality. The greatest effect was observed with dimethyl phthalate at 2 mmol·L-1. Dibutyl phthalate was the only compound observed to repel M. incognita J2 with no effect being detected in the other compounds. Each of the four compounds were correlated with a reduction in disease index in the susceptible cultivar, T, and tomato seedlings irrigated with L-ascorbyl 2,6-dipalmitate at 2 mmol·L-1 showed the best resistance to M. incognita. Taken together, this study provided a valuable contribution to understanding the underlying mechanism of nematode resistance in tomato cultivars.
Collapse
Affiliation(s)
- Guodong Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang, P. R. China
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Baoli Zhou
- College of Horticulture, Shenyang Agricultural University, Shenyang, P. R. China
- * E-mail:
| | - Xinyu Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Zijun Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Yuanyuan Wu
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Yiming Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Shuwen Lü
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Qingdao Zou
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Yuan Gao
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Long Teng
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| |
Collapse
|