1
|
Calais GB, Garcia GD, de Moura Júnior CF, Soares JDM, Lona LMF, Beppu MM, Hernandez-Montelongo J, Rocha Neto JBM. Therapeutic functions of medical implants from various material categories with integrated biomacromolecular systems. Front Bioeng Biotechnol 2025; 12:1509397. [PMID: 39867472 PMCID: PMC11757644 DOI: 10.3389/fbioe.2024.1509397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions. It synthesizes advancements in surface modification, discusses biomacromolecules as carriers for controlled drug release, and explores the application of nanoceramics and composites to improve osseointegration and tissue regeneration. Biomacromolecule systems are capable of interacting with device components and therapeutic agents - such as growth factors (GFs), antibiotics, and nanoceramics - allowing control over substance release. Incorporating therapeutic agents into these systems enables localized treatments for tissue regeneration, osseointegration, post-surgery infection control, and disease and pre-existing conditions. The review highlights these materials' therapeutic advantages and customization opportunities, by covering mechanical and biological perspectives. Developing composites and hybrid drug delivery systems align with recent efforts in interdisciplinary personalized medicine and implant innovations. For instance, a trend was observed for integrating inorganic (especially nanoceramics, e.g., hydroxyapatite) and organic phases in composites for better implant interaction with biological tissues and faster recovery. This article supports understanding how integrating these materials can create more personalized, functional, durable, and biocompatible implant devices.
Collapse
Affiliation(s)
- Guilherme Bedeschi Calais
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Guilherme Domingos Garcia
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Celso Fidelis de Moura Júnior
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - José Diego Magalhães Soares
- Federal University of Alagoas, Center of Technology, Maceió, Brazil
- Federal Institute of Alagoas (IFAL), Chemistry Coordination Office (Campus Maceió), Maceió, Brazil
| | - Liliane Maria Ferrareso Lona
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Marisa Masumi Beppu
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Jacobo Hernandez-Montelongo
- Universidad Católica de Temuco, Department of Mathematical and Physical Sciences, Bioproducts and Advanced Materials Research Center (BioMA), Temuco, Chile
- Universidad de Guadalajara, Department of Translational Bioengineering, Guadalajara, Mexico
| | | |
Collapse
|
2
|
Benny Mattam L, Bijoy A, Abraham Thadathil D, George L, Varghese A. Conducting Polymers: A Versatile Material for Biomedical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202201765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liya Benny Mattam
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Anusha Bijoy
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Louis George
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| |
Collapse
|
3
|
Fabrication of Cell Spheroids for 3D Cell Culture and Biomedical Applications. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00086-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
5
|
Lupescu Ș, Munteanu C, Sindilar EV, Istrate B, Mihai I, Oprisan B, Pasca AS. Long-Term Examination of Degradation and In Vivo Biocompatibility of Some Mg-0.5Ca-xY Alloys in Sprague Dawley Rats. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5958. [PMID: 36079340 PMCID: PMC9456631 DOI: 10.3390/ma15175958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The medical field has undergone constant development in recent years, and a segment of this development is occupied by biodegradable alloys. The most common alloys in this field are those based on Mg, their main advantage being the ability to degrade gradually, without affecting the patient, and also their ability to be fully absorbed by the human body. One of their most important conditions is the regeneration and replacement of human tissue. Tissue can be engineered in different ways, one being tissue regeneration in vivo, which can serve as a template. In vivo remodeling aims to restore tissue or organs. The key processes of tissue formation and maturation are: proliferation (sorting and differentiation of cells), proliferation and organization of the extracellular matrix, biodegradation of the scaffold-remodeling, and potential tissue growth. In the present paper, the design of the alloys in the Mg-Ca-Y system is formed from the beginning using high-purity components, Mg-98.5%, master-alloys: Mg-Y (70 wt.%-30 wt.%) and Mg-Ca (85 wt.%-15 wt.%). After 8 weeks of implantation, the degradation of the implanted material is observed, and only small remaining fragments are found. At the site of implantation, no inflammatory reaction is observed, but it is observed that the process of integration and reabsorption, over time, accentuates the prosaic surface of the material. The aim of the work is to test the biocompatibility of magnesium-based alloys on laboratory rats in order to use these alloys in medical applications. The innovative parts of these analyses are the chemical composition of the alloys used and the tests performed on laboratory animals.
Collapse
Affiliation(s)
- Ștefan Lupescu
- Department of Mechanics and Technologies, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania
| | - Corneliu Munteanu
- Mechanical Engineering Department, Gheorghe Asachi University of Iasi, 6 D. Mangeron Blvd, 700050 Iasi, Romania
- Technical Sciences Academy of Romania, 26 Dacia Blvd, 030167 Bucharest, Romania
| | - Eusebiu Viorel Sindilar
- Faculty of Veterinary Medicine of Lasi, “Ion Ionescu de la Brad” Iași University of Life Sciences (IULS), nr.8, Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Bogdan Istrate
- Mechanical Engineering Department, Gheorghe Asachi University of Iasi, 6 D. Mangeron Blvd, 700050 Iasi, Romania
| | - Iuliana Mihai
- Faculty of Veterinary Medicine of Lasi, “Ion Ionescu de la Brad” Iași University of Life Sciences (IULS), nr.8, Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Bogdan Oprisan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, Universității 16 Street, 700115 Iasi, Romania
| | - Aurelian-Sorin Pasca
- Faculty of Veterinary Medicine of Lasi, “Ion Ionescu de la Brad” Iași University of Life Sciences (IULS), nr.8, Mihail Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
6
|
Nano-Structured Ridged Micro-Filaments (≥100 µm Diameter) Produced Using a Single Step Strategy for Improved Bone Cell Adhesion and Proliferation in Textile Scaffolds. Molecules 2022; 27:molecules27123790. [PMID: 35744916 PMCID: PMC9228432 DOI: 10.3390/molecules27123790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Textile scaffolds that are either 2D or 3D with tunable shapes and pore sizes can be made through textile processing (weaving, knitting, braiding, nonwovens) using microfilaments. However, these filaments lack nano-topographical features to improve bone cell adhesion and proliferation. Moreover, the diameter of such filaments should be higher than that used for classical textiles (10−30 µm) to enable adhesion and the efficient spreading of the osteoblast cell (>30 µm diameter). We report, for the first time, the fabrication of biodegradable nanostructured cylindrical PLLA (poly-L-Lactic acid) microfilaments of diameters 100 µm and 230 µm, using a single step melt-spinning process for straightforward integration of nano-scale ridge-like structures oriented in the fiber length direction. Appropriate drawing speed and temperature used during the filament spinning allowed for the creation of instabilities giving rise to nanofibrillar ridges, as observed by AFM (Atomic Force Microscopy). These micro-filaments were hydrophobic, and had reduced crystallinity and mechanical strength, but could still be processed into 2D/3D textile scaffolds of various shapes. Biological tests carried out on the woven scaffolds made from these nano-structured micro filaments showed excellent human bone cell MG 63 adhesion and proliferation, better than on smooth 30 µm- diameter fibers. Elongated filopodia of the osteoblast, intimately anchored to the nano-structured filaments, was observed. The filaments also induced in vitro osteogenic expression, as shown by the expression of osteocalcin and bone sialoprotein after 21 days of culture. This work deals with the fabrication of a new generation of nano-structured micro-filament for use as scaffolds of different shapes suited for bone cell engineering.
Collapse
|
7
|
Meng Z, Wang L, Shen L, Li Z, Zhao Z, Wang X. Supercritical carbon dioxide assisted fabrication of biomimetic sodium alginate/silk fibroin nanofibrous scaffolds. J Appl Polym Sci 2021. [DOI: 10.1002/app.51421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhi‐Yuan Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Li Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Lin‐Yi Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Ze‐Hao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- Biomedical Materials and Engineering Research Center of Hubei Province Wuhan University of Technology Wuhan China
| | - Xin‐Yu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- Biomedical Materials and Engineering Research Center of Hubei Province Wuhan University of Technology Wuhan China
| |
Collapse
|
8
|
Miri V, Asadi A, Sagha M, Najafzadeh N, Golmohammadi MG. Poly (L-lactic acid) nanofibrous scaffolds support the proliferation and neural differentiation of mouse neural stem and progenitor cells. Int J Dev Neurosci 2021; 81:438-447. [PMID: 33934403 DOI: 10.1002/jdn.10119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The distribution and growth of cells on nanofibrous scaffolds seem to be an indispensable precondition in cell tissue engineering. The potential use of biomaterial scaffolds in neural stem cell therapy is increasingly attracting attention. AIM In this study, we produced porous nanofibrous scaffolds fabricated from random poly-L-lactic acid (PLLA) to support neurogenic differentiation of neural stem and progenitor cells (NSPCs), isolated from the subventricular zone (SVZ) of the adult mouse brain. METHODS The viability and proliferation of the NSPCs on the nanofibrous PLLA scaffold were also tested by nuclear staining with 4, 6-diamidino-2-phenylindole dihydrochloride (DAPI), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and scanning electron microscopy (SEM). To investigate the differentiation potential of NSPCs on the scaffolds, the cells were treated with a neurogenic differentiation medium, and immunostaining was done to detect neuronal and glial cells after 14 and 21 days of cultivation. Furthermore, the morphology of differentiated cells on the scaffold was examined using SEM. RESULTS The DAPI staining revealed the proliferation of NSPCs onto the surface of the nanofibrous PLLA scaffold. DAPI-positive cells were counted on days 2 and 5 after cultivation. The mean number of cells in each microscopic field was significantly (p < .05) increased (51 ± 19 on day 2 compared to 77 ± 25 cells on day 5). The results showed that the cell viability on PLLA scaffolds significantly increased compared to control groups. Moreover, cell viability was significantly increased 5 days after culturing (262.3 ± 50.2) as compared to 2 days culture in Vitro (174.2 ± 28.3, p < .05). Scanning electron micrographs also showed that the NSPCs adhered and differentiated on PLLA scaffolds. We found that the neural cell markers, microtubule-associated protein 2 (MAP2) and glial fibrillary acidic protein (GFAP), were expressed in NSPCs seeded on random PLLA scaffolds after 21 days of cultivation. CONCLUSION These results suggest that the PLLA nano-scaffolds, due to their biocompatible property, are an appropriate structure for the proliferation, differentiation, and normal growth of NSPCs.
Collapse
Affiliation(s)
- Vahideh Miri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohsen Sagha
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Ghasem Golmohammadi
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
9
|
From Submerged Cultures to 3D Cell Culture Models: Evolution of Nasal Epithelial Cells in Asthma Research and Virus Infection. Viruses 2021; 13:v13030387. [PMID: 33670992 PMCID: PMC7997270 DOI: 10.3390/v13030387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding the response to viral infection in the context of respiratory diseases is of significant importance. Recently, there has been more focus on the role of the nasal epithelium in disease modeling. Here, we provide an overview of different submerged, organotypic 3D and spheroid cell culture models of nasal epithelial cells, which were used to study asthma and allergy with a special focus on virus infection. In detail, this review summarizes the importance, benefits, and disadvantages of patient-derived cell culture models of nasal- and bronchial epithelial cells, including a comparison of these cell culture models and a discussion on why investigators should consider using nasal epithelial cells in their research. Exposure experiments, simple virus transduction analyses as well as genetic studies can be performed in these models, which may provide first insights into the complexity of molecular signatures and may open new doors for drug discovery and biomarker research.
Collapse
|
10
|
Nanostructured Biosilica of Diatoms: From Water World to Biomedical Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196811] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diatoms—unicellular photosynthetic algae—are promising natural sources of nanostructured silica. These microorganisms produce in their membrane approximately a highly ordered porous cell wall called a frustule as protection from environmental stress. Diatom frustules consist of hydrated silica that show peculiar properties including biocompatibility, tailorable surface chemistry, chemical inertness, and thermal stability. Frustules harvested from aquatic ecosystems or diatomaceous fossil sediments represent an excellent cost-effective source of biosilica for a broad range of biomedical applications. The porous ultrastructure of the frustules displays a large surface area available for coating with various biomolecules through different functionalization methods. In this review article, we highlight the main features of diatom biosilica and present some of the most advantageous properties that support the employment of frustules in the field of drug delivery, biosensing, and regenerative medicine. In particular, it is offered an insight into the most common functionalization strategies through which diatom physicochemical properties can be modified and tailored according to the described field of application.
Collapse
|
11
|
Gao D, Wang Z, Wu Z, Guo M, Wang Y, Gao Z, Zhang P, Ito Y. 3D-printing of solvent exchange deposition modeling (SEDM) for a bilayered flexible skin substitute of poly (lactide-co-glycolide) with bioorthogonally engineered EGF. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110942. [PMID: 32409088 DOI: 10.1016/j.msec.2020.110942] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/06/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Biodegradable polyesters have been widely used as rigid biomedical apparatus because of high mechanical properties but few flexible implants. Herein, we report a flexible poly(lactide-co-glycolide) (PLGA) scaffold using a rapid in situ formation system based on phase separation by solvent exchange deposition modeling (SEDM), which was different from traditional 3D printing of fused deposition modeling (FDM). The FDM printed product was rigidity, its Young's modulus was approximate 2.6 times higher than that of SEDM printed sample. In addition, the thickness of the solidified ink would not shrink during the SEDM printing process, its surface had nano-/micro pores in favor of protein immobilization and cell adhesion. Then a flexible bilayered scaffold with nano-/microstructure was constructed combing SEDM with electrospinning technology for skin substitute, wherein the SEDM printed sample acted as a sub-layer for cell and tissue ingrowth, the densely packed electrospun nanofibers served as an upper-layer improving the sub-layer's tensile strength by 57.07% and preventing from bacteria as physical barrier. Ultimately, the bilayered scaffold immobilized epidermal growth factor (EGF) by a bioorthogonal approach was successfully applied to facilitate full-thickness wound healing of rats.
Collapse
Affiliation(s)
- Daqian Gao
- The Ministry of Education Key Laboratory of Bio-based Material Science & Technology, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Zhenhua Gao
- The Ministry of Education Key Laboratory of Bio-based Material Science & Technology, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Al-Maawi S, Mota C, Kubesch A, James Kirkpatrick C, Moroni L, Ghanaati S. Multiwell three-dimensional systems enable in vivo screening of immune reactions to biomaterials: a new strategy toward translational biomaterial research. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:61. [PMID: 31127377 DOI: 10.1007/s10856-019-6263-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
In vivo experiments are accompanied by ethical issues, including sacrificing a large number of animals as well as large costs. A new in vivo 3D screening system was developed to reduce the number of required animals without compromising the results. The present pilot study examined a multiwell array system in combination with three different collagen-based biomaterials (A, B and C) using subcutaneous implantation for 10 days and histological and histomorphometrical evaluations. The tissue reaction towards the device itself was dominated by mononuclear cells. However, three independent biomaterial-specific tissue reactions were observed in three chambers. The results showed a mononuclear cell-based tissue reaction in one chamber (A) and foreign body reaction by multinucleated giant cells in the other two chambers (B and C). Statistical analysis showed a significantly higher number of multinucleated giant cells in cases B and C than in case A (A vs. B; ***P < 0.001), (A vs. C; P < 0.01). These outcomes were comparable to previously published observations with conventional biomaterial implantation. The present data lead to the conclusion that this 3D screening system could be an alternative tool to enhance the effectiveness of in vivo experiments, thus offering a more economic strategy to screen biomaterial-related cellular reactions, while saving animals, without influencing the final outcome.
Collapse
Affiliation(s)
- Sarah Al-Maawi
- FORM-lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt, Germany
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, The Netherlands
| | - Alica Kubesch
- FORM-lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt, Germany
| | - C James Kirkpatrick
- FORM-lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt, Germany
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, The Netherlands
| | - Shahram Ghanaati
- FORM-lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
13
|
Govindarajan D, Lakra R, Korapatti PS, Ramasamy J, Kiran MS. Nanoscaled Biodegradable Metal-Polymeric Three-Dimensional Framework for Endothelial Cell Patterning and Sustained Angiogenesis. ACS Biomater Sci Eng 2019; 5:2519-2531. [PMID: 33405758 DOI: 10.1021/acsbiomaterials.9b00267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The current work describes the development of a nanoscaled biodegradable metal polymeric three-dimensional framework with controlled nanotherapeutic release for endothelial cell patterning and sustained angiogenesis for biomedical applications. Biocompatible polymers gelatin and PLGA were used as polymeric nanofibrous three-dimensional framework in a core-shell manner with the gelatin core containing a biodegradable and bioactive metal nanoframework of cobalt caged with PEGylated curcumin by coaxial electrospinning. FTIR results confirmed the presence of nanobioactives in the core region of a coaxial nanofiber. Scanning electron microscopic analysis of the coaxial nanofibrous system showed a three-dimensional architecture that favored endothelial cell adhesion, patterning, migration, and proliferation. The as-synthesized nanoscaled biodegradable metal polymeric three-dimensional core-shell nanofibers exhibited potent antibacterial efficacy. Further, it improved the endothelial cell patterning promoting angiogenesis. The high therapeutic potential of cobalt nanoframework in the nanofibers enhanced the production of vascular endothelial growth factor promoting angiogenesis that resulted in the earlier restoration of wounded tissue compared with untreated control in vivo animal models. The study opens up a new horizon in exploring biodegradable biosorbable metal nanoframework for biomaterial applications. Additionally, the present study opens up a new strategy in developing biodegradable biosorbable biomaterial with enhanced vascularization efficacy to the biomaterial, which is important for acceptance of these biomaterials into the host tissue.
Collapse
Affiliation(s)
- Dharunya Govindarajan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600020, India
| | - Rachita Lakra
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600020, India
| | - Purna Sai Korapatti
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600020, India.,Academy of Scientific and Innovative Research, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600020, India
| | - Jayavel Ramasamy
- Centre for Research, Anna University, Chennai, Tamil Nadu 600025, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600020, India.,Academy of Scientific and Innovative Research, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600020, India
| |
Collapse
|
14
|
Götz W, Tobiasch E, Witzleben S, Schulze M. Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation. Pharmaceutics 2019; 11:E117. [PMID: 30871062 PMCID: PMC6471146 DOI: 10.3390/pharmaceutics11030117] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022] Open
Abstract
Bioinspired stem cell-based hard tissue engineering includes numerous aspects: The synthesis and fabrication of appropriate scaffold materials, their analytical characterization, and guided osteogenesis using the sustained release of osteoinducing and/or osteoconducting drugs for mesenchymal stem cell differentiation, growth, and proliferation. Here, the effect of silicon- and silicate-containing materials on osteogenesis at the molecular level has been a particular focus within the last decade. This review summarizes recently published scientific results, including material developments and analysis, with a special focus on silicon hybrid bone composites. First, the sources, bioavailability, and functions of silicon on various tissues are discussed. The second focus is on the effects of calcium-silicate biomineralization and corresponding analytical methods in investigating osteogenesis and bone formation. Finally, recent developments in the manufacturing of Si-containing scaffolds are discussed, including in vitro and in vivo studies, as well as recently filed patents that focus on the influence of silicon on hard tissue formation.
Collapse
Affiliation(s)
- Werner Götz
- Department of Orthodontics, Oral Biology Laboratory, School of Dentistry, Rheinische Wilhelms University of Bonn, Welschnonnenstr. 17, D-53111 Bonn, Germany.
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Steffen Witzleben
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| |
Collapse
|
15
|
Su X, Tan M, Duan B, Cai J, Jiang W, Zhang L. Hierarchical microspheres with macropores fabricated from chitin as 3D cell culture. J Mater Chem B 2019; 7:5190-5198. [DOI: 10.1039/c9tb01046g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hierarchical chitin nanofiber microspheres with open macropores was prepared to be used as scaffold for 3D cell culture.
Collapse
Affiliation(s)
- Xiaojuan Su
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
- Hubei Engineering Center of Natural Polymers-based Medical Materials
| | - Mengtian Tan
- Department of Biological Repositories
- Zhongnan Hospital of Wuhan University
- Medical Research Institute
- School of Medicine
- Wuhan University
| | - Bo Duan
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Jie Cai
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
- Hubei Engineering Center of Natural Polymers-based Medical Materials
| | - Wei Jiang
- Department of Biological Repositories
- Zhongnan Hospital of Wuhan University
- Medical Research Institute
- School of Medicine
- Wuhan University
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
- Hubei Engineering Center of Natural Polymers-based Medical Materials
| |
Collapse
|
16
|
Mota C, Milazzo M, Panetta D, Trombi L, Gramigna V, Salvadori PA, Giannotti S, Bruschini L, Stefanini C, Moroni L, Berrettini S, Danti S. 3D fiber deposited polymeric scaffolds for external auditory canal wall. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:63. [PMID: 29736776 DOI: 10.1007/s10856-018-6071-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
The external auditory canal (EAC) is an osseocartilaginous structure extending from the auricle to the eardrum, which can be affected by congenital, inflammatory, and neoplastic diseases, thus reconstructive materials are needed. Current biomaterial-based approaches for the surgical reconstruction of EAC posterior wall still suffer from resorption (biological) and extrusion (synthetic). In this study, 3D fiber deposited scaffolds based on poly(ethylene oxide terephthalate)/poly(butylene terephthalate) were designed and fabricated to replace the EAC wall. Fiber diameter and scaffold porosity were optimized, leading to 200 ± 33 µm and 55% ± 5%, respectively. The mechanical properties were evaluated, resulting in a Young's modulus of 25.1 ± 7.0 MPa. Finally, the EAC scaffolds were tested in vitro with osteo-differentiated human mesenchymal stromal cells (hMSCs) with different seeding methods to produce homogeneously colonized replacements of interest for otologic surgery. This study demonstrated the fabrication feasibility of EAC wall scaffolds aimed to match several important requirements for biomaterial application to the ear under the Tissue Engineering paradigm, including shape, porosity, surface area, mechanical properties and favorable in vitro interaction with osteoinduced hMSCs. This study demonstrated the fabrication feasibility of outer ear canal wall scaffolds via additive manufacturing. Aimed to match several important requirements for biomaterial application to ear replacements under the Tissue Engineering paradigm, including shape, porosity and pore size, surface area, mechanical properties and favorable in vitro interaction with osteo-differentiated mesenchymal stromal cells.
Collapse
Affiliation(s)
- Carlos Mota
- Institute for Technology Inspired Regenerative Medicine (MERLN), Complex Tissue Regeneration Department, Maastricht University, Maastricht, The Netherlands
| | - Mario Milazzo
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, PI, Italy
| | - Daniele Panetta
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Luisa Trombi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vera Gramigna
- Institute of Bioimaging and Molecular Physiology, National Research Council (CNR), Germaneto, CZ, Italy
| | - Piero A Salvadori
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Stefano Giannotti
- Department of Medical and Surgical Sciences and Neurosciences, University of Siena, Siena, Italy
| | - Luca Bruschini
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, Pisa, Italy
| | - Cesare Stefanini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, PI, Italy
| | - Lorenzo Moroni
- Institute for Technology Inspired Regenerative Medicine (MERLN), Complex Tissue Regeneration Department, Maastricht University, Maastricht, The Netherlands
| | - Stefano Berrettini
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, Pisa, Italy
| | - Serena Danti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, PI, Italy.
- Dept. of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, Pisa, Italy.
| |
Collapse
|
17
|
Kim JI, Kim CS. Nanoscale Resolution 3D Printing with Pin-Modified Electrified Inkjets for Tailorable Nano/Macrohybrid Constructs for Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12390-12405. [PMID: 29561138 DOI: 10.1021/acsami.7b19182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cells respond to their microenvironment, which is of a size comparable to that of the cells. The macroscale features of three-dimensional (3D) printing struts typically result in whole cell contact guidance (CCG). In contrast, at the nanoscale, where features are of a size similar to that of receptors of cells, the response of cells is more complex. The cell-nanotopography interaction involves nanoscale adhesion localized structures, which include cell adhesion-related particles that change in response to the clustering of integrin. For this reason, it is necessary to develop a technique for manufacturing tailorable nano/macrohybrid constructs capable of freely controlling the cellular activity. In this study, a hierarchical 3D nano- to microscale hybrid structure was fabricated by combinational processing of 3D printing and electrified inkjet spinning via pin motions. This method overcomes the disadvantages of conventional 3D printing, providing a novel combinatory technique for the fabrication of 3D hybrid constructs with excellent cell proliferation. Through a pin-modified electrified inkjet spinning, we have successfully fabricated customizable nano-/microscale hybrid constructs in a fibrous or mesh form, which can control the cell fate. We have conducted this study of cell-topography interactions from the fabrication approach to accelerate the development of next-generation 3D scaffolds.
Collapse
|
18
|
Yin J, Yan M, Wang Y, Fu J, Suo H. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6849-6857. [PMID: 29405059 DOI: 10.1021/acsami.7b16059] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Methacrylated gelatin (GelMA) has been widely used as a tissue-engineered scaffold material, but only low-concentration GelMA hydrogels were found to be promising cell-laden bioinks with excellent cell viability. In this work, we reported a strategy for precise deposition of 5% (w/v) cell-laden GelMA bioinks into controlled microarchitectures with high cell viability using extrusion-based three-dimensional (3D) bioprinting. By adding gelatin into GelMA bioinks, a two-step cross-linking combining the rapid and reversible thermo-cross-linking of gelatin with irreversible photo-cross-linking of GelMA was achieved. The GelMA/gelatin bioinks showed significant advantages in processability because the tunable rheology and the rapid thermo-cross-linking of bioinks improved the shape fidelity after bioprinting. Here, the rheology, mechanical properties, and swelling of GelMA/gelatin bioinks with different concentration ratios were carefully characterized to obtain the optimized bioprinting setup. We successfully printed the 5% (w/v) GelMA with 8% (w/v) gelatin into 3D structures, which had the similar geometrical resolution as that of the structures printed by 30% (w/v) GelMA bioinks. Moreover, the cell viability of 5/8% (w/v) GelMA/gelatin bioinks was demonstrated by in vitro culture and cell printing of bone marrow stem cells (BMSCs). Larger BMSC spreading area was found on 5/8% (w/v) GelMA/gelatin scaffolds, and the BMSC viability after the printing of 5/8% (w/v) GelMA/gelatin cell-laden bioinks was more than 90%, which was very close to the viability of printing pure 5% (w/v) GelMA cell-laden bioinks. Therefore, this printing strategy of GelMA/gelatin bioinks may extensively extend the applications of GelMA hydrogels for tissue engineering, organ printing, or drug delivery.
Collapse
Affiliation(s)
- Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, and ‡Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University , Hangzhou 310028, China
| | - Mengling Yan
- The State Key Laboratory of Fluid Power and Mechatronic Systems, and ‡Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University , Hangzhou 310028, China
| | - Yancheng Wang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, and ‡Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University , Hangzhou 310028, China
| | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, and ‡Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University , Hangzhou 310028, China
| | - Hairui Suo
- The State Key Laboratory of Fluid Power and Mechatronic Systems, and ‡Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University , Hangzhou 310028, China
| |
Collapse
|
19
|
Kim D, Ryu J, Son M, Oh J, Chung K, Lee S, Lee J, Ahn J, Min J, Ahn J, Kang HM, Kim J, Jung C, Kim N, Cho H. A liver-specific gene expression panel predicts the differentiation status of in vitro hepatocyte models. Hepatology 2017; 66. [PMID: 28640507 PMCID: PMC5698781 DOI: 10.1002/hep.29324] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Alternative cell sources, such as three-dimensional organoids and induced pluripotent stem cell-derived cells, might provide a potentially effective approach for both drug development applications and clinical transplantation. For example, the development of cell sources for liver cell-based therapy has been increasingly needed, and liver transplantation is performed for the treatment for patients with severe end-stage liver disease. Differentiated liver cells and three-dimensional organoids are expected to provide new cell sources for tissue models and revolutionary clinical therapies. However, conventional experimental methods confirming the expression levels of liver-specific lineage markers cannot provide complete information regarding the differentiation status or degree of similarity between liver and differentiated cell sources. Therefore, in this study, to overcome several issues associated with the assessment of differentiated liver cells and organoids, we developed a liver-specific gene expression panel (LiGEP) algorithm that presents the degree of liver similarity as a "percentage." We demonstrated that the percentage calculated using the LiGEP algorithm was correlated with the developmental stages of in vivo liver tissues in mice, suggesting that LiGEP can correctly predict developmental stages. Moreover, three-dimensional cultured HepaRG cells and human pluripotent stem cell-derived hepatocyte-like cells showed liver similarity scores of 59.14% and 32%, respectively, although general liver-specific markers were detected. CONCLUSION Our study describes a quantitative and predictive model for differentiated samples, particularly liver-specific cells or organoids; and this model can be further expanded to various tissue-specific organoids; our LiGEP can provide useful information and insights regarding the differentiation status of in vitro liver models. (Hepatology 2017;66:1662-1674).
Collapse
Affiliation(s)
- Dae‐Soo Kim
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea,Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea
| | - Jea‐Woon Ryu
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Mi‐Young Son
- Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea,Stem Cell Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Jung‐Hwa Oh
- Korea Institute of ToxicologyDaejeonRepublic of Korea
| | - Kyung‐Sook Chung
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea,Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea
| | - Sugi Lee
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea,Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea
| | - Jeong‐Ju Lee
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Jun‐Ho Ahn
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Ju‐Sik Min
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Jiwon Ahn
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Hyun Mi Kang
- Stem Cell Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Janghwan Kim
- Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea,Stem Cell Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Cho‐Rok Jung
- Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea,Stem Cell Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Nam‐Soon Kim
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea,Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea
| | - Hyun‐Soo Cho
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea,Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea
| |
Collapse
|
20
|
Chitosan: Application in tissue engineering and skin grafting. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1286-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Dalton PD. Melt electrowriting with additive manufacturing principles. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Rau JV, Wu VM, Graziani V, Fadeeva IV, Fomin AS, Fosca M, Uskoković V. The Bone Building Blues: Self-hardening copper-doped calcium phosphate cement and its in vitro assessment against mammalian cells and bacteria. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629018 DOI: 10.1016/j.msec.2017.05.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A blue calcium phosphate cement with optimal self-hardening properties was synthesized by doping whitlockite (β-TCP) with copper ions. The mechanism and the kinetics of the cement solidification process were studied using energy dispersive X-ray diffraction and it was found out that hardening was accompanied by the phase transition from TCP to brushite. Reduced lattice parameters in all crystallographic directions resulting from the rather low (1:180) substitution rate of copper for calcium was consistent with the higher ionic radius of the latter. The lower cationic hydration resulting from the partial Ca→Cu substitution facilitated the release of constitutive hydroxyls and lowered the energy of formation of TCP from the apatite precursor at elevated temperatures. Addition of copper thus effectively inhibited the formation of apatite as the secondary phase. The copper-doped cement exhibited an antibacterial effect, though exclusively against Gram-negative bacteria, including E. coli, P. aeruginosa and S. enteritidis. This antibacterial effect was due to copper ions, as demonstrated by an almost negligible antibacterial effect of the pure, copper-free cement. Also, the antibacterial activity of the copper-containing cement was significantly higher than that of its precursor powder. Since there was no significant difference between the kinetics of the release of copper from the precursor TCP powder and from the final, brushite phase of the hardened cement, this has suggested that the antibacterial effect was not solely due to copper ions, but due to the synergy between cationic copper and a particular phase and aggregation state of calcium phosphate. Though inhibitory to bacteria, the copper-doped cement increased the viability of human glial E297 cells, murine osteoblastic K7M2 cells and especially human primary lung fibroblasts. That this effect was also due to copper ions was evidenced by the null effect on viability increase exhibited by the copper-free cements. The difference in the mechanism of protection of dehydratases in prokaryotes and eukaryotes was used as a rationale for explaining the hereby evidenced selectivity in biological response. It presents the basis for the consideration of copper as a dually effective ion when synergized with calcium phosphates: toxic for bacteria and beneficial for the healthy cells.
Collapse
Affiliation(s)
- Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy.
| | - Victoria M Wu
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, Irvine, CA 92618-1908, USA
| | - Valerio Graziani
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
| | - Inna V Fadeeva
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky prospect 49, 119991 Moscow, Russia
| | - Alexander S Fomin
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky prospect 49, 119991 Moscow, Russia
| | - Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
| | - Vuk Uskoković
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, Irvine, CA 92618-1908, USA.
| |
Collapse
|
23
|
|
24
|
Komath M, Varma HK, John A, Krishnan V, Simon D, Ramanathan M, Bhuvaneshwar GS. Designing Bioactive Scaffolds for Dental Tissue Engineering. REGENERATIVE MEDICINE: LABORATORY TO CLINIC 2017:423-447. [DOI: 10.1007/978-981-10-3701-6_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Fu F, Qin Z, Xu C, Chen XY, Li RX, Wang LN, Peng DW, Sun HT, Tu Y, Chen C, Zhang S, Zhao ML, Li XH. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering. Neural Regen Res 2017; 12:614-622. [PMID: 28553343 PMCID: PMC5436361 DOI: 10.4103/1673-5374.205101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer-aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine.
Collapse
Affiliation(s)
- Feng Fu
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory of Neurotrauma Repair of Tianjin, Tianjin, China
| | - Zhe Qin
- Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Chao Xu
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory of Neurotrauma Repair of Tianjin, Tianjin, China
| | - Xu-Yi Chen
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory of Neurotrauma Repair of Tianjin, Tianjin, China
| | - Rui-Xin Li
- Institute of Medical Equipment, The Academy of Military Medical Sciences, Tianjin, China
| | - Li-Na Wang
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory of Neurotrauma Repair of Tianjin, Tianjin, China
| | - Ding-Wei Peng
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory of Neurotrauma Repair of Tianjin, Tianjin, China
| | - Hong-Tao Sun
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory of Neurotrauma Repair of Tianjin, Tianjin, China
| | - Yue Tu
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory of Neurotrauma Repair of Tianjin, Tianjin, China
| | - Chong Chen
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory of Neurotrauma Repair of Tianjin, Tianjin, China
| | - Sai Zhang
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory of Neurotrauma Repair of Tianjin, Tianjin, China
| | - Ming-Liang Zhao
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory of Neurotrauma Repair of Tianjin, Tianjin, China
| | - Xiao-Hong Li
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory of Neurotrauma Repair of Tianjin, Tianjin, China
| |
Collapse
|
26
|
Cicco SR, Vona D, Gristina R, Sardella E, Ragni R, Lo Presti M, Farinola GM. Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells. Bioengineering (Basel) 2016; 3:E35. [PMID: 28952597 PMCID: PMC5597278 DOI: 10.3390/bioengineering3040035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022] Open
Abstract
In the past decade, mesoporous silica nanoparticles (MSNs) with a large surface area and pore volume have attracted considerable attention for their application in drug delivery and biomedicine. Here we propose biosilica from diatoms as an alternative source of mesoporous materials in the field of multifunctional supports for cell growth: the biosilica surfaces were chemically modified by traditional silanization methods resulting in diatom silica microparticles functionalized with 3-mercaptopropyl-trimethoxysilane (MPTMS) and 3-aminopropyl-triethoxysilane (APTES). Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that the -SH or -NH₂ were successfully grafted onto the biosilica surface. The relationship among the type of functional groups and the cell viability was established as well as the interaction of the cells with the nanoporosity of frustules. These results show that diatom microparticles are promising natural biomaterials suitable for cell growth, and that the surfaces, owing to the mercapto groups, exhibit good biocompatibility.
Collapse
Affiliation(s)
- Stefania Roberta Cicco
- Italian National Council for Research-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM)-Bari, Bari 70126, Italy.
| | - Danilo Vona
- Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari 70121, Italy.
| | | | | | - Roberta Ragni
- Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari 70121, Italy.
| | - Marco Lo Presti
- Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari 70121, Italy.
| | | |
Collapse
|
27
|
Shotorbani BB, Alizadeh E, Salehi R, Barzegar A. Adhesion of mesenchymal stem cells to biomimetic polymers: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:1192-1200. [PMID: 27987676 DOI: 10.1016/j.msec.2016.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/20/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
Abstract
The mesenchymal stem cells (MSCs) are promising candidates for cell therapy due to the self-renewal, multi-potency, ethically approved state and suitability for autologous transplantation. However, key issue for isolation and manipulation of MSCs is adhesion in ex-vivo culture systems. Biomaterials engineered for mimicking natural extracellular matrix (ECM) conditions which support stem cell adhesion, proliferation and differentiation represent a main area of research in tissue engineering. Some of them successfully enhanced cells adhesion and proliferation because of their biocompatibility, biomimetic texture, and chemistry. However, it is still in its infancy, therefore intensification and optimization of in vitro, in vivo, and preclinical studies is needed to clarify efficacies as well as applicability of those bioengineered constructs. The aim of this review is to discuss mechanisms related to the in-vitro adhesion of MSCs, surfaces biochemical, biophysical, and other factors (of cell's natural and artificial micro-environment) which could affect it and a review of previous research attempting for its bio-chemo-optimization.
Collapse
Affiliation(s)
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center and Faculty of advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran; The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Roya Salehi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center and Faculty of advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran; The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, Bozec L, Mudera V. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomedicine 2016; 11:4743-4763. [PMID: 27695330 PMCID: PMC5034904 DOI: 10.2147/ijn.s107624] [Citation(s) in RCA: 340] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biomineralization is a dynamic, complex, lifelong process by which living organisms control precipitations of inorganic nanocrystals within organic matrices to form unique hybrid biological tissues, for example, enamel, dentin, cementum, and bone. Understanding the process of mineral deposition is important for the development of treatments for mineralization-related diseases and also for the innovation and development of scaffolds. This review provides a thorough overview of the up-to-date information on the theories describing the possible mechanisms and the factors implicated as agonists and antagonists of mineralization. Then, the role of calcium and phosphate ions in the maintenance of teeth and bone health is described. Throughout the life, teeth and bone are at risk of demineralization, with particular emphasis on teeth, due to their anatomical arrangement and location. Teeth are exposed to food, drink, and the microbiota of the mouth; therefore, they have developed a high resistance to localized demineralization that is unmatched by bone. The mechanisms by which demineralization-remineralization process occurs in both teeth and bone and the new therapies/technologies that reverse demineralization or boost remineralization are also scrupulously discussed. Technologies discussed include composites with nano- and micron-sized inorganic minerals that can mimic mechanical properties of the tooth and bone in addition to promoting more natural repair of surrounding tissues. Turning these new technologies to products and practices would improve health care worldwide.
Collapse
Affiliation(s)
- Ensanya Ali Abou Neel
- Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Anas Aljabo
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Adam Strange
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Salwa Ibrahim
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Melanie Coathup
- UCL Institute of Orthopaedics and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, London, UK
| | - Anne M Young
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Laurent Bozec
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Vivek Mudera
- UCL Institute of Orthopaedics and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, London, UK
| |
Collapse
|
29
|
|
30
|
Rana D, Ramasamy K, Leena M, Jiménez C, Campos J, Ibarra P, Haidar ZS, Ramalingam M. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine. Biotechnol Prog 2016; 32:554-67. [DOI: 10.1002/btpr.2262] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/16/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Deepti Rana
- Centre for Stem Cell Research (CSCR); A Unit of Institute for Stem Cell Biology and Regenerative Medicine-Bengaluru, Stem Cell Nanotechnology Lab, Christian Medical College Campus; Vellore 632002 India
| | - Keerthana Ramasamy
- Centre for Stem Cell Research (CSCR); A Unit of Institute for Stem Cell Biology and Regenerative Medicine-Bengaluru, Stem Cell Nanotechnology Lab, Christian Medical College Campus; Vellore 632002 India
| | - Maria Leena
- Dept. of Nanoscience and Technology; Karunya University; Coimbatore 641114 India
| | - Constanza Jiménez
- BioMAT'X, Facultad De Odontología; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
- Centro De Investigación Biomédica (CIB), Facultad De Medicina; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
| | - Javier Campos
- BioMAT'X, Facultad De Odontología; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
- Plan De Mejoramiento Institucional (PMI) En Innovación-I+D+I, Universidad De Los Andes; Santiago 12.455 Chile
| | - Paula Ibarra
- BioMAT'X, Facultad De Odontología; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
- Plan De Mejoramiento Institucional (PMI) En Innovación-I+D+I, Universidad De Los Andes; Santiago 12.455 Chile
| | - Ziyad S. Haidar
- BioMAT'X, Facultad De Odontología; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
- Plan De Mejoramiento Institucional (PMI) En Innovación-I+D+I, Universidad De Los Andes; Santiago 12.455 Chile
| | - Murugan Ramalingam
- Centre for Stem Cell Research (CSCR); A Unit of Institute for Stem Cell Biology and Regenerative Medicine-Bengaluru, Stem Cell Nanotechnology Lab, Christian Medical College Campus; Vellore 632002 India
- WPI-Advanced Institute for Materials Research, Tohoku University; Sendai 980-8577 Japan
| |
Collapse
|
31
|
Hoppe A, Brandl A, Bleiziffer O, Arkudas A, Horch RE, Jokic B, Janackovic D, Boccaccini AR. In vitro cell response to Co-containing 1393 bioactive glass. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:157-63. [DOI: 10.1016/j.msec.2015.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/21/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023]
|
32
|
|
33
|
Abbah SA, Delgado LM, Azeem A, Fuller K, Shologu N, Keeney M, Biggs MJ, Pandit A, Zeugolis DI. Harnessing Hierarchical Nano- and Micro-Fabrication Technologies for Musculoskeletal Tissue Engineering. Adv Healthc Mater 2015; 4:2488-99. [PMID: 26667589 DOI: 10.1002/adhm.201500004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/24/2015] [Indexed: 12/14/2022]
Abstract
Cells within a tissue are able to perceive, interpret and respond to the biophysical, biomechanical, and biochemical properties of the 3D extracellular matrix environment in which they reside. Such stimuli regulate cell adhesion, metabolic state, proliferation, migration, fate and lineage commitment, and ultimately, tissue morphogenesis and function. Current scaffold fabrication strategies in musculoskeletal tissue engineering seek to mimic the sophistication and comprehensiveness of nature to develop hierarchically assembled 3D implantable devices of different geometric dimensions (nano- to macrometric scales) that will offer control over cellular functions and ultimately achieve functional regeneration. Herein, advances and shortfalls of bottom-up (self-assembly, freeze-drying, rapid prototype, electrospinning) and top-down (imprinting) scaffold fabrication approaches, specific to musculoskeletal tissue engineering, are discussed and critically assessed.
Collapse
Affiliation(s)
- Sunny A. Abbah
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Luis M. Delgado
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Ayesha Azeem
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Kieran Fuller
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Naledi Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Michael Keeney
- Department of Orthopaedic Surgery; Stanford School of Medicine; Stanford University CA USA
| | - Manus J. Biggs
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| |
Collapse
|
34
|
Yeo GC, Aghaei-Ghareh-Bolagh B, Brackenreg EP, Hiob MA, Lee P, Weiss AS. Fabricated Elastin. Adv Healthc Mater 2015; 4:2530-2556. [PMID: 25771993 PMCID: PMC4568180 DOI: 10.1002/adhm.201400781] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/09/2015] [Indexed: 12/18/2022]
Abstract
The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement.
Collapse
Affiliation(s)
- Giselle C. Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Behnaz Aghaei-Ghareh-Bolagh
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Edwin P. Brackenreg
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Matti A. Hiob
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Pearl Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Anthony S. Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
- Bosch Institute, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
35
|
Li YF, Gregersen H, Nygaard JV, Cheng W, Yu Y, Huang Y, Dong M, Besenbacher F, Chen M. Ultraporous nanofeatured PCL-PEO microfibrous scaffolds enhance cell infiltration, colonization and myofibroblastic differentiation. NANOSCALE 2015; 7:14989-14995. [PMID: 26308365 DOI: 10.1039/c5nr04244e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the field of tissue engineering, integration of micro-porosity, nano-topogaphical features and weattability into one three-dimensional (3D) scaffold remains a challenge. The extracellular matrix (ECM) mimicking feature of electrospun fibers endows them wide applications in tissue engineering. However, the tight-packing of electrospun submicron fibers hinder cell infiltration and further colonization. In this study, we fabricated hydrophilic, micro-porous scaffolds with nano-topographical cues by one-step electrospinning, and investigated NIH3T3 fibroblasts cell infiltration, colonization and myofibroblastic differentiation. The hierarchical porosity enhanced cell infiltration and proliferation significantly. Besides, the nano-topography influenced the cell actin distribution and cell morphology that stimulated myofibroblastic differentiation in a drastically different manner from that of traditional solid, smooth electrospun fibers, which may hold great potential in reconstructing tissues that require strong contractile forces.
Collapse
Affiliation(s)
- Yan-Fang Li
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Canha-Gouveia A, Rita Costa-Pinto A, Martins AM, Silva NA, Faria S, Sousa RA, Salgado AJ, Sousa N, Reis RL, Neves NM. Hierarchical scaffolds enhance osteogenic differentiation of human Wharton's jelly derived stem cells. Biofabrication 2015; 7:035009. [PMID: 26335618 DOI: 10.1088/1758-5090/7/3/035009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hierarchical structures, constituted by polymeric nano and microfibers, have been considered promising scaffolds for tissue engineering strategies, mainly because they mimic, in some way, the complexity and nanoscale detail observed in real organs. The chondrogenic potential of these scaffolds has been previously demonstrated, but their osteogenic potential is not yet corroborated. In order to assess if a hierarchical structure, with nanoscale details incorporated, is an improved scaffold for bone tissue regeneration, we evaluate cell adhesion, proliferation, and osteogenic differentiation of human Wharton's jelly derived stem cells (hWJSCs), seeded into hierarchical fibrous scaffolds. Biological data corroborates that hierarchical fibrous scaffolds show an enhanced cell entrapment when compared to rapid prototyped scaffolds without nanofibers. Furthermore, upregulation of bone specific genes and calcium phosphate deposition confirms the successful osteogenic differentiation of hWJSCs on these scaffolds. These results support our hypothesis that a scaffold with hierarchical structure, in conjugation with hWJSCs, represents a possible feasible strategy for bone tissue engineering applications.
Collapse
Affiliation(s)
- Analuce Canha-Gouveia
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas; Guimarães, Portugal. ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Combined additive manufacturing approaches in tissue engineering. Acta Biomater 2015; 24:1-11. [PMID: 26134665 DOI: 10.1016/j.actbio.2015.06.032] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/26/2015] [Accepted: 06/26/2015] [Indexed: 12/12/2022]
Abstract
Advances introduced by additive manufacturing (AM) have significantly improved the control over the microarchitecture of scaffolds for tissue engineering. This has led to the flourishing of research works addressing the optimization of AM scaffolds microarchitecture to optimally trade-off between conflicting requirements (e.g. mechanical stiffness and porosity level). A fascinating trend concerns the integration of AM with other scaffold fabrication methods (i.e. "combined" AM), leading to hybrid architectures with complementary structural features. Although this innovative approach is still at its beginning, significant results have been achieved in terms of improved biological response to the scaffold, especially targeting the regeneration of complex tissues. This review paper reports the state of the art in the field of combined AM, posing the accent on recent trends, challenges, and future perspectives.
Collapse
|
38
|
Biodegradation and bioresorption of poly(ɛ-caprolactone) nanocomposite scaffolds. Int J Biol Macromol 2015; 79:186-92. [DOI: 10.1016/j.ijbiomac.2015.04.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/25/2015] [Accepted: 04/20/2015] [Indexed: 12/14/2022]
|
39
|
Zhu W, Castro NJ, Cheng X, Keidar M, Zhang LG. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration. PLoS One 2015. [PMID: 26222527 PMCID: PMC4519315 DOI: 10.1371/journal.pone.0134729] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive electrospun cartilage substitute by integrating cold atmospheric plasma (CAP) treatment with sustained growth factor delivery microspheres. Specifically, CAP was applied to a poly(ε-caprolactone) electrospun scaffold with homogeneously distributed bioactive factors (transforming growth factor-β1 and bovine serum albumin) loaded poly(lactic-co-glycolic) acid microspheres. We have shown that CAP treatment renders electrospun scaffolds more hydrophilic thus facilitating vitronectin adsorption. More importantly, our results demonstrate, for the first time, CAP and microspheres can synergistically enhance stem cell growth as well as improve chondrogenic differentiation of human marrow-derived mesenchymal stem cells (such as increased glycosaminoglycan, type II collagen, and total collagen production). Furthermore, CAP can substantially enhance 3D cell infiltration (over two-fold increase in infiltration depth after 1 day of culture) in the scaffolds. By integrating CAP, sustained bioactive factor loaded microspheres, and electrospinning, we have fabricated a promising bioactive scaffold for cartilage regeneration.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, United States of America
| | - Nathan J. Castro
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, United States of America
| | - Xiaoqian Cheng
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, United States of America
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, United States of America
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia, United States of America
- Department of Medicine, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
40
|
Le BQ, Fernandes H, Bouten CV, Karperien M, van Blitterswijk C, de Boer J. High-Throughput Screening Assay for the Identification of Compounds Enhancing Collagenous Extracellular Matrix Production by ATDC5 Cells. Tissue Eng Part C Methods 2015; 21:726-36. [DOI: 10.1089/ten.tec.2014.0088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Bach q. Le
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Hugo Fernandes
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Carlijn V.C. Bouten
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jan de Boer
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
41
|
Parent M, Boudier A, Fries I, Gostyńska A, Rychter M, Lulek J, Leroy P, Gaucher C. Nitric oxide-eluting scaffolds and their interaction with smooth muscle cells in vitro. J Biomed Mater Res A 2015; 103:3303-11. [PMID: 25809572 DOI: 10.1002/jbm.a.35464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 12/28/2022]
Abstract
Fabrication of scaffolds loaded with nitric oxide (NO) donors (S-nitrosoglutathione, GSNO, and isosorbide mononitrate, ISMN) with suitable cell compatibility and optimized properties for tissue-engineering applications is reported using "in situ" technique. Based on FDA-approved polymer, solvent and dosage forms, this gentle process allowed the incorporation of the GSNO labile drug into scaffolds made of either poly(lactide-co-glycolide) (PLGA) or PLGA/poly(ɛ-caprolactone) (PCL) blend. During scaffolds manufacturing process including washing cycles, NO donors were leached from scaffolds. However, GSNO and ISMN concentrations in the last washing medium (10(-7) M and 10(-4) M, respectively) were in the range of cell suitability for tissue engineering. Further morphological analyses indicated that smoother surfaces with fewer but bigger pores (compatible with cell penetration and ingrowth) were obtained with PLGA in comparison with PLGA/PCL scaffolds. Among all tested matrices, only unloaded PLGA and GSNO-loaded PLGA/PCL exhibited intermediate cell anchorage, with mitochondrial activity close to the control and an increase in protein content, a prognostic for scaffold cell colonization, defining them as promising candidates. Deeper analyses of these two scaffolds looking at intracellular redox balance through reactive oxygen species production, glutathione, S-nitrosothiols, and nitrite ions content exhibited GSNO-loaded PLGA/PCL as the best of all tested 3D scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Marianne Parent
- Faculté De Pharmacie, Université De Lorraine, CITHEFOR EA 3452, BP 80403, Nancy Cedex, F-54001, France
| | - Ariane Boudier
- Faculté De Pharmacie, Université De Lorraine, CITHEFOR EA 3452, BP 80403, Nancy Cedex, F-54001, France
| | - Isabelle Fries
- Faculté De Pharmacie, Université De Lorraine, CITHEFOR EA 3452, BP 80403, Nancy Cedex, F-54001, France
| | - Aleksandra Gostyńska
- Faculté De Pharmacie, Université De Lorraine, CITHEFOR EA 3452, BP 80403, Nancy Cedex, F-54001, France.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, Poland
| | - Marek Rychter
- Faculté De Pharmacie, Université De Lorraine, CITHEFOR EA 3452, BP 80403, Nancy Cedex, F-54001, France.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, Poland
| | - Janina Lulek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, Poland
| | - Pierre Leroy
- Faculté De Pharmacie, Université De Lorraine, CITHEFOR EA 3452, BP 80403, Nancy Cedex, F-54001, France
| | - Caroline Gaucher
- Faculté De Pharmacie, Université De Lorraine, CITHEFOR EA 3452, BP 80403, Nancy Cedex, F-54001, France
| |
Collapse
|
42
|
Muerza-Cascante ML, Haylock D, Hutmacher DW, Dalton PD. Melt Electrospinning and Its Technologization in Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:187-202. [DOI: 10.1089/ten.teb.2014.0347] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- M. Lourdes Muerza-Cascante
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - David Haylock
- The Commonwealth Scientific Industrial Research Organisation, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
- Institute for Advanced Study, Technical University Munich, Garching, Germany
- George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Paul D. Dalton
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| |
Collapse
|
43
|
Chen BY, Jing X, Mi HY, Zhao H, Zhang WH, Peng XF, Turng LS. Fabrication of polylactic acid/polyethylene glycol (PLA/PEG) porous scaffold by supercritical CO2
foaming and particle leaching. POLYM ENG SCI 2015. [DOI: 10.1002/pen.24073] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Bin-Yi Chen
- The Key Laboratory of Polymer Processing Engineering of Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology; Guangzhou 510640 China
| | - Xin Jing
- The Key Laboratory of Polymer Processing Engineering of Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology; Guangzhou 510640 China
- Department of Mechanical Engineering; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Hao-Yang Mi
- The Key Laboratory of Polymer Processing Engineering of Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology; Guangzhou 510640 China
| | - Haibin Zhao
- The Key Laboratory of Polymer Processing Engineering of Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology; Guangzhou 510640 China
- School of Materials Science and Engineering, Shandong University; Jinan Shandong 250061 China
| | - Wen-Hao Zhang
- The Key Laboratory of Polymer Processing Engineering of Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology; Guangzhou 510640 China
| | - Xiang-Fang Peng
- The Key Laboratory of Polymer Processing Engineering of Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology; Guangzhou 510640 China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering; University of Wisconsin-Madison; Madison Wisconsin 53706
| |
Collapse
|
44
|
Pérez-Madrigal MM, Armelin E, Puiggalí J, Alemán C. Insulating and semiconducting polymeric free-standing nanomembranes with biomedical applications. J Mater Chem B 2015; 3:5904-5932. [DOI: 10.1039/c5tb00624d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free-standing nanomembranes, which are emerging as versatile elements in biomedical applications, are evolving from being composed of insulating (bio)polymers to electroactive conducting polymers.
Collapse
Affiliation(s)
- Maria M. Pérez-Madrigal
- Departament d'Enginyeria Química
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
| | - Elaine Armelin
- Departament d'Enginyeria Química
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
| | - Jordi Puiggalí
- Departament d'Enginyeria Química
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
| |
Collapse
|
45
|
Esteve V, Berganzo J, Monge R, Martínez-Bisbal MC, Villa R, Celda B, Fernandez L. Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring. BIOMICROFLUIDICS 2014; 8:064105. [PMID: 25553182 PMCID: PMC4240776 DOI: 10.1063/1.4902002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/04/2014] [Indexed: 06/02/2023]
Abstract
A new microfluidic cell culture device compatible with real-time nuclear magnetic resonance (NMR) is presented here. The intended application is the long-term monitoring of 3D cell cultures by several techniques. The system has been designed to fit inside commercially available NMR equipment to obtain maximum readout resolution when working with small samples. Moreover, the microfluidic device integrates a fibre-optic-based sensor to monitor parameters such as oxygen, pH, or temperature during NMR monitoring, and it also allows the use of optical microscopy techniques such as confocal fluorescence microscopy. This manuscript reports the initial trials culturing neurospheres inside the microchamber of this device and the preliminary images and spatially localised spectra obtained by NMR. The images show the presence of a necrotic area in the interior of the neurospheres, as is frequently observed in histological preparations; this phenomenon appears whenever the distance between the cells and fresh nutrients impairs the diffusion of oxygen. Moreover, the spectra acquired in a volume of 8 nl inside the neurosphere show an accumulation of lactate and lipids, which are indicative of anoxic conditions. Additionally, a basis for general temperature control and monitoring and a graphical control software have been developed and are also described. The complete platform will allow biomedical assays of therapeutic agents to be performed in the early phases of therapeutic development. Thus, small quantities of drugs or advanced nanodevices may be studied long-term under simulated living conditions that mimic the flow and distribution of nutrients.
Collapse
|
46
|
Annepu H, Sarkar J. Miniaturized pattern formation in elastic films cast on sinusoidally patterned substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12278-12286. [PMID: 25238212 DOI: 10.1021/la502933c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The various morphologies that are formed when van der Waals forces or electric field is induced between film cast on a sinusoidal substrate and in contact proximity with a contactor or electrode are studied. Remarkably smaller length scales are achieved (λc < 2.96h) than those obtained with films cast on flat substrates. With van der Waals interactions, the patterns are uniformly formed throughout the film but are not regularly ordered. When electric field is used at critical voltage, more ordered, localized patterns are formed at the zones of large local interaction strengths. When these patterns are evolved by increasing the applied voltage, coexistence of all three phases-cavities, stripes, and columns-is observed throughout the film. The localized patterns that are initially formed vary with the voltage applied and strongly dictate the phases of evolution. A patterned substrate/patterned contactor assembly can be made to operate like its unpatterned counterpart by making the interaction strength same everywhere and yet yield uniform, regularly ordered, highly miniaturized patterns. Such patterns are very useful in various applications like microfluidics; they are formed with great ease and can be morphologically tuned by tuning the externally applied electric field.
Collapse
Affiliation(s)
- Hemalatha Annepu
- Chemical Engineering Department, Indian Institute of Technology Delhi , New Delhi 110 016, India
| | | |
Collapse
|
47
|
Three-dimensional biomaterial degradation — Material choice, design and extrinsic factor considerations. Biotechnol Adv 2014; 32:984-99. [DOI: 10.1016/j.biotechadv.2014.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 11/20/2022]
|
48
|
Mateos-Timoneda MA, Castano O, Planell JA, Engel E. Effect of structure, topography and chemistry on fibroblast adhesion and morphology. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1781-1787. [PMID: 24668270 DOI: 10.1007/s10856-014-5199-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
Surface biofunctionalisation of many biodegradable polymers is one of the used strategies to improve the biological activity of such materials. In this work, the introduction of collagen type I over the surface of a biodegradable polymer (poly lactic acid) processed in the forms of films and fibers leads to an enhancing of the cellular adhesion of human dermal fibroblast when compared to unmodified polymer and biomolecule-physisorbed polymer surface. The change of topography of the material does not affect the cellular adhesion but results in a higher proliferation of the fibroblast cultured over the fibers. Moreover, the difference of topography governs the cellular morphology, i.e. cells adopt a more stretched conformation where cultured over the films while a more elongated with lower area morphology are obtained for the cells grown over the fibers. This study is relevant for designing and modifying different biodegradable polymers for their use as scaffolds for different applications in the field of Tissue Engineering and Regenerative Medicine.
Collapse
|
49
|
Puppi D, Zhang X, Yang L, Chiellini F, Sun X, Chiellini E. Nano/microfibrous polymeric constructs loaded with bioactive agents and designed for tissue engineering applications: a review. J Biomed Mater Res B Appl Biomater 2014; 102:1562-79. [PMID: 24678016 DOI: 10.1002/jbm.b.33144] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/29/2014] [Accepted: 03/06/2014] [Indexed: 01/04/2023]
Abstract
Nano/microfibrous polymeric constructs present various inherent advantages, such as highly porous architecture and high surface to volume ratio, making them attractive for tissue engineering purposes. Electrospinning is the most preferred technique for the fabrication of polymeric nanofibrous assemblies that can mimic the physical functions of native extracellular matrix greatly favoring cells attachment and thus influencing their morphology and activities. Different approaches have been developed to apply polymeric microfiber fabrication techniques (e.g. wet-spinning) for the obtainment of scaffolds with a three-dimensional network of micropores suitable for effective cells migration. Progress in additive manufacturing technology has led to the development of complex scaffold's shapes and microfibrous structures with a high degree of automation, good accuracy and reproducibility. Various loading methods, such as direct blending, coaxial electrospinning and microparticles incorporation, are enabling to develop customized strategies for the biofunctionalization of nano/microfibrous scaffolds with a tailored kinetics of release of different bioactive agents, ranging from small molecules, such as antibiotics, to protein drugs, such as growth factors, and even cells. Recent activities on the combination of different processing techniques and loading methods for the obtainment of biofunctionalized polymeric constructs with a complex multiscale structure open new possibilities for the development of biomimetic scaffolds endowed with a hierarchical architecture and a sophisticated release kinetics of different bioactive agents. This review is aimed at summarizing current advances in technologies and methods for manufacturing nano/microfibrous polymeric constructs suitable as tissue engineering scaffolds, and for their combination with different bioactive agents to promote tissue regeneration and therapeutic effects.
Collapse
Affiliation(s)
- Dario Puppi
- Department of Chemistry and Industrial Chemistry, Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab), University of Pisa, 56010, San Piero a Grado (Pi), Italy
| | | | | | | | | | | |
Collapse
|
50
|
Microfluidic direct writer with integrated declogging mechanism for fabricating cell-laden hydrogel constructs. Biomed Microdevices 2014; 16:387-95. [DOI: 10.1007/s10544-014-9842-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|